xref: /openbsd/lib/libkeynote/signature.c (revision 771fbea0)
1 /* $OpenBSD: signature.c,v 1.26 2017/05/09 13:52:45 mestre Exp $ */
2 /*
3  * The author of this code is Angelos D. Keromytis (angelos@dsl.cis.upenn.edu)
4  *
5  * This code was written by Angelos D. Keromytis in Philadelphia, PA, USA,
6  * in April-May 1998
7  *
8  * Copyright (C) 1998, 1999 by Angelos D. Keromytis.
9  *
10  * Permission to use, copy, and modify this software with or without fee
11  * is hereby granted, provided that this entire notice is included in
12  * all copies of any software which is or includes a copy or
13  * modification of this software.
14  *
15  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
16  * IMPLIED WARRANTY. IN PARTICULAR, THE AUTHORS MAKES NO
17  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
18  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
19  * PURPOSE.
20  */
21 
22 /*
23  * Support for X509 keys and signing added by Ben Laurie <ben@algroup.co.uk>
24  * 3 May 1999
25  */
26 
27 #include <sys/types.h>
28 
29 #include <limits.h>
30 #include <regex.h>
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <string.h>
34 
35 #include <openssl/dsa.h>
36 #include <openssl/md5.h>
37 #include <openssl/pem.h>
38 #include <openssl/rsa.h>
39 #include <openssl/sha.h>
40 #include <openssl/x509.h>
41 
42 #include "keynote.h"
43 #include "assertion.h"
44 #include "signature.h"
45 
46 static const char hextab[] = {
47      '0', '1', '2', '3', '4', '5', '6', '7',
48      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
49 };
50 
51 /*
52  * Actual conversion to hex.
53  */
54 static void
55 bin2hex(unsigned char *data, unsigned char *buffer, int len)
56 {
57     int off = 0;
58 
59     while(len > 0)
60     {
61 	buffer[off++] = hextab[*data >> 4];
62 	buffer[off++] = hextab[*data & 0xF];
63 	data++;
64 	len--;
65     }
66 }
67 
68 /*
69  * Encode a binary string with hex encoding. Return 0 on success.
70  */
71 int
72 kn_encode_hex(unsigned char *buf, char **dest, int len)
73 {
74     keynote_errno = 0;
75     if (dest == NULL)
76     {
77 	keynote_errno = ERROR_SYNTAX;
78 	return -1;
79     }
80 
81     *dest = calloc(2 * len + 1, sizeof(char));
82     if (*dest == NULL)
83     {
84 	keynote_errno = ERROR_MEMORY;
85 	return -1;
86     }
87 
88     bin2hex(buf, *dest, len);
89     return 0;
90 }
91 
92 /*
93  * Decode a hex encoding. Return 0 on success. The second argument
94  * will be half as large as the first.
95  */
96 int
97 kn_decode_hex(char *hex, char **dest)
98 {
99     int i, decodedlen;
100     char ptr[3];
101 
102     keynote_errno = 0;
103     if (dest == NULL)
104     {
105 	keynote_errno = ERROR_SYNTAX;
106 	return -1;
107     }
108 
109     if (strlen(hex) % 2)			/* Should be even */
110     {
111 	keynote_errno = ERROR_SYNTAX;
112 	return -1;
113     }
114 
115     decodedlen = strlen(hex) / 2;
116     *dest = calloc(decodedlen, sizeof(char));
117     if (*dest == NULL)
118     {
119 	keynote_errno = ERROR_MEMORY;
120 	return -1;
121     }
122 
123     ptr[2] = '\0';
124     for (i = 0; i < decodedlen; i++)
125     {
126 	ptr[0] = hex[2 * i];
127 	ptr[1] = hex[(2 * i) + 1];
128       	(*dest)[i] = (unsigned char) strtoul(ptr, NULL, 16);
129     }
130 
131     return 0;
132 }
133 
134 void
135 keynote_free_key(void *key, int type)
136 {
137     if (key == NULL)
138       return;
139 
140     /* DSA keys */
141     if (type == KEYNOTE_ALGORITHM_DSA)
142     {
143 	DSA_free(key);
144 	return;
145     }
146 
147     /* RSA keys */
148     if (type == KEYNOTE_ALGORITHM_RSA)
149     {
150 	RSA_free(key);
151 	return;
152     }
153 
154     /* X509 keys */
155     if (type == KEYNOTE_ALGORITHM_X509)
156     {
157 	RSA_free(key); /* RSA-specific */
158 	return;
159     }
160 
161     /* BINARY keys */
162     if (type == KEYNOTE_ALGORITHM_BINARY)
163     {
164 	free(((struct keynote_binary *) key)->bn_key);
165 	free(key);
166 	return;
167     }
168 
169     /* Catch-all case */
170     if (type == KEYNOTE_ALGORITHM_NONE)
171       free(key);
172 }
173 
174 /*
175  * Map a signature to an algorithm. Return algorithm number (defined in
176  * keynote.h), or KEYNOTE_ALGORITHM_NONE if unknown.
177  * Also return in the second, third and fourth arguments the digest
178  * algorithm, ASCII and internal encodings respectively.
