xref: /openbsd/lib/libcrypto/sha/asm/sha1-586.pl (revision 274d7c50)
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24#		compared with original	compared with Intel cc
25#		assembler impl.		generated code
26# Pentium	-16%			+48%
27# PIII/AMD	+8%			+16%
28# P4		+85%(!)			+45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweights the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34#					<appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59#    it possible to reduce amount of instructions required to perform
60#    the operation in question, for further details see
61#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of �-ops, and it's the additional �-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single �-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86#		x86		SSSE3		AVX
87# Pentium	15.7		-
88# PIII		11.5		-
89# P4		10.6		-
90# AMD K8	7.1		-
91# Core2		7.3		6.1/+20%	-
92# Atom		12.5		9.5(*)/+32%	-
93# Westmere	7.3		5.6/+30%	-
94# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+70%
95#
96# (*)	Loop is 1056 instructions long and expected result is ~8.25.
97#	It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
100
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113		$1>=2.19);	# first version supporting AVX
114
115&external_label("OPENSSL_ia32cap_P") if ($xmm);
116
117
118$A="eax";
119$B="ebx";
120$C="ecx";
121$D="edx";
122$E="edi";
123$T="esi";
124$tmp1="ebp";
125
126@V=($A,$B,$C,$D,$E,$T);
127
128$alt=0;	# 1 denotes alternative IALU implementation, which performs
129	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
130	# Sandy Bridge...
131
132sub BODY_00_15
133	{
134	local($n,$a,$b,$c,$d,$e,$f)=@_;
135
136	&comment("00_15 $n");
137
138	&mov($f,$c);			# f to hold F_00_19(b,c,d)
139	 if ($n==0)  { &mov($tmp1,$a); }
140	 else        { &mov($a,$tmp1); }
141	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
142	 &xor($f,$d);
143	&add($tmp1,$e);			# tmp1+=e;
144	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
145	 				# with xi, also note that e becomes
146					# f in next round...
147	&and($f,$b);
148	&rotr($b,2);			# b=ROTATE(b,30)
149	 &xor($f,$d);			# f holds F_00_19(b,c,d)
150	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
151
152	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
153		      &add($f,$tmp1); }	# f+=tmp1
154	else        { &add($tmp1,$f); }	# f becomes a in next round
155	&mov($tmp1,$a)			if ($alt && $n==15);
156	}
157
158sub BODY_16_19
159	{
160	local($n,$a,$b,$c,$d,$e,$f)=@_;
161
162	&comment("16_19 $n");
163
164if ($alt) {
165	&xor($c,$d);
166	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
167	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
168	 &xor($f,&swtmp(($n+8)%16));
169	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
170	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
171	&rotl($f,1);			# f=ROTATE(f,1)
172	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
173	&xor($c,$d);			# restore $c
174	 &mov($tmp1,$a);		# b in next round
175	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
176	 &mov(&swtmp($n%16),$f);	# xi=f
177	&rotl($a,5);			# ROTATE(a,5)
178	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
179	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
180	 &add($f,$a);			# f+=ROTATE(a,5)
181} else {
182	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
183	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
184	&xor($tmp1,$d);
185	 &xor($f,&swtmp(($n+8)%16));
186	&and($tmp1,$b);
187	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
188	&rotl($f,1);			# f=ROTATE(f,1)
189	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
190	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
191	 &mov($tmp1,$a);
192	&rotr($b,2);			# b=ROTATE(b,30)
193	 &mov(&swtmp($n%16),$f);	# xi=f
194	&rotl($tmp1,5);			# ROTATE(a,5)
195	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
196	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
197	 &add($f,$tmp1);		# f+=ROTATE(a,5)
198}
199	}
200
201sub BODY_20_39
202	{
203	local($n,$a,$b,$c,$d,$e,$f)=@_;
204	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
205
206	&comment("20_39 $n");
207
208if ($alt) {
209	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
210	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
211	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
212	 &xor($f,&swtmp(($n+8)%16));
213	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
214	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
215	&rotl($f,1);			# f=ROTATE(f,1)
216	 &mov($tmp1,$a);		# b in next round
217	&rotr($b,7);			# b=ROTATE(b,30)
218	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
219	&rotl($a,5);			# ROTATE(a,5)
220	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
221	&and($tmp1,$b)			if($n==39);
222	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
