xref: /openbsd/lib/libevent/event.c (revision 17df1aa7)
1 /*	$OpenBSD: event.c,v 1.23 2010/04/21 21:02:46 nicm Exp $	*/
2 
3 /*
4  * Copyright (c) 2000-2004 Niels Provos <provos@citi.umich.edu>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #define WIN32_LEAN_AND_MEAN
35 #include <windows.h>
36 #undef WIN32_LEAN_AND_MEAN
37 #endif
38 #include <sys/types.h>
39 #ifdef HAVE_SYS_TIME_H
40 #include <sys/time.h>
41 #else
42 #include <sys/_libevent_time.h>
43 #endif
44 #include <sys/queue.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #ifndef WIN32
48 #include <unistd.h>
49 #endif
50 #include <errno.h>
51 #include <signal.h>
52 #include <string.h>
53 #include <assert.h>
54 #include <time.h>
55 
56 #include "event.h"
57 #include "event-internal.h"
58 #include "evutil.h"
59 #include "log.h"
60 
61 #ifdef HAVE_EVENT_PORTS
62 extern const struct eventop evportops;
63 #endif
64 #ifdef HAVE_SELECT
65 extern const struct eventop selectops;
66 #endif
67 #ifdef HAVE_POLL
68 extern const struct eventop pollops;
69 #endif
70 #ifdef HAVE_EPOLL
71 extern const struct eventop epollops;
72 #endif
73 #ifdef HAVE_WORKING_KQUEUE
74 extern const struct eventop kqops;
75 #endif
76 #ifdef HAVE_DEVPOLL
77 extern const struct eventop devpollops;
78 #endif
79 #ifdef WIN32
80 extern const struct eventop win32ops;
81 #endif
82 
83 /* In order of preference */
84 static const struct eventop *eventops[] = {
85 #ifdef HAVE_EVENT_PORTS
86 	&evportops,
87 #endif
88 #ifdef HAVE_WORKING_KQUEUE
89 	&kqops,
90 #endif
91 #ifdef HAVE_EPOLL
92 	&epollops,
93 #endif
94 #ifdef HAVE_DEVPOLL
95 	&devpollops,
96 #endif
97 #ifdef HAVE_POLL
98 	&pollops,
99 #endif
100 #ifdef HAVE_SELECT
101 	&selectops,
102 #endif
103 #ifdef WIN32
104 	&win32ops,
105 #endif
106 	NULL
107 };
108 
109 /* Global state */
110 struct event_base *current_base = NULL;
111 extern struct event_base *evsignal_base;
112 static int use_monotonic;
113 
114 /* Prototypes */
115 static void	event_queue_insert(struct event_base *, struct event *, int);
116 static void	event_queue_remove(struct event_base *, struct event *, int);
117 static int	event_haveevents(struct event_base *);
118 
119 static void	event_process_active(struct event_base *);
120 
121 static int	timeout_next(struct event_base *, struct timeval **);
122 static void	timeout_process(struct event_base *);
123 static void	timeout_correct(struct event_base *, struct timeval *);
124 
125 static void
126 detect_monotonic(void)
127 {
128 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
129 	struct timespec	ts;
130 
131 	if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
132 		use_monotonic = 1;
133 #endif
134 }
135 
136 static int
137 gettime(struct event_base *base, struct timeval *tp)
138 {
139 	if (base->tv_cache.tv_sec) {
140 		*tp = base->tv_cache;
141 		return (0);
142 	}
143 
144 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
145 	if (use_monotonic) {
146 		struct timespec	ts;
147 
148 		if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1)
149 			return (-1);
150 
151 		tp->tv_sec = ts.tv_sec;
152 		tp->tv_usec = ts.tv_nsec / 1000;
153 		return (0);
154 	}
155 #endif
156 
157 	return (evutil_gettimeofday(tp, NULL));
158 }
159 
160 struct event_base *
161 event_init(void)
162 {
163 	struct event_base *base = event_base_new();
164 
165 	if (base != NULL)
166 		current_base = base;
167 
168 	return (base);
169 }
170 
171 struct event_base *
172 event_base_new(void)
173 {
174 	int i;
175 	struct event_base *base;
176 
177 	if ((base = calloc(1, sizeof(struct event_base))) == NULL)
178 		event_err(1, "%s: calloc", __func__);
179 
180 	detect_monotonic();
181 	gettime(base, &base->event_tv);
182 
183 	min_heap_ctor(&base->timeheap);
184 	TAILQ_INIT(&base->eventqueue);
185 	base->sig.ev_signal_pair[0] = -1;
186 	base->sig.ev_signal_pair[1] = -1;
187 
188 	base->evbase = NULL;
189 	for (i = 0; eventops[i] && !base->evbase; i++) {
