1 /* $OpenBSD: isa_machdep.c,v 1.84 2021/03/06 09:20:50 jsg Exp $ */ 2 /* $NetBSD: isa_machdep.c,v 1.22 1997/06/12 23:57:32 thorpej Exp $ */ 3 4 /*- 5 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /*- 35 * Copyright (c) 1993, 1994, 1996, 1997 36 * Charles M. Hannum. All rights reserved. 37 * Copyright (c) 1991 The Regents of the University of California. 38 * All rights reserved. 39 * 40 * This code is derived from software contributed to Berkeley by 41 * William Jolitz. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)isa.c 7.2 (Berkeley) 5/13/91 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/syslog.h> 73 #include <sys/device.h> 74 #include <sys/malloc.h> 75 #include <sys/proc.h> 76 77 #include <uvm/uvm_extern.h> 78 79 #include "ioapic.h" 80 81 #if NIOAPIC > 0 82 #include <machine/i82093var.h> 83 #include <machine/mpbiosvar.h> 84 #endif 85 86 #include <machine/bus.h> 87 88 #include <machine/intr.h> 89 #include <machine/pio.h> 90 #include <machine/cpufunc.h> 91 #include <machine/i8259.h> 92 93 #include <dev/isa/isareg.h> 94 #include <dev/isa/isavar.h> 95 #include <dev/isa/isadmavar.h> 96 #include <i386/isa/isa_machdep.h> 97 98 #include "isadma.h" 99 100 extern paddr_t avail_end; 101 102 #define IDTVEC(name) __CONCAT(X,name) 103 /* default interrupt vector table entries */ 104 typedef int (*vector)(void); 105 extern vector IDTVEC(intr)[]; 106 void isa_strayintr(int); 107 void intr_calculatemasks(void); 108 int fakeintr(void *); 109 110 #if NISADMA > 0 111 int _isa_bus_dmamap_create(bus_dma_tag_t, bus_size_t, int, 112 bus_size_t, bus_size_t, int, bus_dmamap_t *); 113 void _isa_bus_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t); 114 int _isa_bus_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *, 115 bus_size_t, struct proc *, int); 116 int _isa_bus_dmamap_load_mbuf(bus_dma_tag_t, bus_dmamap_t, 117 struct mbuf *, int); 118 int _isa_bus_dmamap_load_uio(bus_dma_tag_t, bus_dmamap_t, 119 struct uio *, int); 120 int _isa_bus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t, 121 bus_dma_segment_t *, int, bus_size_t, int); 122 void _isa_bus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t); 123 void _isa_bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, 124 bus_addr_t, bus_size_t, int); 125 126 int _isa_bus_dmamem_alloc(bus_dma_tag_t, bus_size_t, bus_size_t, 127 bus_size_t, bus_dma_segment_t *, int, int *, int); 128 129 int _isa_dma_check_buffer(void *, bus_size_t, int, bus_size_t, 130 struct proc *); 131 int _isa_dma_alloc_bouncebuf(bus_dma_tag_t, bus_dmamap_t, 132 bus_size_t, int); 133 void _isa_dma_free_bouncebuf(bus_dma_tag_t, bus_dmamap_t); 134 135 /* 136 * Entry points for ISA DMA. These are mostly wrappers around 137 * the generic functions that understand how to deal with bounce 138 * buffers, if necessary. 