xref: /openbsd/sbin/newfs/mkfs.c (revision 905646f0)
1 /*	$OpenBSD: mkfs.c,v 1.101 2020/06/20 07:49:04 otto Exp $	*/
2 /*	$NetBSD: mkfs.c,v 1.25 1995/06/18 21:35:38 cgd Exp $	*/
3 
4 /*
5  * Copyright (c) 2002 Networks Associates Technology, Inc.
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Marshall
9  * Kirk McKusick and Network Associates Laboratories, the Security
10  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12  * research program.
13  *
14  * Copyright (c) 1980, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  */
41 
42 #include <sys/param.h>	/* MAXBSIZE DEV_BSIZE roundup btodb setbit */
43 #include <sys/signal.h>
44 #include <sys/time.h>
45 #include <sys/disklabel.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/resource.h>
49 #include <sys/sysctl.h>
50 
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/dir.h>
53 #include <ufs/ffs/fs.h>
54 
55 #include <err.h>
56 #include <string.h>
57 #include <stdlib.h>
58 #include <stdint.h>
59 #include <unistd.h>
60 #include <limits.h>
61 
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #include <errno.h>
65 #endif
66 
67 #define MINIMUM(a, b)	(((a) < (b)) ? (a) : (b))
68 #define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
69 
70 /*
71  * Default directory umask.
72  */
73 #define UMASK		0755
74 
75 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
76 
77 /*
78  * 'Standard' bad FFS magic.
79  */
80 #define FS_BAD_MAGIC	0x19960408
81 
82 /*
83  * The minimum number of cylinder groups that should be created.
84  */
85 #define MINCYLGRPS	4
86 
87 /*
88  * variables set up by front end.
89  */
90 extern int	mfs;		/* run as the memory based filesystem */
91 extern int	Nflag;		/* run mkfs without writing file system */
92 extern int	Oflag;		/* format as an 4.3BSD file system */
93 extern daddr_t fssize;		/* file system size in 512-byte blocks. */
94 extern long long	sectorsize;	/* bytes/sector */
95 extern int	fsize;		/* fragment size */
96 extern int	bsize;		/* block size */
97 extern int	maxfrgspercg;	/* maximum fragments per cylinder group */
98 extern int	minfree;	/* free space threshold */
99 extern int	opt;		/* optimization preference (space or time) */
100 extern int	density;	/* number of bytes per inode */
101 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
102 extern int	avgfilesize;	/* expected average file size */
103 extern int	avgfilesperdir;	/* expected number of files per directory */
104 extern int	quiet;		/* quiet flag */
105 extern caddr_t	membase;	/* start address of memory based filesystem */
106 
107 union fs_u {
108 	struct fs fs;
109 	char pad[SBSIZE];
110 } *fsun;
111 #define sblock	fsun->fs
112 
113 struct	csum *fscs;
114 
115 union cg_u {
116 	struct cg cg;
117 	char pad[MAXBSIZE];
118 } *cgun;
119 #define acg	cgun->cg
120 
121 union dinode {
122 	struct ufs1_dinode dp1;
123 	struct ufs2_dinode dp2;
124 };
125 
126 int	fsi, fso;
127 
128 static caddr_t iobuf;
129 static long iobufsize;
130 
131 daddr_t	alloc(int, int);
132 static int	charsperline(void);
133 static int	ilog2(int);
134 void		initcg(u_int, time_t);
135 void		wtfs(daddr_t, int, void *);
136 int		fsinit1(time_t, mode_t, uid_t, gid_t);
137 int		fsinit2(time_t, mode_t, uid_t, gid_t);
138 int		makedir(struct direct *, int);
139 void		iput(union dinode *, ino_t);
140 void		setblock(struct fs *, unsigned char *, int);
141 void		clrblock(struct fs *, unsigned char *, int);
142 int		isblock(struct fs *, unsigned char *, int);
143 void		rdfs(daddr_t, int, void *);
144 void		mkfs(struct partition *, char *, int, int,
145 		    mode_t, uid_t, gid_t);
146 static		void checksz(void);
147 
148 #ifndef STANDALONE
149 volatile sig_atomic_t cur_cylno;
150 volatile const char *cur_fsys;
151 void	siginfo(int sig);
152 
153 void
154 siginfo(int sig)
155 {
156 	int save_errno = errno;
157 
158 	dprintf(STDERR_FILENO, "%s: initializing cg %ld/%d\n",
159 	    cur_fsys, (long)cur_cylno, sblock.fs_ncg);
160 	errno = save_errno;
161 }
162 #endif
163 
164 void
165 mkfs(struct partition *pp, char *fsys, int fi, int fo, mode_t mfsmode,
166     uid_t mfsuid, gid_t mfsgid)
167 {
168 	time_t utime;
169 	quad_t sizepb;
170 	int i, j, width, origdensity, fragsperinode, minfpg, optimalfpg;
171 	int lastminfpg, mincylgrps;
172 	uint32_t bpg;
173 	long csfrags;
174 	u_int cg;
175 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
176 
177 	if ((fsun = calloc(1, sizeof (union fs_u))) == NULL ||
178 	    (cgun = calloc(1, sizeof (union cg_u))) == NULL)
179 		err(1, "calloc");
180 
181 #ifndef STANDALONE
182 	time(&utime);
183 #endif
184 	if (mfs) {
185 		size_t sz;
186 		if (fssize > SIZE_MAX / DEV_BSIZE) {
187 			errno = ENOMEM;
188 			err(12, "mmap");
189 		}
190 		sz = (size_t)fssize * DEV_BSIZE;
191 		membase = mmap(NULL, sz, PROT_READ|PROT_WRITE,
192 		    MAP_ANON|MAP_PRIVATE, -1, (off_t)0);
193 		if (membase == MAP_FAILED)
194 			err(12, "mmap");
195 		madvise(membase, sz, MADV_RANDOM);
196 	}
197 	fsi = fi;
198 	fso = fo;
199 	/*
200 	 * Validate the given file system size.
