xref: /openbsd/regress/lib/libm/msun/cexp_test.c (revision 4bdff4be)
1 /*	$OpenBSD: cexp_test.c,v 1.3 2021/12/13 18:04:28 deraadt Exp $	*/
2 /*-
3  * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include "macros.h"
29 
30 /*
31  * Tests for corner cases in cexp*().
32  */
33 
34 #include <sys/types.h>
35 
36 #include <complex.h>
37 #include <fenv.h>
38 #include <float.h>
39 #include <math.h>
40 #include <stdio.h>
41 
42 #include "test-utils.h"
43 
44 #pragma STDC FENV_ACCESS	ON
45 #pragma	STDC CX_LIMITED_RANGE	OFF
46 
47 /*
48  * Test that a function returns the correct value and sets the
49  * exception flags correctly. The exceptmask specifies which
50  * exceptions we should check. We need to be lenient for several
51  * reasons, but mainly because on some architectures it's impossible
52  * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
53  * whether cexp() raises an invalid exception is unspecified.
54  *
55  * These are macros instead of functions so that assert provides more
56  * meaningful error messages.
57  *
58  * XXX The volatile here is to avoid gcc's bogus constant folding and work
59  *     around the lack of support for the FENV_ACCESS pragma.
60  */
61 #define	test_t(type, func, z, result, exceptmask, excepts, checksign)	\
62 do {									\
63 	volatile long double complex _d = z;				\
64 	volatile type complex _r = result;				\
65 	ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT));		\
66 	CHECK_CFPEQUAL_CS((func)(_d), (_r), (checksign));		\
67 	CHECK_FP_EXCEPTIONS_MSG(excepts, exceptmask, "for %s(%s)",	\
68 	    #func, #z);							\
69 } while (0)
70 
71 #define	test(func, z, result, exceptmask, excepts, checksign)		\
72 	test_t(double, func, z, result, exceptmask, excepts, checksign)
73 
74 #define	test_f(func, z, result, exceptmask, excepts, checksign)		\
75 	test_t(float, func, z, result, exceptmask, excepts, checksign)
76 
77 #define	test_l(func, z, result, exceptmask, excepts, checksign)		\
78 	test_t(long double, func, z, result, exceptmask, excepts,	\
79 	    checksign)
80 /* Test within a given tolerance. */
81 #define	test_tol(func, z, result, tol)	do {			\
82 	CHECK_CFPEQUAL_TOL((func)(z), (result), (tol),		\
83 	    FPE_ABS_ZERO | CS_BOTH);				\
84 } while (0)
85 
86 /* Test all the functions that compute cexp(x). */
87 #define	testall(x, result, exceptmask, excepts, checksign)	do {	\
88 	test(cexp, x, result, exceptmask, excepts, checksign);		\
89 	test_f(cexpf, x, result, exceptmask, excepts, checksign);	\
90 	test_l(cexpl, x, result, exceptmask, excepts, checksign);	\
91 } while (0)
92 
93 /*
94  * Test all the functions that compute cexp(x), within a given tolerance.
95  * The tolerance is specified in ulps.
96  */
97 #define	testall_tol(x, result, tol)				do {	\
98 	test_tol(cexp, x, result, tol * DBL_ULP());			\
99 	test_tol(cexpf, x, result, tol * FLT_ULP());			\
100 } while (0)
101 
102 /* Various finite non-zero numbers to test. */
103 static const float finites[] =
104 { -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
105 
106 
107 /* Tests for 0 */
108 ATF_TC_WITHOUT_HEAD(zero);
109 ATF_TC_BODY(zero, tc)
110 {
111 
112 	/* cexp(0) = 1, no exceptions raised */
113 	testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
114 	testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
115 	testall(CMPLXL(0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
116 	testall(CMPLXL(-0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
117 }
118 
119 /*
120  * Tests for NaN.  The signs of the results are indeterminate unless the
121  * imaginary part is 0.
