xref: /openbsd/lib/libssl/s3_cbc.c (revision 8529ddd3)
1 /* $OpenBSD: s3_cbc.c,v 1.9 2014/12/15 00:46:53 doug Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 
56 #include "ssl_locl.h"
57 
58 #include <openssl/md5.h>
59 #include <openssl/sha.h>
60 
61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62  * field. (SHA-384/512 have 128-bit length.) */
63 #define MAX_HASH_BIT_COUNT_BYTES 16
64 
65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66  * Currently SHA-384/512 has a 128-byte block size and that's the largest
67  * supported by TLS.) */
68 #define MAX_HASH_BLOCK_SIZE 128
69 
70 /* Some utility functions are needed:
71  *
72  * These macros return the given value with the MSB copied to all the other
73  * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74  * However, this is not ensured by the C standard so you may need to replace
75  * them with something else on odd CPUs. */
76 #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78 
79 /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80 static unsigned
81 constant_time_lt(unsigned a, unsigned b)
82 {
83 	a -= b;
84 	return DUPLICATE_MSB_TO_ALL(a);
85 }
86 
87 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88 static unsigned
89 constant_time_ge(unsigned a, unsigned b)
90 {
91 	a -= b;
92 	return DUPLICATE_MSB_TO_ALL(~a);
93 }
94 
95 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96 static unsigned char
97 constant_time_eq_8(unsigned a, unsigned b)
98 {
99 	unsigned c = a ^ b;
100 	c--;
101 	return DUPLICATE_MSB_TO_ALL_8(c);
102 }
103 
104 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
105  * record in |rec| by updating |rec->length| in constant time.
106  *
107  * block_size: the block size of the cipher used to encrypt the record.
108  * returns:
109  *   0: (in non-constant time) if the record is publicly invalid.
110  *   1: if the padding was valid
111  *  -1: otherwise. */
112 int
113 ssl3_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
114     unsigned mac_size)
115 {
116 	unsigned padding_length, good;
117 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
118 
119 	/* These lengths are all public so we can test them in non-constant
120 	 * time. */
121 	if (overhead > rec->length)
122 		return 0;
123 
124 	padding_length = rec->data[rec->length - 1];
125 	good = constant_time_ge(rec->length, padding_length + overhead);
126 	/* SSLv3 requires that the padding is minimal. */
127 	good &= constant_time_ge(block_size, padding_length + 1);
128 	padding_length = good & (padding_length + 1);
129 	rec->length -= padding_length;
130 	rec->type |= padding_length << 8; /* kludge: pass padding length */
131 	return (int)((good & 1) | (~good & -1));
132 }
133 
134 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
135  * record in |rec| in constant time and returns 1 if the padding is valid and
136  * -1 otherwise. It also removes any explicit IV from the start of the record
137  * without leaking any timing about whether there was enough space after the
138  * padding was removed.
139  *
140  * block_size: the block size of the cipher used to encrypt the record.
141  * returns:
142  *   0: (in non-constant time) if the record is publicly invalid.
143  *   1: if the padding was valid
144  *  -1: otherwise. */
145 int
146 tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
147     unsigned mac_size)
148 {
149 	unsigned padding_length, good, to_check, i;
150 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
151 
152 	/* Check if version requires explicit IV */
153 	if (SSL_USE_EXPLICIT_IV(s)) {
154 		/* These lengths are all public so we can test them in
155 		 * non-constant time.
156 		 */
157 		if (overhead + block_size > rec->length)
158 			return 0;
159 		/* We can now safely skip explicit IV */
160 		rec->data += block_size;
161 		rec->input += block_size;
162 		rec->length -= block_size;
163 	} else if (overhead > rec->length)
164 		return 0;
165 
166 	padding_length = rec->data[rec->length - 1];
167 
168 	/* NB: if compression is in operation the first packet may not be of
169 	 * even length so the padding bug check cannot be performed. This bug
170 	 * workaround has been around since SSLeay so hopefully it is either
171 	 * fixed now or no buggy implementation supports compression [steve]
172 	 * (We don't support compression either, so it's not in operation.)