190 		base->evsel = eventops[i];
191 
192 		base->evbase = base->evsel->init(base);
193 	}
194 
195 	if (base->evbase == NULL)
196 		event_errx(1, "%s: no event mechanism available", __func__);
197 
198 	if (evutil_getenv("EVENT_SHOW_METHOD"))
199 		event_msgx("libevent using: %s\n",
200 			   base->evsel->name);
201 
202 	/* allocate a single active event queue */
203 	event_base_priority_init(base, 1);
204 
205 	return (base);
206 }
207 
208 void
209 event_base_free(struct event_base *base)
210 {
211 	int i, n_deleted=0;
212 	struct event *ev;
213 
214 	if (base == NULL && current_base)
215 		base = current_base;
216 	if (base == current_base)
217 		current_base = NULL;
218 
219 	/* XXX(niels) - check for internal events first */
220 	assert(base);
221 	/* Delete all non-internal events. */
222 	for (ev = TAILQ_FIRST(&base->eventqueue); ev; ) {
223 		struct event *next = TAILQ_NEXT(ev, ev_next);
224 		if (!(ev->ev_flags & EVLIST_INTERNAL)) {
225 			event_del(ev);
226 			++n_deleted;
227 		}
228 		ev = next;
229 	}
230 	while ((ev = min_heap_top(&base->timeheap)) != NULL) {
231 		event_del(ev);
232 		++n_deleted;
233 	}
234 
235 	for (i = 0; i < base->nactivequeues; ++i) {
236 		for (ev = TAILQ_FIRST(base->activequeues[i]); ev; ) {
237 			struct event *next = TAILQ_NEXT(ev, ev_active_next);
238 			if (!(ev->ev_flags & EVLIST_INTERNAL)) {
239 				event_del(ev);
240 				++n_deleted;
241 			}
242 			ev = next;
243 		}
244 	}
245 
246 	if (n_deleted)
247 		event_debug(("%s: %d events were still set in base",
248 			__func__, n_deleted));
249 
250 	if (base->evsel->dealloc != NULL)
251 		base->evsel->dealloc(base, base->evbase);
252 
253 	for (i = 0; i < base->nactivequeues; ++i)
254 		assert(TAILQ_EMPTY(base->activequeues[i]));
255 
256 	assert(min_heap_empty(&base->timeheap));
257 	min_heap_dtor(&base->timeheap);
258 
259 	for (i = 0; i < base->nactivequeues; ++i)
260 		free(base->activequeues[i]);
261 	free(base->activequeues);
262 
263 	assert(TAILQ_EMPTY(&base->eventqueue));
264 
265 	free(base);
266 }
267 
268 /* reinitialized the event base after a fork */
269 int
270 event_reinit(struct event_base *base)
271 {
272 	const struct eventop *evsel = base->evsel;
273 	void *evbase = base->evbase;
274 	int res = 0;
275 	struct event *ev;
276 
277 	/* check if this event mechanism requires reinit */
278 	if (!evsel->need_reinit)
279 		return (0);
280 
281 	/* prevent internal delete */
282 	if (base->sig.ev_signal_added) {
283 		/* we cannot call event_del here because the base has
284 		 * not been reinitialized yet. */
285 		event_queue_remove(base, &base->sig.ev_signal,
286 		    EVLIST_INSERTED);
287 		if (base->sig.ev_signal.ev_flags & EVLIST_ACTIVE)
288 			event_queue_remove(base, &base->sig.ev_signal,
289 			    EVLIST_ACTIVE);
290 		base->sig.ev_signal_added = 0;
291 	}
292 
293 	if (base->evsel->dealloc != NULL)
294 		base->evsel->dealloc(base, base->evbase);
295 	evbase = base->evbase = evsel->init(base);
296 	if (base->evbase == NULL)
297 		event_errx(1, "%s: could not reinitialize event mechanism",
298 		    __func__);
299 
300 	TAILQ_FOREACH(ev, &base->eventqueue, ev_next) {
301 		if (evsel->add(evbase, ev) == -1)
302 			res = -1;
303 	}
304 
305 	return (res);
306 }
307 
308 int
309 event_priority_init(int npriorities)
310 {
311   return event_base_priority_init(current_base, npriorities);
312 }
313 
314 int
315 event_base_priority_init(struct event_base *base, int npriorities)
316 {
317 	int i;
318 
319 	if (base->event_count_active)
320 		return (-1);
321 
322 	if (base->nactivequeues && npriorities != base->nactivequeues) {
323 		for (i = 0; i < base->nactivequeues; ++i) {
324 			free(base->activequeues[i]);
325 		}
326 		free(base->activequeues);
327 	}
328 
329 	/* Allocate our priority queues */
330 	base->nactivequeues = npriorities;
331 	base->activequeues = (struct event_list **)
332 	    calloc(base->nactivequeues, sizeof(struct event_list *));
