xref: /openbsd/lib/libcrypto/sha/asm/sha1-586.pl (revision 4bdff4be)
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24#		compared with original	compared with Intel cc
25#		assembler impl.		generated code
26# Pentium	-16%			+48%
27# PIII/AMD	+8%			+16%
28# P4		+85%(!)			+45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweighs the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34#					<appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59#    it possible to reduce amount of instructions required to perform
60#    the operation in question, for further details see
61#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of �-ops, and it's the additional �-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single �-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86#		x86		SSSE3		AVX
87# Pentium	15.7		-
88# PIII		11.5		-
89# P4		10.6		-
90# AMD K8	7.1		-
91# Core2		7.3		6.1/+20%	-
92# Atom		12.5		9.5(*)/+32%	-
93# Westmere	7.3		5.6/+30%	-
94# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+70%
95#
96# (*)	Loop is 1056 instructions long and expected result is ~8.25.
97#	It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
100
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113		$1>=2.19);	# first version supporting AVX
114
115&external_label("OPENSSL_ia32cap_P") if ($xmm);
116
117
118$A="eax";
119$B="ebx";
120$C="ecx";
121$D="edx";
122$E="edi";
123$T="esi";
124$tmp1="ebp";
125
126@V=($A,$B,$C,$D,$E,$T);
127
128$alt=0;	# 1 denotes alternative IALU implementation, which performs
129	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
130	# Sandy Bridge...
131
132sub BODY_00_15
133	{
134	local($n,$a,$b,$c,$d,$e,$f)=@_;
135
136	&comment("00_15 $n");
137
138	&mov($f,$c);			# f to hold F_00_19(b,c,d)
139	 if ($n==0)  { &mov($tmp1,$a); }
140	 else        { &mov($a,$tmp1); }
141	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
142	 &xor($f,$d);
143	&add($tmp1,$e);			# tmp1+=e;
144	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
145	 				# with xi, also note that e becomes
146					# f in next round...
147	&and($f,$b);
148	&rotr($b,2);			# b=ROTATE(b,30)
149	 &xor($f,$d);			# f holds F_00_19(b,c,d)
150	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
151
152	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
153		      &add($f,$tmp1); }	# f+=tmp1
154	else        { &add($tmp1,$f); }	# f becomes a in next round
155	&mov($tmp1,$a)			if ($alt && $n==15);
156	}
157
158sub BODY_16_19
159	{
160	local($n,$a,$b,$c,$d,$e,$f)=@_;
161
162	&comment("16_19 $n");
163
164if ($alt) {
165	&xor($c,$d);
166	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
167	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
168	 &xor($f,&swtmp(($n+8)%16));
169	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
170	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
171	&rotl($f,1);			# f=ROTATE(f,1)
172	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
173	&xor($c,$d);			# restore $c
174	 &mov($tmp1,$a);		# b in next round
175	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
176	 &mov(&swtmp($n%16),$f);	# xi=f
177	&rotl($a,5);			# ROTATE(a,5)
178	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
179	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
180	 &add($f,$a);			# f+=ROTATE(a,5)
181} else {
182	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
183	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
184	&xor($tmp1,$d);
185	 &xor($f,&swtmp(($n+8)%16));
186	&and($tmp1,$b);
187	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
188	&rotl($f,1);			# f=ROTATE(f,1)
189	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
190	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
191	 &mov($tmp1,$a);
192	&rotr($b,2);			# b=ROTATE(b,30)
193	 &mov(&swtmp($n%16),$f);	# xi=f
194	&rotl($tmp1,5);			# ROTATE(a,5)
195	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
196	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
197	 &add($f,$tmp1);		# f+=ROTATE(a,5)
198}
199	}
200
201sub BODY_20_39
202	{
203	local($n,$a,$b,$c,$d,$e,$f)=@_;
204	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
205
206	&comment("20_39 $n");
207
208if ($alt) {
209	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
210	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
211	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
212	 &xor($f,&swtmp(($n+8)%16));
213	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
214	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
215	&rotl($f,1);			# f=ROTATE(f,1)
216	 &mov($tmp1,$a);		# b in next round
217	&rotr($b,7);			# b=ROTATE(b,30)
218	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
219	&rotl($a,5);			# ROTATE(a,5)
220	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
221	&and($tmp1,$b)			if($n==39);