173 	 */
174 	if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG)) {
175 		/* First packet is even in size, so check */
176 		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",
177 		    SSL3_SEQUENCE_SIZE) == 0) && !(padding_length & 1)) {
178 			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
179 		}
180 		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
181 		    padding_length > 0) {
182 			padding_length--;
183 		}
184 	}
185 
186 	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
187 		/* padding is already verified */
188 		rec->length -= padding_length + 1;
189 		return 1;
190 	}
191 
192 	good = constant_time_ge(rec->length, overhead + padding_length);
193 	/* The padding consists of a length byte at the end of the record and
194 	 * then that many bytes of padding, all with the same value as the
195 	 * length byte. Thus, with the length byte included, there are i+1
196 	 * bytes of padding.
197 	 *
198 	 * We can't check just |padding_length+1| bytes because that leaks
199 	 * decrypted information. Therefore we always have to check the maximum
200 	 * amount of padding possible. (Again, the length of the record is
201 	 * public information so we can use it.) */
202 	to_check = 255; /* maximum amount of padding. */
203 	if (to_check > rec->length - 1)
204 		to_check = rec->length - 1;
205 
206 	for (i = 0; i < to_check; i++) {
207 		unsigned char mask = constant_time_ge(padding_length, i);
208 		unsigned char b = rec->data[rec->length - 1 - i];
209 		/* The final |padding_length+1| bytes should all have the value
210 		 * |padding_length|. Therefore the XOR should be zero. */
211 		good &= ~(mask&(padding_length ^ b));
212 	}
213 
214 	/* If any of the final |padding_length+1| bytes had the wrong value,
215 	 * one or more of the lower eight bits of |good| will be cleared. We
216 	 * AND the bottom 8 bits together and duplicate the result to all the
217 	 * bits. */
218 	good &= good >> 4;
219 	good &= good >> 2;
220 	good &= good >> 1;
221 	good <<= sizeof(good)*8 - 1;
222 	good = DUPLICATE_MSB_TO_ALL(good);
223 
224 	padding_length = good & (padding_length + 1);
225 	rec->length -= padding_length;
226 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
227 
228 	return (int)((good & 1) | (~good & -1));
229 }
230 
231 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
232  * constant time (independent of the concrete value of rec->length, which may
233  * vary within a 256-byte window).
234  *
235  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
236  * this function.
237  *
238  * On entry:
239  *   rec->orig_len >= md_size
240  *   md_size <= EVP_MAX_MD_SIZE
241  *
242  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
243  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
244  * a single or pair of cache-lines, then the variable memory accesses don't
245  * actually affect the timing. CPUs with smaller cache-lines [if any] are
246  * not multi-core and are not considered vulnerable to cache-timing attacks.
247  */
248 #define CBC_MAC_ROTATE_IN_PLACE
249 
250 void
251 ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
252     unsigned md_size, unsigned orig_len)
253 {
254 #if defined(CBC_MAC_ROTATE_IN_PLACE)
255 	unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
256 	unsigned char *rotated_mac;
257 #else
258 	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
259 #endif
260 
261 	/* mac_end is the index of |rec->data| just after the end of the MAC. */
262 	unsigned mac_end = rec->length;
263 	unsigned mac_start = mac_end - md_size;
264 	/* scan_start contains the number of bytes that we can ignore because
265 	 * the MAC's position can only vary by 255 bytes. */
266 	unsigned scan_start = 0;
267 	unsigned i, j;
268 	unsigned div_spoiler;
269 	unsigned rotate_offset;
270 
271 	OPENSSL_assert(orig_len >= md_size);
272 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
273 
274 #if defined(CBC_MAC_ROTATE_IN_PLACE)
275 	rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
276 #endif
277 
278 	/* This information is public so it's safe to branch based on it. */
279 	if (orig_len > md_size + 255 + 1)
280 		scan_start = orig_len - (md_size + 255 + 1);
281 	/* div_spoiler contains a multiple of md_size that is used to cause the
282 	 * modulo operation to be constant time. Without this, the time varies
283 	 * based on the amount of padding when running on Intel chips at least.