179  */
180 static int
181 keynote_get_sig_algorithm(char *sig, int *hash, int *enc, int *internal)
182 {
183     if (sig == NULL)
184       return KEYNOTE_ALGORITHM_NONE;
185 
186     if (!strncasecmp(SIG_DSA_SHA1_HEX, sig, SIG_DSA_SHA1_HEX_LEN))
187     {
188 	*hash = KEYNOTE_HASH_SHA1;
189 	*enc = ENCODING_HEX;
190 	*internal = INTERNAL_ENC_ASN1;
191 	return KEYNOTE_ALGORITHM_DSA;
192     }
193 
194     if (!strncasecmp(SIG_DSA_SHA1_BASE64, sig, SIG_DSA_SHA1_BASE64_LEN))
195     {
196 	*hash = KEYNOTE_HASH_SHA1;
197 	*enc = ENCODING_BASE64;
198 	*internal = INTERNAL_ENC_ASN1;
199 	return KEYNOTE_ALGORITHM_DSA;
200     }
201 
202     if (!strncasecmp(SIG_RSA_MD5_PKCS1_HEX, sig, SIG_RSA_MD5_PKCS1_HEX_LEN))
203     {
204 	*hash = KEYNOTE_HASH_MD5;
205 	*enc = ENCODING_HEX;
206 	*internal = INTERNAL_ENC_PKCS1;
207 	return KEYNOTE_ALGORITHM_RSA;
208     }
209 
210     if (!strncasecmp(SIG_RSA_SHA1_PKCS1_HEX, sig, SIG_RSA_SHA1_PKCS1_HEX_LEN))
211     {
212 	*hash = KEYNOTE_HASH_SHA1;
213 	*enc = ENCODING_HEX;
214 	*internal = INTERNAL_ENC_PKCS1;
215 	return KEYNOTE_ALGORITHM_RSA;
216     }
217 
218     if (!strncasecmp(SIG_RSA_MD5_PKCS1_BASE64, sig,
219                      SIG_RSA_MD5_PKCS1_BASE64_LEN))
220     {
221 	*hash = KEYNOTE_HASH_MD5;
222 	*enc = ENCODING_BASE64;
223 	*internal = INTERNAL_ENC_PKCS1;
224 	return KEYNOTE_ALGORITHM_RSA;
225     }
226 
227     if (!strncasecmp(SIG_RSA_SHA1_PKCS1_BASE64, sig,
228                      SIG_RSA_SHA1_PKCS1_BASE64_LEN))
229     {
230 	*hash = KEYNOTE_HASH_SHA1;
231 	*enc = ENCODING_BASE64;
232 	*internal = INTERNAL_ENC_PKCS1;
233 	return KEYNOTE_ALGORITHM_RSA;
234     }
235 
236     if (!strncasecmp(SIG_X509_SHA1_BASE64, sig, SIG_X509_SHA1_BASE64_LEN))
237     {
238 	*hash = KEYNOTE_HASH_SHA1;
239 	*enc = ENCODING_BASE64;
240 	*internal = INTERNAL_ENC_ASN1;
241 	return KEYNOTE_ALGORITHM_X509;
242     }
243 
244     if (!strncasecmp(SIG_X509_SHA1_HEX, sig, SIG_X509_SHA1_HEX_LEN))
245     {
246 	*hash = KEYNOTE_HASH_SHA1;
247 	*enc = ENCODING_HEX;
248 	*internal = INTERNAL_ENC_ASN1;
249 	return KEYNOTE_ALGORITHM_X509;
250     }
251 
252     *hash = KEYNOTE_HASH_NONE;
253     *enc = ENCODING_NONE;
254     *internal = INTERNAL_ENC_NONE;
255     return KEYNOTE_ALGORITHM_NONE;
256 }
257 
258 /*
259  * Map a key to an algorithm. Return algorithm number (defined in
260  * keynote.h), or KEYNOTE_ALGORITHM_NONE if unknown.
261  * This latter is also a valid algorithm (for logical tags). Also return
262  * in the second and third arguments the ASCII and internal encodings.
263  */
264 int
265 keynote_get_key_algorithm(char *key, int *encoding, int *internalencoding)
266 {
267     if (!strncasecmp(DSA_HEX, key, DSA_HEX_LEN))
268     {
269 	*internalencoding = INTERNAL_ENC_ASN1;
270 	*encoding = ENCODING_HEX;
271 	return KEYNOTE_ALGORITHM_DSA;
272     }
273 
274     if (!strncasecmp(DSA_BASE64, key, DSA_BASE64_LEN))
275     {
276 	*internalencoding = INTERNAL_ENC_ASN1;
277 	*encoding = ENCODING_BASE64;
278 	return KEYNOTE_ALGORITHM_DSA;
279     }
280 
281     if (!strncasecmp(RSA_PKCS1_HEX, key, RSA_PKCS1_HEX_LEN))
282     {
283 	*internalencoding = INTERNAL_ENC_PKCS1;
284 	*encoding = ENCODING_HEX;
285 	return KEYNOTE_ALGORITHM_RSA;
286     }
287 
288     if (!strncasecmp(RSA_PKCS1_BASE64, key, RSA_PKCS1_BASE64_LEN))
289     {
290 	*internalencoding = INTERNAL_ENC_PKCS1;
291 	*encoding = ENCODING_BASE64;
292 	return KEYNOTE_ALGORITHM_RSA;
293     }
294 
295     if (!strncasecmp(X509_BASE64, key, X509_BASE64_LEN))
296     {
297 	*internalencoding = INTERNAL_ENC_ASN1;
298 	*encoding = ENCODING_BASE64;
299 	return KEYNOTE_ALGORITHM_X509;
300     }
301 
302     if (!strncasecmp(X509_HEX, key, X509_HEX_LEN))
303     {
304 	*internalencoding = INTERNAL_ENC_ASN1;
305 	*encoding = ENCODING_HEX;
306 	return KEYNOTE_ALGORITHM_X509;
307     }
308 
309     if (!strncasecmp(BINARY_HEX, key, BINARY_HEX_LEN))
310     {
311 	*internalencoding = INTERNAL_ENC_NONE;
312 	*encoding = ENCODING_HEX;
313 	return KEYNOTE_ALGORITHM_BINARY;
314     }
315 
316     if (!strncasecmp(BINARY_BASE64, key, BINARY_BASE64_LEN))
317     {
318 	*internalencoding = INTERNAL_ENC_NONE;
319 	*encoding = ENCODING_BASE64;
320 	return KEYNOTE_ALGORITHM_BINARY;
321     }
322 
323     *internalencoding = INTERNAL_ENC_NONE;
324     *encoding = ENCODING_NONE;
325     return KEYNOTE_ALGORITHM_NONE;
326 }
327 
328 /*
329  * Same as keynote_get_key_algorithm(), only verify that this is
330  * a private key (just look at the prefix).