223	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
224	 &add($f,$a);			# f+=ROTATE(a,5)
225	&rotr($a,5)			if ($n==79);
226} else {
227	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
228	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
229	&xor($tmp1,$c);
230	 &xor($f,&swtmp(($n+8)%16));
231	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
232	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
233	&rotl($f,1);			# f=ROTATE(f,1)
234	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
235	&rotr($b,2);			# b=ROTATE(b,30)
236	 &mov($tmp1,$a);
237	&rotl($tmp1,5);			# ROTATE(a,5)
238	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
239	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
240	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
241	&add($f,$tmp1);			# f+=ROTATE(a,5)
242}
243	}
244
245sub BODY_40_59
246	{
247	local($n,$a,$b,$c,$d,$e,$f)=@_;
248
249	&comment("40_59 $n");
250
251if ($alt) {
252	&add($e,$tmp1);			# e+=b&(c^d)
253	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
254	&mov($tmp1,$d);
255	 &xor($f,&swtmp(($n+8)%16));
256	&xor($c,$d);			# restore $c
257	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
258	&rotl($f,1);			# f=ROTATE(f,1)
259	 &and($tmp1,$c);
260	&rotr($b,7);			# b=ROTATE(b,30)
261	 &add($e,$tmp1);		# e+=c&d
262	&mov($tmp1,$a);			# b in next round
263	 &mov(&swtmp($n%16),$f);	# xi=f
264	&rotl($a,5);			# ROTATE(a,5)
265	 &xor($b,$c)			if ($n<59);
266	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
267	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
268	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
269	 &add($f,$a);			# f+=ROTATE(a,5)
270} else {
271	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
272	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
273	&xor($tmp1,$d);
274	 &xor($f,&swtmp(($n+8)%16));
275	&and($tmp1,$b);
276	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
277	&rotl($f,1);			# f=ROTATE(f,1)
278	 &add($tmp1,$e);		# b&(c^d)+=e
279	&rotr($b,2);			# b=ROTATE(b,30)
280	 &mov($e,$a);			# e becomes volatile
281	&rotl($e,5);			# ROTATE(a,5)
282	 &mov(&swtmp($n%16),$f);	# xi=f
283	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
284	 &mov($tmp1,$c);
285	&add($f,$e);			# f+=ROTATE(a,5)
286	 &and($tmp1,$d);
287	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
288	 &add($f,$tmp1);		# f+=c&d
289}
290	}
291
292&function_begin("sha1_block_data_order");
293if ($xmm) {
294  &static_label("ssse3_shortcut");
295  &static_label("avx_shortcut")		if ($ymm);
296  &static_label("K_XX_XX");
297
298	&call	(&label("pic_point"));	# make it PIC!
299  &set_label("pic_point");
300	&blindpop($tmp1);
301	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
302	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
303
304	&mov	($A,&DWP(0,$T));
305	&mov	($D,&DWP(4,$T));
306	&test	($D,"\$IA32CAP_MASK1_SSSE3");	# check SSSE3 bit
307	&jz	(&label("x86"));
308	&test	($A,"\$IA32CAP_MASK0_FXSR");	# check FXSR bit
309	&jz	(&label("x86"));
310	if ($ymm) {
311		&and	($D,"\$IA32CAP_MASK1_AVX");	# mask AVX bit
312		&and	($A,"\$IA32CAP_MASK0_INTEL");	# mask "Intel CPU" bit
313		&or	($A,$D);
314		&cmp	($A,"\$(IA32CAP_MASK1_AVX | IA32CAP_MASK0_INTEL)");
315		&je	(&label("avx_shortcut"));
316	}
317	&jmp	(&label("ssse3_shortcut"));
318  &set_label("x86",16);
319}
320	&mov($tmp1,&wparam(0));	# SHA_CTX *c
321	&mov($T,&wparam(1));	# const void *input
322	&mov($A,&wparam(2));	# size_t num
323	&stack_push(16+3);	# allocate X[16]
324	&shl($A,6);
325	&add($A,$T);
326	&mov(&wparam(2),$A);	# pointer beyond the end of input
327	&mov($E,&DWP(16,$tmp1));# pre-load E
328	&jmp(&label("loop"));
329
330&set_label("loop",16);
331
332	# copy input chunk to X, but reversing byte order!
333	for ($i=0; $i<16; $i+=4)
334		{
335		&mov($A,&DWP(4*($i+0),$T));
336		&mov($B,&DWP(4*($i+1),$T));
337		&mov($C,&DWP(4*($i+2),$T));
338		&mov($D,&DWP(4*($i+3),$T));
339		&bswap($A);
340		&bswap($B);
341		&bswap($C);
342		&bswap($D);
343		&mov(&swtmp($i+0),$A);
344		&mov(&swtmp($i+1),$B);
345		&mov(&swtmp($i+2),$C);
346		&mov(&swtmp($i+3),$D);
347		}
348	&mov(&wparam(1),$T);	# redundant in 1st spin
349
350	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
351	&mov($B,&DWP(4,$tmp1));
352	&mov($C,&DWP(8,$tmp1));
353	&mov($D,&DWP(12,$tmp1));
354	# E is pre-loaded
355
356	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
357	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
358	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
359	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
360	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
361
362	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
363
364	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
365	&mov($D,&wparam(1));	# D is last "T" and is discarded
366
367	&add($E,&DWP(0,$tmp1));	# E is last "A"...
