xref: /openbsd/lib/libz/trees.c (revision 3bef86f7)
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2024 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* #define GEN_TREES_H */
34 
35 #include "deflate.h"
36 
37 #ifdef ZLIB_DEBUG
38 #  include <ctype.h>
39 #endif
40 
41 /* ===========================================================================
42  * Constants
43  */
44 
45 #define MAX_BL_BITS 7
46 /* Bit length codes must not exceed MAX_BL_BITS bits */
47 
48 #define END_BLOCK 256
49 /* end of block literal code */
50 
51 #define REP_3_6      16
52 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
53 
54 #define REPZ_3_10    17
55 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
56 
57 #define REPZ_11_138  18
58 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
59 
60 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
61    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
62 
63 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
64    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
65 
66 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
67    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
68 
69 local const uch bl_order[BL_CODES]
70    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
71 /* The lengths of the bit length codes are sent in order of decreasing
72  * probability, to avoid transmitting the lengths for unused bit length codes.
73  */
74 
75 /* ===========================================================================
76  * Local data. These are initialized only once.
77  */
78 
79 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
80 
81 #if defined(GEN_TREES_H) || !defined(STDC)
82 /* non ANSI compilers may not accept trees.h */
83 
84 local ct_data static_ltree[L_CODES+2];
85 /* The static literal tree. Since the bit lengths are imposed, there is no
86  * need for the L_CODES extra codes used during heap construction. However
87  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
88  * below).
89  */
90 
91 local ct_data static_dtree[D_CODES];
92 /* The static distance tree. (Actually a trivial tree since all codes use
93  * 5 bits.)
94  */
95 
96 uch _dist_code[DIST_CODE_LEN];
97 /* Distance codes. The first 256 values correspond to the distances
98  * 3 .. 258, the last 256 values correspond to the top 8 bits of
99  * the 15 bit distances.
100  */
101 
102 uch _length_code[MAX_MATCH-MIN_MATCH+1];
103 /* length code for each normalized match length (0 == MIN_MATCH) */
104 
105 local int base_length[LENGTH_CODES];
106 /* First normalized length for each code (0 = MIN_MATCH) */
107 
108 local int base_dist[D_CODES];
109 /* First normalized distance for each code (0 = distance of 1) */
110 
111 #else
112 #  include "trees.h"
113 #endif /* GEN_TREES_H */
114 
115 struct static_tree_desc_s {
116     const ct_data *static_tree;  /* static tree or NULL */
117     const intf *extra_bits;      /* extra bits for each code or NULL */
118     int     extra_base;          /* base index for extra_bits */
119     int     elems;               /* max number of elements in the tree */
120     int     max_length;          /* max bit length for the codes */
121 };
122 
123 #ifdef NO_INIT_GLOBAL_POINTERS
124 #  define TCONST
125 #else
126 #  define TCONST const
127 #endif
128 
129 local TCONST static_tree_desc static_l_desc =
130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
131 
132 local TCONST static_tree_desc static_d_desc =
133 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
134 
135 local TCONST static_tree_desc static_bl_desc =
136 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
137 
138 /* ===========================================================================
139  * Output a short LSB first on the stream.
140  * IN assertion: there is enough room in pendingBuf.
141  */
142 #define put_short(s, w) { \
143     put_byte(s, (uch)((w) & 0xff)); \
144     put_byte(s, (uch)((ush)(w) >> 8)); \
145 }
146 
147 /* ===========================================================================
148  * Reverse the first len bits of a code, using straightforward code (a faster
149  * method would use a table)
150  * IN assertion: 1 <= len <= 15
151  */
152 local unsigned bi_reverse(unsigned code, int len) {
153     register unsigned res = 0;
154     do {
155         res |= code & 1;
156         code >>= 1, res <<= 1;
157     } while (--len > 0);
158     return res >> 1;
159 }
160 
161 /* ===========================================================================
162  * Flush the bit buffer, keeping at most 7 bits in it.