331  */
332 static int
333 keynote_get_private_key_algorithm(char *key, int *encoding,
334 				  int *internalencoding)
335 {
336     if (strncasecmp(KEYNOTE_PRIVATE_KEY_PREFIX, key,
337 		    KEYNOTE_PRIVATE_KEY_PREFIX_LEN))
338     {
339 	*internalencoding = INTERNAL_ENC_NONE;
340 	*encoding = ENCODING_NONE;
341 	return KEYNOTE_ALGORITHM_NONE;
342     }
343 
344     return keynote_get_key_algorithm(key + KEYNOTE_PRIVATE_KEY_PREFIX_LEN,
345 				     encoding, internalencoding);
346 }
347 
348 /*
349  * Decode a string to a key. Return 0 on success.
350  */
351 int
352 kn_decode_key(struct keynote_deckey *dc, char *key, int keytype)
353 {
354     void *kk = NULL;
355     X509 *px509Cert;
356     EVP_PKEY *pPublicKey;
357     unsigned char *ptr = NULL, *decoded = NULL;
358     int encoding, internalencoding;
359     long len = 0;
360 
361     keynote_errno = 0;
362     if (keytype == KEYNOTE_PRIVATE_KEY)
363       dc->dec_algorithm = keynote_get_private_key_algorithm(key, &encoding,
364 							    &internalencoding);
365     else
366       dc->dec_algorithm = keynote_get_key_algorithm(key, &encoding,
367 						    &internalencoding);
368     if (dc->dec_algorithm == KEYNOTE_ALGORITHM_NONE)
369     {
370 	if ((dc->dec_key = strdup(key)) == NULL) {
371 	    keynote_errno = ERROR_MEMORY;
372 	    return -1;
373 	}
374 
375 	return 0;
376     }
377 
378     key = strchr(key, ':'); /* Move forward, to the Encoding. We're guaranteed
379 			    * to have a ':' character, since this is a key */
380     key++;
381 
382     /* Remove ASCII encoding */
383     switch (encoding)
384     {
385 	case ENCODING_NONE:
386 	    break;
387 
388 	case ENCODING_HEX:
389             len = strlen(key) / 2;
390 	    if (kn_decode_hex(key, (char **) &decoded) != 0)
391 	      return -1;
392 	    ptr = decoded;
393 	    break;
394 
395 	case ENCODING_BASE64:
396 	    len = strlen(key);
397 	    if (len % 4)  /* Base64 encoding must be a multiple of 4 */
398 	    {
399 		keynote_errno = ERROR_SYNTAX;
400 		return -1;
401 	    }
402 
403 	    len = 3 * (len / 4);
404 	    decoded = calloc(len, sizeof(unsigned char));
405 	    ptr = decoded;
406 	    if (decoded == NULL) {
407 		keynote_errno = ERROR_MEMORY;
408 		return -1;
409 	    }
410 
411 	    if ((len = kn_decode_base64(key, decoded, len)) == -1)
412 	      return -1;
413 	    break;
414 
415 	case ENCODING_NATIVE:
416 	    decoded = strdup(key);
417 	    if (decoded == NULL) {
418 		keynote_errno = ERROR_MEMORY;
419 		return -1;
420 	    }
421 	    len = strlen(key);
422 	    ptr = decoded;
423 	    break;
424 
425 	default:
426 	    keynote_errno = ERROR_SYNTAX;
427 	    return -1;
428     }
429 
430     /* DSA-HEX */
431     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_DSA) &&
432 	(internalencoding == INTERNAL_ENC_ASN1))
433     {
434 	dc->dec_key = DSA_new();
435 	if (dc->dec_key == NULL) {
436 	    keynote_errno = ERROR_MEMORY;
437 	    return -1;
438 	}
439 
440 	kk = dc->dec_key;
441 	if (keytype == KEYNOTE_PRIVATE_KEY)
442 	{
443 	    if (d2i_DSAPrivateKey((DSA **) &kk,(const unsigned char **) &decoded, len) == NULL) {
444 		free(ptr);
445 		DSA_free(kk);
446 		keynote_errno = ERROR_SYNTAX; /* Could be a memory error */
447 		return -1;
448 	    }
449 	}
450 	else
451 	{
452 	    if (d2i_DSAPublicKey((DSA **) &kk, (const unsigned char **) &decoded, len) == NULL) {
453 		free(ptr);
454 		DSA_free(kk);
455 		keynote_errno = ERROR_SYNTAX; /* Could be a memory error */
456 		return -1;
457 	    }
458 	}
459 
460 	free(ptr);
461 
462 	return 0;
463     }
464 
465     /* RSA-PKCS1-HEX */
466     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_RSA) &&
467         (internalencoding == INTERNAL_ENC_PKCS1))
468     {
469         dc->dec_key = RSA_new();
470         if (dc->dec_key == NULL) {
471             keynote_errno = ERROR_MEMORY;
472             return -1;
473         }
474 
475         kk = dc->dec_key;
476         if (keytype == KEYNOTE_PRIVATE_KEY)
477         {
478             if (d2i_RSAPrivateKey((RSA **) &kk, (const unsigned char **) &decoded, len) == NULL) {
479                 free(ptr);
480                 RSA_free(kk);
481                 keynote_errno = ERROR_SYNTAX; /* Could be a memory error */
482                 return -1;
483             }