201 	 * Verify that its last block can actually be accessed.
202 	 */
203 	if (Oflag <= 1 && fssize > INT_MAX)
204 		errx(13, "preposterous size %lld, max is %d", (long long)fssize,
205 		    INT_MAX);
206 	if (Oflag == 2 && fssize > MAXDISKSIZE)
207 		errx(13, "preposterous size %lld, max is %lld",
208 		    (long long)fssize, MAXDISKSIZE);
209 
210 	wtfs(fssize - (sectorsize / DEV_BSIZE), sectorsize, (char *)&sblock);
211 
212 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
213 	sblock.fs_avgfilesize = avgfilesize;
214 	sblock.fs_avgfpdir = avgfilesperdir;
215 
216 	/*
217 	 * Collect and verify the block and fragment sizes.
218 	 */
219 	if (!POWEROF2(bsize)) {
220 		errx(16, "block size must be a power of 2, not %d", bsize);
221 	}
222 	if (!POWEROF2(fsize)) {
223 		errx(17, "fragment size must be a power of 2, not %d",
224 		     fsize);
225 	}
226 	if (fsize < sectorsize) {
227 		errx(18, "fragment size %d is too small, minimum is %lld",
228 		     fsize, sectorsize);
229 	}
230 	if (bsize < MINBSIZE) {
231 		errx(19, "block size %d is too small, minimum is %d",
232 		     bsize, MINBSIZE);
233 	}
234 	if (bsize > MAXBSIZE) {
235 		errx(19, "block size %d is too large, maximum is %d",
236 		     bsize, MAXBSIZE);
237 	}
238 	if (bsize < fsize) {
239 		errx(20, "block size (%d) cannot be smaller than fragment size (%d)",
240 		     bsize, fsize);
241 	}
242 	sblock.fs_bsize = bsize;
243 	sblock.fs_fsize = fsize;
244 
245 	/*
246 	 * Calculate the superblock bitmasks and shifts.
247 	 */
248 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
249 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
250 	sblock.fs_qbmask = ~sblock.fs_bmask;
251 	sblock.fs_qfmask = ~sblock.fs_fmask;
252 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
253 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
254 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
255 	if (sblock.fs_frag > MAXFRAG) {
256 		errx(21, "fragment size %d is too small, minimum with block "
257 		    "size %d is %d", sblock.fs_fsize, sblock.fs_bsize,
258 		    sblock.fs_bsize / MAXFRAG);
259 	}
260 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
261 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / DEV_BSIZE);
262 	sblock.fs_size = dbtofsb(&sblock, fssize);
263 	sblock.fs_nspf = sblock.fs_fsize / DEV_BSIZE;
264 	sblock.fs_maxcontig = 1;
265 	sblock.fs_nrpos = 1;
266 	sblock.fs_cpg = 1;
267 
268 	/*
269 	 * Before the file system is fully initialized, mark it as invalid.
270 	 */
271 	sblock.fs_magic = FS_BAD_MAGIC;
272 
273 	/*
274 	 * Set the remaining superblock fields.  Note that for FFS1, media
275 	 * geometry fields are set to fake values.  This is for compatibility
276 	 * with really ancient kernels that might still inspect these values.
277 	 */
278 	if (Oflag <= 1) {
279 		sblock.fs_sblockloc = SBLOCK_UFS1;
280 		sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
281 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
282 		if (Oflag == 0) {
283 			sblock.fs_maxsymlinklen = 0;
284 			sblock.fs_inodefmt = FS_42INODEFMT;
285 		} else {
286 			sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS1;
287 			sblock.fs_inodefmt = FS_44INODEFMT;
288 		}
289 		sblock.fs_cgoffset = 0;
290 		sblock.fs_cgmask = 0xffffffff;
291 		sblock.fs_ffs1_size = sblock.fs_size;
292 		sblock.fs_rotdelay = 0;
293 		sblock.fs_rps = 60;
294 		sblock.fs_interleave = 1;
295 		sblock.fs_trackskew = 0;
296 		sblock.fs_cpc = 0;
297 	} else {
298 		sblock.fs_inodefmt = FS_44INODEFMT;
299 		sblock.fs_sblockloc = SBLOCK_UFS2;
300 		sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
301 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
302 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS2;
303 	}
304 	sblock.fs_sblkno =
305 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
306 		sblock.fs_frag);
307 	sblock.fs_cblkno = (int32_t)(sblock.fs_sblkno +
308 	    roundup(howmany(SBSIZE, sblock.fs_fsize), sblock.fs_frag));
309 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
310 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
311 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
312 		sizepb *= NINDIR(&sblock);
313 		sblock.fs_maxfilesize += sizepb;
314 	}
315 #ifdef notyet
316 	/*
317 	 * It is impossible to create a snapshot in case fs_maxfilesize is
318 	 * smaller than fssize.