222	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
223	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
224	 &add($f,$a);			# f+=ROTATE(a,5)
225	&rotr($a,5)			if ($n==79);
226} else {
227	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
228	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
229	&xor($tmp1,$c);
230	 &xor($f,&swtmp(($n+8)%16));
231	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
232	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
233	&rotl($f,1);			# f=ROTATE(f,1)
234	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
235	&rotr($b,2);			# b=ROTATE(b,30)
236	 &mov($tmp1,$a);
237	&rotl($tmp1,5);			# ROTATE(a,5)
238	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
239	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
240	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
241	&add($f,$tmp1);			# f+=ROTATE(a,5)
242}
243	}
244
245sub BODY_40_59
246	{
247	local($n,$a,$b,$c,$d,$e,$f)=@_;
248
249	&comment("40_59 $n");
250
251if ($alt) {
252	&add($e,$tmp1);			# e+=b&(c^d)
253	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
254	&mov($tmp1,$d);
255	 &xor($f,&swtmp(($n+8)%16));
256	&xor($c,$d);			# restore $c
257	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
258	&rotl($f,1);			# f=ROTATE(f,1)
259	 &and($tmp1,$c);
260	&rotr($b,7);			# b=ROTATE(b,30)
261	 &add($e,$tmp1);		# e+=c&d
262	&mov($tmp1,$a);			# b in next round
263	 &mov(&swtmp($n%16),$f);	# xi=f
264	&rotl($a,5);			# ROTATE(a,5)
265	 &xor($b,$c)			if ($n<59);
266	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
267	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
268	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
269	 &add($f,$a);			# f+=ROTATE(a,5)
270} else {
271	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
272	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
273	&xor($tmp1,$d);
274	 &xor($f,&swtmp(($n+8)%16));
275	&and($tmp1,$b);
276	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
277	&rotl($f,1);			# f=ROTATE(f,1)
278	 &add($tmp1,$e);		# b&(c^d)+=e
279	&rotr($b,2);			# b=ROTATE(b,30)
280	 &mov($e,$a);			# e becomes volatile
281	&rotl($e,5);			# ROTATE(a,5)
282	 &mov(&swtmp($n%16),$f);	# xi=f
283	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
284	 &mov($tmp1,$c);
285	&add($f,$e);			# f+=ROTATE(a,5)
286	 &and($tmp1,$d);
287	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
288	 &add($f,$tmp1);		# f+=c&d
289}
290	}
291
292&function_begin("sha1_block_data_order");
293if ($xmm) {
294  &static_label("ssse3_shortcut");
295  &static_label("avx_shortcut")		if ($ymm);
296  &static_label("K_XX_XX");
297
298	&picsetup($tmp1);
299	&picsymbol($T, "OPENSSL_ia32cap_P", $tmp1);
300	&picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
301
302	&mov	($A,&DWP(0,$T));
303	&mov	($D,&DWP(4,$T));
304	&test	($D,"\$IA32CAP_MASK1_SSSE3");	# check SSSE3 bit
305	&jz	(&label("x86"));
306	&test	($A,"\$IA32CAP_MASK0_FXSR");	# check FXSR bit
307	&jz	(&label("x86"));
308	if ($ymm) {
309		&and	($D,"\$IA32CAP_MASK1_AVX");	# mask AVX bit
310		&and	($A,"\$IA32CAP_MASK0_INTEL");	# mask "Intel CPU" bit
311		&or	($A,$D);
312		&cmp	($A,"\$(IA32CAP_MASK1_AVX | IA32CAP_MASK0_INTEL)");
313		&je	(&label("avx_shortcut"));
314	}
315	&jmp	(&label("ssse3_shortcut"));
316  &set_label("x86",16);
317}
318	&mov($tmp1,&wparam(0));	# SHA_CTX *c
319	&mov($T,&wparam(1));	# const void *input
320	&mov($A,&wparam(2));	# size_t num
321	&stack_push(16+3);	# allocate X[16]
322	&shl($A,6);
323	&add($A,$T);
324	&mov(&wparam(2),$A);	# pointer beyond the end of input
325	&mov($E,&DWP(16,$tmp1));# pre-load E
326	&jmp(&label("loop"));
327
328&set_label("loop",16);
329
330	# copy input chunk to X, but reversing byte order!
331	for ($i=0; $i<16; $i+=4)
332		{
333		&mov($A,&DWP(4*($i+0),$T));
334		&mov($B,&DWP(4*($i+1),$T));
335		&mov($C,&DWP(4*($i+2),$T));
336		&mov($D,&DWP(4*($i+3),$T));
337		&bswap($A);
338		&bswap($B);
339		&bswap($C);
340		&bswap($D);
341		&mov(&swtmp($i+0),$A);
342		&mov(&swtmp($i+1),$B);
343		&mov(&swtmp($i+2),$C);
344		&mov(&swtmp($i+3),$D);
345		}
346	&mov(&wparam(1),$T);	# redundant in 1st spin
347
348	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
349	&mov($B,&DWP(4,$tmp1));
350	&mov($C,&DWP(8,$tmp1));
351	&mov($D,&DWP(12,$tmp1));
352	# E is pre-loaded
353
354	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
355	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
356	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
357	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
358	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
359
360	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
361
362	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
363	&mov($D,&wparam(1));	# D is last "T" and is discarded
364
365	&add($E,&DWP(0,$tmp1));	# E is last "A"...