284 	 *
285 	 * The aim of right-shifting md_size is so that the compiler doesn't
286 	 * figure out that it can remove div_spoiler as that would require it
287 	 * to prove that md_size is always even, which I hope is beyond it. */
288 	div_spoiler = md_size >> 1;
289 	div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
290 	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
291 
292 	memset(rotated_mac, 0, md_size);
293 	for (i = scan_start, j = 0; i < orig_len; i++) {
294 		unsigned char mac_started = constant_time_ge(i, mac_start);
295 		unsigned char mac_ended = constant_time_ge(i, mac_end);
296 		unsigned char b = rec->data[i];
297 		rotated_mac[j++] |= b & mac_started & ~mac_ended;
298 		j &= constant_time_lt(j, md_size);
299 	}
300 
301 	/* Now rotate the MAC */
302 #if defined(CBC_MAC_ROTATE_IN_PLACE)
303 	j = 0;
304 	for (i = 0; i < md_size; i++) {
305 		/* in case cache-line is 32 bytes, touch second line */
306 		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
307 		out[j++] = rotated_mac[rotate_offset++];
308 		rotate_offset &= constant_time_lt(rotate_offset, md_size);
309 	}
310 #else
311 	memset(out, 0, md_size);
312 	rotate_offset = md_size - rotate_offset;
313 	rotate_offset &= constant_time_lt(rotate_offset, md_size);
314 	for (i = 0; i < md_size; i++) {
315 		for (j = 0; j < md_size; j++)
316 			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
317 		rotate_offset++;
318 		rotate_offset &= constant_time_lt(rotate_offset, md_size);
319 	}
320 #endif
321 }
322 
323 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
324  * little-endian order. The value of p is advanced by four. */
325 #define u32toLE(n, p) \
326 	(*((p)++)=(unsigned char)(n), \
327 	 *((p)++)=(unsigned char)(n>>8), \
328 	 *((p)++)=(unsigned char)(n>>16), \
329 	 *((p)++)=(unsigned char)(n>>24))
330 
331 /* These functions serialize the state of a hash and thus perform the standard
332  * "final" operation without adding the padding and length that such a function
333  * typically does. */
334 static void
335 tls1_md5_final_raw(void* ctx, unsigned char *md_out)
336 {
337 	MD5_CTX *md5 = ctx;
338 	u32toLE(md5->A, md_out);
339 	u32toLE(md5->B, md_out);
340 	u32toLE(md5->C, md_out);
341 	u32toLE(md5->D, md_out);
342 }
343 
344 static void
345 tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
346 {
347 	SHA_CTX *sha1 = ctx;
348 	l2n(sha1->h0, md_out);
349 	l2n(sha1->h1, md_out);
350 	l2n(sha1->h2, md_out);
351 	l2n(sha1->h3, md_out);
352 	l2n(sha1->h4, md_out);
353 }
354 #define LARGEST_DIGEST_CTX SHA_CTX
355 
356 static void
357 tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
358 {
359 	SHA256_CTX *sha256 = ctx;
360 	unsigned i;
361 
362 	for (i = 0; i < 8; i++) {
363 		l2n(sha256->h[i], md_out);
364 	}
365 }
366 #undef  LARGEST_DIGEST_CTX
367 #define LARGEST_DIGEST_CTX SHA256_CTX
368 
369 static void
370 tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
371 {
372 	SHA512_CTX *sha512 = ctx;
373 	unsigned i;
374 
375 	for (i = 0; i < 8; i++) {
376 		l2n8(sha512->h[i], md_out);
377 	}
378 }
379 #undef  LARGEST_DIGEST_CTX
380 #define LARGEST_DIGEST_CTX SHA512_CTX
381 
382 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
383  * which ssl3_cbc_digest_record supports. */
384 char
385 ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
386 {
387 	switch (EVP_MD_CTX_type(ctx)) {
388 	case NID_md5:
389 	case NID_sha1:
390 	case NID_sha224:
391 	case NID_sha256:
392 	case NID_sha384:
393 	case NID_sha512:
394 		return 1;
395 	default:
396 		return 0;
397 	}
398 }
399 
400 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
401  * record.
