1 /* $OpenBSD: armv7_machdep.c,v 1.63 2021/03/25 04:12:01 jsg Exp $ */ 2 /* $NetBSD: lubbock_machdep.c,v 1.2 2003/07/15 00:25:06 lukem Exp $ */ 3 4 /* 5 * Copyright (c) 2002, 2003 Genetec Corporation. All rights reserved. 6 * Written by Hiroyuki Bessho for Genetec Corporation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of Genetec Corporation may not be used to endorse or 17 * promote products derived from this software without specific prior 18 * written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 * 32 * Machine dependant functions for kernel setup for 33 * Intel DBPXA250 evaluation board (a.k.a. Lubbock). 34 * Based on iq80310_machhdep.c 35 */ 36 /* 37 * Copyright (c) 2001 Wasabi Systems, Inc. 38 * All rights reserved. 39 * 40 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed for the NetBSD Project by 53 * Wasabi Systems, Inc. 54 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 55 * or promote products derived from this software without specific prior 56 * written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * Copyright (c) 1997,1998 Mark Brinicombe. 73 * Copyright (c) 1997,1998 Causality Limited. 74 * All rights reserved. 75 * 76 * Redistribution and use in source and binary forms, with or without 77 * modification, are permitted provided that the following conditions 78 * are met: 79 * 1. Redistributions of source code must retain the above copyright 80 * notice, this list of conditions and the following disclaimer. 81 * 2. Redistributions in binary form must reproduce the above copyright 82 * notice, this list of conditions and the following disclaimer in the 83 * documentation and/or other materials provided with the distribution. 84 * 3. All advertising materials mentioning features or use of this software 85 * must display the following acknowledgement: 86 * This product includes software developed by Mark Brinicombe 87 * for the NetBSD Project. 88 * 4. The name of the company nor the name of the author may be used to 89 * endorse or promote products derived from this software without specific 90 * prior written permission. 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 93 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 94 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 95 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 96 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 97 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 98 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 100 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 101 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 102 * SUCH DAMAGE. 103 * 104 * Machine dependant functions for kernel setup for ARMv7 boards using 105 * u-boot/EFI firmware. 106 */ 107 108 #include <sys/param.h> 109 #include <sys/systm.h> 110 #include <sys/proc.h> 111 #include <sys/reboot.h> 112 113 #include <machine/db_machdep.h> 114 #include <machine/bootconfig.h> 115 #include <machine/machine_reg.h> 116 #include <machine/bus.h> 117 118 #include <arm/undefined.h> 119 #include <arm/machdep.h> 120 #include <arm/armv7/armv7var.h> 121 #include <armv7/armv7/armv7_machdep.h> 122 123 #include <dev/cons.h> 124 #include <dev/ofw/fdt.h> 125 #include <dev/ofw/openfirm.h> 126 #include <dev/acpi/efi.h> 127 128 #include <net/if.h> 129 130 #include <ddb/db_extern.h> 131 132 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 133 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000) 134 #define KERNEL_VM_BASE (KERNEL_BASE + 0x04000000) 135 #define KERNEL_VM_SIZE VM_KERNEL_SPACE_SIZE 136 137 /* 138 * Address to call from cpu_reset() to reset the machine. 