484 	    if (RSA_blinding_on((RSA *) kk, NULL) != 1) {
485                 free(ptr);
486                 RSA_free(kk);
487                 keynote_errno = ERROR_MEMORY;
488                 return -1;
489 	    }
490         }
491         else
492         {
493             if (d2i_RSAPublicKey((RSA **) &kk, (const unsigned char **) &decoded, len) == NULL) {
494                 free(ptr);
495                 RSA_free(kk);
496                 keynote_errno = ERROR_SYNTAX; /* Could be a memory error */
497                 return -1;
498             }
499         }
500 
501         free(ptr);
502 
503         return 0;
504     }
505 
506     /* X509 Cert */
507     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_X509) &&
508 	(internalencoding == INTERNAL_ENC_ASN1) &&
509 	(keytype == KEYNOTE_PUBLIC_KEY))
510     {
511 	if ((px509Cert = X509_new()) == NULL) {
512 	    free(ptr);
513 	    keynote_errno = ERROR_MEMORY;
514 	    return -1;
515 	}
516 
517 	if(d2i_X509(&px509Cert, (const unsigned char **)&decoded, len) == NULL)
518 	{
519 	    free(ptr);
520 	    X509_free(px509Cert);
521 	    keynote_errno = ERROR_SYNTAX;
522 	    return -1;
523 	}
524 
525 	if ((pPublicKey = X509_get_pubkey(px509Cert)) == NULL) {
526 	    free(ptr);
527 	    X509_free(px509Cert);
528 	    keynote_errno = ERROR_SYNTAX;
529 	    return -1;
530 	}
531 
532 	/* RSA-specific */
533 	dc->dec_key = pPublicKey->pkey.rsa;
534 
535 	free(ptr);
536 	return 0;
537     }
538 
539     /* BINARY keys */
540     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_BINARY) &&
541 	(internalencoding == INTERNAL_ENC_NONE))
542     {
543 	dc->dec_key = calloc(1, sizeof(struct keynote_binary));
544 	if (dc->dec_key == NULL)
545 	{
546 	    keynote_errno = ERROR_MEMORY;
547 	    return -1;
548 	}
549 
550 	((struct keynote_binary *) dc->dec_key)->bn_key = decoded;
551 	((struct keynote_binary *) dc->dec_key)->bn_len = len;
552 	return RESULT_TRUE;
553     }
554 
555     /* Add support for more algorithms here */
556 
557     free(ptr);
558 
559     /* This shouldn't ever be reached really */
560     keynote_errno = ERROR_SYNTAX;
561     return -1;
562 }
563 
564 /*
565  * Compare two keys for equality. Return RESULT_TRUE if equal,
566  * RESULT_FALSE otherwise.
567  */
568 int
569 kn_keycompare(void *key1, void *key2, int algorithm)
570 {
571     DSA *p1, *p2;
572     RSA *p3, *p4;
573     struct keynote_binary *bn1, *bn2;
574 
575     if (key1 == NULL || key2 == NULL)
576       return RESULT_FALSE;
577 
578     switch (algorithm)
579     {
580 	case KEYNOTE_ALGORITHM_NONE:
581 	    if (!strcmp(key1, key2))
582 	      return RESULT_TRUE;
583 	    else
584 	      return RESULT_FALSE;
585 
586 	case KEYNOTE_ALGORITHM_DSA:
587 	    p1 = (DSA *) key1;
588 	    p2 = (DSA *) key2;
589 	    if (!BN_cmp(p1->p, p2->p) &&
590 		!BN_cmp(p1->q, p2->q) &&
591 		!BN_cmp(p1->g, p2->g) &&
592 		!BN_cmp(p1->pub_key, p2->pub_key))
593 	      return RESULT_TRUE;
594 	    else
595 	      return RESULT_FALSE;
596 
597 	case KEYNOTE_ALGORITHM_X509:
598             p3 = (RSA *) key1;
599             p4 = (RSA *) key2;
600             if (!BN_cmp(p3->n, p4->n) &&
601                 !BN_cmp(p3->e, p4->e))
602               return RESULT_TRUE;
603             else
604 	      return RESULT_FALSE;
605 
606 	case KEYNOTE_ALGORITHM_RSA:
607             p3 = (RSA *) key1;
608             p4 = (RSA *) key2;
609             if (!BN_cmp(p3->n, p4->n) &&
610                 !BN_cmp(p3->e, p4->e))
611               return RESULT_TRUE;
612             else
613 	      return RESULT_FALSE;
614 
615 	case KEYNOTE_ALGORITHM_ELGAMAL:
616 	    /* Not supported yet */
617 	    return RESULT_FALSE;
618 
619 	case KEYNOTE_ALGORITHM_PGP:
620 	    /* Not supported yet */
621 	    return RESULT_FALSE;
622 
623 	case KEYNOTE_ALGORITHM_BINARY:
624 	    bn1 = (struct keynote_binary *) key1;
625 	    bn2 = (struct keynote_binary *) key2;
626 	    if ((bn1->bn_len == bn2->bn_len) &&
627 		!memcmp(bn1->bn_key, bn2->bn_key, bn1->bn_len))
628 	      return RESULT_TRUE;
629 	    else
630 	      return RESULT_FALSE;
631 
632 	default:
633 	    return RESULT_FALSE;
634     }
635 }
636 
637 /*
638  * Verify the signature on an assertion; return SIGRESULT_TRUE is
639  * success, SIGRESULT_FALSE otherwise.