366	&add($T,&DWP(4,$tmp1));
367	&add($A,&DWP(8,$tmp1));
368	&add($B,&DWP(12,$tmp1));
369	&add($C,&DWP(16,$tmp1));
370
371	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
372	 &add($D,64);		# advance input pointer
373	&mov(&DWP(4,$tmp1),$T);
374	 &cmp($D,&wparam(2));	# have we reached the end yet?
375	&mov(&DWP(8,$tmp1),$A);
376	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
377	&mov(&DWP(12,$tmp1),$B);
378	 &mov($T,$D);		# input pointer
379	&mov(&DWP(16,$tmp1),$C);
380	&jb(&label("loop"));
381
382	&stack_pop(16+3);
383&function_end("sha1_block_data_order");
384
385if ($xmm) {
386######################################################################
387# The SSSE3 implementation.
388#
389# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
390# 32 elements of the message schedule or Xupdate outputs. First 4
391# quadruples are simply byte-swapped input, next 4 are calculated
392# according to method originally suggested by Dean Gaudet (modulo
393# being implemented in SSSE3). Once 8 quadruples or 32 elements are
394# collected, it switches to routine proposed by Max Locktyukhin.
395#
396# Calculations inevitably require temporary reqisters, and there are
397# no %xmm registers left to spare. For this reason part of the ring
398# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
399# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
400# X[-5], and X[4] - X[-4]...
401#
402# Another notable optimization is aggressive stack frame compression
403# aiming to minimize amount of 9-byte instructions...
404#
405# Yet another notable optimization is "jumping" $B variable. It means
406# that there is no register permanently allocated for $B value. This
407# allowed to eliminate one instruction from body_20_39...
408#
409my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
410my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
411my @V=($A,$B,$C,$D,$E);
412my $j=0;			# hash round
413my @T=($T,$tmp1);
414my $inp;
415
416my $_rol=sub { &rol(@_) };
417my $_ror=sub { &ror(@_) };
418
419&function_begin("_sha1_block_data_order_ssse3");
420	&picsetup($tmp1);
421	&picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
422
423&set_label("ssse3_shortcut");
424
425	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
426	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
427	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
428	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
429	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
430
431	&mov	($E,&wparam(0));		# load argument block
432	&mov	($inp=@T[1],&wparam(1));
433	&mov	($D,&wparam(2));
434	&mov	(@T[0],"esp");
435
436	# stack frame layout
437	#
438	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
439	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
440	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
441	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
442	#
443	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
444	#	X[4]	X[5]	X[6]	X[7]
445	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
446	#
447	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
448	#	K_40_59	K_40_59	K_40_59	K_40_59
449	#	K_60_79	K_60_79	K_60_79	K_60_79
450	#	K_00_19	K_00_19	K_00_19	K_00_19
451	#	pbswap mask
452	#
453	# +192	ctx				# argument block
454	# +196	inp
455	# +200	end
456	# +204	esp
457	&sub	("esp",208);
458	&and	("esp",-64);
459
460	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
461	&movdqa	(&QWP(112+16,"esp"),@X[5]);
462	&movdqa	(&QWP(112+32,"esp"),@X[6]);
463	&shl	($D,6);				# len*64
464	&movdqa	(&QWP(112+48,"esp"),@X[3]);
465	&add	($D,$inp);			# end of input
466	&movdqa	(&QWP(112+64,"esp"),@X[2]);
467	&add	($inp,64);
468	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
469	&mov	(&DWP(192+4,"esp"),$inp);
470	&mov	(&DWP(192+8,"esp"),$D);
471	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
472
473	&mov	($A,&DWP(0,$E));		# load context
474	&mov	($B,&DWP(4,$E));
475	&mov	($C,&DWP(8,$E));
476	&mov	($D,&DWP(12,$E));
477	&mov	($E,&DWP(16,$E));
478	&mov	(@T[0],$B);			# magic seed
479
480	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
481	&movdqu	(@X[-3&7],&QWP(-48,$inp));
482	&movdqu	(@X[-2&7],&QWP(-32,$inp));
483	&movdqu	(@X[-1&7],&QWP(-16,$inp));
484	&pshufb	(@X[-4&7],@X[2]);		# byte swap
485	&pshufb	(@X[-3&7],@X[2]);
486	&pshufb	(@X[-2&7],@X[2]);
487	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
488	&pshufb	(@X[-1&7],@X[2]);
489	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
490	&paddd	(@X[-3&7],@X[3]);
491	&paddd	(@X[-2&7],@X[3]);
492	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
493	&psubd	(@X[-4&7],@X[3]);		# restore X[]
494	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
495	&psubd	(@X[-3&7],@X[3]);
496	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
497	&psubd	(@X[-2&7],@X[3]);
498	&movdqa	(@X[0],@X[-3&7]);
499	&jmp	(&label("loop"));
500
501######################################################################
502# SSE instruction sequence is first broken to groups of independent
503# instructions, independent in respect to their inputs and shifter
504# (not all architectures have more than one). Then IALU instructions
505# are "knitted in" between the SSE groups. Distance is maintained for
506# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
507# [which allegedly also implements SSSE3]...