163  */
164 local void bi_flush(deflate_state *s) {
165     if (s->bi_valid == 16) {
166         put_short(s, s->bi_buf);
167         s->bi_buf = 0;
168         s->bi_valid = 0;
169     } else if (s->bi_valid >= 8) {
170         put_byte(s, (Byte)s->bi_buf);
171         s->bi_buf >>= 8;
172         s->bi_valid -= 8;
173     }
174 }
175 
176 /* ===========================================================================
177  * Flush the bit buffer and align the output on a byte boundary
178  */
179 local void bi_windup(deflate_state *s) {
180     if (s->bi_valid > 8) {
181         put_short(s, s->bi_buf);
182     } else if (s->bi_valid > 0) {
183         put_byte(s, (Byte)s->bi_buf);
184     }
185     s->bi_buf = 0;
186     s->bi_valid = 0;
187 #ifdef ZLIB_DEBUG
188     s->bits_sent = (s->bits_sent + 7) & ~7;
189 #endif
190 }
191 
192 /* ===========================================================================
193  * Generate the codes for a given tree and bit counts (which need not be
194  * optimal).
195  * IN assertion: the array bl_count contains the bit length statistics for
196  * the given tree and the field len is set for all tree elements.
197  * OUT assertion: the field code is set for all tree elements of non
198  *     zero code length.
199  */
200 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
201     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
202     unsigned code = 0;         /* running code value */
203     int bits;                  /* bit index */
204     int n;                     /* code index */
205 
206     /* The distribution counts are first used to generate the code values
207      * without bit reversal.
208      */
209     for (bits = 1; bits <= MAX_BITS; bits++) {
210         code = (code + bl_count[bits - 1]) << 1;
211         next_code[bits] = (ush)code;
212     }
213     /* Check that the bit counts in bl_count are consistent. The last code
214      * must be all ones.
215      */
216     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
217             "inconsistent bit counts");
218     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
219 
220     for (n = 0;  n <= max_code; n++) {
221         int len = tree[n].Len;
222         if (len == 0) continue;
223         /* Now reverse the bits */
224         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
225 
226         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
227             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
228     }
229 }
230 
231 #ifdef GEN_TREES_H
232 local void gen_trees_header(void);
233 #endif
234 
235 #ifndef ZLIB_DEBUG
236 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
237    /* Send a code of the given tree. c and tree must not have side effects */
238 
239 #else /* !ZLIB_DEBUG */
240 #  define send_code(s, c, tree) \
241      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
242        send_bits(s, tree[c].Code, tree[c].Len); }
243 #endif
244 
245 /* ===========================================================================
246  * Send a value on a given number of bits.
247  * IN assertion: length <= 16 and value fits in length bits.
248  */
249 #ifdef ZLIB_DEBUG
250 local void send_bits(deflate_state *s, int value, int length) {
251     Tracevv((stderr," l %2d v %4x ", length, value));
252     Assert(length > 0 && length <= 15, "invalid length");
253     s->bits_sent += (ulg)length;
254 
255     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
256      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
257      * unused bits in value.
258      */
259     if (s->bi_valid > (int)Buf_size - length) {
260         s->bi_buf |= (ush)value << s->bi_valid;
261         put_short(s, s->bi_buf);
262         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
263         s->bi_valid += length - Buf_size;
264     } else {
265         s->bi_buf |= (ush)value << s->bi_valid;
266         s->bi_valid += length;
267     }
268 }
269 #else /* !ZLIB_DEBUG */
270 
271 #define send_bits(s, value, length) \
272 { int len = length;\
273   if (s->bi_valid > (int)Buf_size - len) {\
274     int val = (int)value;\
275     s->bi_buf |= (ush)val << s->bi_valid;\
276     put_short(s, s->bi_buf);\
277     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
278     s->bi_valid += len - Buf_size;\
279   } else {\
280     s->bi_buf |= (ush)(value) << s->bi_valid;\
281     s->bi_valid += len;\
282   }\
283 }
284 #endif /* ZLIB_DEBUG */
285 
286 
287 /* the arguments must not have side effects */
288 
289 /* ===========================================================================
290  * Initialize the various 'constant' tables.