333 	if (base->activequeues == NULL)
334 		event_err(1, "%s: calloc", __func__);
335 
336 	for (i = 0; i < base->nactivequeues; ++i) {
337 		base->activequeues[i] = malloc(sizeof(struct event_list));
338 		if (base->activequeues[i] == NULL)
339 			event_err(1, "%s: malloc", __func__);
340 		TAILQ_INIT(base->activequeues[i]);
341 	}
342 
343 	return (0);
344 }
345 
346 int
347 event_haveevents(struct event_base *base)
348 {
349 	return (base->event_count > 0);
350 }
351 
352 /*
353  * Active events are stored in priority queues.  Lower priorities are always
354  * process before higher priorities.  Low priority events can starve high
355  * priority ones.
356  */
357 
358 static void
359 event_process_active(struct event_base *base)
360 {
361 	struct event *ev;
362 	struct event_list *activeq = NULL;
363 	int i;
364 	short ncalls;
365 
366 	for (i = 0; i < base->nactivequeues; ++i) {
367 		if (TAILQ_FIRST(base->activequeues[i]) != NULL) {
368 			activeq = base->activequeues[i];
369 			break;
370 		}
371 	}
372 
373 	assert(activeq != NULL);
374 
375 	for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) {
376 		if (ev->ev_events & EV_PERSIST)
377 			event_queue_remove(base, ev, EVLIST_ACTIVE);
378 		else
379 			event_del(ev);
380 
381 		/* Allows deletes to work */
382 		ncalls = ev->ev_ncalls;
383 		ev->ev_pncalls = &ncalls;
384 		while (ncalls) {
385 			ncalls--;
386 			ev->ev_ncalls = ncalls;
387 			(*ev->ev_callback)((int)ev->ev_fd, ev->ev_res, ev->ev_arg);
388 			if (base->event_break)
389 				return;
390 		}
391 	}
392 }
393 
394 /*
395  * Wait continously for events.  We exit only if no events are left.
396  */
397 
398 int
399 event_dispatch(void)
400 {
401 	return (event_loop(0));
402 }
403 
404 int
405 event_base_dispatch(struct event_base *event_base)
406 {
407   return (event_base_loop(event_base, 0));
408 }
409 
410 const char *
411 event_base_get_method(struct event_base *base)
412 {
413 	assert(base);
414 	return (base->evsel->name);
415 }
416 
417 static void
418 event_loopexit_cb(int fd, short what, void *arg)
419 {
420 	struct event_base *base = arg;
421 	base->event_gotterm = 1;
422 }
423 
424 /* not thread safe */
425 int
426 event_loopexit(const struct timeval *tv)
427 {
428 	return (event_once(-1, EV_TIMEOUT, event_loopexit_cb,
429 		    current_base, tv));
430 }
431 
432 int
433 event_base_loopexit(struct event_base *event_base, const struct timeval *tv)
434 {
435 	return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb,
436 		    event_base, tv));
437 }
438 
439 /* not thread safe */
440 int
441 event_loopbreak(void)
442 {
443 	return (event_base_loopbreak(current_base));
444 }
445 
446 int
447 event_base_loopbreak(struct event_base *event_base)
448 {
449 	if (event_base == NULL)
450 		return (-1);
451 
452 	event_base->event_break = 1;
453 	return (0);
454 }
455 
456 
457 
458 /* not thread safe */
459 
460 int
461 event_loop(int flags)
462 {
463 	return event_base_loop(current_base, flags);
464 }
465 
466 int
467 event_base_loop(struct event_base *base, int flags)
468 {
469 	const struct eventop *evsel = base->evsel;
470 	void *evbase = base->evbase;
471 	struct timeval tv;
472 	struct timeval *tv_p;
473 	int res, done;
474 
475 	/* clear time cache */
476 	base->tv_cache.tv_sec = 0;
477 
478 	if (base->sig.ev_signal_added)
479 		evsignal_base = base;
480 	done = 0;
481 	while (!done) {
482 		/* Terminate the loop if we have been asked to */
483 		if (base->event_gotterm) {
484 			base->event_gotterm = 0;
485 			break;
486 		}
487 
488 		if (base->event_break) {
489 			base->event_break = 0;
490 			break;
491 		}
492 
493 		timeout_correct(base, &tv);
494 
495 		tv_p = &tv;
496 		if (!base->event_count_active && !(flags & EVLOOP_NONBLOCK)) {
497 			timeout_next(base, &tv_p);
498 		} else {
499 			/*
500 			 * if we have active events, we just poll new events
501 			 * without waiting.