508#
509# Temporary registers usage. X[2] is volatile at the entry and at the
510# end is restored from backtrace ring buffer. X[3] is expected to
511# contain current K_XX_XX constant and is used to calculate X[-1]+K
512# from previous round, it becomes volatile the moment the value is
513# saved to stack for transfer to IALU. X[4] becomes volatile whenever
514# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
515# end it is loaded with next K_XX_XX [which becomes X[3] in next
516# round]...
517#
518sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
519{ use integer;
520  my $body = shift;
521  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
522  my ($a,$b,$c,$d,$e);
523
524	 eval(shift(@insns));
525	 eval(shift(@insns));
526	&palignr(@X[0],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
527	&movdqa	(@X[2],@X[-1&7]);
528	 eval(shift(@insns));
529	 eval(shift(@insns));
530
531	  &paddd	(@X[3],@X[-1&7]);
532	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
533	 eval(shift(@insns));
534	 eval(shift(@insns));
535	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
536	 eval(shift(@insns));
537	 eval(shift(@insns));
538	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
539	 eval(shift(@insns));
540	 eval(shift(@insns));
541
542	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
543	 eval(shift(@insns));
544	 eval(shift(@insns));
545	 eval(shift(@insns));
546	 eval(shift(@insns));
547
548	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
549	 eval(shift(@insns));
550	 eval(shift(@insns));
551	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554
555	&movdqa	(@X[4],@X[0]);
556	&movdqa	(@X[2],@X[0]);
557	 eval(shift(@insns));
558	 eval(shift(@insns));
559	 eval(shift(@insns));
560	 eval(shift(@insns));
561
562	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
563	&paddd	(@X[0],@X[0]);
564	 eval(shift(@insns));
565	 eval(shift(@insns));
566	 eval(shift(@insns));
567	 eval(shift(@insns));
568
569	&psrld	(@X[2],31);
570	 eval(shift(@insns));
571	 eval(shift(@insns));
572	&movdqa	(@X[3],@X[4]);
573	 eval(shift(@insns));
574	 eval(shift(@insns));
575
576	&psrld	(@X[4],30);
577	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
578	 eval(shift(@insns));
579	 eval(shift(@insns));
580	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
581	 eval(shift(@insns));
582	 eval(shift(@insns));
583
584	&pslld	(@X[3],2);
585	&pxor	(@X[0],@X[4]);
586	 eval(shift(@insns));
587	 eval(shift(@insns));
588	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
589	 eval(shift(@insns));
590	 eval(shift(@insns));
591
592	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
593	  &movdqa	(@X[1],@X[-2&7])	if ($Xi<7);
594	 eval(shift(@insns));
595	 eval(shift(@insns));
596
597	 foreach (@insns) { eval; }	# remaining instructions [if any]
598
599  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
600}
601
602sub Xupdate_ssse3_32_79()
603{ use integer;
604  my $body = shift;
605  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
606  my ($a,$b,$c,$d,$e);
607
608	&movdqa	(@X[2],@X[-1&7])	if ($Xi==8);
609	 eval(shift(@insns));		# body_20_39
610	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
611	&palignr(@X[2],@X[-2&7],8);	# compose "X[-6]"
612	 eval(shift(@insns));
613	 eval(shift(@insns));
614	 eval(shift(@insns));		# rol
615
616	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
617	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
618	 eval(shift(@insns));
619	 eval(shift(@insns));
620	 if ($Xi%5) {
621	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
622	 } else {			# ... or load next one
623	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
624	 }
625	  &paddd	(@X[3],@X[-1&7]);
626	 eval(shift(@insns));		# ror
627	 eval(shift(@insns));
628
629	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
630	 eval(shift(@insns));		# body_20_39