291  */
292 local void tr_static_init(void) {
293 #if defined(GEN_TREES_H) || !defined(STDC)
294     static int static_init_done = 0;
295     int n;        /* iterates over tree elements */
296     int bits;     /* bit counter */
297     int length;   /* length value */
298     int code;     /* code value */
299     int dist;     /* distance index */
300     ush bl_count[MAX_BITS+1];
301     /* number of codes at each bit length for an optimal tree */
302 
303     if (static_init_done) return;
304 
305     /* For some embedded targets, global variables are not initialized: */
306 #ifdef NO_INIT_GLOBAL_POINTERS
307     static_l_desc.static_tree = static_ltree;
308     static_l_desc.extra_bits = extra_lbits;
309     static_d_desc.static_tree = static_dtree;
310     static_d_desc.extra_bits = extra_dbits;
311     static_bl_desc.extra_bits = extra_blbits;
312 #endif
313 
314     /* Initialize the mapping length (0..255) -> length code (0..28) */
315     length = 0;
316     for (code = 0; code < LENGTH_CODES-1; code++) {
317         base_length[code] = length;
318         for (n = 0; n < (1 << extra_lbits[code]); n++) {
319             _length_code[length++] = (uch)code;
320         }
321     }
322     Assert (length == 256, "tr_static_init: length != 256");
323     /* Note that the length 255 (match length 258) can be represented
324      * in two different ways: code 284 + 5 bits or code 285, so we
325      * overwrite length_code[255] to use the best encoding:
326      */
327     _length_code[length - 1] = (uch)code;
328 
329     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
330     dist = 0;
331     for (code = 0 ; code < 16; code++) {
332         base_dist[code] = dist;
333         for (n = 0; n < (1 << extra_dbits[code]); n++) {
334             _dist_code[dist++] = (uch)code;
335         }
336     }
337     Assert (dist == 256, "tr_static_init: dist != 256");
338     dist >>= 7; /* from now on, all distances are divided by 128 */
339     for ( ; code < D_CODES; code++) {
340         base_dist[code] = dist << 7;
341         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
342             _dist_code[256 + dist++] = (uch)code;
343         }
344     }
345     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
346 
347     /* Construct the codes of the static literal tree */
348     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
349     n = 0;
350     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
351     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
352     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
353     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
354     /* Codes 286 and 287 do not exist, but we must include them in the
355      * tree construction to get a canonical Huffman tree (longest code
356      * all ones)
357      */
358     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
359 
360     /* The static distance tree is trivial: */
361     for (n = 0; n < D_CODES; n++) {
362         static_dtree[n].Len = 5;
363         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
364     }
365     static_init_done = 1;
366 
367 #  ifdef GEN_TREES_H
368     gen_trees_header();
369 #  endif
370 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
371 }
372 
373 /* ===========================================================================
374  * Generate the file trees.h describing the static trees.
375  */
376 #ifdef GEN_TREES_H
377 #  ifndef ZLIB_DEBUG
378 #    include <stdio.h>
379 #  endif
380 
381 #  define SEPARATOR(i, last, width) \
382       ((i) == (last)? "\n};\n\n" :    \
383        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
384 
385 void gen_trees_header(void) {
386     FILE *header = fopen("trees.h", "w");
387     int i;
388 
389     Assert (header != NULL, "Can't open trees.h");
390     fprintf(header,
391             "/* header created automatically with -DGEN_TREES_H */\n\n");
392 
393     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
394     for (i = 0; i < L_CODES+2; i++) {
395         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
396                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
397     }
398 
399     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
400     for (i = 0; i < D_CODES; i++) {
401         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
402                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
403     }
404 
405     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
406     for (i = 0; i < DIST_CODE_LEN; i++) {
407         fprintf(header, "%2u%s", _dist_code[i],
408                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
409     }
410 
411     fprintf(header,
412         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
413     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
414         fprintf(header, "%2u%s", _length_code[i],
415                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
416     }
417 
418     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
419     for (i = 0; i < LENGTH_CODES; i++) {
420         fprintf(header, "%1u%s", base_length[i],
421                 SEPARATOR(i, LENGTH_CODES-1, 20));
422     }
423 
424     fprintf(header, "local const int base_dist[D_CODES] = {\n");
425     for (i = 0; i < D_CODES; i++) {
426         fprintf(header, "%5u%s", base_dist[i],
427                 SEPARATOR(i, D_CODES-1, 10));
428     }
429 
430     fclose(header);
431 }
432 #endif /* GEN_TREES_H */
433 
434 /* ===========================================================================
435  * Initialize a new block.
436  */
437 local void init_block(deflate_state *s) {
438     int n; /* iterates over tree elements */
439 
440     /* Initialize the trees. */
441     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
442     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
443     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
444 
445     s->dyn_ltree[END_BLOCK].Freq = 1;
446     s->opt_len = s->static_len = 0L;
447     s->sym_next = s->matches = 0;
448 }
449 
450 /* ===========================================================================
451  * Initialize the tree data structures for a new zlib stream.