368	&add($T,&DWP(4,$tmp1));
369	&add($A,&DWP(8,$tmp1));
370	&add($B,&DWP(12,$tmp1));
371	&add($C,&DWP(16,$tmp1));
372
373	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
374	 &add($D,64);		# advance input pointer
375	&mov(&DWP(4,$tmp1),$T);
376	 &cmp($D,&wparam(2));	# have we reached the end yet?
377	&mov(&DWP(8,$tmp1),$A);
378	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
379	&mov(&DWP(12,$tmp1),$B);
380	 &mov($T,$D);		# input pointer
381	&mov(&DWP(16,$tmp1),$C);
382	&jb(&label("loop"));
383
384	&stack_pop(16+3);
385&function_end("sha1_block_data_order");
386
387if ($xmm) {
388######################################################################
389# The SSSE3 implementation.
390#
391# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
392# 32 elements of the message schedule or Xupdate outputs. First 4
393# quadruples are simply byte-swapped input, next 4 are calculated
394# according to method originally suggested by Dean Gaudet (modulo
395# being implemented in SSSE3). Once 8 quadruples or 32 elements are
396# collected, it switches to routine proposed by Max Locktyukhin.
397#
398# Calculations inevitably require temporary reqisters, and there are
399# no %xmm registers left to spare. For this reason part of the ring
400# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
401# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
402# X[-5], and X[4] - X[-4]...
403#
404# Another notable optimization is aggressive stack frame compression
405# aiming to minimize amount of 9-byte instructions...
406#
407# Yet another notable optimization is "jumping" $B variable. It means
408# that there is no register permanently allocated for $B value. This
409# allowed to eliminate one instruction from body_20_39...
410#
411my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
412my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
413my @V=($A,$B,$C,$D,$E);
414my $j=0;			# hash round
415my @T=($T,$tmp1);
416my $inp;
417
418my $_rol=sub { &rol(@_) };
419my $_ror=sub { &ror(@_) };
420
421&function_begin("_sha1_block_data_order_ssse3");
422	&call	(&label("pic_point"));	# make it PIC!
423	&set_label("pic_point");
424	&blindpop($tmp1);
425	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
426&set_label("ssse3_shortcut");
427
428	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
429	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
430	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
431	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
432	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
433
434	&mov	($E,&wparam(0));		# load argument block
435	&mov	($inp=@T[1],&wparam(1));
436	&mov	($D,&wparam(2));
437	&mov	(@T[0],"esp");
438
439	# stack frame layout
440	#
441	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
442	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
443	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
444	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
445	#
446	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
447	#	X[4]	X[5]	X[6]	X[7]
448	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
449	#
450	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
451	#	K_40_59	K_40_59	K_40_59	K_40_59
452	#	K_60_79	K_60_79	K_60_79	K_60_79
453	#	K_00_19	K_00_19	K_00_19	K_00_19
454	#	pbswap mask
455	#
456	# +192	ctx				# argument block
457	# +196	inp
458	# +200	end
459	# +204	esp
460	&sub	("esp",208);
461	&and	("esp",-64);
462
463	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
464	&movdqa	(&QWP(112+16,"esp"),@X[5]);
465	&movdqa	(&QWP(112+32,"esp"),@X[6]);
466	&shl	($D,6);				# len*64
467	&movdqa	(&QWP(112+48,"esp"),@X[3]);
468	&add	($D,$inp);			# end of input
469	&movdqa	(&QWP(112+64,"esp"),@X[2]);
470	&add	($inp,64);
471	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
472	&mov	(&DWP(192+4,"esp"),$inp);
473	&mov	(&DWP(192+8,"esp"),$D);
474	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
475
476	&mov	($A,&DWP(0,$E));		# load context
477	&mov	($B,&DWP(4,$E));
478	&mov	($C,&DWP(8,$E));
479	&mov	($D,&DWP(12,$E));
480	&mov	($E,&DWP(16,$E));
481	&mov	(@T[0],$B);			# magic seed
482
483	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
484	&movdqu	(@X[-3&7],&QWP(-48,$inp));
485	&movdqu	(@X[-2&7],&QWP(-32,$inp));
486	&movdqu	(@X[-1&7],&QWP(-16,$inp));
487	&pshufb	(@X[-4&7],@X[2]);		# byte swap
488	&pshufb	(@X[-3&7],@X[2]);
489	&pshufb	(@X[-2&7],@X[2]);
490	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
491	&pshufb	(@X[-1&7],@X[2]);
492	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
493	&paddd	(@X[-3&7],@X[3]);
494	&paddd	(@X[-2&7],@X[3]);
495	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
496	&psubd	(@X[-4&7],@X[3]);		# restore X[]
497	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
498	&psubd	(@X[-3&7],@X[3]);
499	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
500	&psubd	(@X[-2&7],@X[3]);
501	&movdqa	(@X[0],@X[-3&7]);
502	&jmp	(&label("loop"));
503
504######################################################################
505# SSE instruction sequence is first broken to groups of independent
506# instructions, independent in respect to their inputs and shifter
507# (not all architectures have more than one). Then IALU instructions
508# are "knitted in" between the SSE groups. Distance is maintained for
509# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
510# [which allegedly also implements SSSE3]...