139 */ 140 struct bus_dma_tag isa_bus_dma_tag = { 141 NULL, /* _cookie */ 142 _isa_bus_dmamap_create, 143 _isa_bus_dmamap_destroy, 144 _isa_bus_dmamap_load, 145 _isa_bus_dmamap_load_mbuf, 146 _isa_bus_dmamap_load_uio, 147 _isa_bus_dmamap_load_raw, 148 _isa_bus_dmamap_unload, 149 _isa_bus_dmamap_sync, 150 _isa_bus_dmamem_alloc, 151 _bus_dmamem_alloc_range, 152 _bus_dmamem_free, 153 _bus_dmamem_map, 154 _bus_dmamem_unmap, 155 _bus_dmamem_mmap, 156 }; 157 #endif /* NISADMA > 0 */ 158 159 /* 160 * Fill in default interrupt table (in case of spurious interrupt 161 * during configuration of kernel, setup interrupt control unit 162 */ 163 void 164 isa_defaultirq(void) 165 { 166 int i; 167 168 /* icu vectors */ 169 for (i = 0; i < ICU_LEN; i++) 170 setgate(&idt[ICU_OFFSET + i], IDTVEC(intr)[i], 0, 171 SDT_SYS386IGT, SEL_KPL, GICODE_SEL); 172 173 /* initialize 8259's */ 174 outb(IO_ICU1, 0x11); /* reset; program device, four bytes */ 175 outb(IO_ICU1+1, ICU_OFFSET); /* starting at this vector index */ 176 outb(IO_ICU1+1, 1 << IRQ_SLAVE); /* slave on line 2 */ 177 #ifdef AUTO_EOI_1 178 outb(IO_ICU1+1, 2 | 1); /* auto EOI, 8086 mode */ 179 #else 180 outb(IO_ICU1+1, 1); /* 8086 mode */ 181 #endif 182 outb(IO_ICU1+1, 0xff); /* leave interrupts masked */ 183 outb(IO_ICU1, 0x68); /* special mask mode (if available) */ 184 outb(IO_ICU1, 0x0a); /* Read IRR by default. */ 185 #ifdef REORDER_IRQ 186 outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */ 187 #endif 188 189 outb(IO_ICU2, 0x11); /* reset; program device, four bytes */ 190 outb(IO_ICU2+1, ICU_OFFSET+8); /* staring at this vector index */ 191 outb(IO_ICU2+1, IRQ_SLAVE); 192 #ifdef AUTO_EOI_2 193 outb(IO_ICU2+1, 2 | 1); /* auto EOI, 8086 mode */ 194 #else 195 outb(IO_ICU2+1, 1); /* 8086 mode */ 196 #endif 197 outb(IO_ICU2+1, 0xff); /* leave interrupts masked */ 198 outb(IO_ICU2, 0x68); /* special mask mode (if available) */ 199 outb(IO_ICU2, 0x0a); /* Read IRR by default. */ 200 } 201 202 /* 203 * Handle a NMI, possibly a machine check. 204 * return true to panic system, false to ignore. 205 */ 206 int 207 isa_nmi(void) 208 { 209 /* This is historic garbage; these ports are not readable */ 210 log(LOG_CRIT, "No-maskable interrupt, may be parity error\n"); 211 return(0); 212 } 213 214 u_long intrstray[ICU_LEN]; 215 216 /* 217 * Caught a stray interrupt, notify 218 */ 219 void 220 isa_strayintr(int irq) 221 { 222 /* 223 * Stray interrupts on irq 7 occur when an interrupt line is raised 224 * and then lowered before the CPU acknowledges it. This generally 225 * means either the device is screwed or something is cli'ing too 226 * long and it's timing out. 227 */ 228 if (++intrstray[irq] <= 5) 229 log(LOG_ERR, "stray interrupt %d%s\n", irq, 230 intrstray[irq] >= 5 ? "; stopped logging" : ""); 231 } 232 233 int intrtype[ICU_LEN], intrmask[ICU_LEN], intrlevel[ICU_LEN]; 234 int iminlevel[ICU_LEN], imaxlevel[ICU_LEN]; 235 struct intrhand *intrhand[ICU_LEN]; 236 237 int imask[NIPL]; /* Bitmask telling what interrupts are blocked. */ 238 int iunmask[NIPL]; /* Bitmask telling what interrupts are accepted. */ 239 240 /* 241 * Recalculate the interrupt masks from scratch. 242 * We could code special registry and deregistry versions of this function that 243 * would be faster, but the code would be nastier, and we don't expect this to 244 * happen very much anyway. 