631	 eval(shift(@insns));
632	 eval(shift(@insns));
633	 eval(shift(@insns));		# rol
634
635	&movdqa	(@X[2],@X[0]);
636	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
637	 eval(shift(@insns));
638	 eval(shift(@insns));
639	 eval(shift(@insns));		# ror
640	 eval(shift(@insns));
641
642	&pslld	(@X[0],2);
643	 eval(shift(@insns));		# body_20_39
644	 eval(shift(@insns));
645	&psrld	(@X[2],30);
646	 eval(shift(@insns));
647	 eval(shift(@insns));		# rol
648	 eval(shift(@insns));
649	 eval(shift(@insns));
650	 eval(shift(@insns));		# ror
651	 eval(shift(@insns));
652
653	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
654	 eval(shift(@insns));		# body_20_39
655	 eval(shift(@insns));
656	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
657	 eval(shift(@insns));
658	 eval(shift(@insns));		# rol
659	 eval(shift(@insns));
660	 eval(shift(@insns));
661	 eval(shift(@insns));		# ror
662	  &movdqa	(@X[3],@X[0])	if ($Xi<19);
663	 eval(shift(@insns));
664
665	 foreach (@insns) { eval; }	# remaining instructions
666
667  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
668}
669
670sub Xuplast_ssse3_80()
671{ use integer;
672  my $body = shift;
673  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
674  my ($a,$b,$c,$d,$e);
675
676	 eval(shift(@insns));
677	  &paddd	(@X[3],@X[-1&7]);
678	 eval(shift(@insns));
679	 eval(shift(@insns));
680	 eval(shift(@insns));
681	 eval(shift(@insns));
682
683	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
684
685	 foreach (@insns) { eval; }		# remaining instructions
686
687	&mov	($inp=@T[1],&DWP(192+4,"esp"));
688	&cmp	($inp,&DWP(192+8,"esp"));
689	&je	(&label("done"));
690
691	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
692	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
693	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
694	&movdqu	(@X[-3&7],&QWP(16,$inp));
695	&movdqu	(@X[-2&7],&QWP(32,$inp));
696	&movdqu	(@X[-1&7],&QWP(48,$inp));
697	&add	($inp,64);
698	&pshufb	(@X[-4&7],@X[2]);		# byte swap
699	&mov	(&DWP(192+4,"esp"),$inp);
700	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
701
702  $Xi=0;
703}
704
705sub Xloop_ssse3()
706{ use integer;
707  my $body = shift;
708  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
709  my ($a,$b,$c,$d,$e);
710
711	 eval(shift(@insns));
712	 eval(shift(@insns));
713	&pshufb	(@X[($Xi-3)&7],@X[2]);
714	 eval(shift(@insns));
715	 eval(shift(@insns));
716	&paddd	(@X[($Xi-4)&7],@X[3]);
717	 eval(shift(@insns));
718	 eval(shift(@insns));
719	 eval(shift(@insns));
720	 eval(shift(@insns));
721	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
722	 eval(shift(@insns));
723	 eval(shift(@insns));
724	&psubd	(@X[($Xi-4)&7],@X[3]);
725
726	foreach (@insns) { eval; }
727  $Xi++;
728}
729
730sub Xtail_ssse3()
731{ use integer;
732  my $body = shift;
733  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
734  my ($a,$b,$c,$d,$e);
735
736	foreach (@insns) { eval; }
737}
738
739sub body_00_19 () {
740	(
741	'($a,$b,$c,$d,$e)=@V;'.
742	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
743	'&xor	($c,$d);',
744	'&mov	(@T[1],$a);',	# $b in next round
745	'&$_rol	($a,5);',
746	'&and	(@T[0],$c);',	# ($b&($c^$d))
747	'&xor	($c,$d);',	# restore $c
748	'&xor	(@T[0],$d);',
749	'&add	($e,$a);',
750	'&$_ror	($b,$j?7:2);',	# $b>>>2
751	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
752	);
753}
754
755sub body_20_39 () {
756	(
757	'($a,$b,$c,$d,$e)=@V;'.
758	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
759	'&xor	(@T[0],$d);',	# ($b^$d)
760	'&mov	(@T[1],$a);',	# $b in next round
761	'&$_rol	($a,5);',
762	'&xor	(@T[0],$c);',	# ($b^$d^$c)
763	'&add	($e,$a);',
764	'&$_ror	($b,7);',	# $b>>>2
765	'&add	($e,@T[0]);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
766	);
767}
768
769sub body_40_59 () {
770	(
771	'($a,$b,$c,$d,$e)=@V;'.