511#
512# Temporary registers usage. X[2] is volatile at the entry and at the
513# end is restored from backtrace ring buffer. X[3] is expected to
514# contain current K_XX_XX constant and is used to caclulate X[-1]+K
515# from previous round, it becomes volatile the moment the value is
516# saved to stack for transfer to IALU. X[4] becomes volatile whenever
517# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
518# end it is loaded with next K_XX_XX [which becomes X[3] in next
519# round]...
520#
521sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4
522{ use integer;
523  my $body = shift;
524  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
525  my ($a,$b,$c,$d,$e);
526
527	 eval(shift(@insns));
528	 eval(shift(@insns));
529	&palignr(@X[0],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
530	&movdqa	(@X[2],@X[-1&7]);
531	 eval(shift(@insns));
532	 eval(shift(@insns));
533
534	  &paddd	(@X[3],@X[-1&7]);
535	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
536	 eval(shift(@insns));
537	 eval(shift(@insns));
538	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
539	 eval(shift(@insns));
540	 eval(shift(@insns));
541	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
542	 eval(shift(@insns));
543	 eval(shift(@insns));
544
545	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
546	 eval(shift(@insns));
547	 eval(shift(@insns));
548	 eval(shift(@insns));
549	 eval(shift(@insns));
550
551	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557
558	&movdqa	(@X[4],@X[0]);
559	&movdqa	(@X[2],@X[0]);
560	 eval(shift(@insns));
561	 eval(shift(@insns));
562	 eval(shift(@insns));
563	 eval(shift(@insns));
564
565	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
566	&paddd	(@X[0],@X[0]);
567	 eval(shift(@insns));
568	 eval(shift(@insns));
569	 eval(shift(@insns));
570	 eval(shift(@insns));
571
572	&psrld	(@X[2],31);
573	 eval(shift(@insns));
574	 eval(shift(@insns));
575	&movdqa	(@X[3],@X[4]);
576	 eval(shift(@insns));
577	 eval(shift(@insns));
578
579	&psrld	(@X[4],30);
580	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
581	 eval(shift(@insns));
582	 eval(shift(@insns));
583	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
584	 eval(shift(@insns));
585	 eval(shift(@insns));
586
587	&pslld	(@X[3],2);
588	&pxor	(@X[0],@X[4]);
589	 eval(shift(@insns));
590	 eval(shift(@insns));
591	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
592	 eval(shift(@insns));
593	 eval(shift(@insns));
594
595	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
596	  &movdqa	(@X[1],@X[-2&7])	if ($Xi<7);
597	 eval(shift(@insns));
598	 eval(shift(@insns));
599
600	 foreach (@insns) { eval; }	# remaining instructions [if any]
601
602  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
603}
604
605sub Xupdate_ssse3_32_79()
606{ use integer;
607  my $body = shift;
608  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
609  my ($a,$b,$c,$d,$e);
610
611	&movdqa	(@X[2],@X[-1&7])	if ($Xi==8);
612	 eval(shift(@insns));		# body_20_39
613	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
614	&palignr(@X[2],@X[-2&7],8);	# compose "X[-6]"
615	 eval(shift(@insns));
616	 eval(shift(@insns));
617	 eval(shift(@insns));		# rol
618
619	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
620	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
621	 eval(shift(@insns));
622	 eval(shift(@insns));
623	 if ($Xi%5) {
624	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
625	 } else {			# ... or load next one
626	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
627	 }
628	  &paddd	(@X[3],@X[-1&7]);
629	 eval(shift(@insns));		# ror
630	 eval(shift(@insns));
631
632	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
633	 eval(shift(@insns));		# body_20_39
634	 eval(shift(@insns));