245 */ 246 void 247 intr_calculatemasks(void) 248 { 249 int irq, level, unusedirqs; 250 struct intrhand *q; 251 252 /* First, figure out which levels each IRQ uses. */ 253 unusedirqs = 0xffff; 254 for (irq = 0; irq < ICU_LEN; irq++) { 255 int levels = 0; 256 for (q = intrhand[irq]; q; q = q->ih_next) 257 levels |= 1 << IPL(q->ih_level); 258 intrlevel[irq] = levels; 259 if (levels) 260 unusedirqs &= ~(1 << irq); 261 } 262 263 /* Then figure out which IRQs use each level. */ 264 for (level = 0; level < NIPL; level++) { 265 int irqs = 0; 266 for (irq = 0; irq < ICU_LEN; irq++) 267 if (intrlevel[irq] & (1 << level)) 268 irqs |= 1 << irq; 269 imask[level] = irqs | unusedirqs; 270 } 271 272 /* 273 * Initialize soft interrupt masks to block themselves. 274 */ 275 IMASK(IPL_SOFTCLOCK) |= 1 << SIR_CLOCK; 276 IMASK(IPL_SOFTNET) |= 1 << SIR_NET; 277 IMASK(IPL_SOFTTTY) |= 1 << SIR_TTY; 278 279 /* 280 * Enforce a hierarchy that gives slow devices a better chance at not 281 * dropping data. 282 */ 283 for (level = 0; level < NIPL - 1; level++) 284 imask[level + 1] |= imask[level]; 285 286 /* And eventually calculate the complete masks. */ 287 for (irq = 0; irq < ICU_LEN; irq++) { 288 int irqs = 1 << irq; 289 int minlevel = IPL_NONE; 290 int maxlevel = IPL_NONE; 291 292 if (intrhand[irq] == NULL) { 293 maxlevel = IPL_HIGH; 294 irqs = IMASK(IPL_HIGH); 295 } else { 296 for (q = intrhand[irq]; q; q = q->ih_next) { 297 irqs |= IMASK(q->ih_level); 298 if (minlevel == IPL_NONE || 299 q->ih_level < minlevel) 300 minlevel = q->ih_level; 301 if (q->ih_level > maxlevel) 302 maxlevel = q->ih_level; 303 } 304 } 305 if (irqs != IMASK(maxlevel)) 306 panic("irq %d level %x mask mismatch: %x vs %x", irq, 307 maxlevel, irqs, IMASK(maxlevel)); 308 309 intrmask[irq] = irqs; 310 iminlevel[irq] = minlevel; 311 imaxlevel[irq] = maxlevel; 312 313 #if 0 314 printf("irq %d: level %x, mask 0x%x (%x)\n", irq, 315 imaxlevel[irq], intrmask[irq], IMASK(imaxlevel[irq])); 316 #endif 317 } 318 319 /* Lastly, determine which IRQs are actually in use. */ 320 { 321 int irqs = 0; 322 for (irq = 0; irq < ICU_LEN; irq++) 323 if (intrhand[irq]) 324 irqs |= 1 << irq; 325 if (irqs >= 0x100) /* any IRQs >= 8 in use */ 326 irqs |= 1 << IRQ_SLAVE; 327 imen = ~irqs; 328 SET_ICUS(); 329 } 330 331 /* For speed of splx, provide the inverse of the interrupt masks. */ 332 for (irq = 0; irq < ICU_LEN; irq++) 333 iunmask[irq] = ~imask[irq]; 334 } 335 336 int 337 fakeintr(void *arg) 338 { 339 return 0; 340 } 341 342 #define LEGAL_IRQ(x) ((x) >= 0 && (x) < ICU_LEN && (x) != 2) 343 344 int 345 isa_intr_alloc(isa_chipset_tag_t ic, int mask, int type, int *irq) 346 { 347 int i, bestirq, count; 348 int tmp; 349 struct intrhand **p, *q; 350 351 if (type == IST_NONE) 352 panic("intr_alloc: bogus type"); 353 354 bestirq = -1; 355 count = -1; 356 357 /* some interrupts should never be dynamically allocated */ 358 mask &= 0xdef8; 359 360 /* 361 * XXX some interrupts will be used later (6 for fdc, 12 for pms). 362 * the right answer is to do "breadth-first" searching of devices. 363 */ 364 mask &= 0xefbf; 365 366 for (i = 0; i < ICU_LEN; i++) { 367 if (LEGAL_IRQ(i) == 0 || (mask & (1<<i)) == 0) 368 continue; 369 370 switch(intrtype[i]) { 371 case IST_NONE: 372 /* 373 * if nothing's using the irq, just return it 374 */ 375 *irq = i; 376 return (0); 377 378 case IST_EDGE: 379 case IST_LEVEL: 380 if (type != intrtype[i]) 381 continue; 382 /* 383 * if the irq is shareable, count the number of other 384 * handlers, and if it's smaller than the last irq like 385 * this, remember it 386 * 387 * XXX We should probably also consider the 388 * interrupt level and stick IPL_TTY with other 389 * IPL_TTY, etc. 390 */ 391 for (p = &intrhand[i], tmp = 0; (q = *p) != NULL; 392 p = &q->ih_next, tmp++) 393 ; 394 if ((bestirq == -1) || (count > tmp)) { 395 bestirq = i; 396 count = tmp; 397 } 398 break; 399 400 case IST_PULSE: 401 /* this just isn't shareable */ 402 continue; 403 } 404 } 405 406 if (bestirq == -1) 407 return (1); 408 409 *irq = bestirq; 410 411 return (0); 412 } 413 414 /* 415 * Just check to see if an IRQ is available/can be shared. 