139 * This is machine architecture dependant as it varies depending 140 * on where the ROM appears when you turn the MMU off. 141 */ 142 143 /* Define various stack sizes in pages */ 144 #define IRQ_STACK_SIZE 1 145 #define ABT_STACK_SIZE 1 146 #define UND_STACK_SIZE 1 147 148 BootConfig bootconfig; /* Boot config storage */ 149 char *boot_args = NULL; 150 char *boot_file = ""; 151 uint8_t *bootmac = NULL; 152 u_int cpu_reset_address = 0; 153 154 vaddr_t physical_freestart; 155 int physmem; 156 157 /*int debug_flags;*/ 158 #ifndef PMAP_STATIC_L1S 159 int max_processes = 64; /* Default number */ 160 #endif /* !PMAP_STATIC_L1S */ 161 162 /* Physical and virtual addresses for some global pages */ 163 pv_addr_t systempage; 164 pv_addr_t irqstack; 165 pv_addr_t undstack; 166 pv_addr_t abtstack; 167 extern pv_addr_t kernelstack; 168 169 vaddr_t msgbufphys; 170 171 extern u_int data_abort_handler_address; 172 extern u_int prefetch_abort_handler_address; 173 extern u_int undefined_handler_address; 174 175 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 176 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 177 #define KERNEL_PT_KERNEL_NUM 32 178 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 179 /* Page tables for mapping kernel VM */ 180 #define KERNEL_PT_VMDATA_NUM 8 /* start with 16MB of KVM */ 181 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 182 183 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 184 185 extern struct user *proc0paddr; 186 187 /* 188 * safepri is a safe priority for sleep to set for a spin-wait 189 * during autoconfiguration or after a panic. 190 */ 191 int safepri = 0; 192 193 /* Prototypes */ 194 195 int bootstrap_bs_map(void *, uint64_t, bus_size_t, int, 196 bus_space_handle_t *); 197 void collect_kernel_args(const char *); 198 void process_kernel_args(void); 199 void consinit(void); 200 201 bs_protos(bs_notimpl); 202 203 int stdout_node; 204 int stdout_speed; 205 206 void (*cpuresetfn)(void); 207 void (*powerdownfn)(void); 208 209 /* 210 * void boot(int howto, char *bootstr) 211 * 212 * Reboots the system 213 * 214 * Deal with any syncing, unmounting, dumping and shutdown hooks, 215 * then reset the CPU. 216 */ 217 __dead void 218 boot(int howto) 219 { 220 if ((howto & RB_RESET) != 0) 221 goto doreset; 222 223 if (cold) { 224 if ((howto & RB_USERREQ) == 0) 225 howto |= RB_HALT; 226 goto haltsys; 227 } 228 229 /* Disable console buffering */ 230 /* cnpollc(1);*/ 231 232 /* 233 * If RB_NOSYNC was not specified sync the discs. 234 * Note: Unless cold is set to 1 here, syslogd will die during the 235 * unmount. It looks like syslogd is getting woken up only to find 236 * that it cannot page part of the binary in as the filesystem has 237 * been unmounted. 238 */ 239 if ((howto & RB_NOSYNC) == 0) 240 bootsync(howto); 241 242 if_downall(); 243 244 uvm_shutdown(); 245 splhigh(); 246 cold = 1; 247 248 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 249 dumpsys(); 250 251 haltsys: 252 config_suspend_all(DVACT_POWERDOWN); 253 254 /* Make sure IRQ's are disabled */ 255 intr_disable(); 256 257 if ((howto & RB_HALT) != 0) { 258 if ((howto & RB_POWERDOWN) != 0) { 259 printf("\nAttempting to power down...\n"); 260 delay(500000); 261 if (powerdownfn) 262 (*powerdownfn)(); 263 } 264 265 printf("The operating system has halted.\n"); 266 printf("Please press any key to reboot.