640  */
641 int
642 keynote_sigverify_assertion(struct assertion *as)
643 {
644     int hashtype, enc, intenc, alg = KEYNOTE_ALGORITHM_NONE, hashlen = 0;
645     unsigned char *sig, *decoded = NULL, *ptr;
646     unsigned char res2[20];
647     SHA_CTX shscontext;
648     MD5_CTX md5context;
649     int len = 0;
650     DSA *dsa;
651     RSA *rsa;
652     if (as->as_signature == NULL ||
653 	as->as_startofsignature == NULL ||
654 	as->as_allbutsignature == NULL ||
655 	as->as_allbutsignature - as->as_startofsignature <= 0)
656       return SIGRESULT_FALSE;
657 
658     alg = keynote_get_sig_algorithm(as->as_signature, &hashtype, &enc,
659 				    &intenc);
660     if (alg == KEYNOTE_ALGORITHM_NONE)
661       return SIGRESULT_FALSE;
662 
663     /* Check for matching algorithms */
664     if ((alg != as->as_signeralgorithm) &&
665 	!((alg == KEYNOTE_ALGORITHM_RSA) &&
666 	  (as->as_signeralgorithm == KEYNOTE_ALGORITHM_X509)) &&
667 	!((alg == KEYNOTE_ALGORITHM_X509) &&
668 	  (as->as_signeralgorithm == KEYNOTE_ALGORITHM_RSA)))
669       return SIGRESULT_FALSE;
670 
671     sig = strchr(as->as_signature, ':');   /* Move forward to the Encoding. We
672 					   * are guaranteed to have a ':'
673 					   * character, since this is a valid
674 					   * signature */
675     sig++;
676 
677     switch (hashtype)
678     {
679 	case KEYNOTE_HASH_SHA1:
680 	    hashlen = 20;
681 	    memset(res2, 0, hashlen);
682 	    SHA1_Init(&shscontext);
683 	    SHA1_Update(&shscontext, as->as_startofsignature,
684 			as->as_allbutsignature - as->as_startofsignature);
685 	    SHA1_Update(&shscontext, as->as_signature,
686 			(char *) sig - as->as_signature);
687 	    SHA1_Final(res2, &shscontext);
688 	    break;
689 
690 	case KEYNOTE_HASH_MD5:
691 	    hashlen = 16;
692 	    memset(res2, 0, hashlen);
693 	    MD5_Init(&md5context);
694 	    MD5_Update(&md5context, as->as_startofsignature,
695 		       as->as_allbutsignature - as->as_startofsignature);
696 	    MD5_Update(&md5context, as->as_signature,
697 		       (char *) sig - as->as_signature);
698 	    MD5_Final(res2, &md5context);
699 	    break;
700 
701 	case KEYNOTE_HASH_NONE:
702 	    break;
703     }
704 
705     /* Remove ASCII encoding */
706     switch (enc)
707     {
708 	case ENCODING_NONE:
709 	    ptr = NULL;
710 	    break;
711 
712 	case ENCODING_HEX:
713 	    len = strlen(sig) / 2;
714 	    if (kn_decode_hex(sig, (char **) &decoded) != 0)
715 	      return -1;
716 	    ptr = decoded;
717 	    break;
718 
719 	case ENCODING_BASE64:
720 	    len = strlen(sig);
721 	    if (len % 4)  /* Base64 encoding must be a multiple of 4 */
722 	    {
723 		keynote_errno = ERROR_SYNTAX;
724 		return -1;
725 	    }
726 
727 	    len = 3 * (len / 4);
728 	    decoded = calloc(len, sizeof(unsigned char));
729 	    ptr = decoded;
730 	    if (decoded == NULL) {
731 		keynote_errno = ERROR_MEMORY;
732 		return -1;
733 	    }
734 
735 	    len = kn_decode_base64(sig, decoded, len);
736 	    if ((len == -1) || (len == 0) || (len == 1))
737 	      return -1;
738 	    break;
739 
740 	case ENCODING_NATIVE:
741 
742 	    if ((decoded = strdup(sig)) == NULL) {
743 		keynote_errno = ERROR_MEMORY;
744 		return -1;
745 	    }
746 	    len = strlen(sig);
747 	    ptr = decoded;
748 	    break;
749 
750 	default:
751 	    keynote_errno = ERROR_SYNTAX;
752 	    return -1;
753     }
754 
755     /* DSA */
756     if ((alg == KEYNOTE_ALGORITHM_DSA) && (intenc == INTERNAL_ENC_ASN1))
757     {
758 	dsa = (DSA *) as->as_authorizer;
759 	if (DSA_verify(0, res2, hashlen, decoded, len, dsa) == 1) {
760 	    free(ptr);
761 	    return SIGRESULT_TRUE;
762 	}
763     }
764     else /* RSA */
765       if ((alg == KEYNOTE_ALGORITHM_RSA) && (intenc == INTERNAL_ENC_PKCS1))
766       {
767           rsa = (RSA *) as->as_authorizer;
768           if (RSA_verify_ASN1_OCTET_STRING(RSA_PKCS1_PADDING, res2, hashlen,
769 					   decoded, len, rsa) == 1) {
770               free(ptr);
771               return SIGRESULT_TRUE;
772           }
773       }
774       else
775 	if ((alg == KEYNOTE_ALGORITHM_X509) && (intenc == INTERNAL_ENC_ASN1))
776 	{
777 	    /* RSA-specific */
778 	    rsa = (RSA *) as->as_authorizer;
779 	    if (RSA_verify(NID_shaWithRSAEncryption, res2, hashlen, decoded,
780 			   len, rsa) == 1) {
781 		free(ptr);
782 		return SIGRESULT_TRUE;
783 	    }
784 	}
785 
786     /* Handle more algorithms here */
787 
788     free(ptr);
789 
790     return SIGRESULT_FALSE;
791 }
792 
793 /*
794  * Sign an assertion.