416 * 0 = interrupt not available 417 * 1 = interrupt shareable 418 * 2 = interrupt all to ourself 419 */ 420 int 421 isa_intr_check(isa_chipset_tag_t ic, int irq, int type) 422 { 423 if (!LEGAL_IRQ(irq) || type == IST_NONE) 424 return (0); 425 426 switch (intrtype[irq]) { 427 case IST_NONE: 428 return (2); 429 break; 430 case IST_LEVEL: 431 if (type != intrtype[irq]) 432 return (0); 433 return (1); 434 break; 435 case IST_EDGE: 436 case IST_PULSE: 437 if (type != IST_NONE) 438 return (0); 439 } 440 return (1); 441 } 442 443 /* 444 * Set up an interrupt handler to start being called. 445 * XXX PRONE TO RACE CONDITIONS, UGLY, 'INTERESTING' INSERTION ALGORITHM. 446 */ 447 void * 448 isa_intr_establish(isa_chipset_tag_t ic, int irq, int type, int level, 449 int (*ih_fun)(void *), void *ih_arg, const char *ih_what) 450 { 451 struct intrhand **p, *q, *ih; 452 static struct intrhand fakehand = {fakeintr}; 453 int flags; 454 455 #if NIOAPIC > 0 456 struct mp_intr_map *mip; 457 458 if (mp_busses != NULL) { 459 int mpspec_pin = irq; 460 int airq; 461 462 if (mp_isa_bus == NULL) 463 panic("no isa bus"); 464 465 for (mip = mp_isa_bus->mb_intrs; mip != NULL; 466 mip = mip->next) { 467 if (mip->bus_pin == mpspec_pin) { 468 airq = mip->ioapic_ih | irq; 469 break; 470 } 471 } 472 if (mip == NULL && mp_eisa_bus) { 473 for (mip = mp_eisa_bus->mb_intrs; mip != NULL; 474 mip = mip->next) { 475 if (mip->bus_pin == mpspec_pin) { 476 airq = mip->ioapic_ih | irq; 477 break; 478 } 479 } 480 } 481 482 /* no MP mapping found -- invent! */ 483 if (mip == NULL) 484 airq = mpbios_invent(irq, type, mp_isa_bus->mb_idx); 485 486 return (apic_intr_establish(airq, type, level, ih_fun, 487 ih_arg, ih_what)); 488 } 489 #endif 490 491 flags = level & IPL_MPSAFE; 492 level &= ~IPL_MPSAFE; 493 494 KASSERT(level <= IPL_TTY || level >= IPL_CLOCK || flags & IPL_MPSAFE); 495 496 /* no point in sleeping unless someone can free memory. */ 497 ih = malloc(sizeof *ih, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 498 if (ih == NULL) { 499 printf("%s: isa_intr_establish: can't malloc handler info\n", 500 ih_what); 501 return (NULL); 502 } 503 504 if (!LEGAL_IRQ(irq) || type == IST_NONE) { 505 printf("%s: isa_intr_establish: bogus irq or type\n", ih_what); 506 free(ih, M_DEVBUF, sizeof *ih); 507 return (NULL); 508 } 509 switch (intrtype[irq]) { 510 case IST_NONE: 511 intrtype[irq] = type; 512 break; 513 case IST_EDGE: 514 intr_shared_edge = 1; 515 /* FALLTHROUGH */ 516 case IST_LEVEL: 517 if (type == intrtype[irq]) 518 break; 519 case IST_PULSE: 520 if (type != IST_NONE) { 521 /*printf("%s: intr_establish: can't share %s with %s, irq %d\n", 522 ih_what, isa_intr_typename(intrtype[irq]), 523 isa_intr_typename(type), irq);*/ 524 free(ih, M_DEVBUF, sizeof *ih); 525 return (NULL); 526 } 527 break; 528 } 529 530 /* 531 * Figure out where to put the handler. 