635	 eval(shift(@insns));
636	 eval(shift(@insns));		# rol
637
638	&movdqa	(@X[2],@X[0]);
639	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
640	 eval(shift(@insns));
641	 eval(shift(@insns));
642	 eval(shift(@insns));		# ror
643	 eval(shift(@insns));
644
645	&pslld	(@X[0],2);
646	 eval(shift(@insns));		# body_20_39
647	 eval(shift(@insns));
648	&psrld	(@X[2],30);
649	 eval(shift(@insns));
650	 eval(shift(@insns));		# rol
651	 eval(shift(@insns));
652	 eval(shift(@insns));
653	 eval(shift(@insns));		# ror
654	 eval(shift(@insns));
655
656	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
657	 eval(shift(@insns));		# body_20_39
658	 eval(shift(@insns));
659	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
660	 eval(shift(@insns));
661	 eval(shift(@insns));		# rol
662	 eval(shift(@insns));
663	 eval(shift(@insns));
664	 eval(shift(@insns));		# ror
665	  &movdqa	(@X[3],@X[0])	if ($Xi<19);
666	 eval(shift(@insns));
667
668	 foreach (@insns) { eval; }	# remaining instructions
669
670  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
671}
672
673sub Xuplast_ssse3_80()
674{ use integer;
675  my $body = shift;
676  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
677  my ($a,$b,$c,$d,$e);
678
679	 eval(shift(@insns));
680	  &paddd	(@X[3],@X[-1&7]);
681	 eval(shift(@insns));
682	 eval(shift(@insns));
683	 eval(shift(@insns));
684	 eval(shift(@insns));
685
686	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
687
688	 foreach (@insns) { eval; }		# remaining instructions
689
690	&mov	($inp=@T[1],&DWP(192+4,"esp"));
691	&cmp	($inp,&DWP(192+8,"esp"));
692	&je	(&label("done"));
693
694	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
695	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
696	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
697	&movdqu	(@X[-3&7],&QWP(16,$inp));
698	&movdqu	(@X[-2&7],&QWP(32,$inp));
699	&movdqu	(@X[-1&7],&QWP(48,$inp));
700	&add	($inp,64);
701	&pshufb	(@X[-4&7],@X[2]);		# byte swap
702	&mov	(&DWP(192+4,"esp"),$inp);
703	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
704
705  $Xi=0;
706}
707
708sub Xloop_ssse3()
709{ use integer;
710  my $body = shift;
711  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
712  my ($a,$b,$c,$d,$e);
713
714	 eval(shift(@insns));
715	 eval(shift(@insns));
716	&pshufb	(@X[($Xi-3)&7],@X[2]);
717	 eval(shift(@insns));
718	 eval(shift(@insns));
719	&paddd	(@X[($Xi-4)&7],@X[3]);
720	 eval(shift(@insns));
721	 eval(shift(@insns));
722	 eval(shift(@insns));
723	 eval(shift(@insns));
724	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
725	 eval(shift(@insns));
726	 eval(shift(@insns));
727	&psubd	(@X[($Xi-4)&7],@X[3]);
728
729	foreach (@insns) { eval; }
730  $Xi++;
731}
732
733sub Xtail_ssse3()
734{ use integer;
735  my $body = shift;
736  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
737  my ($a,$b,$c,$d,$e);
738
739	foreach (@insns) { eval; }
740}
741
742sub body_00_19 () {
743	(
744	'($a,$b,$c,$d,$e)=@V;'.
745	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
746	'&xor	($c,$d);',
747	'&mov	(@T[1],$a);',	# $b in next round
748	'&$_rol	($a,5);',
749	'&and	(@T[0],$c);',	# ($b&($c^$d))
750	'&xor	($c,$d);',	# restore $c
751	'&xor	(@T[0],$d);',
752	'&add	($e,$a);',
753	'&$_ror	($b,$j?7:2);',	# $b>>>2
754	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
755	);
756}
757
758sub body_20_39 () {
759	(
760	'($a,$b,$c,$d,$e)=@V;'.
761	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
762	'&xor	(@T[0],$d);',	# ($b^$d)
763	'&mov	(@T[1],$a);',	# $b in next round
764	'&$_rol	($a,5);',
765	'&xor	(@T[0],$c);',	# ($b^$d^$c)
766	'&add	($e,$a);',
767	'&$_ror	($b,7);',	# $b>>>2
768	'&add	($e,@T[0]);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
769	);
770}
771
772sub body_40_59 () {
773	(
774	'($a,$b,$c,$d,$e)=@V;'.