502 			 */
503 			evutil_timerclear(&tv);
504 		}
505 
506 		/* If we have no events, we just exit */
507 		if (!event_haveevents(base)) {
508 			event_debug(("%s: no events registered.", __func__));
509 			return (1);
510 		}
511 
512 		/* update last old time */
513 		gettime(base, &base->event_tv);
514 
515 		/* clear time cache */
516 		base->tv_cache.tv_sec = 0;
517 
518 		res = evsel->dispatch(base, evbase, tv_p);
519 
520 		if (res == -1)
521 			return (-1);
522 		gettime(base, &base->tv_cache);
523 
524 		timeout_process(base);
525 
526 		if (base->event_count_active) {
527 			event_process_active(base);
528 			if (!base->event_count_active && (flags & EVLOOP_ONCE))
529 				done = 1;
530 		} else if (flags & EVLOOP_NONBLOCK)
531 			done = 1;
532 	}
533 
534 	/* clear time cache */
535 	base->tv_cache.tv_sec = 0;
536 
537 	event_debug(("%s: asked to terminate loop.", __func__));
538 	return (0);
539 }
540 
541 /* Sets up an event for processing once */
542 
543 struct event_once {
544 	struct event ev;
545 
546 	void (*cb)(int, short, void *);
547 	void *arg;
548 };
549 
550 /* One-time callback, it deletes itself */
551 
552 static void
553 event_once_cb(int fd, short events, void *arg)
554 {
555 	struct event_once *eonce = arg;
556 
557 	(*eonce->cb)(fd, events, eonce->arg);
558 	free(eonce);
559 }
560 
561 /* not threadsafe, event scheduled once. */
562 int
563 event_once(int fd, short events,
564     void (*callback)(int, short, void *), void *arg, const struct timeval *tv)
565 {
566 	return event_base_once(current_base, fd, events, callback, arg, tv);
567 }
568 
569 /* Schedules an event once */
570 int
571 event_base_once(struct event_base *base, int fd, short events,
572     void (*callback)(int, short, void *), void *arg, const struct timeval *tv)
573 {
574 	struct event_once *eonce;
575 	struct timeval etv;
576 	int res;
577 
578 	/* We cannot support signals that just fire once */
579 	if (events & EV_SIGNAL)
580 		return (-1);
581 
582 	if ((eonce = calloc(1, sizeof(struct event_once))) == NULL)
583 		return (-1);
584 
585 	eonce->cb = callback;
586 	eonce->arg = arg;
587 
588 	if (events == EV_TIMEOUT) {
589 		if (tv == NULL) {
590 			evutil_timerclear(&etv);
591 			tv = &etv;
592 		}
593 
594 		evtimer_set(&eonce->ev, event_once_cb, eonce);
595 	} else if (events & (EV_READ|EV_WRITE)) {
596 		events &= EV_READ|EV_WRITE;
597 
598 		event_set(&eonce->ev, fd, events, event_once_cb, eonce);
599 	} else {
600 		/* Bad event combination */
601 		free(eonce);
602 		return (-1);
603 	}
604 
605 	res = event_base_set(base, &eonce->ev);
606 	if (res == 0)
607 		res = event_add(&eonce->ev, tv);
608 	if (res != 0) {
609 		free(eonce);
610 		return (res);
611 	}
612 
613 	return (0);
614 }
615 
616 void
617 event_set(struct event *ev, int fd, short events,
618 	  void (*callback)(int, short, void *), void *arg)
619 {
620 	/* Take the current base - caller needs to set the real base later */
621 	ev->ev_base = current_base;
622 
623 	ev->ev_callback = callback;
624 	ev->ev_arg = arg;
625 	ev->ev_fd = fd;
626 	ev->ev_events = events;
627 	ev->ev_res = 0;
628 	ev->ev_flags = EVLIST_INIT;
629 	ev->ev_ncalls = 0;
630 	ev->ev_pncalls = NULL;
631 