532 * This is O(N^2), but we want to preserve the order, and N is 533 * generally small. 534 */ 535 for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next) 536 ; 537 538 /* 539 * Actually install a fake handler momentarily, since we might be doing 540 * this with interrupts enabled and don't want the real routine called 541 * until masking is set up. 542 */ 543 fakehand.ih_level = level; 544 *p = &fakehand; 545 546 intr_calculatemasks(); 547 548 /* 549 * Poke the real handler in now. 550 */ 551 ih->ih_fun = ih_fun; 552 ih->ih_arg = ih_arg; 553 ih->ih_next = NULL; 554 ih->ih_level = level; 555 ih->ih_flags = flags; 556 ih->ih_irq = irq; 557 evcount_attach(&ih->ih_count, ih_what, &ih->ih_irq); 558 *p = ih; 559 560 return (ih); 561 } 562 563 /* 564 * Deregister an interrupt handler. 565 */ 566 void 567 isa_intr_disestablish(isa_chipset_tag_t ic, void *arg) 568 { 569 struct intrhand *ih = arg; 570 int irq = ih->ih_irq; 571 struct intrhand **p, *q; 572 573 #if NIOAPIC > 0 574 if (irq & APIC_INT_VIA_APIC) { 575 apic_intr_disestablish(arg); 576 return; 577 } 578 #endif 579 580 if (!LEGAL_IRQ(irq)) 581 panic("intr_disestablish: bogus irq %d", irq); 582 583 /* 584 * Remove the handler from the chain. 585 * This is O(n^2), too. 586 */ 587 for (p = &intrhand[irq]; (q = *p) != NULL && q != ih; p = &q->ih_next) 588 ; 589 if (q) 590 *p = q->ih_next; 591 else 592 panic("intr_disestablish: handler not registered"); 593 evcount_detach(&ih->ih_count); 594 free(ih, M_DEVBUF, sizeof *ih); 595 596 intr_calculatemasks(); 597 598 if (intrhand[irq] == NULL) 599 intrtype[irq] = IST_NONE; 600 } 601 602 void 603 isa_attach_hook(struct device *parent, struct device *self, 604 struct isabus_attach_args *iba) 605 { 606 extern int isa_has_been_seen; 607 608 /* 609 * Notify others that might need to know that the ISA bus 610 * has now been attached. 611 */ 612 if (isa_has_been_seen) 613 panic("isaattach: ISA bus already seen!"); 614 isa_has_been_seen = 1; 615 } 616 617 #if NISADMA > 0 618 /********************************************************************** 619 * bus.h dma interface entry points 620 **********************************************************************/ 621 622 #ifdef ISA_DMA_STATS 623 #define STAT_INCR(v) (v)++ 624 #define STAT_DECR(v) do { \ 625 if ((v) == 0) \ 626 printf("%s:%d -- Already 0!\n", __FILE__, __LINE__); \ 627 else \ 628 (v)--; \ 629 } while (0) 630 u_long isa_dma_stats_loads; 631 u_long isa_dma_stats_bounces; 632 u_long isa_dma_stats_nbouncebufs; 633 #else 634 #define STAT_INCR(v) 635 #define STAT_DECR(v) 636 #endif 637 638 /* 639 * Create an ISA DMA map. 640 */ 641 int 642 _isa_bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments, 643 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp) 644 { 645 struct isa_dma_cookie *cookie; 646 bus_dmamap_t map; 647 int error, cookieflags; 648 void *cookiestore; 649 size_t cookiesize; 650 651 /* Call common function to create the basic map. */ 652 error = _bus_dmamap_create(t, size, nsegments, maxsegsz, boundary, 653 flags, dmamp); 654 if (error) 655 return (error); 656 657 map = *dmamp; 658 map->_dm_cookie = NULL; 659 660 cookiesize = sizeof(struct isa_dma_cookie); 661 662 /* 663 * ISA only has 24-bits of address space. This means 664 * we can't DMA to pages over 16M. In order to DMA to 665 * arbitrary buffers, we use "bounce buffers" - pages 666 * in memory below the 16M boundary. On DMA reads, 667 * DMA happens to the bounce buffers, and is copied into 668 * the caller's buffer. On writes, data is copied into 669 * the bounce buffer, and the DMA happens from those 670 * pages. To software using the DMA mapping interface, 671 * this looks simply like a data cache. 672 * 673 * If we have more than 16M of RAM in the system, we may 674 * need bounce buffers. We check and remember that here. 675 * 676 * There are exceptions, however. VLB devices can do 677 * 32-bit DMA, and indicate that here. 678 * 679 * ...or, there is an opposite case. The most segments 680 * a transfer will require is (maxxfer / NBPG) + 1. If 681 * the caller can't handle that many segments (e.g. the 682 * ISA DMA controller), we may have to bounce it as well. 683 */ 684 cookieflags = 0; 685 if ((avail_end > ISA_DMA_BOUNCE_THRESHOLD && 686 (flags & ISABUS_DMA_32BIT) == 0) || 687 ((map->_dm_size / NBPG) + 1) > map->_dm_segcnt) { 688 cookieflags |= ID_MIGHT_NEED_BOUNCE; 689 cookiesize += (sizeof(bus_dma_segment_t) * map->_dm_segcnt); 690 } 691 692 /* 693 * Allocate our cookie. 694 */ 695 if ((cookiestore = malloc(cookiesize, M_DEVBUF, 696 ((flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)|M_ZERO)) == NULL) { 697 error = ENOMEM; 698 goto out; 699 } 700 cookie = (struct isa_dma_cookie *)cookiestore; 701 cookie->id_flags = cookieflags; 702 map->_dm_cookie = cookie; 703 704 if (cookieflags & ID_MIGHT_NEED_BOUNCE) { 705 /* 706 * Allocate the bounce pages now if the caller 707 * wishes us to do so. 708 */ 709 if ((flags & BUS_DMA_ALLOCNOW) == 0) 710 goto out; 711 712 error = _isa_dma_alloc_bouncebuf(t, map, size, flags); 713 } 714 715 out: 716 if (error) { 717 free(map->_dm_cookie, M_DEVBUF, cookiesize); 718 _bus_dmamap_destroy(t, map); 719 } 720 return (error); 721 } 722 723 /* 724 * Destroy an ISA DMA map. 725 */ 726 void 727 _isa_bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map) 728 { 729 struct isa_dma_cookie *cookie = map->_dm_cookie; 730 731 /* 732 * Free any bounce pages this map might hold. 733 */ 734 if (cookie->id_flags & ID_HAS_BOUNCE) 735 _isa_dma_free_bouncebuf(t, map); 736 737 free(cookie, M_DEVBUF, 0); 738 _bus_dmamap_destroy(t, map); 739 } 740 741 /* 742 * Load an ISA DMA map with a linear buffer. 743 */ 744 int 745 _isa_bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf, 746 bus_size_t buflen, struct proc *p, int flags) 747 { 748 struct isa_dma_cookie *cookie = map->_dm_cookie; 749 int error; 750 751 STAT_INCR(isa_dma_stats_loads); 752 753 /* 754 * Check to see if we might need to bounce the transfer. 755 */ 756 if (cookie->id_flags & ID_MIGHT_NEED_BOUNCE) { 757 /* 758 * Check if all pages are below the bounce 759 * threshold. If they are, don't bother bouncing. 760 */ 761 if (_isa_dma_check_buffer(buf, buflen, 762 map->_dm_segcnt, map->_dm_boundary, p) == 0) 763 return (_bus_dmamap_load(t, map, buf, buflen, 764 p, flags)); 765 766 STAT_INCR(isa_dma_stats_bounces); 767 768 /* 769 * Allocate bounce pages, if necessary. 