452  */
453 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
454     tr_static_init();
455 
456     s->l_desc.dyn_tree = s->dyn_ltree;
457     s->l_desc.stat_desc = &static_l_desc;
458 
459     s->d_desc.dyn_tree = s->dyn_dtree;
460     s->d_desc.stat_desc = &static_d_desc;
461 
462     s->bl_desc.dyn_tree = s->bl_tree;
463     s->bl_desc.stat_desc = &static_bl_desc;
464 
465     s->bi_buf = 0;
466     s->bi_valid = 0;
467 #ifdef ZLIB_DEBUG
468     s->compressed_len = 0L;
469     s->bits_sent = 0L;
470 #endif
471 
472     /* Initialize the first block of the first file: */
473     init_block(s);
474 }
475 
476 #define SMALLEST 1
477 /* Index within the heap array of least frequent node in the Huffman tree */
478 
479 
480 /* ===========================================================================
481  * Remove the smallest element from the heap and recreate the heap with
482  * one less element. Updates heap and heap_len.
483  */
484 #define pqremove(s, tree, top) \
485 {\
486     top = s->heap[SMALLEST]; \
487     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
488     pqdownheap(s, tree, SMALLEST); \
489 }
490 
491 /* ===========================================================================
492  * Compares to subtrees, using the tree depth as tie breaker when
493  * the subtrees have equal frequency. This minimizes the worst case length.
494  */
495 #define smaller(tree, n, m, depth) \
496    (tree[n].Freq < tree[m].Freq || \
497    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
498 
499 /* ===========================================================================
500  * Restore the heap property by moving down the tree starting at node k,
501  * exchanging a node with the smallest of its two sons if necessary, stopping
502  * when the heap property is re-established (each father smaller than its
503  * two sons).
504  */
505 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
506     int v = s->heap[k];
507     int j = k << 1;  /* left son of k */
508     while (j <= s->heap_len) {
509         /* Set j to the smallest of the two sons: */
510         if (j < s->heap_len &&
511             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
512             j++;
513         }
514         /* Exit if v is smaller than both sons */
515         if (smaller(tree, v, s->heap[j], s->depth)) break;
516 
517         /* Exchange v with the smallest son */
518         s->heap[k] = s->heap[j];  k = j;
519 
520         /* And continue down the tree, setting j to the left son of k */
521         j <<= 1;
522     }
523     s->heap[k] = v;
524 }
525 
526 /* ===========================================================================
527  * Compute the optimal bit lengths for a tree and update the total bit length
528  * for the current block.
529  * IN assertion: the fields freq and dad are set, heap[heap_max] and
530  *    above are the tree nodes sorted by increasing frequency.
531  * OUT assertions: the field len is set to the optimal bit length, the
532  *     array bl_count contains the frequencies for each bit length.
533  *     The length opt_len is updated; static_len is also updated if stree is
534  *     not null.
535  */
536 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
537     ct_data *tree        = desc->dyn_tree;
538     int max_code         = desc->max_code;
539     const ct_data *stree = desc->stat_desc->static_tree;
540     const intf *extra    = desc->stat_desc->extra_bits;
541     int base             = desc->stat_desc->extra_base;
542     int max_length       = desc->stat_desc->max_length;
543     int h;              /* heap index */
544     int n, m;           /* iterate over the tree elements */
545     int bits;           /* bit length */
546     int xbits;          /* extra bits */
547     ush f;              /* frequency */
548     int overflow = 0;   /* number of elements with bit length too large */
549 
550     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
551 
552     /* In a first pass, compute the optimal bit lengths (which may
553      * overflow in the case of the bit length tree).
554      */
555     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
556 
557     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
558         n = s->heap[h];
559         bits = tree[tree[n].Dad].Len + 1;
560         if (bits > max_length) bits = max_length, overflow++;
561         tree[n].Len = (ush)bits;
562         /* We overwrite tree[n].Dad which is no longer needed */
563 
564         if (n > max_code) continue; /* not a leaf node */
565 
566         s->bl_count[bits]++;
567         xbits = 0;
568         if (n >= base) xbits = extra[n - base];
569         f = tree[n].Freq;
570         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
571         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
572     }
573     if (overflow == 0) return;
574 
575     Tracev((stderr,"\nbit length overflow\n"));
576     /* This happens for example on obj2 and pic of the Calgary corpus */
577 
578     /* Find the first bit length which could increase: */
579     do {
580         bits = max_length - 1;
581         while (s->bl_count[bits] == 0) bits--;
582         s->bl_count[bits]--;        /* move one leaf down the tree */
583         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
584         s->bl_count[max_length]--;
585         /* The brother of the overflow item also moves one step up,
586          * but this does not affect bl_count[max_length]
587          */
588         overflow -= 2;
589     } while (overflow > 0);
590 
591     /* Now recompute all bit lengths, scanning in increasing frequency.