319 	 */
320 	if (sblock.fs_maxfilesize < (u_quad_t)fssize)
321 		warnx("WARNING: You will be unable to create snapshots on this "
322 		    "file system. Correct by using a larger blocksize.");
323 #endif
324 	/*
325 	 * Calculate the number of blocks to put into each cylinder group. The
326 	 * first goal is to have at least enough data blocks in each cylinder
327 	 * group to meet the density requirement. Once this goal is achieved
328 	 * we try to expand to have at least mincylgrps cylinder groups. Once
329 	 * this goal is achieved, we pack as many blocks into each cylinder
330 	 * group map as will fit.
331 	 *
332 	 * We start by calculating the smallest number of blocks that we can
333 	 * put into each cylinder group. If this is too big, we reduce the
334 	 * density until it fits.
335 	 */
336 	origdensity = density;
337 	for (;;) {
338 		fragsperinode = MAXIMUM(numfrags(&sblock, density), 1);
339 
340 		minfpg = fragsperinode * INOPB(&sblock);
341 		if (minfpg > sblock.fs_size)
342 			minfpg = sblock.fs_size;
343 
344 		sblock.fs_ipg = INOPB(&sblock);
345 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
346 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
347 		if (sblock.fs_fpg < minfpg)
348 			sblock.fs_fpg = minfpg;
349 
350 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
351 		    INOPB(&sblock));
352 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
353 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
354 		if (sblock.fs_fpg < minfpg)
355 			sblock.fs_fpg = minfpg;
356 
357 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
358 		    INOPB(&sblock));
359 
360 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
361 			break;
362 
363 		density -= sblock.fs_fsize;
364 	}
365 	if (density != origdensity)
366 		warnx("density reduced from %d to %d bytes per inode",
367 		    origdensity, density);
368 
369 	/*
370 	 * Use a lower value for mincylgrps if the user specified a large
371 	 * number of blocks per cylinder group.  This is needed for, e.g. the
372 	 * install media which needs to pack 2 files very tightly.
373 	 */
374 	mincylgrps = MINCYLGRPS;
375 	if (maxfrgspercg != INT_MAX) {
376 		i = sblock.fs_size / maxfrgspercg;
377 		if (i < MINCYLGRPS)
378 			mincylgrps = i <= 0 ? 1 : i;
379 	}
380 
381 	/*
382 	 * Start packing more blocks into the cylinder group until it cannot
383 	 * grow any larger, the number of cylinder groups drops below
384 	 * mincylgrps, or we reach the requested size.
385 	 */
386 	for (;;) {
387 		sblock.fs_fpg += sblock.fs_frag;
388 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
389 		    INOPB(&sblock));
390 
391 		if (sblock.fs_fpg > maxfrgspercg ||
392 		    sblock.fs_size / sblock.fs_fpg < mincylgrps ||
393 		    CGSIZE(&sblock) > (unsigned long)sblock.fs_bsize)
394 			break;
395 	}
396 	sblock.fs_fpg -= sblock.fs_frag;
397 	sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
398 	    INOPB(&sblock));
399 	if (sblock.fs_fpg > maxfrgspercg)
400 		warnx("can't honour -c: minimum is %d", sblock.fs_fpg);
401 
402 	/*
403 	 * Check to be sure that the last cylinder group has enough blocks to
404 	 * be viable. If it is too small, reduce the number of blocks per
405 	 * cylinder group which will have the effect of moving more blocks into
406 	 * the last cylinder group.
407 	 */
408 	optimalfpg = sblock.fs_fpg;
409 	for (;;) {
410 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
411 		lastminfpg = roundup(sblock.fs_iblkno +
412 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
413 		if (sblock.fs_size < lastminfpg)
414 			errx(28, "file system size %jd < minimum size of %d "
415 			    "fragments", (intmax_t)sblock.fs_size, lastminfpg);
416 
417 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
418 		    sblock.fs_size % sblock.fs_fpg == 0)
419 			break;
420 
421 		sblock.fs_fpg -= sblock.fs_frag;
422 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
423 		    INOPB(&sblock));
424 	}
425 
426 	if (optimalfpg != sblock.fs_fpg)
427 		warnx("reduced number of fragments per cylinder group from %d"
428 		    " to %d to enlarge last cylinder group", optimalfpg,
429 		    sblock.fs_fpg);
430 
431 	if ((ino_t)sblock.fs_ipg * sblock.fs_ncg >  UINT_MAX)
432 		errx(42, "more than 2^32 inodes, increase density, block or "
433 		    "fragment size");
434 
435 	/*
436 	 * Back to filling superblock fields.
