xref: /openbsd/lib/libcrypto/bn/bn_prime.c (revision a6445c1d)
1 /* $OpenBSD: bn_prime.c,v 1.12 2014/10/18 17:20:40 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include <stdio.h>
113 #include <time.h>
114 
115 #include "bn_lcl.h"
116 
117 /* NB: these functions have been "upgraded", the deprecated versions (which are
118  * compatibility wrappers using these functions) are in bn_depr.c.
119  * - Geoff
120  */
121 
122 /* The quick sieve algorithm approach to weeding out primes is
123  * Philip Zimmermann's, as implemented in PGP.  I have had a read of
124  * his comments and implemented my own version.
125  */
126 #include "bn_prime.h"
127 
128 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
129     const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
130 static int probable_prime(BIGNUM *rnd, int bits);
131 static int probable_prime_dh(BIGNUM *rnd, int bits,
132     const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
133 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
134     const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
135 
136 int
137 BN_GENCB_call(BN_GENCB *cb, int a, int b)
138 {
139 	/* No callback means continue */
140 	if (!cb)
141 		return 1;
142 	switch (cb->ver) {
143 	case 1:
144 		/* Deprecated-style callbacks */
145 		if (!cb->cb.cb_1)
146 			return 1;
147 		cb->cb.cb_1(a, b, cb->arg);
148 		return 1;
149 	case 2:
150 		/* New-style callbacks */
151 		return cb->cb.cb_2(a, b, cb);
152 	default:
153 		break;
154 	}
155 	/* Unrecognised callback type */
156 	return 0;
157 }
158 
159 int
160 BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
161     const BIGNUM *rem, BN_GENCB *cb)
162 {
163 	BIGNUM *t;
164 	int found = 0;
165 	int i, j, c1 = 0;
166 	BN_CTX *ctx;
167 	int checks = BN_prime_checks_for_size(bits);
168 
169 	ctx = BN_CTX_new();
170 	if (ctx == NULL)
171 		goto err;
172 	BN_CTX_start(ctx);
173 	t = BN_CTX_get(ctx);
174 	if (!t)
175 		goto err;
176 loop:
177 	/* make a random number and set the top and bottom bits */
178 	if (add == NULL) {
179 		if (!probable_prime(ret, bits))
180 			goto err;
181 	} else {
182 		if (safe) {
183 			if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
184 				goto err;
185 		} else {
186 			if (!probable_prime_dh(ret, bits, add, rem, ctx))
187 				goto err;
188 		}
189 	}
190 	/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
191 	if (!BN_GENCB_call(cb, 0, c1++))
192 		/* aborted */
193 		goto err;
194 
195 	if (!safe) {
196 		i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
197 		if (i == -1)
198 			goto err;
199 		if (i == 0)
200 			goto loop;
201 	} else {
202 		/* for "safe prime" generation,
203 		 * check that (p-1)/2 is prime.
204 		 * Since a prime is odd, We just
205 		 * need to divide by 2 */
206 		if (!BN_rshift1(t, ret))
207 			goto err;
208 
209 		for (i = 0; i < checks; i++) {
210 			j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
211 			if (j == -1)
212 				goto err;
213 			if (j == 0)
214 				goto loop;
215 
216 			j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
217 			if (j == -1)
218 				goto err;
219 			if (j == 0)
220 				goto loop;
221 
222 			if (!BN_GENCB_call(cb, 2, c1 - 1))
223 				goto err;
224 			/* We have a safe prime test pass */
225 		}
226 	}
227 	/* we have a prime :-) */
228 	found = 1;
229 
230 err:
231 	if (ctx != NULL) {
232 		BN_CTX_end(ctx);
233 		BN_CTX_free(ctx);