592      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
593      * lengths instead of fixing only the wrong ones. This idea is taken
594      * from 'ar' written by Haruhiko Okumura.)
595      */
596     for (bits = max_length; bits != 0; bits--) {
597         n = s->bl_count[bits];
598         while (n != 0) {
599             m = s->heap[--h];
600             if (m > max_code) continue;
601             if ((unsigned) tree[m].Len != (unsigned) bits) {
602                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
603                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
604                 tree[m].Len = (ush)bits;
605             }
606             n--;
607         }
608     }
609 }
610 
611 #ifdef DUMP_BL_TREE
612 #  include <stdio.h>
613 #endif
614 
615 /* ===========================================================================
616  * Construct one Huffman tree and assigns the code bit strings and lengths.
617  * Update the total bit length for the current block.
618  * IN assertion: the field freq is set for all tree elements.
619  * OUT assertions: the fields len and code are set to the optimal bit length
620  *     and corresponding code. The length opt_len is updated; static_len is
621  *     also updated if stree is not null. The field max_code is set.
622  */
623 local void build_tree(deflate_state *s, tree_desc *desc) {
624     ct_data *tree         = desc->dyn_tree;
625     const ct_data *stree  = desc->stat_desc->static_tree;
626     int elems             = desc->stat_desc->elems;
627     int n, m;          /* iterate over heap elements */
628     int max_code = -1; /* largest code with non zero frequency */
629     int node;          /* new node being created */
630 
631     /* Construct the initial heap, with least frequent element in
632      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
633      * heap[0] is not used.
634      */
635     s->heap_len = 0, s->heap_max = HEAP_SIZE;
636 
637     for (n = 0; n < elems; n++) {
638         if (tree[n].Freq != 0) {
639             s->heap[++(s->heap_len)] = max_code = n;
640             s->depth[n] = 0;
641         } else {
642             tree[n].Len = 0;
643         }
644     }
645 
646     /* The pkzip format requires that at least one distance code exists,
647      * and that at least one bit should be sent even if there is only one
648      * possible code. So to avoid special checks later on we force at least
649      * two codes of non zero frequency.
650      */
651     while (s->heap_len < 2) {
652         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
653         tree[node].Freq = 1;
654         s->depth[node] = 0;
655         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
656         /* node is 0 or 1 so it does not have extra bits */
657     }
658     desc->max_code = max_code;
659 
660     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
661      * establish sub-heaps of increasing lengths:
662      */
663     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
664 
665     /* Construct the Huffman tree by repeatedly combining the least two
666      * frequent nodes.
667      */
668     node = elems;              /* next internal node of the tree */
669     do {
670         pqremove(s, tree, n);  /* n = node of least frequency */
671         m = s->heap[SMALLEST]; /* m = node of next least frequency */
672 
673         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
674         s->heap[--(s->heap_max)] = m;
675 
676         /* Create a new node father of n and m */
677         tree[node].Freq = tree[n].Freq + tree[m].Freq;
678         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
679                                 s->depth[n] : s->depth[m]) + 1);
680         tree[n].Dad = tree[m].Dad = (ush)node;
681 #ifdef DUMP_BL_TREE
682         if (tree == s->bl_tree) {
683             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
684                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
685         }
686 #endif
687         /* and insert the new node in the heap */
688         s->heap[SMALLEST] = node++;
689         pqdownheap(s, tree, SMALLEST);
690 
691     } while (s->heap_len >= 2);
692 
693     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
694 
695     /* At this point, the fields freq and dad are set. We can now
696      * generate the bit lengths.
697      */
698     gen_bitlen(s, (tree_desc *)desc);
699 
700     /* The field len is now set, we can generate the bit codes */
701     gen_codes ((ct_data *)tree, max_code, s->bl_count);
702 }
703 
704 /* ===========================================================================
705  * Scan a literal or distance tree to determine the frequencies of the codes
706  * in the bit length tree.