437 	 */
438 	if (Oflag <= 1) {
439 		sblock.fs_spc = sblock.fs_fpg * sblock.fs_nspf;
440 		sblock.fs_nsect = sblock.fs_spc;
441 		sblock.fs_npsect = sblock.fs_spc;
442 		sblock.fs_ncyl = sblock.fs_ncg;
443 	}
444 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
445 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
446 	sblock.fs_csaddr = cgdmin(&sblock, 0);
447 	sblock.fs_cssize =
448 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
449 
450 	fscs = calloc(1, sblock.fs_cssize);
451 	if (fscs == NULL)
452 		errx(31, "calloc failed");
453 
454 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
455 	if (sblock.fs_sbsize > SBLOCKSIZE)
456 		sblock.fs_sbsize = SBLOCKSIZE;
457 
458 	sblock.fs_minfree = minfree;
459 	sblock.fs_maxbpg = maxbpg;
460 	sblock.fs_optim = opt;
461 	sblock.fs_cgrotor = 0;
462 	sblock.fs_pendingblocks = 0;
463 	sblock.fs_pendinginodes = 0;
464 	sblock.fs_fmod = 0;
465 	sblock.fs_ronly = 0;
466 	sblock.fs_state = 0;
467 	sblock.fs_clean = 1;
468 	sblock.fs_id[0] = (u_int32_t)utime;
469 	sblock.fs_id[1] = (u_int32_t)arc4random();
470 	sblock.fs_fsmnt[0] = '\0';
471 
472 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
473 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
474 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
475 
476 	sblock.fs_cstotal.cs_nbfree = fragstoblks(&sblock, sblock.fs_dsize) -
477 	    howmany(csfrags, sblock.fs_frag);
478 	sblock.fs_cstotal.cs_nffree = fragnum(&sblock, sblock.fs_size) +
479 	    (fragnum(&sblock, csfrags) > 0 ?
480 	    sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
481 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
482 	sblock.fs_cstotal.cs_ndir = 0;
483 
484 	sblock.fs_dsize -= csfrags;
485 	sblock.fs_time = utime;
486 
487 	if (Oflag <= 1) {
488 		sblock.fs_ffs1_time = sblock.fs_time;
489 		sblock.fs_ffs1_dsize = sblock.fs_dsize;
490 		sblock.fs_ffs1_csaddr = sblock.fs_csaddr;
491 		sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
492 		sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
493 		sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
494 		sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
495 	}
496 
497 	/*
498 	 * Dump out summary information about file system.
499 	 */
500 	if (!mfs) {
501 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
502 		printf("%s: %.1fMB in %jd sectors of %lld bytes\n", fsys,
503 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
504 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size) /
505 		    (sectorsize / DEV_BSIZE), sectorsize);
506 		printf("%u cylinder groups of %.2fMB, %d blocks, %u"
507 		    " inodes each\n", sblock.fs_ncg,
508 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
509 		    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
510 #undef B2MBFACTOR
511 		checksz();
512 	}
513 
514 	/*
515 	 * Wipe out old FFS1 superblock if necessary.
516 	 */
517 	if (Oflag >= 2) {
518 		union fs_u *fsun1;
519 		struct fs *fs1;
520 
521 		fsun1 = calloc(1, sizeof(union fs_u));
522 		if (fsun1 == NULL)
523 			err(39, "calloc");
524 		fs1 = &fsun1->fs;
525 		rdfs(SBLOCK_UFS1 / DEV_BSIZE, SBSIZE, (char *)fs1);
526 		if (fs1->fs_magic == FS_UFS1_MAGIC) {
527 			fs1->fs_magic = FS_BAD_MAGIC;
528 			wtfs(SBLOCK_UFS1 / DEV_BSIZE, SBSIZE, (char *)fs1);
529 		}
530 		free(fsun1);
531 	}
532 
533 	wtfs((int)sblock.fs_sblockloc / DEV_BSIZE, SBSIZE, (char *)&sblock);
534 	sblock.fs_magic = (Oflag <= 1) ? FS_UFS1_MAGIC : FS_UFS2_MAGIC;
535 
536 	/*
537 	 * Now build the cylinders group blocks and
538 	 * then print out indices of cylinder groups.
539 	 */
540 	if (!quiet)
541 		printf("super-block backups (for fsck -b #) at:\n");
542 #ifndef STANDALONE
543 	else if (!mfs && isatty(STDIN_FILENO)) {
544 		signal(SIGINFO, siginfo);
545 		cur_fsys = fsys;
546 	}
547 #endif
548 	i = 0;
549 	width = charsperline();
550 	/*
551 	* Allocate space for superblock, cylinder group map, and two sets of
552 	* inode blocks.
553 	*/
554 	if (sblock.fs_bsize < SBLOCKSIZE)
555 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
556 	else
557 		iobufsize = 4 * sblock.fs_bsize;
558 	if ((iobuf = malloc(iobufsize)) == NULL)
559 		errx(38, "cannot allocate I/O buffer");
560 	bzero(iobuf, iobufsize);
561 	/*
562 	 * Make a copy of the superblock into the buffer that we will be
563 	 * writing out in each cylinder group.
564 	 */
565 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
566 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
567 		cur_cylno = (sig_atomic_t)cg;
568 		initcg(cg, utime);
569 		if (quiet)
570 			continue;
571 		j = snprintf(tmpbuf, sizeof tmpbuf, " %lld,",
572 		    (long long)fsbtodb(&sblock, cgsblock(&sblock, cg)));
573 		if (j >= sizeof tmpbuf)
574 			j = sizeof tmpbuf - 1;
575 		if (j < 0 || i+j >= width) {
576 			printf("\n");
577 			i = 0;
578 		}
579 		i += j;
580 		printf("%s", tmpbuf);
581 		fflush(stdout);
582 	}
583 	if (!quiet)
584 		printf("\n");
585 	if (Nflag && !mfs)
586 		exit(0);
587 	/*
588 	 * Now construct the initial file system, then write out the superblock.