402  *
403  *   ctx: the EVP_MD_CTX from which we take the hash function.
404  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
405  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
406  *   md_out_size: if non-NULL, the number of output bytes is written here.
407  *   header: the 13-byte, TLS record header.
408  *   data: the record data itself, less any preceeding explicit IV.
409  *   data_plus_mac_size: the secret, reported length of the data and MAC
410  *     once the padding has been removed.
411  *   data_plus_mac_plus_padding_size: the public length of the whole
412  *     record, including padding.
413  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
414  *
415  * On entry: by virtue of having been through one of the remove_padding
416  * functions, above, we know that data_plus_mac_size is large enough to contain
417  * a padding byte and MAC. (If the padding was invalid, it might contain the
418  * padding too. ) */
419 int
420 ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
421     size_t* md_out_size, const unsigned char header[13],
422     const unsigned char *data, size_t data_plus_mac_size,
423     size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
424     unsigned mac_secret_length, char is_sslv3)
425 {
426 	union {	double align;
427 		unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
428 	} md_state;
429 	void (*md_final_raw)(void *ctx, unsigned char *md_out);
430 	void (*md_transform)(void *ctx, const unsigned char *block);
431 	unsigned md_size, md_block_size = 64;
432 	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
433 	len, max_mac_bytes, num_blocks,
434 	num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
435 	unsigned int bits;	/* at most 18 bits */
436 	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
437 	/* hmac_pad is the masked HMAC key. */
438 	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
439 	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
440 	unsigned char mac_out[EVP_MAX_MD_SIZE];
441 	unsigned i, j, md_out_size_u;
442 	EVP_MD_CTX md_ctx;
443 	/* mdLengthSize is the number of bytes in the length field that terminates
444 	* the hash. */
445 	unsigned md_length_size = 8;
446 	char length_is_big_endian = 1;
447 
448 	/* This is a, hopefully redundant, check that allows us to forget about
449 	 * many possible overflows later in this function. */
450 	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
451 
452 	switch (EVP_MD_CTX_type(ctx)) {
453 	case NID_md5:
454 		MD5_Init((MD5_CTX*)md_state.c);
455 		md_final_raw = tls1_md5_final_raw;
456 		md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
457 		md_size = 16;
458 		sslv3_pad_length = 48;
459 		length_is_big_endian = 0;
460 		break;
461 	case NID_sha1:
462 		SHA1_Init((SHA_CTX*)md_state.c);
463 		md_final_raw = tls1_sha1_final_raw;
464 		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
465 		md_size = 20;
466 		break;
467 	case NID_sha224:
468 		SHA224_Init((SHA256_CTX*)md_state.c);
469 		md_final_raw = tls1_sha256_final_raw;
470 		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
471 		md_size = 224/8;
472 		break;
473 	case NID_sha256:
474 		SHA256_Init((SHA256_CTX*)md_state.c);
475 		md_final_raw = tls1_sha256_final_raw;
476 		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
477 		md_size = 32;
478 		break;
479 	case NID_sha384:
480 		SHA384_Init((SHA512_CTX*)md_state.c);
481 		md_final_raw = tls1_sha512_final_raw;
482 		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
483 		md_size = 384/8;
484 		md_block_size = 128;
485 		md_length_size = 16;
486 		break;
487 	case NID_sha512:
488 		SHA512_Init((SHA512_CTX*)md_state.c);
489 		md_final_raw = tls1_sha512_final_raw;
490 		md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
491 		md_size = 64;
492 		md_block_size = 128;
493 		md_length_size = 16;
494 		break;
495 	default:
496 		/* ssl3_cbc_record_digest_supported should have been
497 		 * called first to check that the hash function is
498 		 * supported. */
499 		OPENSSL_assert(0);
500 		if (md_out_size)
501 			*md_out_size = 0;
502 		return 0;
503 	}
504 
505 	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
506 	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
507 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
508 
509 	header_length = 13;
510 	if (is_sslv3) {
511 		header_length = mac_secret_length + sslv3_pad_length +
512 		    8 /* sequence number */ +
513 		    1 /* record type */ +
514 		    2 /* record length */;
515 	}
516 
517 	/* variance_blocks is the number of blocks of the hash that we have to
518 	 * calculate in constant time because they could be altered by the
519 	 * padding value.