707  */
708 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
709     int n;                     /* iterates over all tree elements */
710     int prevlen = -1;          /* last emitted length */
711     int curlen;                /* length of current code */
712     int nextlen = tree[0].Len; /* length of next code */
713     int count = 0;             /* repeat count of the current code */
714     int max_count = 7;         /* max repeat count */
715     int min_count = 4;         /* min repeat count */
716 
717     if (nextlen == 0) max_count = 138, min_count = 3;
718     tree[max_code + 1].Len = (ush)0xffff; /* guard */
719 
720     for (n = 0; n <= max_code; n++) {
721         curlen = nextlen; nextlen = tree[n + 1].Len;
722         if (++count < max_count && curlen == nextlen) {
723             continue;
724         } else if (count < min_count) {
725             s->bl_tree[curlen].Freq += count;
726         } else if (curlen != 0) {
727             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
728             s->bl_tree[REP_3_6].Freq++;
729         } else if (count <= 10) {
730             s->bl_tree[REPZ_3_10].Freq++;
731         } else {
732             s->bl_tree[REPZ_11_138].Freq++;
733         }
734         count = 0; prevlen = curlen;
735         if (nextlen == 0) {
736             max_count = 138, min_count = 3;
737         } else if (curlen == nextlen) {
738             max_count = 6, min_count = 3;
739         } else {
740             max_count = 7, min_count = 4;
741         }
742     }
743 }
744 
745 /* ===========================================================================
746  * Send a literal or distance tree in compressed form, using the codes in
747  * bl_tree.
748  */
749 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
750     int n;                     /* iterates over all tree elements */
751     int prevlen = -1;          /* last emitted length */
752     int curlen;                /* length of current code */
753     int nextlen = tree[0].Len; /* length of next code */
754     int count = 0;             /* repeat count of the current code */
755     int max_count = 7;         /* max repeat count */
756     int min_count = 4;         /* min repeat count */
757 
758     /* tree[max_code + 1].Len = -1; */  /* guard already set */
759     if (nextlen == 0) max_count = 138, min_count = 3;
760 
761     for (n = 0; n <= max_code; n++) {
762         curlen = nextlen; nextlen = tree[n + 1].Len;
763         if (++count < max_count && curlen == nextlen) {
764             continue;
765         } else if (count < min_count) {
766             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
767 
768         } else if (curlen != 0) {
769             if (curlen != prevlen) {
770                 send_code(s, curlen, s->bl_tree); count--;
771             }
772             Assert(count >= 3 && count <= 6, " 3_6?");
773             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
774 
775         } else if (count <= 10) {
776             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
777 
778         } else {
779             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
780         }
781         count = 0; prevlen = curlen;
782         if (nextlen == 0) {
783             max_count = 138, min_count = 3;
784         } else if (curlen == nextlen) {
785             max_count = 6, min_count = 3;
786         } else {
787             max_count = 7, min_count = 4;
788         }
789     }
790 }
791 
792 /* ===========================================================================
793  * Construct the Huffman tree for the bit lengths and return the index in
794  * bl_order of the last bit length code to send.
795  */
796 local int build_bl_tree(deflate_state *s) {
797     int max_blindex;  /* index of last bit length code of non zero freq */
798 
799     /* Determine the bit length frequencies for literal and distance trees */
800     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
801     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
802 
803     /* Build the bit length tree: */
804     build_tree(s, (tree_desc *)(&(s->bl_desc)));
805     /* opt_len now includes the length of the tree representations, except the
806      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
807      */
808 
809     /* Determine the number of bit length codes to send. The pkzip format
810      * requires that at least 4 bit length codes be sent. (appnote.txt says
811      * 3 but the actual value used is 4.)
812      */
813     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
814         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
815     }
816     /* Update opt_len to include the bit length tree and counts */
817     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
818     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
819             s->opt_len, s->static_len));
820 
821     return max_blindex;
822 }
823 
824 /* ===========================================================================
825  * Send the header for a block using dynamic Huffman trees: the counts, the
826  * lengths of the bit length codes, the literal tree and the distance tree.
827  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
828  */
829 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
830                           int blcodes) {
831     int rank;                    /* index in bl_order */
832 
833     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
834     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
835             "too many codes");
836     Tracev((stderr, "\nbl counts: "));
837     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
838     send_bits(s, dcodes - 1,   5);
839     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
840     for (rank = 0; rank < blcodes; rank++) {
841         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
842         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
843     }
844     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
845 
846     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
847     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
848 
849     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
850     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
851 }
852 
853 /* ===========================================================================
854  * Send a stored block
855  */
856 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
857                                     ulg stored_len, int last) {
858     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
859     bi_windup(s);        /* align on byte boundary */
860     put_short(s, (ush)stored_len);
861     put_short(s, (ush)~stored_len);
862     if (stored_len)
863         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
864     s->pending += stored_len;
865 #ifdef ZLIB_DEBUG
866     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
867     s->compressed_len += (stored_len + 4) << 3;
868     s->bits_sent += 2*16;
869     s->bits_sent += stored_len << 3;
870 #endif
871 }
872 
873 /* ===========================================================================
874  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
875  */
876 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
877     bi_flush(s);
878 }
879 
880 /* ===========================================================================
881  * Send one empty static block to give enough lookahead for inflate.