\n\n"); 267 cngetc(); 268 } 269 270 doreset: 271 printf("rebooting...\n"); 272 delay(500000); 273 if (cpuresetfn) 274 (*cpuresetfn)(); 275 printf("reboot failed; spinning\n"); 276 for (;;) 277 continue; 278 /* NOTREACHED */ 279 } 280 281 static __inline 282 pd_entry_t * 283 read_ttb(void) 284 { 285 long ttb; 286 287 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 288 289 290 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 291 } 292 293 #define VERBOSE_INIT_ARM 294 295 /* 296 * simple memory mapping function used in early bootstrap stage 297 * before pmap is initialized. 298 * ignores cacheability and does map the sections with nocache. 299 */ 300 static vaddr_t section_free = 0xfd000000; /* XXX - huh */ 301 302 int 303 bootstrap_bs_map(void *t, uint64_t bpa, bus_size_t size, 304 int flags, bus_space_handle_t *bshp) 305 { 306 u_long startpa, pa, endpa; 307 vaddr_t va; 308 pd_entry_t *pagedir = read_ttb(); 309 /* This assumes PA==VA for page directory */ 310 311 va = section_free; 312 313 startpa = bpa & ~L1_S_OFFSET; 314 endpa = (bpa + size) & ~L1_S_OFFSET; 315 if ((bpa + size) & L1_S_OFFSET) 316 endpa += L1_S_SIZE; 317 318 *bshp = (bus_space_handle_t)(va + (bpa - startpa)); 319 320 for (pa = startpa; pa < endpa; pa += L1_S_SIZE, va += L1_S_SIZE) 321 pmap_map_section((vaddr_t)pagedir, va, pa, 322 PROT_READ | PROT_WRITE, PTE_NOCACHE); 323 324 cpu_tlb_flushD(); 325 326 section_free = va; 327 328 return 0; 329 } 330 331 static void 332 copy_io_area_map(pd_entry_t *new_pd) 333 { 334 pd_entry_t *cur_pd = read_ttb(); 335 vaddr_t va; 336 337 for (va = MACHINE_IO_AREA_VBASE; 338 (cur_pd[va>>L1_S_SHIFT] & L1_TYPE_MASK) == L1_TYPE_S; 339 va += L1_S_SIZE) { 340 341 new_pd[va>>L1_S_SHIFT] = cur_pd[va>>L1_S_SHIFT]; 342 if (va == (ARM_VECTORS_HIGH & ~(0x00400000 - 1))) 343 break; /* STUPID */ 344 345 } 346 } 347 348 uint64_t mmap_start; 349 uint32_t mmap_size; 350 uint32_t mmap_desc_size; 351 uint32_t mmap_desc_ver; 352 353 EFI_MEMORY_DESCRIPTOR *mmap; 354 355 /* 356 * u_int initarm(...) 357 * 358 * Initial entry point on startup. This gets called before main() is 359 * entered. 360 * It should be responsible for setting up everything that must be 361 * in place when main is called. 362 * This includes 363 * Taking a copy of the FDT. 364 * Initialising the physical console so characters can be printed. 365 * Setting up page tables for the kernel. 366 */ 367 u_int 368 initarm(void *arg0, void *arg1, void *arg2, paddr_t loadaddr) 369 { 370 int loop, loop1; 371 u_int l1pagetable; 372 pv_addr_t kernel_l1pt; 373 pv_addr_t fdt, map; 374 struct fdt_reg reg; 375 paddr_t memstart, memend; 376 void *config; 377 size_t size; 378 void *node; 379 extern uint32_t esym; /* &_end if no symbols are loaded */ 380 381 /* early bus_space_map support */ 382 struct bus_space tmp_bs_tag; 383 int (*map_func_save)(void *, uint64_t, bus_size_t, int, 384 bus_space_handle_t *); 385 386 if (arg0) 387 esym = (uint32_t)arg0; 388 389 /* 390 * Heads up ... Setup the CPU / MMU / TLB functions 391 */ 392 if (set_cpufuncs()) 393 panic("cpu not recognized!"); 394 395 /* 396 * Temporarily replace bus_space_map() functions so that 397 * console devices can get mapped. 398 */ 399 tmp_bs_tag = armv7_bs_tag; 400 map_func_save = armv7_bs_tag.bs_map; 401 armv7_bs_tag.bs_map = bootstrap_bs_map; 402 tmp_bs_tag.bs_map = bootstrap_bs_map; 403 404 /* 405 * Now, map the FDT area. 406 * 407 * As we don't know the size of a possible FDT, map the size of a 408 * typical bootstrap bs map. The FDT might not be aligned, so this 409 * might take up to two L1_S_SIZEd mappings. 