122  */
123 ATF_TC_WITHOUT_HEAD(nan);
124 ATF_TC_BODY(nan, tc)
125 {
126 	unsigned i;
127 
128 	/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
129 	/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
130 	for (i = 0; i < nitems(finites); i++) {
131 		testall(CMPLXL(finites[i], NAN), CMPLXL(NAN, NAN),
132 			ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
133 		if (finites[i] == 0.0)
134 			continue;
135 #ifndef __OpenBSD__
136 		/* XXX FE_INEXACT shouldn't be raised here */
137 		testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN),
138 			ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
139 #else
140 		testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN),
141 			ALL_STD_EXCEPT & ~(FE_INVALID), 0, 0);
142 #endif
143 	}
144 
145 	/* cexp(NaN +- 0i) = NaN +- 0i */
146 	testall(CMPLXL(NAN, 0.0), CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
147 	testall(CMPLXL(NAN, -0.0), CMPLXL(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
148 
149 	/* cexp(inf + NaN i) = inf + nan i */
150 	testall(CMPLXL(INFINITY, NAN), CMPLXL(INFINITY, NAN),
151 		ALL_STD_EXCEPT, 0, 0);
152 	/* cexp(-inf + NaN i) = 0 */
153 	testall(CMPLXL(-INFINITY, NAN), CMPLXL(0.0, 0.0),
154 		ALL_STD_EXCEPT, 0, 0);
155 	/* cexp(NaN + NaN i) = NaN + NaN i */
156 	testall(CMPLXL(NAN, NAN), CMPLXL(NAN, NAN),
157 		ALL_STD_EXCEPT, 0, 0);
158 }
159 
160 ATF_TC_WITHOUT_HEAD(inf);
161 ATF_TC_BODY(inf, tc)
162 {
163 	unsigned i;
164 
165 	/* cexp(x + inf i) = NaN + NaNi and raises invalid */
166 	for (i = 0; i < nitems(finites); i++) {
167 		testall(CMPLXL(finites[i], INFINITY), CMPLXL(NAN, NAN),
168 			ALL_STD_EXCEPT, FE_INVALID, 1);
169 	}
170 	/* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */
171 	/* XXX shouldn't raise an inexact exception */
172 	testall(CMPLXL(-INFINITY, M_PI_4), CMPLXL(0.0, 0.0),
173 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
174 	testall(CMPLXL(-INFINITY, 3 * M_PI_4), CMPLXL(-0.0, 0.0),
175 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
176 	testall(CMPLXL(-INFINITY, 5 * M_PI_4), CMPLXL(-0.0, -0.0),
177 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
178 	testall(CMPLXL(-INFINITY, 7 * M_PI_4), CMPLXL(0.0, -0.0),
179 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
180 	testall(CMPLXL(-INFINITY, 0.0), CMPLXL(0.0, 0.0),
181 		ALL_STD_EXCEPT, 0, 1);
182 	testall(CMPLXL(-INFINITY, -0.0), CMPLXL(0.0, -0.0),
183 		ALL_STD_EXCEPT, 0, 1);
184 	/* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */
185 	/* XXX shouldn't raise an inexact exception */
186 	testall(CMPLXL(INFINITY, M_PI_4), CMPLXL(INFINITY, INFINITY),
187 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
188 	testall(CMPLXL(INFINITY, 3 * M_PI_4), CMPLXL(-INFINITY, INFINITY),
189 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
190 	testall(CMPLXL(INFINITY, 5 * M_PI_4), CMPLXL(-INFINITY, -INFINITY),
191 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
192 	testall(CMPLXL(INFINITY, 7 * M_PI_4), CMPLXL(INFINITY, -INFINITY),
193 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
194 	/* cexp(inf + 0i) = inf + 0i */
195 	testall(CMPLXL(INFINITY, 0.0), CMPLXL(INFINITY, 0.0),
196 		ALL_STD_EXCEPT, 0, 1);
197 	testall(CMPLXL(INFINITY, -0.0), CMPLXL(INFINITY, -0.0),
198 		ALL_STD_EXCEPT, 0, 1);
199 }
200 
201 ATF_TC_WITHOUT_HEAD(reals);
202 ATF_TC_BODY(reals, tc)
203 {
204 	unsigned i;
205 
206 	for (i = 0; i < nitems(finites); i++) {
207 		/* XXX could check exceptions more meticulously */
208 		test(cexp, CMPLXL(finites[i], 0.0),
209 		     CMPLXL(exp(finites[i]), 0.0),
210 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
211 		test(cexp, CMPLXL(finites[i], -0.0),