882  * This takes 10 bits, of which 7 may remain in the bit buffer.
883  */
884 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
885     send_bits(s, STATIC_TREES<<1, 3);
886     send_code(s, END_BLOCK, static_ltree);
887 #ifdef ZLIB_DEBUG
888     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
889 #endif
890     bi_flush(s);
891 }
892 
893 /* ===========================================================================
894  * Send the block data compressed using the given Huffman trees
895  */
896 local void compress_block(deflate_state *s, const ct_data *ltree,
897                           const ct_data *dtree) {
898     unsigned dist;      /* distance of matched string */
899     int lc;             /* match length or unmatched char (if dist == 0) */
900     unsigned sx = 0;    /* running index in symbol buffers */
901     unsigned code;      /* the code to send */
902     int extra;          /* number of extra bits to send */
903 
904     if (s->sym_next != 0) do {
905 #ifdef LIT_MEM
906         dist = s->d_buf[sx];
907         lc = s->l_buf[sx++];
908 #else
909         dist = s->sym_buf[sx++] & 0xff;
910         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
911         lc = s->sym_buf[sx++];
912 #endif
913         if (dist == 0) {
914             send_code(s, lc, ltree); /* send a literal byte */
915             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
916         } else {
917             /* Here, lc is the match length - MIN_MATCH */
918             code = _length_code[lc];
919             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
920             extra = extra_lbits[code];
921             if (extra != 0) {
922                 lc -= base_length[code];
923                 send_bits(s, lc, extra);       /* send the extra length bits */
924             }
925             dist--; /* dist is now the match distance - 1 */
926             code = d_code(dist);
927             Assert (code < D_CODES, "bad d_code");
928 
929             send_code(s, code, dtree);       /* send the distance code */
930             extra = extra_dbits[code];
931             if (extra != 0) {
932                 dist -= (unsigned)base_dist[code];
933                 send_bits(s, dist, extra);   /* send the extra distance bits */
934             }
935         } /* literal or match pair ? */
936 
937         /* Check for no overlay of pending_buf on needed symbols */
938 #ifdef LIT_MEM
939         Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
940 #else
941         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
942 #endif
943 
944     } while (sx < s->sym_next);
945 
946     send_code(s, END_BLOCK, ltree);
947 }
948 
949 /* ===========================================================================
950  * Check if the data type is TEXT or BINARY, using the following algorithm:
951  * - TEXT if the two conditions below are satisfied:
952  *    a) There are no non-portable control characters belonging to the
953  *       "block list" (0..6, 14..25, 28..31).
954  *    b) There is at least one printable character belonging to the
955  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
956  * - BINARY otherwise.
957  * - The following partially-portable control characters form a
958  *   "gray list" that is ignored in this detection algorithm:
959  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
960  * IN assertion: the fields Freq of dyn_ltree are set.
961  */
962 local int detect_data_type(deflate_state *s) {
963     /* block_mask is the bit mask of block-listed bytes
964      * set bits 0..6, 14..25, and 28..31
965      * 0xf3ffc07f = binary 11110011111111111100000001111111
966      */
967     unsigned long block_mask = 0xf3ffc07fUL;
968     int n;
969 
970     /* Check for non-textual ("block-listed") bytes. */
971     for (n = 0; n <= 31; n++, block_mask >>= 1)
972         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
973             return Z_BINARY;
974 
975     /* Check for textual ("allow-listed") bytes. */
976     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
977             || s->dyn_ltree[13].Freq != 0)
978         return Z_TEXT;
979     for (n = 32; n < LITERALS; n++)
980         if (s->dyn_ltree[n].Freq != 0)
981             return Z_TEXT;
982 
983     /* There are no "block-listed" or "allow-listed" bytes:
984      * this stream either is empty or has tolerated ("gray-listed") bytes only.