410 * 411 * XXX: There's (currently) no way to unmap a bootstrap mapping, so 412 * we might lose a bit of the bootstrap address space. 413 */ 414 bootstrap_bs_map(NULL, (bus_addr_t)arg2, L1_S_SIZE, 0, 415 (bus_space_handle_t *)&config); 416 417 if (!fdt_init(config) || fdt_get_size(config) == 0) 418 panic("initarm: no FDT"); 419 420 node = fdt_find_node("/chosen"); 421 if (node != NULL) { 422 char *prop; 423 int len; 424 static uint8_t lladdr[6]; 425 426 len = fdt_node_property(node, "bootargs", &prop); 427 if (len > 0) 428 collect_kernel_args(prop); 429 430 len = fdt_node_property(node, "openbsd,boothowto", &prop); 431 if (len == sizeof(boothowto)) 432 boothowto = bemtoh32((uint32_t *)prop); 433 434 len = fdt_node_property(node, "openbsd,bootduid", &prop); 435 if (len == sizeof(bootduid)) 436 memcpy(bootduid, prop, sizeof(bootduid)); 437 438 len = fdt_node_property(node, "openbsd,bootmac", &prop); 439 if (len == sizeof(lladdr)) { 440 memcpy(lladdr, prop, sizeof(lladdr)); 441 bootmac = lladdr; 442 } 443 444 len = fdt_node_property(node, "openbsd,uefi-mmap-start", &prop); 445 if (len == sizeof(mmap_start)) 446 mmap_start = bemtoh64((uint64_t *)prop); 447 len = fdt_node_property(node, "openbsd,uefi-mmap-size", &prop); 448 if (len == sizeof(mmap_size)) 449 mmap_size = bemtoh32((uint32_t *)prop); 450 len = fdt_node_property(node, "openbsd,uefi-mmap-desc-size", &prop); 451 if (len == sizeof(mmap_desc_size)) 452 mmap_desc_size = bemtoh32((uint32_t *)prop); 453 len = fdt_node_property(node, "openbsd,uefi-mmap-desc-ver", &prop); 454 if (len == sizeof(mmap_desc_ver)) 455 mmap_desc_ver = bemtoh32((uint32_t *)prop); 456 } 457 458 process_kernel_args(); 459 460 if (mmap_start != 0) 461 bootstrap_bs_map(NULL, mmap_start, mmap_size, 0, 462 (bus_space_handle_t *)&mmap); 463 464 platform_init(); 465 466 /* setup a serial console for very early boot */ 467 consinit(); 468 469 /* Talk to the user */ 470 printf("\nOpenBSD/armv7 booting ...\n"); 471 472 printf("arg0 %p arg1 %p arg2 %p\n", arg0, arg1, arg2); 473 474 #ifdef RAMDISK_HOOKS 475 boothowto |= RB_DFLTROOT; 476 #endif /* RAMDISK_HOOKS */ 477 478 physical_freestart = (((unsigned long)esym - KERNEL_TEXT_BASE + 0xfff) & ~0xfff) + loadaddr; 479 480 /* The bootloader has loaded us ubto a 32MB block. */ 481 memstart = loadaddr; 482 memend = memstart + 32 * 1024 * 1024; 483 484 /* 485 * Okay, the kernel starts 2MB in from the bottom of physical 486 * memory. We are going to allocate our bootstrap pages downwards 487 * from there. 488 * 489 * We need to allocate some fixed page tables to get the kernel 490 * going. We allocate one page directory and a number of page 491 * tables and store the physical addresses in the kernel_pt_table 492 * array. 493 * 494 * The kernel page directory must be on a 16K boundary. The page 495 * tables must be on 4K boundaries. What we do is allocate the 496 * page directory on the first 16K boundary that we encounter, and 497 * the page tables on 4K boundaries otherwise. Since we allocate 498 * at least 3 L2 page tables, we are guaranteed to encounter at 499 * least one 16K aligned region. 