772	'&mov	(@T[1],$c);',
773	'&xor	($c,$d);',
774	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
775	'&and	(@T[1],$d);',
776	'&and	(@T[0],$c);',	# ($b&($c^$d))
777	'&$_ror	($b,7);',	# $b>>>2
778	'&add	($e,@T[1]);',
779	'&mov	(@T[1],$a);',	# $b in next round
780	'&$_rol	($a,5);',
781	'&add	($e,@T[0]);',
782	'&xor	($c,$d);',	# restore $c
783	'&add	($e,$a);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
784	);
785}
786
787&set_label("loop",16);
788	&Xupdate_ssse3_16_31(\&body_00_19);
789	&Xupdate_ssse3_16_31(\&body_00_19);
790	&Xupdate_ssse3_16_31(\&body_00_19);
791	&Xupdate_ssse3_16_31(\&body_00_19);
792	&Xupdate_ssse3_32_79(\&body_00_19);
793	&Xupdate_ssse3_32_79(\&body_20_39);
794	&Xupdate_ssse3_32_79(\&body_20_39);
795	&Xupdate_ssse3_32_79(\&body_20_39);
796	&Xupdate_ssse3_32_79(\&body_20_39);
797	&Xupdate_ssse3_32_79(\&body_20_39);
798	&Xupdate_ssse3_32_79(\&body_40_59);
799	&Xupdate_ssse3_32_79(\&body_40_59);
800	&Xupdate_ssse3_32_79(\&body_40_59);
801	&Xupdate_ssse3_32_79(\&body_40_59);
802	&Xupdate_ssse3_32_79(\&body_40_59);
803	&Xupdate_ssse3_32_79(\&body_20_39);
804	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
805
806				$saved_j=$j; @saved_V=@V;
807
808	&Xloop_ssse3(\&body_20_39);
809	&Xloop_ssse3(\&body_20_39);
810	&Xloop_ssse3(\&body_20_39);
811
812	&mov	(@T[1],&DWP(192,"esp"));	# update context
813	&add	($A,&DWP(0,@T[1]));
814	&add	(@T[0],&DWP(4,@T[1]));		# $b
815	&add	($C,&DWP(8,@T[1]));
816	&mov	(&DWP(0,@T[1]),$A);
817	&add	($D,&DWP(12,@T[1]));
818	&mov	(&DWP(4,@T[1]),@T[0]);
819	&add	($E,&DWP(16,@T[1]));
820	&mov	(&DWP(8,@T[1]),$C);
821	&mov	($B,@T[0]);
822	&mov	(&DWP(12,@T[1]),$D);
823	&mov	(&DWP(16,@T[1]),$E);
824	&movdqa	(@X[0],@X[-3&7]);
825
826	&jmp	(&label("loop"));
827
828&set_label("done",16);		$j=$saved_j; @V=@saved_V;
829
830	&Xtail_ssse3(\&body_20_39);
831	&Xtail_ssse3(\&body_20_39);
832	&Xtail_ssse3(\&body_20_39);
833
834	&mov	(@T[1],&DWP(192,"esp"));	# update context
835	&add	($A,&DWP(0,@T[1]));
836	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
837	&add	(@T[0],&DWP(4,@T[1]));		# $b
838	&add	($C,&DWP(8,@T[1]));
839	&mov	(&DWP(0,@T[1]),$A);
840	&add	($D,&DWP(12,@T[1]));
841	&mov	(&DWP(4,@T[1]),@T[0]);
842	&add	($E,&DWP(16,@T[1]));
843	&mov	(&DWP(8,@T[1]),$C);
844	&mov	(&DWP(12,@T[1]),$D);
845	&mov	(&DWP(16,@T[1]),$E);
846
847&function_end("_sha1_block_data_order_ssse3");
848
849if ($ymm) {
850my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
851my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
852my @V=($A,$B,$C,$D,$E);
853my $j=0;			# hash round
854my @T=($T,$tmp1);
855my $inp;
856
857my $_rol=sub { &shld(@_[0],@_) };
858my $_ror=sub { &shrd(@_[0],@_) };
859
860&function_begin("_sha1_block_data_order_avx");
861	&picsetup($tmp1);
862	&picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
863
864&set_label("avx_shortcut");
865	&vzeroall();
866
867	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
868	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
869	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
870	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
871	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
872
873	&mov	($E,&wparam(0));		# load argument block
874	&mov	($inp=@T[1],&wparam(1));
875	&mov	($D,&wparam(2));
876	&mov	(@T[0],"esp");
877
878	# stack frame layout
879	#
880	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
881	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
882	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
883	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
884	#
885	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
886	#	X[4]	X[5]	X[6]	X[7]
887	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
888	#
889	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
890	#	K_40_59	K_40_59	K_40_59	K_40_59
891	#	K_60_79	K_60_79	K_60_79	K_60_79
892	#	K_00_19	K_00_19	K_00_19	K_00_19
893	#	pbswap mask
894	#
895	# +192	ctx				# argument block
896	# +196	inp
897	# +200	end
898	# +204	esp
899	&sub	("esp",208);
900	&and	("esp",-64);
901
902	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
903	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
904	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
905	&shl	($D,6);				# len*64
906	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
907	&add	($D,$inp);			# end of input
908	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
909	&add	($inp,64);
910	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
911	&mov	(&DWP(192+4,"esp"),$inp);
912	&mov	(&DWP(192+8,"esp"),$D);
913	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
914
915	&mov	($A,&DWP(0,$E));		# load context
916	&mov	($B,&DWP(4,$E));
917	&mov	($C,&DWP(8,$E));
918	&mov	($D,&DWP(12,$E));
919	&mov	($E,&DWP(16,$E));
920	&mov	(@T[0],$B);			# magic seed
921