589 	 */
590 	if (Oflag <= 1) {
591 		if (fsinit1(utime, mfsmode, mfsuid, mfsgid))
592 			errx(32, "fsinit1 failed");
593 		sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
594 		sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
595 		sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
596 		sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
597 	} else {
598 		if (fsinit2(utime, mfsmode, mfsuid, mfsgid))
599 			errx(32, "fsinit2 failed");
600 	}
601 
602 	wtfs((int)sblock.fs_sblockloc / DEV_BSIZE, SBSIZE, (char *)&sblock);
603 
604 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
605 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
606 		    sblock.fs_cssize - i < sblock.fs_bsize ?
607 		    sblock.fs_cssize - i : sblock.fs_bsize,
608 		    ((char *)fscs) + i);
609 
610 	/*
611 	 * Update information about this partition in pack label, to that it may
612 	 * be updated on disk.
613 	 */
614 	pp->p_fstype = FS_BSDFFS;
615 	pp->p_fragblock =
616 	    DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
617 	bpg = sblock.fs_fpg / sblock.fs_frag;
618 	while (bpg > USHRT_MAX)
619 		bpg >>= 1;
620 	pp->p_cpg = bpg;
621 }
622 
623 /*
624  * Initialize a cylinder group.
625  */
626 void
627 initcg(u_int cg, time_t utime)
628 {
629 	u_int i, j, d, dlower, dupper, blkno, start;
630 	daddr_t cbase, dmax;
631 	struct ufs1_dinode *dp1;
632 	struct ufs2_dinode *dp2;
633 	struct csum *cs;
634 
635 	/*
636 	 * Determine block bounds for cylinder group.  Allow space for
637 	 * super block summary information in first cylinder group.
638 	 */
639 	cbase = cgbase(&sblock, cg);
640 	dmax = cbase + sblock.fs_fpg;
641 	if (dmax > sblock.fs_size)
642 		dmax = sblock.fs_size;
643 	if (fsbtodb(&sblock, cgsblock(&sblock, cg)) + iobufsize / DEV_BSIZE
644 	    > fssize)
645 		errx(40, "inode table does not fit in cylinder group");
646 
647 	dlower = cgsblock(&sblock, cg) - cbase;
648 	dupper = cgdmin(&sblock, cg) - cbase;
649 	if (cg == 0)
650 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
651 	cs = &fscs[cg];
652 	memset(&acg, 0, sblock.fs_cgsize);
653 	acg.cg_ffs2_time = utime;
654 	acg.cg_magic = CG_MAGIC;
655 	acg.cg_cgx = cg;
656 	acg.cg_ffs2_niblk = sblock.fs_ipg;
657 	acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
658 	acg.cg_ndblk = dmax - cbase;
659 
660 	start = sizeof(struct cg);
661 	if (Oflag <= 1) {
662 		/* Hack to maintain compatibility with old fsck. */
663 		if (cg == sblock.fs_ncg - 1)
664 			acg.cg_ncyl = 0;
665 		else
666 			acg.cg_ncyl = sblock.fs_cpg;
667 		acg.cg_time = acg.cg_ffs2_time;
668 		acg.cg_ffs2_time = 0;
669 		acg.cg_niblk = acg.cg_ffs2_niblk;
670 		acg.cg_ffs2_niblk = 0;
671 		acg.cg_initediblk = 0;
672 		acg.cg_btotoff = start;
673 		acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
674 		acg.cg_iusedoff = acg.cg_boff +
675 		    sblock.fs_cpg * sizeof(u_int16_t);
676 	} else {
677 		acg.cg_iusedoff = start;
678 	}
679 
680 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
681 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
682 	if (acg.cg_nextfreeoff > sblock.fs_cgsize)
683 		errx(37, "panic: cylinder group too big: %u > %d",
684 		    acg.cg_nextfreeoff, sblock.fs_cgsize);
685 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
686 	if (cg == 0) {
687 		for (i = 0; i < ROOTINO; i++) {
688 			setbit(cg_inosused(&acg), i);
689 			acg.cg_cs.cs_nifree--;
690 		}
691 	}
692 	if (cg > 0) {
693 		/*
694 		 * In cg 0, space is reserved for boot and super blocks.
695 		 */
696 		for (d = 0; d < dlower; d += sblock.fs_frag) {
697 			blkno = d / sblock.fs_frag;
698 			setblock(&sblock, cg_blksfree(&acg), blkno);
699 			acg.cg_cs.cs_nbfree++;
700 			if (Oflag <= 1) {
701 				cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
702 				cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
703 				    [cbtorpos(&sblock, d)]++;
704 			}
705 		}
706 	}
707 	if ((i = dupper % sblock.fs_frag)) {
708 		acg.cg_frsum[sblock.fs_frag - i]++;
709 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
710 			setbit(cg_blksfree(&acg), dupper);
711 			acg.cg_cs.cs_nffree++;
712 		}
713 	}
714 	for (d = dupper;
715 	    d + sblock.fs_frag <= acg.cg_ndblk;
716 	    d += sblock.fs_frag) {
717 		blkno = d / sblock.fs_frag;
718 		setblock(&sblock, cg_blksfree(&acg), blkno);
719 		acg.cg_cs.cs_nbfree++;
720 		if (Oflag <= 1) {
721 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
722 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
723 			    [cbtorpos(&sblock, d)]++;
724 		}
725 	}
726 	if (d < acg.cg_ndblk) {
727 		acg.cg_frsum[acg.cg_ndblk - d]++;
728 		for (; d < acg.cg_ndblk; d++) {
729 			setbit(cg_blksfree(&acg), d);
730 			acg.cg_cs.cs_nffree++;
731 		}
732 	}
733 	*cs = acg.cg_cs;
734 
735 	/*
736 	 * Write out the duplicate superblock, the cylinder group map
737 	 * and two blocks worth of inodes in a single write.