520 	 *
521 	 * In SSLv3, the padding must be minimal so the end of the plaintext
522 	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
523 	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
524 	 * termination (0x80 + 64-bit length) don't fit in the final block, we
525 	 * say that the final two blocks can vary based on the padding.
526 	 *
527 	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
528 	 * required to be minimal. Therefore we say that the final six blocks
529 	 * can vary based on the padding.
530 	 *
531 	 * Later in the function, if the message is short and there obviously
532 	 * cannot be this many blocks then variance_blocks can be reduced. */
533 	variance_blocks = is_sslv3 ? 2 : 6;
534 	/* From now on we're dealing with the MAC, which conceptually has 13
535 	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
536 	 * (SSLv3) */
537 	len = data_plus_mac_plus_padding_size + header_length;
538 	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
539 	* |header|, assuming that there's no padding. */
540 	max_mac_bytes = len - md_size - 1;
541 	/* num_blocks is the maximum number of hash blocks. */
542 	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
543 	/* In order to calculate the MAC in constant time we have to handle
544 	 * the final blocks specially because the padding value could cause the
545 	 * end to appear somewhere in the final |variance_blocks| blocks and we
546 	 * can't leak where. However, |num_starting_blocks| worth of data can
547 	 * be hashed right away because no padding value can affect whether
548 	 * they are plaintext. */
549 	num_starting_blocks = 0;
550 	/* k is the starting byte offset into the conceptual header||data where
551 	 * we start processing. */
552 	k = 0;
553 	/* mac_end_offset is the index just past the end of the data to be
554 	 * MACed. */
555 	mac_end_offset = data_plus_mac_size + header_length - md_size;
556 	/* c is the index of the 0x80 byte in the final hash block that
557 	 * contains application data. */
558 	c = mac_end_offset % md_block_size;
559 	/* index_a is the hash block number that contains the 0x80 terminating
560 	 * value. */
561 	index_a = mac_end_offset / md_block_size;
562 	/* index_b is the hash block number that contains the 64-bit hash
563 	 * length, in bits. */
564 	index_b = (mac_end_offset + md_length_size) / md_block_size;
565 	/* bits is the hash-length in bits. It includes the additional hash
566 	 * block for the masked HMAC key, or whole of |header| in the case of
567 	 * SSLv3. */
568 
569 	/* For SSLv3, if we're going to have any starting blocks then we need
570 	 * at least two because the header is larger than a single block. */
571 	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
572 		num_starting_blocks = num_blocks - variance_blocks;
573 		k = md_block_size*num_starting_blocks;
574 	}
575 
576 	bits = 8*mac_end_offset;
577 	if (!is_sslv3) {
578 		/* Compute the initial HMAC block. For SSLv3, the padding and
579 		 * secret bytes are included in |header| because they take more
580 		 * than a single block. */
581 		bits += 8*md_block_size;
582 		memset(hmac_pad, 0, md_block_size);
583 		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
584 		memcpy(hmac_pad, mac_secret, mac_secret_length);
585 		for (i = 0; i < md_block_size; i++)
586 			hmac_pad[i] ^= 0x36;
587 
588 		md_transform(md_state.c, hmac_pad);
589 	}
590 
591 	if (length_is_big_endian) {
592 		memset(length_bytes, 0, md_length_size - 4);
593 		length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
594 		length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
595 		length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
596 		length_bytes[md_length_size - 1] = (unsigned char)bits;
597 	} else {
598 		memset(length_bytes, 0, md_length_size);
599 		length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
600 		length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
601 		length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
602 		length_bytes[md_length_size - 8] = (unsigned char)bits;
603 	}
604 
605 	if (k > 0) {
606 		if (is_sslv3) {
607 			/* The SSLv3 header is larger than a single block.