922	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
923	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
924	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
925	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
926	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
927	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
928	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
929	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
930	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
931	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
932	&vpaddd	(@X[1],@X[-3&7],@X[3]);
933	&vpaddd	(@X[2],@X[-2&7],@X[3]);
934	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
935	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
936	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
937	&jmp	(&label("loop"));
938
939sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
940{ use integer;
941  my $body = shift;
942  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
943  my ($a,$b,$c,$d,$e);
944
945	 eval(shift(@insns));
946	 eval(shift(@insns));
947	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
948	 eval(shift(@insns));
949	 eval(shift(@insns));
950
951	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
952	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
953	 eval(shift(@insns));
954	 eval(shift(@insns));
955	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
956	 eval(shift(@insns));
957	 eval(shift(@insns));
958	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
959	 eval(shift(@insns));
960	 eval(shift(@insns));
961
962	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
963	 eval(shift(@insns));
964	 eval(shift(@insns));
965	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
966	 eval(shift(@insns));
967	 eval(shift(@insns));
968
969	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
970	 eval(shift(@insns));
971	 eval(shift(@insns));
972	 eval(shift(@insns));
973	 eval(shift(@insns));
974
975	&vpsrld	(@X[2],@X[0],31);
976	 eval(shift(@insns));
977	 eval(shift(@insns));
978	 eval(shift(@insns));
979	 eval(shift(@insns));
980
981	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
982	&vpaddd	(@X[0],@X[0],@X[0]);
983	 eval(shift(@insns));
984	 eval(shift(@insns));
985	 eval(shift(@insns));
986	 eval(shift(@insns));
987
988	&vpsrld	(@X[3],@X[4],30);
989	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
990	 eval(shift(@insns));
991	 eval(shift(@insns));
992	 eval(shift(@insns));
993	 eval(shift(@insns));
994
995	&vpslld	(@X[4],@X[4],2);
996	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
997	 eval(shift(@insns));
998	 eval(shift(@insns));
999	&vpxor	(@X[0],@X[0],@X[3]);
1000	 eval(shift(@insns));
1001	 eval(shift(@insns));
1002	 eval(shift(@insns));
1003	 eval(shift(@insns));
1004
1005	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1006	 eval(shift(@insns));
1007	 eval(shift(@insns));
1008	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1009	 eval(shift(@insns));
1010	 eval(shift(@insns));
1011
1012	 foreach (@insns) { eval; }	# remaining instructions [if any]
1013
1014  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1015}
1016
1017sub Xupdate_avx_32_79()
1018{ use integer;
1019  my $body = shift;
1020  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
1021  my ($a,$b,$c,$d,$e);
1022
1023	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1024	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1025	 eval(shift(@insns));		# body_20_39
1026	 eval(shift(@insns));
1027	 eval(shift(@insns));
1028	 eval(shift(@insns));		# rol
1029
1030	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1031	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1032	 eval(shift(@insns));
1033	 eval(shift(@insns));
1034	 if ($Xi%5) {
1035	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1036	 } else {			# ... or load next one
1037	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1038	 }
1039	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1040	 eval(shift(@insns));		# ror
1041	 eval(shift(@insns));
1042
1043	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1044	 eval(shift(@insns));		# body_20_39
1045	 eval(shift(@insns));
1046	 eval(shift(@insns));
1047	 eval(shift(@insns));		# rol
1048
1049	&vpsrld	(@X[2],@X[0],30);
1050	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1051	 eval(shift(@insns));
1052	 eval(shift(@insns));
1053	 eval(shift(@insns));		# ror
1054	 eval(shift(@insns));
1055
1056	&vpslld	(@X[0],@X[0],2);
1057	 eval(shift(@insns));		# body_20_39
1058	 eval(shift(@insns));
1059	 eval(shift(@insns));
1060	 eval(shift(@insns));		# rol
1061	 eval(shift(@insns));
1062	 eval(shift(@insns));
1063	 eval(shift(@insns));		# ror
1064	 eval(shift(@insns));
1065
1066	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1067	 eval(shift(@insns));		# body_20_39
