1 /* $OpenBSD: sha256.c,v 1.9 2015/09/10 15:56:26 jsing Exp $ */ 2 /* ==================================================================== 3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved 4 * according to the OpenSSL license [found in ../../LICENSE]. 5 * ==================================================================== 6 */ 7 8 #include <openssl/opensslconf.h> 9 10 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) 11 12 #include <machine/endian.h> 13 14 #include <stdlib.h> 15 #include <string.h> 16 17 #include <openssl/crypto.h> 18 #include <openssl/sha.h> 19 #include <openssl/opensslv.h> 20 21 int SHA224_Init(SHA256_CTX *c) 22 { 23 memset (c,0,sizeof(*c)); 24 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL; 25 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL; 26 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL; 27 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL; 28 c->md_len=SHA224_DIGEST_LENGTH; 29 return 1; 30 } 31 32 int SHA256_Init(SHA256_CTX *c) 33 { 34 memset (c,0,sizeof(*c)); 35 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL; 36 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL; 37 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL; 38 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL; 39 c->md_len=SHA256_DIGEST_LENGTH; 40 return 1; 41 } 42 43 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) 44 { 45 SHA256_CTX c; 46 static unsigned char m[SHA224_DIGEST_LENGTH]; 47 48 if (md == NULL) md=m; 49 SHA224_Init(&c); 50 SHA256_Update(&c,d,n); 51 SHA256_Final(md,&c); 52 explicit_bzero(&c,sizeof(c)); 53 return(md); 54 } 55 56 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) 57 { 58 SHA256_CTX c; 59 static unsigned char m[SHA256_DIGEST_LENGTH]; 60 61 if (md == NULL) md=m; 62 SHA256_Init(&c); 63 SHA256_Update(&c,d,n); 64 SHA256_Final(md,&c); 65 explicit_bzero(&c,sizeof(c)); 66 return(md); 67 } 68 69 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) 70 { return SHA256_Update (c,data,len); } 71 int SHA224_Final (unsigned char *md, SHA256_CTX *c) 72 { return SHA256_Final (md,c); } 73 74 #define DATA_ORDER_IS_BIG_ENDIAN 75 76 #define HASH_LONG SHA_LONG 77 #define HASH_CTX SHA256_CTX 78 #define HASH_CBLOCK SHA_CBLOCK 79 /* 80 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." 81 * default: case below covers for it. It's not clear however if it's 82 * permitted to truncate to amount of bytes not divisible by 4. I bet not, 83 * but if it is, then default: case shall be extended. For reference. 84 * Idea behind separate cases for pre-defined lenghts is to let the 85 * compiler decide if it's appropriate to unroll small loops. 86 */ 87 #define HASH_MAKE_STRING(c,s) do { \ 88 unsigned long ll; \ 89 unsigned int nn; \ 90 switch ((c)->md_len) \ 91 { case SHA224_DIGEST_LENGTH: \ 92 for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ 93 { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ 94 break; \ 95 case SHA256_DIGEST_LENGTH: \ 96 for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ 97 { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ 98 break; \ 99 default: \ 100 if ((c)->md_len > SHA256_DIGEST_LENGTH) \ 101 return 0; \ 102 for (nn=0;nn<(c)->md_len/4;nn++) \ 103 { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ 104 break; \ 105 } \ 106 } while (0) 107 108 #define HASH_UPDATE SHA256_Update 109 #define HASH_TRANSFORM SHA256_Transform 110 #define HASH_FINAL SHA256_Final 111 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order 112 #ifndef SHA256_ASM 113 static 114 #endif 115 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); 116 117 #include "md32_common.h" 118 119 #ifndef SHA256_ASM 120 static const SHA_LONG K256[64] = { 121 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, 122 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, 123 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, 124 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, 125 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, 126 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, 127 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, 128 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, 129 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, 130 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, 131 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, 132 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, 133 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, 134 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, 135 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, 136 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; 137 138 /* 139 * FIPS specification refers to right rotations, while our ROTATE macro 140 * is left one. This is why you might notice that rotation coefficients 141 * differ from those observed in FIPS document by 32-N... 142 */ 143 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) 144 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) 145 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) 146 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) 147 148 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 149 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 150 151 #ifdef OPENSSL_SMALL_FOOTPRINT 152 153 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 154 { 155 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; 156 SHA_LONG X[16],l; 157 int i; 158 const unsigned char *data=in; 159 160 while (num--) { 161 162 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 163 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 164 165 for (i=0;i<16;i++) 166 { 167 HOST_c2l(data,l); T1 = X[i] = l; 168 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 169 T2 = Sigma0(a) + Maj(a,b,c); 170 h = g; g = f; f = e; e = d + T1; 171 d = c; c = b; b = a; a = T1 + T2; 172 } 173 174 for (;i<64;i++) 175 { 176 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); 177 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); 178 179 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; 180 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 181 T2 = Sigma0(a) + Maj(a,b,c); 182 h = g; g = f; f = e; e = d + T1; 183 d = c; c = b; b = a; a = T1 + T2; 184 } 185 186 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 187 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 188 189 } 190 } 191 192 #else 193 194 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ 195 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ 196 h = Sigma0(a) + Maj(a,b,c); \ 197 d += T1; h += T1; } while (0) 198 199 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ 200 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ 201 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ 202 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ 203 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) 204 205 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 206 { 207 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; 208 SHA_LONG X[16]; 209 int i; 210 const unsigned char *data=in; 211 212 while (num--) { 213 214 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 215 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 216 217 if (BYTE_ORDER != LITTLE_ENDIAN && 218 sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) 219 { 220 const SHA_LONG *W=(const SHA_LONG *)data; 221 222 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); 223 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); 224 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); 225 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); 226 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); 227 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); 228 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); 229 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); 230 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); 231 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); 232 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); 233 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); 234 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); 235 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); 236 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); 237 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); 238 239 data += SHA256_CBLOCK; 240 } 241 else 242 { 243 SHA_LONG l; 244 245 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h); 246 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g); 247 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f); 248 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e); 249 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d); 250 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c); 251 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b); 252 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a); 253 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h); 254 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g); 255 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); 256 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); 257 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); 258 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); 259 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); 260 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); 261 } 262 263 for (i=16;i<64;i+=8) 264 { 265 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); 266 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); 267 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); 268 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); 269 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); 270 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); 271 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); 272 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); 273 } 274 275 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 276 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 277 278 } 279 } 280 281 #endif 282 #endif /* SHA256_ASM */ 283 284 #endif /* OPENSSL_NO_SHA256 */ 285