738 	 */
739 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
740 
741 	if (cg == 0 && acg.cg_cs.cs_nbfree == 0)
742 		errx(42, "cg 0: summary info is too large to fit");
743 
744 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
745 	start += sblock.fs_bsize;
746 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
747 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
748 	for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
749 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
750 			dp1->di_gen = arc4random();
751 			dp1++;
752 		} else {
753 			dp2->di_gen = arc4random();
754 			dp2++;
755 		}
756 	}
757 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize, iobuf);
758 
759 	if (Oflag <= 1) {
760 		/* Initialize inodes for FFS1. */
761 		for (i = 2 * sblock.fs_frag;
762 		    i < sblock.fs_ipg / INOPF(&sblock);
763 		    i += sblock.fs_frag) {
764 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
765 			for (j = 0; j < INOPB(&sblock); j++) {
766 				dp1->di_gen = arc4random();
767 				dp1++;
768 			}
769 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i),
770 			    sblock.fs_bsize, &iobuf[start]);
771 		}
772 	}
773 }
774 
775 #define PREDEFDIR 2
776 
777 struct direct root_dir[] = {
778 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
779 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
780 };
781 struct odirect {
782 	u_int32_t d_ino;
783 	u_int16_t d_reclen;
784 	u_int16_t d_namlen;
785 	u_char	d_name[MAXNAMLEN + 1];
786 } oroot_dir[] = {
787 	{ ROOTINO, sizeof(struct direct), 1, "." },
788 	{ ROOTINO, sizeof(struct direct), 2, ".." },
789 };
790 
791 int
792 fsinit1(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
793 {
794 	union dinode node;
795 
796 	/*
797 	 * Initialize the node
798 	 */
799 	memset(&node, 0, sizeof(node));
800 	node.dp1.di_atime = utime;
801 	node.dp1.di_mtime = utime;
802 	node.dp1.di_ctime = utime;
803 
804 	/*
805 	 * Create the root directory.
806 	 */
807 	if (mfs) {
808 		node.dp1.di_mode = IFDIR | mfsmode;
809 		node.dp1.di_uid = mfsuid;
810 		node.dp1.di_gid = mfsgid;
811 	} else {
812 		node.dp1.di_mode = IFDIR | UMASK;
813 		node.dp1.di_uid = geteuid();
814 		node.dp1.di_gid = getegid();
815 	}
816 	node.dp1.di_nlink = PREDEFDIR;
817 	if (Oflag == 0)
818 		node.dp1.di_size = makedir((struct direct *)oroot_dir,
819 		    PREDEFDIR);
820 	else
821 		node.dp1.di_size = makedir(root_dir, PREDEFDIR);
822 	node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
823 	if (node.dp1.di_db[0] == 0)
824 		return (1);
825 
826 	node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size));
827 
828 	wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf);
829 	iput(&node, ROOTINO);
830 
831 #ifdef notyet
832 	/*
833 	* Create the .snap directory.
834 	*/
835 	node.dp1.di_mode |= 020;
836 	node.dp1.di_gid = gid;
837 	node.dp1.di_nlink = SNAPLINKCNT;
838 	node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
839 
840 	node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
841 	if (node.dp1.di_db[0] == 0)
842 		return (1);
843 
844 	node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size));
845 
846 	wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf);
847 	iput(&node, ROOTINO + 1);
848 #endif
849 	return (0);
850 }
851 
852 int
853 fsinit2(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
854 {
855 	union dinode node;
856 
857 	/*
858 	 * Initialize the node.
859 	 */
860 	memset(&node, 0, sizeof(node));
861 	node.dp2.di_atime = utime;
862 	node.dp2.di_mtime = utime;
863 	node.dp2.di_ctime = utime;
864 
865 	/*
866 	 * Create the root directory.
867 	 */
868 	if (mfs) {
869 		node.dp2.di_mode = IFDIR | mfsmode;
870 		node.dp2.di_uid = mfsuid;
871 		node.dp2.di_gid = mfsgid;
872 	} else {
873 		node.dp2.di_mode = IFDIR | UMASK;
874 		node.dp2.di_uid = geteuid();
875 		node.dp2.di_gid = getegid();
876 	}
877 	node.dp2.di_nlink = PREDEFDIR;
878 	node.dp2.di_size = makedir(root_dir, PREDEFDIR);
879 
880 	node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
881 	if (node.dp2.di_db[0] == 0)
882 		return (1);
883 
884 	node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size));
885 
886 	wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf);
887 	iput(&node, ROOTINO);
888 
889 #ifdef notyet
890 	/*
891 	 * Create the .snap directory.