500 */ 501 502 #ifdef VERBOSE_INIT_ARM 503 printf("Allocating page tables\n"); 504 #endif 505 506 /* Define a macro to simplify memory allocation */ 507 #define valloc_pages(var, np) \ 508 alloc_pages((var).pv_pa, (np)); \ 509 (var).pv_va = KERNEL_BASE + (var).pv_pa - loadaddr; 510 511 #define alloc_pages(var, np) \ 512 (var) = physical_freestart; \ 513 physical_freestart += ((np) * PAGE_SIZE); \ 514 if (physical_freestart > memend) \ 515 panic("initarm: out of memory"); \ 516 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 517 518 loop1 = 0; 519 kernel_l1pt.pv_pa = 0; 520 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 521 /* Are we 16KB aligned for an L1 ? */ 522 if (((physical_freestart) & (L1_TABLE_SIZE - 1)) == 0 523 && kernel_l1pt.pv_pa == 0) { 524 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 525 } else { 526 valloc_pages(kernel_pt_table[loop1], 527 L2_TABLE_SIZE / PAGE_SIZE); 528 ++loop1; 529 } 530 } 531 532 /* This should never be able to happen but better confirm that. */ 533 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 534 panic("initarm: Failed to align the kernel page directory"); 535 536 /* 537 * Allocate a page for the system page mapped to V0x00000000 538 * This page will just contain the system vectors and can be 539 * shared by all processes. 540 */ 541 vector_page = ARM_VECTORS_HIGH; 542 alloc_pages(systempage.pv_pa, 1); 543 systempage.pv_va = vector_page; 544 545 /* Allocate stacks for all modes */ 546 valloc_pages(irqstack, IRQ_STACK_SIZE); 547 valloc_pages(abtstack, ABT_STACK_SIZE); 548 valloc_pages(undstack, UND_STACK_SIZE); 549 valloc_pages(kernelstack, UPAGES); 550 551 /* Allocate enough pages for cleaning the Mini-Data cache. */ 552 553 #ifdef VERBOSE_INIT_ARM 554 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 555 irqstack.pv_va); 556 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 557 abtstack.pv_va); 558 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 559 undstack.pv_va); 560 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 561 kernelstack.pv_va); 562 #endif 563 564 /* Relocate the FDT to safe memory. */ 565 size = fdt_get_size(config); 566 valloc_pages(fdt, round_page(size) / PAGE_SIZE); 567 memcpy((void *)fdt.pv_pa, config, size); 568 569 /* Relocate the EFI memory map too. */ 570 if (mmap_start != 0) { 571 valloc_pages(map, round_page(mmap_size) / PAGE_SIZE); 572 memcpy((void *)map.pv_pa, mmap, mmap_size); 573 } 574 575 /* 576 * XXX Defer this to later so that we can reclaim the memory 577 */ 578 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 579 580 /* 581 * Ok we have allocated physical pages for the primary kernel 582 * page tables 583 */ 584 585 #ifdef VERBOSE_INIT_ARM 586 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 587 #endif 588 589 /* 590 * Now we start construction of the L1 page table 591 * We start by mapping the L2 page tables into the L1. 592 * This means that we can replace L1 mappings later on if necessary 593 */ 594 l1pagetable = kernel_l1pt.pv_pa; 595 596 /* Map the L2 pages tables in the L1 page table */ 597 pmap_link_l2pt(l1pagetable, vector_page & ~(0x00400000 - 1), 598 &kernel_pt_table[KERNEL_PT_SYS]); 599 600 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 601 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 602 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 603 604 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 605 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 606 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 607 608 /* update the top of the kernel VM */ 609 pmap_curmaxkvaddr = 610 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 611 612 #ifdef VERBOSE_INIT_ARM 613 printf("Mapping kernel\n"); 614 #endif 615 616 /* Now we fill in the L2 pagetable for the kernel static code/data */ 617 { 618 extern char __text_start[], _etext[]; 619 extern