775	'&mov	(@T[1],$c);',
776	'&xor	($c,$d);',
777	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
778	'&and	(@T[1],$d);',
779	'&and	(@T[0],$c);',	# ($b&($c^$d))
780	'&$_ror	($b,7);',	# $b>>>2
781	'&add	($e,@T[1]);',
782	'&mov	(@T[1],$a);',	# $b in next round
783	'&$_rol	($a,5);',
784	'&add	($e,@T[0]);',
785	'&xor	($c,$d);',	# restore $c
786	'&add	($e,$a);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
787	);
788}
789
790&set_label("loop",16);
791	&Xupdate_ssse3_16_31(\&body_00_19);
792	&Xupdate_ssse3_16_31(\&body_00_19);
793	&Xupdate_ssse3_16_31(\&body_00_19);
794	&Xupdate_ssse3_16_31(\&body_00_19);
795	&Xupdate_ssse3_32_79(\&body_00_19);
796	&Xupdate_ssse3_32_79(\&body_20_39);
797	&Xupdate_ssse3_32_79(\&body_20_39);
798	&Xupdate_ssse3_32_79(\&body_20_39);
799	&Xupdate_ssse3_32_79(\&body_20_39);
800	&Xupdate_ssse3_32_79(\&body_20_39);
801	&Xupdate_ssse3_32_79(\&body_40_59);
802	&Xupdate_ssse3_32_79(\&body_40_59);
803	&Xupdate_ssse3_32_79(\&body_40_59);
804	&Xupdate_ssse3_32_79(\&body_40_59);
805	&Xupdate_ssse3_32_79(\&body_40_59);
806	&Xupdate_ssse3_32_79(\&body_20_39);
807	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
808
809				$saved_j=$j; @saved_V=@V;
810
811	&Xloop_ssse3(\&body_20_39);
812	&Xloop_ssse3(\&body_20_39);
813	&Xloop_ssse3(\&body_20_39);
814
815	&mov	(@T[1],&DWP(192,"esp"));	# update context
816	&add	($A,&DWP(0,@T[1]));
817	&add	(@T[0],&DWP(4,@T[1]));		# $b
818	&add	($C,&DWP(8,@T[1]));
819	&mov	(&DWP(0,@T[1]),$A);
820	&add	($D,&DWP(12,@T[1]));
821	&mov	(&DWP(4,@T[1]),@T[0]);
822	&add	($E,&DWP(16,@T[1]));
823	&mov	(&DWP(8,@T[1]),$C);
824	&mov	($B,@T[0]);
825	&mov	(&DWP(12,@T[1]),$D);
826	&mov	(&DWP(16,@T[1]),$E);
827	&movdqa	(@X[0],@X[-3&7]);
828
829	&jmp	(&label("loop"));
830
831&set_label("done",16);		$j=$saved_j; @V=@saved_V;
832
833	&Xtail_ssse3(\&body_20_39);
834	&Xtail_ssse3(\&body_20_39);
835	&Xtail_ssse3(\&body_20_39);
836
837	&mov	(@T[1],&DWP(192,"esp"));	# update context
838	&add	($A,&DWP(0,@T[1]));
839	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
840	&add	(@T[0],&DWP(4,@T[1]));		# $b
841	&add	($C,&DWP(8,@T[1]));
842	&mov	(&DWP(0,@T[1]),$A);
843	&add	($D,&DWP(12,@T[1]));
844	&mov	(&DWP(4,@T[1]),@T[0]);
845	&add	($E,&DWP(16,@T[1]));
846	&mov	(&DWP(8,@T[1]),$C);
847	&mov	(&DWP(12,@T[1]),$D);
848	&mov	(&DWP(16,@T[1]),$E);
849
850&function_end("_sha1_block_data_order_ssse3");
851
852if ($ymm) {
853my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
854my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
855my @V=($A,$B,$C,$D,$E);
856my $j=0;			# hash round
857my @T=($T,$tmp1);
858my $inp;
859
860my $_rol=sub { &shld(@_[0],@_) };
861my $_ror=sub { &shrd(@_[0],@_) };
862
863&function_begin("_sha1_block_data_order_avx");
864	&call	(&label("pic_point"));	# make it PIC!
865	&set_label("pic_point");
866	&blindpop($tmp1);
867	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
868&set_label("avx_shortcut");
869	&vzeroall();
870
871	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
872	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
873	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
874	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
875	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
876
877	&mov	($E,&wparam(0));		# load argument block
878	&mov	($inp=@T[1],&wparam(1));
879	&mov	($D,&wparam(2));
880	&mov	(@T[0],"esp");
881
882	# stack frame layout
883	#
884	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
885	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
886	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
887	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
888	#
889	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
890	#	X[4]	X[5]	X[6]	X[7]
891	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
892	#
893	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
894	#	K_40_59	K_40_59	K_40_59	K_40_59
895	#	K_60_79	K_60_79	K_60_79	K_60_79
896	#	K_00_19	K_00_19	K_00_19	K_00_19
897	#	pbswap mask
898	#
899	# +192	ctx				# argument block
900	# +196	inp
901	# +200	end
902	# +204	esp
903	&sub	("esp",208);
904	&and	("esp",-64);
905
906	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
907	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
908	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
909	&shl	($D,6);				# len*64
910	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
911	&add	($D,$inp);			# end of input
912	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
913	&add	($inp,64);
914	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
915	&mov	(&DWP(192+4,"esp"),$inp);
916	&mov	(&DWP(192+8,"esp"),$D);
917	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
918
919	&mov	($A,&DWP(0,$E));		# load context
920	&mov	($B,&DWP(4,$E));
921	&mov	($C,&DWP(8,$E));
922	&mov	($D,&DWP(12,$E));
923	&mov	($E,&DWP(16,$E));