795  */
796 static char *
797 keynote_sign_assertion(struct assertion *as, char *sigalg, void *key,
798 		       int keyalg, int verifyflag)
799 {
800     int slen, i, hashlen = 0, hashtype, alg, encoding, internalenc;
801     unsigned char *sig = NULL, *finalbuf = NULL;
802     unsigned char res2[LARGEST_HASH_SIZE], *sbuf = NULL;
803     BIO *biokey = NULL;
804     DSA *dsa = NULL;
805     RSA *rsa = NULL;
806     SHA_CTX shscontext;
807     MD5_CTX md5context;
808     int len;
809 
810     if (as->as_signature_string_s == NULL ||
811 	as->as_startofsignature == NULL ||
812 	as->as_allbutsignature == NULL ||
813 	as->as_allbutsignature - as->as_startofsignature <= 0 ||
814 	as->as_authorizer == NULL ||
815 	key == NULL ||
816 	as->as_signeralgorithm == KEYNOTE_ALGORITHM_NONE)
817     {
818 	keynote_errno = ERROR_SYNTAX;
819 	return NULL;
820     }
821 
822     alg = keynote_get_sig_algorithm(sigalg, &hashtype, &encoding,
823 				    &internalenc);
824     if (((alg != as->as_signeralgorithm) &&
825 	 !((alg == KEYNOTE_ALGORITHM_RSA) &&
826 	   (as->as_signeralgorithm == KEYNOTE_ALGORITHM_X509)) &&
827 	 !((alg == KEYNOTE_ALGORITHM_X509) &&
828 	   (as->as_signeralgorithm == KEYNOTE_ALGORITHM_RSA))) ||
829         ((alg != keyalg) &&
830 	 !((alg == KEYNOTE_ALGORITHM_RSA) &&
831 	   (keyalg == KEYNOTE_ALGORITHM_X509)) &&
832 	 !((alg == KEYNOTE_ALGORITHM_X509) &&
833 	   (keyalg == KEYNOTE_ALGORITHM_RSA))))
834     {
835 	keynote_errno = ERROR_SYNTAX;
836 	return NULL;
837     }
838 
839     sig = strchr(sigalg, ':');
840     if (sig == NULL)
841     {
842 	keynote_errno = ERROR_SYNTAX;
843 	return NULL;
844     }
845 
846     sig++;
847 
848     switch (hashtype)
849     {
850 	case KEYNOTE_HASH_SHA1:
851     	    hashlen = 20;
852 	    memset(res2, 0, hashlen);
853 	    SHA1_Init(&shscontext);
854 	    SHA1_Update(&shscontext, as->as_startofsignature,
855 			as->as_allbutsignature - as->as_startofsignature);
856 	    SHA1_Update(&shscontext, sigalg, (char *) sig - sigalg);
857 	    SHA1_Final(res2, &shscontext);
858 	    break;
859 
860 	case KEYNOTE_HASH_MD5:
861 	    hashlen = 16;
862 	    memset(res2, 0, hashlen);
863 	    MD5_Init(&md5context);
864 	    MD5_Update(&md5context, as->as_startofsignature,
865 		       as->as_allbutsignature - as->as_startofsignature);
866 	    MD5_Update(&md5context, sigalg, (char *) sig - sigalg);
867 	    MD5_Final(res2, &md5context);
868 	    break;
869 
870 	case KEYNOTE_HASH_NONE:
871 	    break;
872     }
873 
874     if ((alg == KEYNOTE_ALGORITHM_DSA) &&
875 	(hashtype == KEYNOTE_HASH_SHA1) &&
876 	(internalenc == INTERNAL_ENC_ASN1) &&
877 	((encoding == ENCODING_HEX) || (encoding == ENCODING_BASE64)))
878     {
879 	dsa = (DSA *) key;
880 	sbuf = calloc(DSA_size(dsa), sizeof(unsigned char));
881 	if (sbuf == NULL)
882 	{
883 	    keynote_errno = ERROR_MEMORY;
884 	    return NULL;
885 	}
886 
887 	if (DSA_sign(0, res2, hashlen, sbuf, &slen, dsa) <= 0)
888 	{
889 	    free(sbuf);
890 	    keynote_errno = ERROR_SYNTAX;
891 	    return NULL;
892 	}
893     }
894     else
895       if ((alg == KEYNOTE_ALGORITHM_RSA) &&
896           ((hashtype == KEYNOTE_HASH_SHA1) ||
897            (hashtype == KEYNOTE_HASH_MD5)) &&
898           (internalenc == INTERNAL_ENC_PKCS1) &&
899           ((encoding == ENCODING_HEX) || (encoding == ENCODING_BASE64)))
900       {
901           rsa = (RSA *) key;
902           sbuf = calloc(RSA_size(rsa), sizeof(unsigned char));
903           if (sbuf == NULL)
904           {
905               keynote_errno = ERROR_MEMORY;
906               return NULL;
907           }
908 
909           if (RSA_sign_ASN1_OCTET_STRING(RSA_PKCS1_PADDING, res2, hashlen,
910 					 sbuf, &slen, rsa) <= 0)
911           {
912               free(sbuf);
913               keynote_errno = ERROR_SYNTAX;
914               return NULL;
915           }
916       }
917     else
918       if ((alg == KEYNOTE_ALGORITHM_X509) &&
919 	  (hashtype == KEYNOTE_HASH_SHA1) &&
920 	  (internalenc == INTERNAL_ENC_ASN1))
921       {
922 	  if ((biokey = BIO_new(BIO_s_mem())) == NULL)
923 	  {
924 	      keynote_errno = ERROR_SYNTAX;
925 	      return NULL;
926 	  }
927 
928 	  if (BIO_write(biokey, key, strlen(key) + 1) <= 0)
929 	  {
930 	      BIO_free(biokey);
931 	      keynote_errno = ERROR_SYNTAX;
932 	      return NULL;
933 	  }
934 
935 	  /* RSA-specific */
936 	  rsa = (RSA *) PEM_read_bio_RSAPrivateKey(biokey, NULL, NULL, NULL);
937 	  if (rsa == NULL)
938 	  {
939 	      BIO_free(biokey);
940 	      keynote_errno = ERROR_SYNTAX;
941 	      return NULL;
942 	  }
943 
944 	  sbuf = calloc(RSA_size(rsa), sizeof(char));
945 	  if (sbuf == NULL)
946 	  {
947 	      BIO_free(biokey);
948 	      RSA_free(rsa);