char __rodata_start[], _erodata[]; 620 size_t textsize = (u_int32_t) (_etext - __text_start); 621 size_t rodatasize = (u_int32_t) (_erodata - __rodata_start); 622 size_t totalsize = esym - (u_int32_t)__text_start; 623 u_int logical; 624 625 textsize = (textsize + PGOFSET) & ~PGOFSET; 626 rodatasize = (rodatasize + PGOFSET) & ~PGOFSET; 627 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 628 629 logical = 0x00300000; /* offset of kernel in RAM */ 630 631 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 632 loadaddr + logical, textsize, 633 PROT_READ | PROT_EXEC, PTE_CACHE); 634 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 635 loadaddr + logical, rodatasize, 636 PROT_READ, PTE_CACHE); 637 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 638 loadaddr + logical, totalsize - (textsize + rodatasize), 639 PROT_READ | PROT_WRITE, PTE_CACHE); 640 } 641 642 #ifdef VERBOSE_INIT_ARM 643 printf("Constructing L2 page tables\n"); 644 #endif 645 646 /* Map the stack pages */ 647 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 648 IRQ_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE); 649 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 650 ABT_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE); 651 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 652 UND_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE); 653 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 654 UPAGES * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE); 655 656 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 657 L1_TABLE_SIZE, PROT_READ | PROT_WRITE, PTE_PAGETABLE); 658 659 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 660 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 661 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 662 PROT_READ | PROT_WRITE, PTE_PAGETABLE); 663 } 664 665 /* Map the Mini-Data cache clean area. */ 666 667 /* Map the vector page. */ 668 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 669 PROT_READ | PROT_WRITE, PTE_CACHE); 670 671 /* Map the FDT. */ 672 pmap_map_chunk(l1pagetable, fdt.pv_va, fdt.pv_pa, 673 round_page(fdt_get_size((void *)fdt.pv_pa)), 674 PROT_READ | PROT_WRITE, PTE_CACHE); 675 676 /* Map the EFI memory map. */ 677 if (mmap_start != 0) { 678 pmap_map_chunk(l1pagetable, map.pv_va, map.pv_pa, 679 round_page(mmap_size), 680 PROT_READ | PROT_WRITE, PTE_CACHE); 681 mmap = (void *)map.pv_va; 682 } 683 684 /* 685 * map integrated peripherals at same address in l1pagetable 686 * so that we can continue to use console. 687 */ 688 copy_io_area_map((pd_entry_t *)l1pagetable); 689 690 /* 691 * Now we have the real page tables in place so we can switch to them. 692 * Once this is done we will be running with the REAL kernel page 693 * tables. 694 */ 695 setttb(kernel_l1pt.pv_pa); 696 cpu_tlb_flushID(); 697 698 /* 699 * Moved from cpu_startup() as data_abort_handler() references 700 * this during uvm init 701 */ 702 proc0paddr = (struct user *)kernelstack.pv_va; 703 proc0.p_addr = proc0paddr; 704 705 arm32_vector_init(vector_page, ARM_VEC_ALL); 706 707 /* 708 * Pages were allocated during the secondary bootstrap for the 709 * stacks for different CPU modes. 710 * We must now set the r13 registers in the different CPU modes to 711 * point to these stacks. 712 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 713 * of the stack memory. 