892 	 */
893 	node.dp2.di_mode |= 020;
894 	node.dp2.di_gid = gid;
895 	node.dp2.di_nlink = SNAPLINKCNT;
896 	node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
897 
898 	node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
899 	if (node.dp2.di_db[0] == 0)
900 		return (1);
901 
902 	node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size));
903 
904 	wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf);
905 	iput(&node, ROOTINO + 1);
906 #endif
907 	return (0);
908 }
909 
910 /*
911  * construct a set of directory entries in "buf".
912  * return size of directory.
913  */
914 int
915 makedir(struct direct *protodir, int entries)
916 {
917 	char *cp;
918 	int i, spcleft;
919 
920 	spcleft = DIRBLKSIZ;
921 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
922 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
923 		memcpy(cp, &protodir[i], protodir[i].d_reclen);
924 		cp += protodir[i].d_reclen;
925 		spcleft -= protodir[i].d_reclen;
926 	}
927 	protodir[i].d_reclen = spcleft;
928 	memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
929 	return (DIRBLKSIZ);
930 }
931 
932 /*
933  * allocate a block or frag
934  */
935 daddr_t
936 alloc(int size, int mode)
937 {
938 	int i, frag;
939 	daddr_t d, blkno;
940 
941 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
942 	    (char *)&acg);
943 	if (acg.cg_magic != CG_MAGIC) {
944 		warnx("cg 0: bad magic number");
945 		return (0);
946 	}
947 	if (acg.cg_cs.cs_nbfree == 0) {
948 		warnx("first cylinder group ran out of space");
949 		return (0);
950 	}
951 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
952 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
953 			goto goth;
954 	warnx("internal error: can't find block in cyl 0");
955 	return (0);
956 goth:
957 	blkno = fragstoblks(&sblock, d);
958 	clrblock(&sblock, cg_blksfree(&acg), blkno);
959 	acg.cg_cs.cs_nbfree--;
960 	sblock.fs_cstotal.cs_nbfree--;
961 	fscs[0].cs_nbfree--;
962 	if (mode & IFDIR) {
963 		acg.cg_cs.cs_ndir++;
964 		sblock.fs_cstotal.cs_ndir++;
965 		fscs[0].cs_ndir++;
966 	}
967 	if (Oflag <= 1) {
968 		cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
969 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
970 		    [cbtorpos(&sblock, d)]--;
971 	}
972 	if (size != sblock.fs_bsize) {
973 		frag = howmany(size, sblock.fs_fsize);
974 		fscs[0].cs_nffree += sblock.fs_frag - frag;
975 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
976 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
977 		acg.cg_frsum[sblock.fs_frag - frag]++;
978 		for (i = frag; i < sblock.fs_frag; i++)
979 			setbit(cg_blksfree(&acg), d + i);
980 	}
981 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
982 	    (char *)&acg);
983 	return (d);
984 }
985 
986 /*
987  * Allocate an inode on the disk
988  */
989 void
990 iput(union dinode *ip, ino_t ino)
991 {
992 	daddr_t d;
993 
994 	if (Oflag <= 1)
995 		ip->dp1.di_gen = arc4random();
996 	else
997 		ip->dp2.di_gen = arc4random();
998 
999 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1000 	    (char *)&acg);
1001 	if (acg.cg_magic != CG_MAGIC)
1002 		errx(41, "cg 0: bad magic number");
1003 
1004 	acg.cg_cs.cs_nifree--;
1005 	setbit(cg_inosused(&acg), ino);
1006 
1007 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1008 	    (char *)&acg);
1009 
1010 	sblock.fs_cstotal.cs_nifree--;
1011 	fscs[0].cs_nifree--;
1012 	if (ino >= sblock.fs_ipg * sblock.fs_ncg)
1013 		errx(32, "fsinit: inode value %llu out of range",
1014 		    (unsigned long long)ino);
1015 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1016 	rdfs(d, sblock.fs_bsize, iobuf);
1017 
1018 	if (Oflag <= 1)
1019 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1020 		    ip->dp1;
1021 	else
1022 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1023 		    ip->dp2;
1024 
1025 	wtfs(d, sblock.fs_bsize, iobuf);
1026 }
1027 
1028 /*
1029  * read a block from the file system
1030  */
1031 void
1032 rdfs(daddr_t bno, int size, void *bf)
1033 {
1034 	int n;
1035 
1036 	if (mfs) {
1037 		memcpy(bf, membase + bno * DEV_BSIZE, size);
1038 		return;
1039 	}
1040 	n = pread(fsi, bf, size, (off_t)bno * DEV_BSIZE);
1041 	if (n != size) {
1042 		err(34, "rdfs: read error on block %lld", (long long)bno);
1043 	}
1044 }
1045 
1046 /*
1047  * write a block to the file system
1048  */
1049 void
1050 wtfs(daddr_t bno, int size, void *bf)
1051 {
1052 	int n;
1053 
1054 	if (mfs) {
1055 		memcpy(membase + bno * DEV_BSIZE, bf, size);
1056 		return;
1057 	}
1058 	if (Nflag)
1059 		return;
1060 	n = pwrite(fso, bf, size, (off_t)bno * DEV_BSIZE);