632 	min_heap_elem_init(ev);
633 
634 	/* by default, we put new events into the middle priority */
635 	if(current_base)
636 		ev->ev_pri = current_base->nactivequeues/2;
637 }
638 
639 int
640 event_base_set(struct event_base *base, struct event *ev)
641 {
642 	/* Only innocent events may be assigned to a different base */
643 	if (ev->ev_flags != EVLIST_INIT)
644 		return (-1);
645 
646 	ev->ev_base = base;
647 	ev->ev_pri = base->nactivequeues/2;
648 
649 	return (0);
650 }
651 
652 /*
653  * Set's the priority of an event - if an event is already scheduled
654  * changing the priority is going to fail.
655  */
656 
657 int
658 event_priority_set(struct event *ev, int pri)
659 {
660 	if (ev->ev_flags & EVLIST_ACTIVE)
661 		return (-1);
662 	if (pri < 0 || pri >= ev->ev_base->nactivequeues)
663 		return (-1);
664 
665 	ev->ev_pri = pri;
666 
667 	return (0);
668 }
669 
670 /*
671  * Checks if a specific event is pending or scheduled.
672  */
673 
674 int
675 event_pending(struct event *ev, short event, struct timeval *tv)
676 {
677 	struct timeval	now, res;
678 	int flags = 0;
679 
680 	if (ev->ev_flags & EVLIST_INSERTED)
681 		flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL));
682 	if (ev->ev_flags & EVLIST_ACTIVE)
683 		flags |= ev->ev_res;
684 	if (ev->ev_flags & EVLIST_TIMEOUT)
685 		flags |= EV_TIMEOUT;
686 
687 	event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL);
688 
689 	/* See if there is a timeout that we should report */
690 	if (tv != NULL && (flags & event & EV_TIMEOUT)) {
691 		gettime(ev->ev_base, &now);
692 		evutil_timersub(&ev->ev_timeout, &now, &res);
693 		/* correctly remap to real time */
694 		evutil_gettimeofday(&now, NULL);
695 		evutil_timeradd(&now, &res, tv);
696 	}
697 
698 	return (flags & event);
699 }
700 
701 int
702 event_add(struct event *ev, const struct timeval *tv)
703 {
704 	struct event_base *base = ev->ev_base;
705 	const struct eventop *evsel = base->evsel;
706 	void *evbase = base->evbase;
707 	int res = 0;
708 
709 	event_debug((
710 		 "event_add: event: %p, %s%s%scall %p",
711 		 ev,
712 		 ev->ev_events & EV_READ ? "EV_READ " : " ",
713 		 ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
714 		 tv ? "EV_TIMEOUT " : " ",
715 		 ev->ev_callback));
716 
717 	assert(!(ev->ev_flags & ~EVLIST_ALL));
718 
719 	/*
720 	 * prepare for timeout insertion further below, if we get a
721 	 * failure on any step, we should not change any state.
722 	 */
723 	if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
724 		if (min_heap_reserve(&base->timeheap,
725 			1 + min_heap_size(&base->timeheap)) == -1)
726 			return (-1);  /* ENOMEM == errno */
727 	}
728 
729 	if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) &&
730 	    !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) {
731 		res = evsel->add(evbase, ev);
732 		if (res != -1)
733 			event_queue_insert(base, ev, EVLIST_INSERTED);
734 	}
735 
736 	/*
737 	 * we should change the timout state only if the previous event
738 	 * addition succeeded.
739 	 */
740 	if (res != -1 && tv != NULL) {
741 		struct timeval now;
742 
743 		/*
744 		 * we already reserved memory above for the case where we
745 		 * are not replacing an exisiting timeout.