212 		     CMPLXL(exp(finites[i]), -0.0),
213 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
214 		test_f(cexpf, CMPLXL(finites[i], 0.0),
215 		     CMPLXL(expf(finites[i]), 0.0),
216 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
217 		test_f(cexpf, CMPLXL(finites[i], -0.0),
218 		     CMPLXL(expf(finites[i]), -0.0),
219 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
220 	}
221 }
222 
223 ATF_TC_WITHOUT_HEAD(imaginaries);
224 ATF_TC_BODY(imaginaries, tc)
225 {
226 	unsigned i;
227 
228 	for (i = 0; i < nitems(finites); i++) {
229 		test(cexp, CMPLXL(0.0, finites[i]),
230 		     CMPLXL(cos(finites[i]), sin(finites[i])),
231 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
232 		test(cexp, CMPLXL(-0.0, finites[i]),
233 		     CMPLXL(cos(finites[i]), sin(finites[i])),
234 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
235 		test_f(cexpf, CMPLXL(0.0, finites[i]),
236 		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
237 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
238 		test_f(cexpf, CMPLXL(-0.0, finites[i]),
239 		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
240 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
241 	}
242 }
243 
244 ATF_TC_WITHOUT_HEAD(small);
245 ATF_TC_BODY(small, tc)
246 {
247 	static const double tests[] = {
248 	     /* csqrt(a + bI) = x + yI */
249 	     /* a	b	x			y */
250 		 1.0,	M_PI_4,	M_SQRT2 * 0.5 * M_E,	M_SQRT2 * 0.5 * M_E,
251 		-1.0,	M_PI_4,	M_SQRT2 * 0.5 / M_E,	M_SQRT2 * 0.5 / M_E,
252 		 2.0,	M_PI_2,	0.0,			M_E * M_E,
253 		 M_LN2,	M_PI,	-2.0,			0.0,
254 	};
255 	double a, b;
256 	double x, y;
257 	unsigned i;
258 
259 	for (i = 0; i < nitems(tests); i += 4) {
260 		a = tests[i];
261 		b = tests[i + 1];
262 		x = tests[i + 2];
263 		y = tests[i + 3];
264 		test_tol(cexp, CMPLXL(a, b), CMPLXL(x, y), 3 * DBL_ULP());
265 
266 		/* float doesn't have enough precision to pass these tests */
267 		if (x == 0 || y == 0)
268 			continue;
269 		test_tol(cexpf, CMPLXL(a, b), CMPLXL(x, y), 1 * FLT_ULP());
270         }
271 }
272 
273 /* Test inputs with a real part r that would overflow exp(r). */
274 ATF_TC_WITHOUT_HEAD(large);
275 ATF_TC_BODY(large, tc)
276 {
277 
278 	test_tol(cexp, CMPLXL(709.79, 0x1p-1074),
279 		 CMPLXL(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
280 	test_tol(cexp, CMPLXL(1000, 0x1p-1074),
281 		 CMPLXL(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
282 	test_tol(cexp, CMPLXL(1400, 0x1p-1074),
283 		 CMPLXL(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
284 	test_tol(cexp, CMPLXL(900, 0x1.23456789abcdep-1020),
285 		 CMPLXL(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
286 	test_tol(cexp, CMPLXL(1300, 0x1.23456789abcdep-1020),
287 		 CMPLXL(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
288 
289 	test_tol(cexpf, CMPLXL(88.73, 0x1p-149),
290 		 CMPLXL(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
291 	test_tol(cexpf, CMPLXL(90, 0x1p-149),
292 		 CMPLXL(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
293 	test_tol(cexpf, CMPLXL(192, 0x1p-149),
294 		 CMPLXL(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
295 	test_tol(cexpf, CMPLXL(120, 0x1.234568p-120),
296 		 CMPLXL(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
297 	test_tol(cexpf, CMPLXL(170, 0x1.234568p-120),
298 		 CMPLXL(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
299 }
300 
301 ATF_TP_ADD_TCS(tp)
302 {
303 	ATF_TP_ADD_TC(tp, zero);
304 	ATF_TP_ADD_TC(tp, nan);
305 	ATF_TP_ADD_TC(tp, inf);
306 	ATF_TP_ADD_TC(tp, reals);
307 	ATF_TP_ADD_TC(tp, imaginaries);
308 	ATF_TP_ADD_TC(tp, small);
309 	ATF_TP_ADD_TC(tp, large);
310 
311 	return (atf_no_error());
312 }
313