949 	      keynote_errno = ERROR_MEMORY;
950 	      return NULL;
951 	  }
952 
953 	  if (RSA_sign(NID_shaWithRSAEncryption, res2, hashlen, sbuf, &slen,
954 		       rsa) <= 0)
955           {
956 	      BIO_free(biokey);
957 	      RSA_free(rsa);
958 	      free(sbuf);
959 	      keynote_errno = ERROR_SIGN_FAILURE;
960 	      return NULL;
961 	  }
962 
963 	  BIO_free(biokey);
964 	  RSA_free(rsa);
965       }
966       else /* Other algorithms here */
967       {
968 	  keynote_errno = ERROR_SYNTAX;
969 	  return NULL;
970       }
971 
972     /* ASCII encoding */
973     switch (encoding)
974     {
975 	case ENCODING_HEX:
976 	    i = kn_encode_hex(sbuf, (char **) &finalbuf, slen);
977 	    free(sbuf);
978 	    if (i != 0)
979 	      return NULL;
980 	    break;
981 
982 	case ENCODING_BASE64:
983 	    finalbuf = calloc(2 * slen, sizeof(unsigned char));
984 	    if (finalbuf == NULL)
985 	    {
986 		keynote_errno = ERROR_MEMORY;
987 		free(sbuf);
988 		return NULL;
989 	    }
990 
991 	    slen = kn_encode_base64(sbuf, slen, finalbuf, 2 * slen);
992 	    free(sbuf);
993 	    if (slen == -1) {
994 	      free(finalbuf);
995 	      return NULL;
996 	    }
997 	    break;
998 
999 	default:
1000 	    free(sbuf);
1001 	    keynote_errno = ERROR_SYNTAX;
1002 	    return NULL;
1003     }
1004 
1005     /* Replace as->as_signature */
1006     len = strlen(sigalg) + strlen(finalbuf) + 1;
1007     as->as_signature = calloc(len, sizeof(char));
1008     if (as->as_signature == NULL)
1009     {
1010 	free(finalbuf);
1011 	keynote_errno = ERROR_MEMORY;
1012 	return NULL;
1013     }
1014 
1015     /* Concatenate algorithm name and signature value */
1016     snprintf(as->as_signature, len, "%s%s", sigalg, finalbuf);
1017     free(finalbuf);
1018     finalbuf = as->as_signature;
1019 
1020     /* Verify the newly-created signature if requested */
1021     if (verifyflag)
1022     {
1023 	/* Do the signature verification */
1024 	if (keynote_sigverify_assertion(as) != SIGRESULT_TRUE)
1025 	{
1026 	    as->as_signature = NULL;
1027 	    free(finalbuf);
1028 	    if (keynote_errno == 0)
1029 	      keynote_errno = ERROR_SYNTAX;
1030 	    return NULL;
1031 	}
1032 
1033 	as->as_signature = NULL;
1034     }
1035     else
1036       as->as_signature = NULL;
1037 
1038     /* Everything ok */
1039     return (char *) finalbuf;
1040 }
1041 
1042 /*
1043  * Verify the signature on an assertion.
1044  */
1045 int
1046 kn_verify_assertion(char *buf, int len)
1047 {
1048     struct assertion *as;
1049     int res;
1050 
1051     keynote_errno = 0;
1052     as = keynote_parse_assertion(buf, len, ASSERT_FLAG_SIGVER);
1053     if (as == NULL)
1054       return -1;
1055 
1056     res = keynote_sigverify_assertion(as);
1057     keynote_free_assertion(as);
1058     return res;
1059 }
1060 
1061 /*
1062  * Produce the signature for an assertion.
1063  */
1064 char *
1065 kn_sign_assertion(char *buf, int buflen, char *key, char *sigalg, int vflag)
1066 {
1067     int i, alg, hashtype, encoding, internalenc;
1068     struct keynote_deckey dc;
1069     struct assertion *as;
1070     char *s, *sig;
1071 
1072     keynote_errno = 0;
1073     s = NULL;
1074 
1075     if (sigalg == NULL || buf == NULL || key == NULL)
1076     {
1077 	keynote_errno = ERROR_NOTFOUND;
1078 	return NULL;
1079     }
1080 
1081     if (sigalg[0] == '\0' || sigalg[strlen(sigalg) - 1] != ':')
1082     {
1083 	keynote_errno = ERROR_SYNTAX;
1084 	return NULL;
1085     }
1086 
1087     /* We're using a different format for X509 private keys, so... */
1088     alg = keynote_get_sig_algorithm(sigalg, &hashtype, &encoding,
1089 				    &internalenc);
1090     if (alg != KEYNOTE_ALGORITHM_X509)
1091     {
1092 	/* Parse the private key */
1093 	s = keynote_get_private_key(key);
1094 	if (s == NULL)
1095 	  return NULL;
1096 
1097 	/* Decode private key */
1098 	i = kn_decode_key(&dc, s, KEYNOTE_PRIVATE_KEY);
1099 	if (i == -1)
1100 	{
1101 	    free(s);
1102 	    return NULL;
1103 	}
1104     }
1105     else /* X509 private key */
1106     {
1107 	dc.dec_key = key;
1108 	dc.dec_algorithm = alg;
1109     }
1110 
1111     as = keynote_parse_assertion(buf, buflen, ASSERT_FLAG_SIGGEN);
1112     if (as == NULL)
1113     {
1114 	if (alg != KEYNOTE_ALGORITHM_X509)
1115 	{
1116 	    keynote_free_key(dc.dec_key, dc.dec_algorithm);
1117 	    free(s);
1118 	}
1119 	return NULL;
1120     }
1121 
1122     sig = keynote_sign_assertion(as, sigalg, dc.dec_key, dc.dec_algorithm,
1123 				 vflag);
1124     if (alg != KEYNOTE_ALGORITHM_X509)
1125       keynote_free_key(dc.dec_key, dc.dec_algorithm);
1126     keynote_free_assertion(as);
1127     if (s != NULL)
1128       free(s);
1129     return sig;
1130 }
1131 
1132 /*
1133  * ASCII-encode a key.