746 		 */
747 		if (ev->ev_flags & EVLIST_TIMEOUT)
748 			event_queue_remove(base, ev, EVLIST_TIMEOUT);
749 
750 		/* Check if it is active due to a timeout.  Rescheduling
751 		 * this timeout before the callback can be executed
752 		 * removes it from the active list. */
753 		if ((ev->ev_flags & EVLIST_ACTIVE) &&
754 		    (ev->ev_res & EV_TIMEOUT)) {
755 			/* See if we are just active executing this
756 			 * event in a loop
757 			 */
758 			if (ev->ev_ncalls && ev->ev_pncalls) {
759 				/* Abort loop */
760 				*ev->ev_pncalls = 0;
761 			}
762 
763 			event_queue_remove(base, ev, EVLIST_ACTIVE);
764 		}
765 
766 		gettime(base, &now);
767 		evutil_timeradd(&now, tv, &ev->ev_timeout);
768 
769 		event_debug((
770 			 "event_add: timeout in %ld seconds, call %p",
771 			 tv->tv_sec, ev->ev_callback));
772 
773 		event_queue_insert(base, ev, EVLIST_TIMEOUT);
774 	}
775 
776 	return (res);
777 }
778 
779 int
780 event_del(struct event *ev)
781 {
782 	struct event_base *base;
783 	const struct eventop *evsel;
784 	void *evbase;
785 
786 	event_debug(("event_del: %p, callback %p",
787 		 ev, ev->ev_callback));
788 
789 	/* An event without a base has not been added */
790 	if (ev->ev_base == NULL)
791 		return (-1);
792 
793 	base = ev->ev_base;
794 	evsel = base->evsel;
795 	evbase = base->evbase;
796 
797 	assert(!(ev->ev_flags & ~EVLIST_ALL));
798 
799 	/* See if we are just active executing this event in a loop */
800 	if (ev->ev_ncalls && ev->ev_pncalls) {
801 		/* Abort loop */
802 		*ev->ev_pncalls = 0;
803 	}
804 
805 	if (ev->ev_flags & EVLIST_TIMEOUT)
806 		event_queue_remove(base, ev, EVLIST_TIMEOUT);
807 
808 	if (ev->ev_flags & EVLIST_ACTIVE)
809 		event_queue_remove(base, ev, EVLIST_ACTIVE);
810 
811 	if (ev->ev_flags & EVLIST_INSERTED) {
812 		event_queue_remove(base, ev, EVLIST_INSERTED);
813 		return (evsel->del(evbase, ev));
814 	}
815 
816 	return (0);
817 }
818 
819 void
820 event_active(struct event *ev, int res, short ncalls)
821 {
822 	/* We get different kinds of events, add them together */
823 	if (ev->ev_flags & EVLIST_ACTIVE) {
824 		ev->ev_res |= res;
825 		return;
826 	}
827 
828 	ev->ev_res = res;
829 	ev->ev_ncalls = ncalls;
830 	ev->ev_pncalls = NULL;
831 	event_queue_insert(ev->ev_base, ev, EVLIST_ACTIVE);
832 }
833 
834 static int
835 timeout_next(struct event_base *base, struct timeval **tv_p)
836 {
837 	struct timeval now;
838 	struct event *ev;
839 	struct timeval *tv = *tv_p;
840 
841 	if ((ev = min_heap_top(&base->timeheap)) == NULL) {
842 		/* if no time-based events are active wait for I/O */
843 		*tv_p = NULL;
844 		return (0);
845 	}
846 
847 	if (gettime(base, &now) == -1)
848 		return (-1);
849 
850 	if (evutil_timercmp(&ev->ev_timeout, &now, <=)) {
851 		evutil_timerclear(tv);
852 		return (0);
853 	}
854 
855 	evutil_timersub(&ev->ev_timeout, &now, tv);
856 
857 	assert(tv->tv_sec >= 0);
858 	assert(tv->tv_usec >= 0);
859 
860 	event_debug(("timeout_next: in %ld seconds", tv->tv_sec));
861 	return (0);
862 }
863 
864 /*
865  * Determines if the time is running backwards by comparing the current
866  * time against the last time we checked.  Not needed when using clock
867  * monotonic.