234 	}
235 	bn_check_top(ret);
236 	return found;
237 }
238 
239 int
240 BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
241 {
242 	return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
243 }
244 
245 int
246 BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
247     int do_trial_division, BN_GENCB *cb)
248 {
249 	int i, j, ret = -1;
250 	int k;
251 	BN_CTX *ctx = NULL;
252 	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
253 	BN_MONT_CTX *mont = NULL;
254 	const BIGNUM *A = NULL;
255 
256 	if (BN_cmp(a, BN_value_one()) <= 0)
257 		return 0;
258 
259 	if (checks == BN_prime_checks)
260 		checks = BN_prime_checks_for_size(BN_num_bits(a));
261 
262 	/* first look for small factors */
263 	if (!BN_is_odd(a))
264 		/* a is even => a is prime if and only if a == 2 */
265 		return BN_is_word(a, 2);
266 	if (do_trial_division) {
267 		for (i = 1; i < NUMPRIMES; i++)
268 			if (BN_mod_word(a, primes[i]) == 0)
269 				return 0;
270 		if (!BN_GENCB_call(cb, 1, -1))
271 			goto err;
272 	}
273 
274 	if (ctx_passed != NULL)
275 		ctx = ctx_passed;
276 	else if ((ctx = BN_CTX_new()) == NULL)
277 		goto err;
278 	BN_CTX_start(ctx);
279 
280 	/* A := abs(a) */
281 	if (a->neg) {
282 		BIGNUM *t;
283 		if ((t = BN_CTX_get(ctx)) == NULL)
284 			goto err;
285 		BN_copy(t, a);
286 		t->neg = 0;
287 		A = t;
288 	} else
289 		A = a;
290 	A1 = BN_CTX_get(ctx);
291 	A1_odd = BN_CTX_get(ctx);
292 	check = BN_CTX_get(ctx);
293 	if (check == NULL)
294 		goto err;
295 
296 	/* compute A1 := A - 1 */
297 	if (!BN_copy(A1, A))
298 		goto err;
299 	if (!BN_sub_word(A1, 1))
300 		goto err;
301 	if (BN_is_zero(A1)) {
302 		ret = 0;
303 		goto err;
304 	}
305 
306 	/* write  A1  as  A1_odd * 2^k */
307 	k = 1;
308 	while (!BN_is_bit_set(A1, k))
309 		k++;
310 	if (!BN_rshift(A1_odd, A1, k))
311 		goto err;
312 
313 	/* Montgomery setup for computations mod A */
314 	mont = BN_MONT_CTX_new();
315 	if (mont == NULL)
316 		goto err;
317 	if (!BN_MONT_CTX_set(mont, A, ctx))
318 		goto err;
319 
320 	for (i = 0; i < checks; i++) {
321 		if (!BN_pseudo_rand_range(check, A1))
322 			goto err;
323 		if (!BN_add_word(check, 1))
324 			goto err;
325 		/* now 1 <= check < A */
326 
327 		j = witness(check, A, A1, A1_odd, k, ctx, mont);
328 		if (j == -1)
329 			goto err;
330 		if (j) {
331 			ret = 0;
332 			goto err;
333 		}
334 		if (!BN_GENCB_call(cb, 1, i))
335 			goto err;
336 	}
337 	ret = 1;
338 
339 err:
340 	if (ctx != NULL) {
341 		BN_CTX_end(ctx);
342 		if (ctx_passed == NULL)
343 			BN_CTX_free(ctx);
344 	}
345 	BN_MONT_CTX_free(mont);
346 
347 	return (ret);
348 }
349 
350 static int
351 witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd,
352     int k, BN_CTX *ctx, BN_MONT_CTX *mont)
353 {
354 	if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont))
355 		/* w := w^a1_odd mod a */
356 		return -1;
357 	if (BN_is_one(w))
358 		return 0; /* probably prime */
359 	if (BN_cmp(w, a1) == 0)
360 		return 0; /* w == -1 (mod a),  'a' is probably prime */
361 	while (--k) {
362 		if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
363 			return -1;
364 		if (BN_is_one(w))
365 			return 1; /* 'a' is composite, otherwise a previous 'w' would
366 			           * have been == -1 (mod 'a') */
367 		if (BN_cmp(w, a1) == 0)
368 			return 0; /* w == -1 (mod a), 'a' is probably prime */
369 	}
370 	/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