1068	 eval(shift(@insns));
1069	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1070	 eval(shift(@insns));
1071	 eval(shift(@insns));		# rol
1072	 eval(shift(@insns));
1073	 eval(shift(@insns));
1074	 eval(shift(@insns));		# ror
1075	 eval(shift(@insns));
1076
1077	 foreach (@insns) { eval; }	# remaining instructions
1078
1079  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1080}
1081
1082sub Xuplast_avx_80()
1083{ use integer;
1084  my $body = shift;
1085  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1086  my ($a,$b,$c,$d,$e);
1087
1088	 eval(shift(@insns));
1089	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1090	 eval(shift(@insns));
1091	 eval(shift(@insns));
1092	 eval(shift(@insns));
1093	 eval(shift(@insns));
1094
1095	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1096
1097	 foreach (@insns) { eval; }		# remaining instructions
1098
1099	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1100	&cmp	($inp,&DWP(192+8,"esp"));
1101	&je	(&label("done"));
1102
1103	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1104	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1105	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1106	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1107	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1108	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1109	&add	($inp,64);
1110	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1111	&mov	(&DWP(192+4,"esp"),$inp);
1112	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1113
1114  $Xi=0;
1115}
1116
1117sub Xloop_avx()
1118{ use integer;
1119  my $body = shift;
1120  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1121  my ($a,$b,$c,$d,$e);
1122
1123	 eval(shift(@insns));
1124	 eval(shift(@insns));
1125	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1126	 eval(shift(@insns));
1127	 eval(shift(@insns));
1128	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1129	 eval(shift(@insns));
1130	 eval(shift(@insns));
1131	 eval(shift(@insns));
1132	 eval(shift(@insns));
1133	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1134	 eval(shift(@insns));
1135	 eval(shift(@insns));
1136
1137	foreach (@insns) { eval; }
1138  $Xi++;
1139}
1140
1141sub Xtail_avx()
1142{ use integer;
1143  my $body = shift;
1144  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1145  my ($a,$b,$c,$d,$e);
1146
1147	foreach (@insns) { eval; }
1148}
1149
1150&set_label("loop",16);
1151	&Xupdate_avx_16_31(\&body_00_19);
1152	&Xupdate_avx_16_31(\&body_00_19);
1153	&Xupdate_avx_16_31(\&body_00_19);
1154	&Xupdate_avx_16_31(\&body_00_19);
1155	&Xupdate_avx_32_79(\&body_00_19);
1156	&Xupdate_avx_32_79(\&body_20_39);
1157	&Xupdate_avx_32_79(\&body_20_39);
1158	&Xupdate_avx_32_79(\&body_20_39);
1159	&Xupdate_avx_32_79(\&body_20_39);
1160	&Xupdate_avx_32_79(\&body_20_39);
1161	&Xupdate_avx_32_79(\&body_40_59);
1162	&Xupdate_avx_32_79(\&body_40_59);
1163	&Xupdate_avx_32_79(\&body_40_59);
1164	&Xupdate_avx_32_79(\&body_40_59);
1165	&Xupdate_avx_32_79(\&body_40_59);
1166	&Xupdate_avx_32_79(\&body_20_39);
1167	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1168
1169				$saved_j=$j; @saved_V=@V;
1170
1171	&Xloop_avx(\&body_20_39);
1172	&Xloop_avx(\&body_20_39);
1173	&Xloop_avx(\&body_20_39);
1174
1175	&mov	(@T[1],&DWP(192,"esp"));	# update context
1176	&add	($A,&DWP(0,@T[1]));
1177	&add	(@T[0],&DWP(4,@T[1]));		# $b
1178	&add	($C,&DWP(8,@T[1]));
1179	&mov	(&DWP(0,@T[1]),$A);
1180	&add	($D,&DWP(12,@T[1]));
1181	&mov	(&DWP(4,@T[1]),@T[0]);
1182	&add	($E,&DWP(16,@T[1]));
1183	&mov	(&DWP(8,@T[1]),$C);
1184	&mov	($B,@T[0]);
1185	&mov	(&DWP(12,@T[1]),$D);
1186	&mov	(&DWP(16,@T[1]),$E);
1187
1188	&jmp	(&label("loop"));
1189
1190&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1191
1192	&Xtail_avx(\&body_20_39);
1193	&Xtail_avx(\&body_20_39);
1194	&Xtail_avx(\&body_20_39);
1195
1196	&vzeroall();
1197
1198	&mov	(@T[1],&DWP(192,"esp"));	# update context
1199	&add	($A,&DWP(0,@T[1]));
1200	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1201	&add	(@T[0],&DWP(4,@T[1]));		# $b
1202	&add	($C,&DWP(8,@T[1]));
1203	&mov	(&DWP(0,@T[1]),$A);
1204	&add	($D,&DWP(12,@T[1]));
1205	&mov	(&DWP(4,@T[1]),@T[0]);
1206	&add	($E,&DWP(16,@T[1]));
1207	&mov	(&DWP(8,@T[1]),$C);
1208	&mov	(&DWP(12,@T[1]),$D);
1209	&mov	(&DWP(16,@T[1]),$E);
1210&function_end("_sha1_block_data_order_avx");
1211}
1212
1213	&rodataseg();
1214&set_label("K_XX_XX",64);
1215&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1216&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1217&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1218&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1219&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1220	&previous();
1221}
1222
1223&asm_finish();
1224