868  */
869 
870 static void
871 timeout_correct(struct event_base *base, struct timeval *tv)
872 {
873 	struct event **pev;
874 	unsigned int size;
875 	struct timeval off;
876 
877 	if (use_monotonic)
878 		return;
879 
880 	/* Check if time is running backwards */
881 	gettime(base, tv);
882 	if (evutil_timercmp(tv, &base->event_tv, >=)) {
883 		base->event_tv = *tv;
884 		return;
885 	}
886 
887 	event_debug(("%s: time is running backwards, corrected",
888 		    __func__));
889 	evutil_timersub(&base->event_tv, tv, &off);
890 
891 	/*
892 	 * We can modify the key element of the node without destroying
893 	 * the key, beause we apply it to all in the right order.
894 	 */
895 	pev = base->timeheap.p;
896 	size = base->timeheap.n;
897 	for (; size-- > 0; ++pev) {
898 		struct timeval *ev_tv = &(**pev).ev_timeout;
899 		evutil_timersub(ev_tv, &off, ev_tv);
900 	}
901 	/* Now remember what the new time turned out to be. */
902 	base->event_tv = *tv;
903 }
904 
905 void
906 timeout_process(struct event_base *base)
907 {
908 	struct timeval now;
909 	struct event *ev;
910 
911 	if (min_heap_empty(&base->timeheap))
912 		return;
913 
914 	gettime(base, &now);
915 
916 	while ((ev = min_heap_top(&base->timeheap))) {
917 		if (evutil_timercmp(&ev->ev_timeout, &now, >))
918 			break;
919 
920 		/* delete this event from the I/O queues */
921 		event_del(ev);
922 
923 		event_debug(("timeout_process: call %p",
924 			 ev->ev_callback));
925 		event_active(ev, EV_TIMEOUT, 1);
926 	}
927 }
928 
929 void
930 event_queue_remove(struct event_base *base, struct event *ev, int queue)
931 {
932 	if (!(ev->ev_flags & queue))
933 		event_errx(1, "%s: %p(fd %d) not on queue %x", __func__,
934 			   ev, ev->ev_fd, queue);
935 
936 	if (~ev->ev_flags & EVLIST_INTERNAL)
937 		base->event_count--;
938 
939 	ev->ev_flags &= ~queue;
940 	switch (queue) {
941 	case EVLIST_INSERTED:
942 		TAILQ_REMOVE(&base->eventqueue, ev, ev_next);
943 		break;
944 	case EVLIST_ACTIVE:
945 		base->event_count_active--;
946 		TAILQ_REMOVE(base->activequeues[ev->ev_pri],
947 		    ev, ev_active_next);
948 		break;
949 	case EVLIST_TIMEOUT:
950 		min_heap_erase(&base->timeheap, ev);
951 		break;
952 	default:
953 		event_errx(1, "%s: unknown queue %x", __func__, queue);
954 	}
955 }
956 
957 void
958 event_queue_insert(struct event_base *base, struct event *ev, int queue)
959 {
960 	if (ev->ev_flags & queue) {
961 		/* Double insertion is possible for active events */
962 		if (queue & EVLIST_ACTIVE)
963 			return;
964 
965 		event_errx(1, "%s: %p(fd %d) already on queue %x", __func__,
966 			   ev, ev->ev_fd, queue);
967 	}
968 
969 	if (~ev->ev_flags & EVLIST_INTERNAL)
970 		base->event_count++;
971 
972 	ev->ev_flags |= queue;
973 	switch (queue) {
974 	case EVLIST_INSERTED:
975 		TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next);
976 		break;
977 	case EVLIST_ACTIVE:
978 		base->event_count_active++;
979 		TAILQ_INSERT_TAIL(base->activequeues[ev->ev_pri],
980 		    ev,ev_active_next);
981 		break;
982 	case EVLIST_TIMEOUT: {
983 		min_heap_push(&base->timeheap, ev);
984 		break;
985 	}
986 	default:
987 		event_errx(1, "%s: unknown queue %x", __func__, queue);
988 	}
989 }
990 
991 /* Functions for debugging */
992 
993 const char *
994 event_get_version(void)
995 {
996 	return ("1.4.13-stable");
997 }
998 
999 /*
1000  * No thread-safe interface needed - the information should be the same
1001  * for all threads.
1002  */
1003 
1004 const char *
1005 event_get_method(void)
1006 {
1007 	return (current_base->evsel->name);
1008 }
1009