924	&mov	(@T[0],$B);			# magic seed
925
926	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
927	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
928	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
929	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
930	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
931	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
932	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
933	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
934	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
935	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
936	&vpaddd	(@X[1],@X[-3&7],@X[3]);
937	&vpaddd	(@X[2],@X[-2&7],@X[3]);
938	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
939	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
940	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
941	&jmp	(&label("loop"));
942
943sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4
944{ use integer;
945  my $body = shift;
946  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
947  my ($a,$b,$c,$d,$e);
948
949	 eval(shift(@insns));
950	 eval(shift(@insns));
951	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
952	 eval(shift(@insns));
953	 eval(shift(@insns));
954
955	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
956	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
957	 eval(shift(@insns));
958	 eval(shift(@insns));
959	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
960	 eval(shift(@insns));
961	 eval(shift(@insns));
962	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
963	 eval(shift(@insns));
964	 eval(shift(@insns));
965
966	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
967	 eval(shift(@insns));
968	 eval(shift(@insns));
969	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
970	 eval(shift(@insns));
971	 eval(shift(@insns));
972
973	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
974	 eval(shift(@insns));
975	 eval(shift(@insns));
976	 eval(shift(@insns));
977	 eval(shift(@insns));
978
979	&vpsrld	(@X[2],@X[0],31);
980	 eval(shift(@insns));
981	 eval(shift(@insns));
982	 eval(shift(@insns));
983	 eval(shift(@insns));
984
985	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
986	&vpaddd	(@X[0],@X[0],@X[0]);
987	 eval(shift(@insns));
988	 eval(shift(@insns));
989	 eval(shift(@insns));
990	 eval(shift(@insns));
991
992	&vpsrld	(@X[3],@X[4],30);
993	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
994	 eval(shift(@insns));
995	 eval(shift(@insns));
996	 eval(shift(@insns));
997	 eval(shift(@insns));
998
999	&vpslld	(@X[4],@X[4],2);
1000	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
1001	 eval(shift(@insns));
1002	 eval(shift(@insns));
1003	&vpxor	(@X[0],@X[0],@X[3]);
1004	 eval(shift(@insns));
1005	 eval(shift(@insns));
1006	 eval(shift(@insns));
1007	 eval(shift(@insns));
1008
1009	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1010	 eval(shift(@insns));
1011	 eval(shift(@insns));
1012	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1013	 eval(shift(@insns));
1014	 eval(shift(@insns));
1015
1016	 foreach (@insns) { eval; }	# remaining instructions [if any]
1017
1018  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1019}
1020
1021sub Xupdate_avx_32_79()
1022{ use integer;
1023  my $body = shift;
1024  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
1025  my ($a,$b,$c,$d,$e);
1026
1027	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1028	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1029	 eval(shift(@insns));		# body_20_39
1030	 eval(shift(@insns));
1031	 eval(shift(@insns));
1032	 eval(shift(@insns));		# rol
1033
1034	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1035	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1036	 eval(shift(@insns));
1037	 eval(shift(@insns));
1038	 if ($Xi%5) {
1039	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1040	 } else {			# ... or load next one
1041	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1042	 }
1043	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1044	 eval(shift(@insns));		# ror
1045	 eval(shift(@insns));
1046
1047	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1048	 eval(shift(@insns));		# body_20_39
1049	 eval(shift(@insns));
1050	 eval(shift(@insns));
1051	 eval(shift(@insns));		# rol
1052
1053	&vpsrld	(@X[2],@X[0],30);
1054	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1055	 eval(shift(@insns));
1056	 eval(shift(@insns));
1057	 eval(shift(@insns));		# ror
1058	 eval(shift(@insns));
1059
1060	&vpslld	(@X[0],@X[0],2);
1061	 eval(shift(@insns));		# body_20_39
1062	 eval(shift(@insns));
1063	 eval(shift(@insns));
1064	 eval(shift(@insns));		# rol
1065	 eval(shift(@insns));
1066	 eval(shift(@insns));
1067	 eval(shift(@insns));		# ror
1068	 eval(shift(@insns));
1069