985      */
986     return Z_BINARY;
987 }
988 
989 /* ===========================================================================
990  * Determine the best encoding for the current block: dynamic trees, static
991  * trees or store, and write out the encoded block.
992  */
993 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
994                                    ulg stored_len, int last) {
995     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
996     int max_blindex = 0;  /* index of last bit length code of non zero freq */
997 
998     /* Build the Huffman trees unless a stored block is forced */
999     if (s->level > 0) {
1000 
1001         /* Check if the file is binary or text */
1002         if (s->strm->data_type == Z_UNKNOWN)
1003             s->strm->data_type = detect_data_type(s);
1004 
1005         /* Construct the literal and distance trees */
1006         build_tree(s, (tree_desc *)(&(s->l_desc)));
1007         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1008                 s->static_len));
1009 
1010         build_tree(s, (tree_desc *)(&(s->d_desc)));
1011         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1012                 s->static_len));
1013         /* At this point, opt_len and static_len are the total bit lengths of
1014          * the compressed block data, excluding the tree representations.
1015          */
1016 
1017         /* Build the bit length tree for the above two trees, and get the index
1018          * in bl_order of the last bit length code to send.
1019          */
1020         max_blindex = build_bl_tree(s);
1021 
1022         /* Determine the best encoding. Compute the block lengths in bytes. */
1023         opt_lenb = (s->opt_len + 3 + 7) >> 3;
1024         static_lenb = (s->static_len + 3 + 7) >> 3;
1025 
1026         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1027                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1028                 s->sym_next / 3));
1029 
1030 #ifndef FORCE_STATIC
1031         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1032 #endif
1033             opt_lenb = static_lenb;
1034 
1035     } else {
1036         Assert(buf != (char*)0, "lost buf");
1037         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1038     }
1039 
1040 #ifdef FORCE_STORED
1041     if (buf != (char*)0) { /* force stored block */
1042 #else
1043     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1044                        /* 4: two words for the lengths */
1045 #endif
1046         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1047          * Otherwise we can't have processed more than WSIZE input bytes since
1048          * the last block flush, because compression would have been
1049          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1050          * transform a block into a stored block.
1051          */
1052         _tr_stored_block(s, buf, stored_len, last);
1053 
1054     } else if (static_lenb == opt_lenb) {
1055         send_bits(s, (STATIC_TREES<<1) + last, 3);
1056         compress_block(s, (const ct_data *)static_ltree,
1057                        (const ct_data *)static_dtree);
1058 #ifdef ZLIB_DEBUG
1059         s->compressed_len += 3 + s->static_len;
1060 #endif
1061     } else {
1062         send_bits(s, (DYN_TREES<<1) + last, 3);
1063         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1064                        max_blindex + 1);
1065         compress_block(s, (const ct_data *)s->dyn_ltree,
1066                        (const ct_data *)s->dyn_dtree);
1067 #ifdef ZLIB_DEBUG
1068         s->compressed_len += 3 + s->opt_len;
1069 #endif
1070     }
1071     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1072     /* The above check is made mod 2^32, for files larger than 512 MB
1073      * and uLong implemented on 32 bits.
1074      */
1075     init_block(s);
1076 
1077     if (last) {
1078         bi_windup(s);
1079 #ifdef ZLIB_DEBUG
1080         s->compressed_len += 7;  /* align on byte boundary */
1081 #endif
1082     }
1083     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1084            s->compressed_len - 7*last));
1085 }
1086 
1087 /* ===========================================================================
1088  * Save the match info and tally the frequency counts. Return true if
1089  * the current block must be flushed.
1090  */
1091 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1092 #ifdef LIT_MEM
1093     s->d_buf[s->sym_next] = (ush)dist;
1094     s->l_buf[s->sym_next++] = (uch)lc;
1095 #else
1096     s->sym_buf[s->sym_next++] = (uch)dist;
1097     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1098     s->sym_buf[s->sym_next++] = (uch)lc;
1099 #endif
1100     if (dist == 0) {
1101         /* lc is the unmatched char */
1102         s->dyn_ltree[lc].Freq++;
1103     } else {
1104         s->matches++;
1105         /* Here, lc is the match length - MIN_MATCH */
1106         dist--;             /* dist = match distance - 1 */
1107         Assert((ush)dist < (ush)MAX_DIST(s) &&
1108                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1109                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1110 
1111         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1112         s->dyn_dtree[d_code(dist)].Freq++;
1113     }
1114     return (s->sym_next == s->sym_end);
1115 }
1116