714 */ 715 716 set_stackptr(PSR_IRQ32_MODE, 717 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 718 set_stackptr(PSR_ABT32_MODE, 719 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 720 set_stackptr(PSR_UND32_MODE, 721 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 722 723 /* 724 * Well we should set a data abort handler. 725 * Once things get going this will change as we will need a proper 726 * handler. 727 * Until then we will use a handler that just panics but tells us 728 * why. 729 * Initialisation of the vectors will just panic on a data abort. 730 * This just fills in a slightly better one. 731 */ 732 733 data_abort_handler_address = (u_int)data_abort_handler; 734 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 735 undefined_handler_address = (u_int)undefinedinstruction_bounce; 736 737 /* Now we can reinit the FDT, using the virtual address. */ 738 fdt_init((void *)fdt.pv_va); 739 740 /* Initialise the undefined instruction handlers */ 741 #ifdef VERBOSE_INIT_ARM 742 printf("undefined "); 743 #endif 744 undefined_init(); 745 746 /* Load memory into UVM. */ 747 #ifdef VERBOSE_INIT_ARM 748 printf("page "); 749 #endif 750 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 751 752 /* Make what's left of the initial 32MB block available to UVM. */ 753 uvm_page_physload(atop(physical_freestart), atop(memend), 754 atop(physical_freestart), atop(memend), 0); 755 physmem = atop(memend - memstart); 756 757 /* Make all other physical memory available to UVM. */ 758 if (mmap && mmap_desc_ver == EFI_MEMORY_DESCRIPTOR_VERSION) { 759 EFI_MEMORY_DESCRIPTOR *desc = mmap; 760 int i; 761 762 /* 763 * Load all memory marked as EfiConventionalMemory. 764 * Don't bother with blocks smaller than 64KB. The 765 * initial 64MB memory block should be marked as 766 * EfiLoaderData so it won't be added again here. 767 */ 768 for (i = 0; i < mmap_size / mmap_desc_size; i++) { 769 printf("type 0x%x pa 0x%llx va 0x%llx pages 0x%llx attr 0x%llx\n", 770 desc->Type, desc->PhysicalStart, 771 desc->VirtualStart, desc->NumberOfPages, 772 desc->Attribute); 773 if (desc->Type == EfiConventionalMemory && 774 desc->NumberOfPages >= 16) { 775 uvm_page_physload(atop(desc->PhysicalStart), 776 atop(desc->PhysicalStart) + 777 desc->NumberOfPages, 778 atop(desc->PhysicalStart), 779 atop(desc->PhysicalStart) + 780 desc->NumberOfPages, 0); 781 physmem += desc->NumberOfPages; 782 } 783 desc = NextMemoryDescriptor(desc, mmap_desc_size); 784 } 785 } else { 786 paddr_t start, end; 787 int i; 788 789 node = fdt_find_node("/memory"); 790 if (node == NULL) 791 panic("%s: no memory specified", __func__); 792 793 for (i = 0; i < VM_PHYSSEG_MAX; i++) { 794 if (fdt_get_reg(node, i, ®)) 795 break; 796 if (reg.size == 0) 797 continue; 798 799 start = reg.addr; 800 end = MIN(reg.addr + reg.size, (paddr_t)-PAGE_SIZE); 801 802 /* 803 * The initial 32MB block is not excluded, so we need 804 * to make sure we don't add it here. 805 */ 806 if (start < memend && end > memstart) { 807 if (start < memstart) { 808 uvm_page_physload(atop(start), 809 atop(memstart), atop(start), 810 atop(memstart), 0); 811 physmem += atop(memstart - start); 812 } 813 if (end > memend) { 814 uvm_page_physload(atop(memend), 815 atop(end), atop(memend), 816 atop(end), 0); 817 physmem += atop(end - memend); 818 } 819 } else { 820 uvm_page_physload(atop(start), atop(end), 821 atop(start), atop(end), 0); 822 physmem += atop(end - start); 823 } 824 } 825 } 826 827 /* Boot strap pmap telling it where the kernel page table is */ 828 #ifdef VERBOSE_INIT_ARM 829 printf("pmap "); 830 #endif 831 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE, 832 KERNEL_VM_BASE + KERNEL_VM_SIZE); 833 834 vector_page_setprot(PROT_READ | PROT_EXEC); 835 836 /* 837 * Restore proper bus_space operation, now that pmap is initialized. 