371 	 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
372 	bn_check_top(w);
373 	return 1;
374 }
375 
376 static int
377 probable_prime(BIGNUM *rnd, int bits)
378 {
379 	int i;
380 	prime_t mods[NUMPRIMES];
381 	BN_ULONG delta, maxdelta;
382 
383 again:
384 	if (!BN_rand(rnd, bits, 1, 1))
385 		return (0);
386 	/* we now have a random number 'rand' to test. */
387 	for (i = 1; i < NUMPRIMES; i++)
388 		mods[i] = (prime_t)BN_mod_word(rnd, (BN_ULONG)primes[i]);
389 	maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
390 	delta = 0;
391 loop:
392 	for (i = 1; i < NUMPRIMES; i++) {
393 		/* check that rnd is not a prime and also
394 		 * that gcd(rnd-1,primes) == 1 (except for 2) */
395 		if (((mods[i] + delta) % primes[i]) <= 1) {
396 			delta += 2;
397 			if (delta > maxdelta)
398 				goto again;
399 			goto loop;
400 		}
401 	}
402 	if (!BN_add_word(rnd, delta))
403 		return (0);
404 	bn_check_top(rnd);
405 	return (1);
406 }
407 
408 static int
409 probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem,
410     BN_CTX *ctx)
411 {
412 	int i, ret = 0;
413 	BIGNUM *t1;
414 
415 	BN_CTX_start(ctx);
416 	if ((t1 = BN_CTX_get(ctx)) == NULL)
417 		goto err;
418 
419 	if (!BN_rand(rnd, bits, 0, 1))
420 		goto err;
421 
422 	/* we need ((rnd-rem) % add) == 0 */
423 
424 	if (!BN_mod(t1, rnd, add, ctx))
425 		goto err;
426 	if (!BN_sub(rnd, rnd, t1))
427 		goto err;
428 	if (rem == NULL) {
429 		if (!BN_add_word(rnd, 1))
430 			goto err;
431 	} else {
432 		if (!BN_add(rnd, rnd, rem))
433 			goto err;
434 	}
435 
436 	/* we now have a random number 'rand' to test. */
437 
438 loop:
439 	for (i = 1; i < NUMPRIMES; i++) {
440 		/* check that rnd is a prime */
441 		if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
442 			if (!BN_add(rnd, rnd, add))
443 				goto err;
444 			goto loop;
445 		}
446 	}
447 	ret = 1;
448 
449 err:
450 	BN_CTX_end(ctx);
451 	bn_check_top(rnd);
452 	return (ret);
453 }
454 
455 static int
456 probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
457     const BIGNUM *rem, BN_CTX *ctx)
458 {
459 	int i, ret = 0;
460 	BIGNUM *t1, *qadd, *q;
461 
462 	bits--;
463 	BN_CTX_start(ctx);
464 	t1 = BN_CTX_get(ctx);
465 	q = BN_CTX_get(ctx);
466 	qadd = BN_CTX_get(ctx);
467 	if (qadd == NULL)
468 		goto err;
469 
470 	if (!BN_rshift1(qadd, padd))
471 		goto err;
472 
473 	if (!BN_rand(q, bits, 0, 1))
474 		goto err;
475 
476 	/* we need ((rnd-rem) % add) == 0 */
477 	if (!BN_mod(t1, q,qadd, ctx))
478 		goto err;
479 	if (!BN_sub(q, q, t1))
480 		goto err;
481 	if (rem == NULL) {
482 		if (!BN_add_word(q, 1))
483 			goto err;
484 	} else {
485 		if (!BN_rshift1(t1, rem))
486 			goto err;
487 		if (!BN_add(q, q, t1))
488 			goto err;
489 	}
490 
491 	/* we now have a random number 'rand' to test. */
492 	if (!BN_lshift1(p, q))
493 		goto err;
494 	if (!BN_add_word(p, 1))
495 		goto err;
496 
497 loop:
498 	for (i = 1; i < NUMPRIMES; i++) {
499 		/* check that p and q are prime */
500 		/* check that for p and q
501 		 * gcd(p-1,primes) == 1 (except for 2) */
502 		if ((BN_mod_word(p, (BN_ULONG)primes[i]) == 0) ||
503 		    (BN_mod_word(q, (BN_ULONG)primes[i]) == 0)) {
504 			if (!BN_add(p, p, padd))
505 				goto err;
506 			if (!BN_add(q, q, qadd))
507 				goto err;
508 			goto loop;
509 		}
510 	}
511 	ret = 1;
512 
513 err:
514 	BN_CTX_end(ctx);
515 	bn_check_top(p);
516 	return (ret);
517 }
518