1061 	if (n != size) {
1062 		err(36, "wtfs: write error on block %lld", (long long)bno);
1063 	}
1064 }
1065 
1066 /*
1067  * check if a block is available
1068  */
1069 int
1070 isblock(struct fs *fs, unsigned char *cp, int h)
1071 {
1072 	unsigned char mask;
1073 
1074 	switch (fs->fs_frag) {
1075 	case 8:
1076 		return (cp[h] == 0xff);
1077 	case 4:
1078 		mask = 0x0f << ((h & 0x1) << 2);
1079 		return ((cp[h >> 1] & mask) == mask);
1080 	case 2:
1081 		mask = 0x03 << ((h & 0x3) << 1);
1082 		return ((cp[h >> 2] & mask) == mask);
1083 	case 1:
1084 		mask = 0x01 << (h & 0x7);
1085 		return ((cp[h >> 3] & mask) == mask);
1086 	default:
1087 #ifdef STANDALONE
1088 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1089 #else
1090 		warnx("isblock bad fs_frag %d", fs->fs_frag);
1091 #endif
1092 		return (0);
1093 	}
1094 }
1095 
1096 /*
1097  * take a block out of the map
1098  */
1099 void
1100 clrblock(struct fs *fs, unsigned char *cp, int h)
1101 {
1102 	switch ((fs)->fs_frag) {
1103 	case 8:
1104 		cp[h] = 0;
1105 		return;
1106 	case 4:
1107 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1108 		return;
1109 	case 2:
1110 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1111 		return;
1112 	case 1:
1113 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1114 		return;
1115 	default:
1116 #ifdef STANDALONE
1117 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1118 #else
1119 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1120 #endif
1121 		return;
1122 	}
1123 }
1124 
1125 /*
1126  * put a block into the map
1127  */
1128 void
1129 setblock(struct fs *fs, unsigned char *cp, int h)
1130 {
1131 	switch (fs->fs_frag) {
1132 	case 8:
1133 		cp[h] = 0xff;
1134 		return;
1135 	case 4:
1136 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1137 		return;
1138 	case 2:
1139 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1140 		return;
1141 	case 1:
1142 		cp[h >> 3] |= (0x01 << (h & 0x7));
1143 		return;
1144 	default:
1145 #ifdef STANDALONE
1146 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1147 #else
1148 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1149 #endif
1150 		return;
1151 	}
1152 }
1153 
1154 /*
1155  * Determine the number of characters in a
1156  * single line.
1157  */
1158 static int
1159 charsperline(void)
1160 {
1161 	int columns;
1162 	char *cp;
1163 	struct winsize ws;
1164 
1165 	columns = 0;
1166 	if ((cp = getenv("COLUMNS")) != NULL)
1167 		columns = strtonum(cp, 1, INT_MAX, NULL);
1168 	if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
1169 	    ws.ws_col > 0)
1170 		columns = ws.ws_col;
1171 	if (columns == 0)
1172 		columns = 80;
1173 
1174 	return columns;
1175 }
1176 
1177 static int
1178 ilog2(int val)
1179 {
1180 	int n;
1181 
1182 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1183 		if (1 << n == val)
1184 			return (n);
1185 
1186 	errx(1, "ilog2: %d is not a power of 2\n", val);
1187 }
1188 
1189 struct inoinfo {
1190         struct  inoinfo *i_nexthash;    /* next entry in hash chain */
1191         struct  inoinfo *i_child, *i_sibling, *i_parentp;
1192         size_t  i_isize;                /* size of inode */
1193         ino_t   i_number;               /* inode number of this entry */
1194         ino_t   i_parent;               /* inode number of parent */
1195 
1196         ino_t   i_dotdot;               /* inode number of `..' */
1197         u_int   i_numblks;              /* size of block array in bytes */
1198         daddr_t i_blks[1];              /* actually longer */
1199 };
1200 
1201 static void
1202 checksz(void)
1203 {
1204 	unsigned long long allocate, maxino, maxfsblock, ndir, bound;
1205 	extern int64_t physmem;
1206 	struct rlimit datasz;
1207 
1208 	if (getrlimit(RLIMIT_DATA, &datasz) != 0)
1209 		err(1, "can't get rlimit");
1210 
1211 	bound = MINIMUM(datasz.rlim_max, physmem);
1212 
1213 	allocate = 0;
1214 	maxino = sblock.fs_ncg * (unsigned long long)sblock.fs_ipg;
1215 	maxfsblock = sblock.fs_size;
1216 	ndir = maxino / avgfilesperdir;
1217 
1218 	allocate += roundup(howmany(maxfsblock, NBBY), sizeof(int16_t));
1219 	allocate += (maxino + 1) * 3;
1220 	allocate += sblock.fs_ncg * sizeof(long);
1221 	allocate += (MAXIMUM(ndir, 128) + 10) * sizeof(struct inoinfo);
1222 	allocate += MAXIMUM(ndir, 128) * sizeof(struct inoinfo);
1223 
1224 	if (allocate > bound)
1225 		warnx("warning: fsck_ffs will need %lluMB; "
1226 		    "min(ulimit -dH,physmem) is %lluMB",
1227 		    allocate / (1024ULL * 1024ULL),
1228 		    bound / (1024ULL * 1024ULL));
1229 }
1230