838 */ 839 armv7_bs_tag.bs_map = map_func_save; 840 841 #ifdef DDB 842 db_machine_init(); 843 844 /* Firmware doesn't load symbols. */ 845 ddb_init(); 846 847 if (boothowto & RB_KDB) 848 db_enter(); 849 #endif 850 851 cpu_setup(); 852 853 /* We return the new stack pointer address */ 854 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 855 } 856 857 char bootargs[256]; 858 859 void 860 collect_kernel_args(const char *args) 861 { 862 /* Make a local copy of the bootargs */ 863 strlcpy(bootargs, args, sizeof(bootargs)); 864 } 865 866 void 867 process_kernel_args(void) 868 { 869 char *cp = bootargs; 870 871 if (*cp == 0) 872 return; 873 874 boot_file = bootargs; 875 876 /* Skip the kernel image filename */ 877 while (*cp != ' ' && *cp != 0) 878 cp++; 879 880 if (*cp != 0) 881 *cp++ = 0; 882 883 while (*cp == ' ') 884 cp++; 885 886 boot_args = cp; 887 888 printf("bootfile: %s\n", boot_file); 889 printf("bootargs: %s\n", boot_args); 890 891 /* Setup pointer to boot flags */ 892 while (*cp != '-') 893 if (*cp++ == '\0') 894 return; 895 896 while (*cp != 0) { 897 switch(*cp) { 898 case 'a': 899 boothowto |= RB_ASKNAME; 900 break; 901 case 'c': 902 boothowto |= RB_CONFIG; 903 break; 904 case 'd': 905 boothowto |= RB_KDB; 906 break; 907 case 's': 908 boothowto |= RB_SINGLE; 909 break; 910 default: 911 printf("unknown option `%c'\n", *cp); 912 break; 913 } 914 cp++; 915 } 916 } 917 918 static int 919 atoi(const char *s) 920 { 921 int n, neg; 922 923 n = 0; 924 neg = 0; 925 926 while (*s == '-') { 927 s++; 928 neg = !neg; 929 } 930 931 while (*s != '\0') { 932 if (*s < '0' || *s > '9') 933 break; 934 935 n = (10 * n) + (*s - '0'); 936 s++; 937 } 938 939 return (neg ? -n : n); 940 } 941 942 void * 943 fdt_find_cons(const char *name) 944 { 945 char *alias = "serial0"; 946 char buf[128]; 947 char *stdout = NULL; 948 char *p; 949 void *node; 950 951 /* First check if "stdout-path" is set. */ 952 node = fdt_find_node("/chosen"); 953 if (node) { 954 if (fdt_node_property(node, "stdout-path", &stdout) > 0) { 955 if (strchr(stdout, ':') != NULL) { 956 strlcpy(buf, stdout, sizeof(buf)); 957 if ((p = strchr(buf, ':')) != NULL) { 958 *p++ = '\0'; 959 stdout_speed = atoi(p); 960 } 961 stdout = buf; 962 } 963 if (stdout[0] != '/') { 964 /* It's an alias. */ 965 alias = stdout; 966 stdout = NULL; 967 } 968 } 969 } 970 971 /* Perform alias lookup if necessary. */ 972 if (stdout == NULL) { 973 node = fdt_find_node("/aliases"); 974 if (node) 975 fdt_node_property(node, alias, &stdout); 976 } 977 978 /* Lookup the physical address of the interface. */ 979 if (stdout) { 980 node = fdt_find_node(stdout); 981 if (node && fdt_is_compatible(node, name)) { 982 stdout_node = OF_finddevice(stdout); 983 return (node); 984 } 985 } 986 987 return (NULL); 988 } 989 990 void 991 consinit(void) 992 { 993 static int consinit_called = 0; 994 995 if (consinit_called != 0) 996 return; 997 998 consinit_called = 1; 999 1000 platform_init_cons(); 1001 } 1002 1003 void 1004 board_startup(void) 1005 { 1006 if (boothowto & RB_CONFIG) { 1007 #ifdef BOOT_CONFIG 1008 user_config(); 1009 #else 1010 printf("kernel does not support -c; continuing..\n"); 1011 #endif 1012 } 1013 } 1014 1015 unsigned int 1016 cpu_rnd_messybits(void) 1017 { 1018 struct timespec ts; 1019 1020 nanotime(&ts); 1021 return (ts.tv_nsec ^ (ts.tv_sec << 20)); 1022 } 1023