1134  */
1135 char *
1136 kn_encode_key(struct keynote_deckey *dc, int iencoding,
1137 	      int encoding, int keytype)
1138 {
1139     char *foo, *ptr;
1140     DSA *dsa;
1141     RSA *rsa;
1142     int i;
1143     struct keynote_binary *bn;
1144     char *s;
1145 
1146     keynote_errno = 0;
1147     if (dc == NULL || dc->dec_key == NULL)
1148     {
1149 	keynote_errno = ERROR_NOTFOUND;
1150 	return NULL;
1151     }
1152 
1153     /* DSA keys */
1154     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_DSA) &&
1155 	(iencoding == INTERNAL_ENC_ASN1) &&
1156 	((encoding == ENCODING_HEX) || (encoding == ENCODING_BASE64)))
1157     {
1158 	dsa = (DSA *) dc->dec_key;
1159 	if (keytype == KEYNOTE_PUBLIC_KEY)
1160 	  i = i2d_DSAPublicKey(dsa, NULL);
1161 	else
1162 	  i = i2d_DSAPrivateKey(dsa, NULL);
1163 
1164 	if (i <= 0)
1165 	{
1166 	    keynote_errno = ERROR_SYNTAX;
1167 	    return NULL;
1168 	}
1169 
1170  	ptr = foo = calloc(i, sizeof(char));
1171 	if (foo == NULL)
1172 	{
1173 	    keynote_errno = ERROR_MEMORY;
1174 	    return NULL;
1175 	}
1176 
1177 	dsa->write_params = 1;
1178 	if (keytype == KEYNOTE_PUBLIC_KEY)
1179 	  i2d_DSAPublicKey(dsa, (unsigned char **) &foo);
1180 	else
1181 	  i2d_DSAPrivateKey(dsa, (unsigned char **) &foo);
1182 
1183 	if (encoding == ENCODING_HEX)
1184 	{
1185 	    if (kn_encode_hex(ptr, &s, i) != 0)
1186 	    {
1187 		free(ptr);
1188 		return NULL;
1189 	    }
1190 
1191 	    free(ptr);
1192 	    return s;
1193 	}
1194 	else
1195 	  if (encoding == ENCODING_BASE64)
1196 	  {
1197 	      s = calloc(2 * i, sizeof(char));
1198 	      if (s == NULL)
1199 	      {
1200 		  free(ptr);
1201 		  keynote_errno = ERROR_MEMORY;
1202 		  return NULL;
1203 	      }
1204 
1205 	      if (kn_encode_base64(ptr, i, s, 2 * i) == -1)
1206 	      {
1207 		  free(s);
1208 		  free(ptr);
1209 		  return NULL;
1210 	      }
1211 
1212 	      free(ptr);
1213 	      return s;
1214 	  }
1215     }
1216 
1217     /* RSA keys */
1218     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_RSA) &&
1219 	(iencoding == INTERNAL_ENC_PKCS1) &&
1220 	((encoding == ENCODING_HEX) || (encoding == ENCODING_BASE64)))
1221     {
1222 	rsa = (RSA *) dc->dec_key;
1223 	if (keytype == KEYNOTE_PUBLIC_KEY)
1224 	  i = i2d_RSAPublicKey(rsa, NULL);
1225 	else
1226 	  i = i2d_RSAPrivateKey(rsa, NULL);
1227 
1228 	if (i <= 0)
1229 	{
1230 	    keynote_errno = ERROR_SYNTAX;
1231 	    return NULL;
1232 	}
1233 
1234 	ptr = foo = calloc(i, sizeof(char));
1235 	if (foo == NULL)
1236 	{
1237 	    keynote_errno = ERROR_MEMORY;
1238 	    return NULL;
1239 	}
1240 
1241 	if (keytype == KEYNOTE_PUBLIC_KEY)
1242 	  i2d_RSAPublicKey(rsa, (unsigned char **) &foo);
1243 	else
1244 	  i2d_RSAPrivateKey(rsa, (unsigned char **) &foo);
1245 
1246 	if (encoding == ENCODING_HEX)
1247 	{
1248 	    if (kn_encode_hex(ptr, &s, i) != 0)
1249 	    {
1250 		free(ptr);
1251 		return NULL;
1252 	    }
1253 
1254 	    free(ptr);
1255 	    return s;
1256 	}
1257 	else
1258 	  if (encoding == ENCODING_BASE64)
1259 	  {
1260 	      s = calloc(2 * i, sizeof(char));
1261 	      if (s == NULL)
1262 	      {
1263 		  free(ptr);
1264 		  keynote_errno = ERROR_MEMORY;
1265 		  return NULL;
1266 	      }
1267 
1268 	      if (kn_encode_base64(ptr, i, s, 2 * i) == -1)
1269 	      {
1270 		  free(s);
1271 		  free(ptr);
1272 		  return NULL;
1273 	      }
1274 
1275 	      free(ptr);
1276 	      return s;
1277 	  }
1278     }
1279 
1280     /* BINARY keys */
1281     if ((dc->dec_algorithm == KEYNOTE_ALGORITHM_BINARY) &&
1282 	(iencoding == INTERNAL_ENC_NONE) &&
1283 	((encoding == ENCODING_HEX) || (encoding == ENCODING_BASE64)))
1284     {
1285 	bn = (struct keynote_binary *) dc->dec_key;
1286 
1287 	if (encoding == ENCODING_HEX)
1288 	{
1289 	    if (kn_encode_hex(bn->bn_key, &s, bn->bn_len) != 0)
1290 	      return NULL;
1291 
1292 	    return s;
1293 	}
1294 	else
1295 	  if (encoding == ENCODING_BASE64)
1296 	  {
1297 	      s = calloc(2 * bn->bn_len, sizeof(char));
1298 	      if (s == NULL)
1299 	      {
1300 		  keynote_errno = ERROR_MEMORY;
1301 		  return NULL;
1302 	      }
1303 
1304 	      if (kn_encode_base64(bn->bn_key, bn->bn_len, s,
1305 				   2 * bn->bn_len) == -1)
1306 	      {
1307 		  free(s);
1308 		  return NULL;
1309 	      }
1310 
1311 	      return s;
1312 	  }
1313     }
1314 
1315     keynote_errno = ERROR_NOTFOUND;
1316     return NULL;
1317 }
1318