1070	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1071	 eval(shift(@insns));		# body_20_39
1072	 eval(shift(@insns));
1073	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1074	 eval(shift(@insns));
1075	 eval(shift(@insns));		# rol
1076	 eval(shift(@insns));
1077	 eval(shift(@insns));
1078	 eval(shift(@insns));		# ror
1079	 eval(shift(@insns));
1080
1081	 foreach (@insns) { eval; }	# remaining instructions
1082
1083  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1084}
1085
1086sub Xuplast_avx_80()
1087{ use integer;
1088  my $body = shift;
1089  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1090  my ($a,$b,$c,$d,$e);
1091
1092	 eval(shift(@insns));
1093	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1094	 eval(shift(@insns));
1095	 eval(shift(@insns));
1096	 eval(shift(@insns));
1097	 eval(shift(@insns));
1098
1099	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1100
1101	 foreach (@insns) { eval; }		# remaining instructions
1102
1103	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1104	&cmp	($inp,&DWP(192+8,"esp"));
1105	&je	(&label("done"));
1106
1107	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1108	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1109	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1110	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1111	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1112	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1113	&add	($inp,64);
1114	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1115	&mov	(&DWP(192+4,"esp"),$inp);
1116	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1117
1118  $Xi=0;
1119}
1120
1121sub Xloop_avx()
1122{ use integer;
1123  my $body = shift;
1124  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1125  my ($a,$b,$c,$d,$e);
1126
1127	 eval(shift(@insns));
1128	 eval(shift(@insns));
1129	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1130	 eval(shift(@insns));
1131	 eval(shift(@insns));
1132	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1133	 eval(shift(@insns));
1134	 eval(shift(@insns));
1135	 eval(shift(@insns));
1136	 eval(shift(@insns));
1137	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1138	 eval(shift(@insns));
1139	 eval(shift(@insns));
1140
1141	foreach (@insns) { eval; }
1142  $Xi++;
1143}
1144
1145sub Xtail_avx()
1146{ use integer;
1147  my $body = shift;
1148  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1149  my ($a,$b,$c,$d,$e);
1150
1151	foreach (@insns) { eval; }
1152}
1153
1154&set_label("loop",16);
1155	&Xupdate_avx_16_31(\&body_00_19);
1156	&Xupdate_avx_16_31(\&body_00_19);
1157	&Xupdate_avx_16_31(\&body_00_19);
1158	&Xupdate_avx_16_31(\&body_00_19);
1159	&Xupdate_avx_32_79(\&body_00_19);
1160	&Xupdate_avx_32_79(\&body_20_39);
1161	&Xupdate_avx_32_79(\&body_20_39);
1162	&Xupdate_avx_32_79(\&body_20_39);
1163	&Xupdate_avx_32_79(\&body_20_39);
1164	&Xupdate_avx_32_79(\&body_20_39);
1165	&Xupdate_avx_32_79(\&body_40_59);
1166	&Xupdate_avx_32_79(\&body_40_59);
1167	&Xupdate_avx_32_79(\&body_40_59);
1168	&Xupdate_avx_32_79(\&body_40_59);
1169	&Xupdate_avx_32_79(\&body_40_59);
1170	&Xupdate_avx_32_79(\&body_20_39);
1171	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1172
1173				$saved_j=$j; @saved_V=@V;
1174
1175	&Xloop_avx(\&body_20_39);
1176	&Xloop_avx(\&body_20_39);
1177	&Xloop_avx(\&body_20_39);
1178
1179	&mov	(@T[1],&DWP(192,"esp"));	# update context
1180	&add	($A,&DWP(0,@T[1]));
1181	&add	(@T[0],&DWP(4,@T[1]));		# $b
1182	&add	($C,&DWP(8,@T[1]));
1183	&mov	(&DWP(0,@T[1]),$A);
1184	&add	($D,&DWP(12,@T[1]));
1185	&mov	(&DWP(4,@T[1]),@T[0]);
1186	&add	($E,&DWP(16,@T[1]));
1187	&mov	(&DWP(8,@T[1]),$C);
1188	&mov	($B,@T[0]);
1189	&mov	(&DWP(12,@T[1]),$D);
1190	&mov	(&DWP(16,@T[1]),$E);
1191
1192	&jmp	(&label("loop"));
1193
1194&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1195
1196	&Xtail_avx(\&body_20_39);
1197	&Xtail_avx(\&body_20_39);
1198	&Xtail_avx(\&body_20_39);
1199
1200	&vzeroall();
1201
1202	&mov	(@T[1],&DWP(192,"esp"));	# update context
1203	&add	($A,&DWP(0,@T[1]));
1204	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1205	&add	(@T[0],&DWP(4,@T[1]));		# $b
1206	&add	($C,&DWP(8,@T[1]));
1207	&mov	(&DWP(0,@T[1]),$A);
1208	&add	($D,&DWP(12,@T[1]));
1209	&mov	(&DWP(4,@T[1]),@T[0]);
1210	&add	($E,&DWP(16,@T[1]));
1211	&mov	(&DWP(8,@T[1]),$C);
1212	&mov	(&DWP(12,@T[1]),$D);
1213	&mov	(&DWP(16,@T[1]),$E);
1214&function_end("_sha1_block_data_order_avx");
1215}
1216&set_label("K_XX_XX",64);
1217&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1218&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1219&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1220&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1221&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1222}
1223&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1224
1225&asm_finish();
1226