608 			 * overhang is the number of bytes beyond a single
609 			 * block that the header consumes: either 7 bytes
610 			 * (SHA1) or 11 bytes (MD5). */
611 			unsigned overhang = header_length - md_block_size;
612 			md_transform(md_state.c, header);
613 			memcpy(first_block, header + md_block_size, overhang);
614 			memcpy(first_block + overhang, data, md_block_size - overhang);
615 			md_transform(md_state.c, first_block);
616 			for (i = 1; i < k/md_block_size - 1; i++)
617 				md_transform(md_state.c, data + md_block_size*i - overhang);
618 		} else {
619 			/* k is a multiple of md_block_size. */
620 			memcpy(first_block, header, 13);
621 			memcpy(first_block + 13, data, md_block_size - 13);
622 			md_transform(md_state.c, first_block);
623 			for (i = 1; i < k/md_block_size; i++)
624 				md_transform(md_state.c, data + md_block_size*i - 13);
625 		}
626 	}
627 
628 	memset(mac_out, 0, sizeof(mac_out));
629 
630 	/* We now process the final hash blocks. For each block, we construct
631 	 * it in constant time. If the |i==index_a| then we'll include the 0x80
632 	 * bytes and zero pad etc. For each block we selectively copy it, in
633 	 * constant time, to |mac_out|. */
634 	for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
635 		unsigned char block[MAX_HASH_BLOCK_SIZE];
636 		unsigned char is_block_a = constant_time_eq_8(i, index_a);
637 		unsigned char is_block_b = constant_time_eq_8(i, index_b);
638 		for (j = 0; j < md_block_size; j++) {
639 			unsigned char b = 0, is_past_c, is_past_cp1;
640 			if (k < header_length)
641 				b = header[k];
642 			else if (k < data_plus_mac_plus_padding_size + header_length)
643 				b = data[k - header_length];
644 			k++;
645 
646 			is_past_c = is_block_a & constant_time_ge(j, c);
647 			is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
648 			/* If this is the block containing the end of the
649 			 * application data, and we are at the offset for the
650 			 * 0x80 value, then overwrite b with 0x80. */
651 			b = (b&~is_past_c) | (0x80&is_past_c);
652 			/* If this the the block containing the end of the
653 			 * application data and we're past the 0x80 value then
654 			 * just write zero. */
655 			b = b&~is_past_cp1;
656 			/* If this is index_b (the final block), but not
657 			 * index_a (the end of the data), then the 64-bit
658 			 * length didn't fit into index_a and we're having to
659 			 * add an extra block of zeros. */
660 			b &= ~is_block_b | is_block_a;
661 
662 			/* The final bytes of one of the blocks contains the
663 			 * length. */
664 			if (j >= md_block_size - md_length_size) {
665 				/* If this is index_b, write a length byte. */
666 				b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
667 			}
668 			block[j] = b;
669 		}
670 
671 		md_transform(md_state.c, block);
672 		md_final_raw(md_state.c, block);
673 		/* If this is index_b, copy the hash value to |mac_out|. */
674 		for (j = 0; j < md_size; j++)
675 			mac_out[j] |= block[j]&is_block_b;
676 	}
677 
678 	EVP_MD_CTX_init(&md_ctx);
679 	if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
680 		EVP_MD_CTX_cleanup(&md_ctx);
681 		return 0;
682 	}
683 	if (is_sslv3) {
684 		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
685 		memset(hmac_pad, 0x5c, sslv3_pad_length);
686 
687 		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
688 		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
689 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
690 	} else {
691 		/* Complete the HMAC in the standard manner. */
692 		for (i = 0; i < md_block_size; i++)
693 			hmac_pad[i] ^= 0x6a;
694 
695 		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
696 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
697 	}
698 	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
699 	if (md_out_size)
700 		*md_out_size = md_out_size_u;
701 	EVP_MD_CTX_cleanup(&md_ctx);
702 
703 	return 1;
704 }
705