770 */ 771 if ((cookie->id_flags & ID_HAS_BOUNCE) == 0) { 772 error = _isa_dma_alloc_bouncebuf(t, map, buflen, 773 flags); 774 if (error) 775 return (error); 776 } 777 778 /* 779 * Cache a pointer to the caller's buffer and 780 * load the DMA map with the bounce buffer. 781 */ 782 cookie->id_origbuf = buf; 783 cookie->id_origbuflen = buflen; 784 error = _bus_dmamap_load(t, map, cookie->id_bouncebuf, 785 buflen, p, flags); 786 787 if (error) { 788 /* 789 * Free the bounce pages, unless our resources 790 * are reserved for our exclusive use. 791 */ 792 if ((map->_dm_flags & BUS_DMA_ALLOCNOW) == 0) 793 _isa_dma_free_bouncebuf(t, map); 794 } 795 796 /* ...so _isa_bus_dmamap_sync() knows we're bouncing */ 797 cookie->id_flags |= ID_IS_BOUNCING; 798 } else { 799 /* 800 * Just use the generic load function. 801 */ 802 error = _bus_dmamap_load(t, map, buf, buflen, p, flags); 803 } 804 805 return (error); 806 } 807 808 /* 809 * Like _isa_bus_dmamap_load(), but for mbufs. 810 */ 811 int 812 _isa_bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m, 813 int flags) 814 { 815 816 panic("_isa_bus_dmamap_load_mbuf: not implemented"); 817 } 818 819 /* 820 * Like _isa_bus_dmamap_load(), but for uios. 821 */ 822 int 823 _isa_bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio, 824 int flags) 825 { 826 827 panic("_isa_bus_dmamap_load_uio: not implemented"); 828 } 829 830 /* 831 * Like _isa_bus_dmamap_load(), but for raw memory allocated with 832 * bus_dmamem_alloc(). 833 */ 834 int 835 _isa_bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, 836 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags) 837 { 838 839 panic("_isa_bus_dmamap_load_raw: not implemented"); 840 } 841 842 /* 843 * Unload an ISA DMA map. 844 */ 845 void 846 _isa_bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map) 847 { 848 struct isa_dma_cookie *cookie = map->_dm_cookie; 849 850 /* 851 * If we have bounce pages, free them, unless they're 852 * reserved for our exclusive use. 853 */ 854 if ((cookie->id_flags & ID_HAS_BOUNCE) && 855 (map->_dm_flags & BUS_DMA_ALLOCNOW) == 0) 856 _isa_dma_free_bouncebuf(t, map); 857 858 cookie->id_flags &= ~ID_IS_BOUNCING; 859 860 /* 861 * Do the generic bits of the unload. 862 */ 863 _bus_dmamap_unload(t, map); 864 } 865 866 /* 867 * Synchronize an ISA DMA map. 868 */ 869 void 870 _isa_bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset, 871 bus_size_t len, int op) 872 { 873 struct isa_dma_cookie *cookie = map->_dm_cookie; 874 875 #ifdef DEBUG 876 if ((op & (BUS_DMASYNC_PREWRITE|BUS_DMASYNC_POSTREAD)) != 0) { 877 if (offset >= map->dm_mapsize) 878 panic("_isa_bus_dmamap_sync: bad offset"); 879 if (len == 0 || (offset + len) > map->dm_mapsize) 880 panic("_isa_bus_dmamap_sync: bad length"); 881 } 882 #endif 883 #ifdef DIAGNOSTIC 884 if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0 && 885 (op & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)) != 0) 886 panic("_isa_bus_dmamap_sync: mix PRE and POST"); 887 #endif /* DIAGNOSTIC */ 888 889 /* PREREAD and POSTWRITE are no-ops */ 890 if (op & BUS_DMASYNC_PREWRITE) { 891 /* 892 * If we're bouncing this transfer, copy the 893 * caller's buffer to the bounce buffer. 894 */ 895 if (cookie->id_flags & ID_IS_BOUNCING) 896 memcpy(cookie->id_bouncebuf + offset, 897 (char *)cookie->id_origbuf + offset, len); 898 } 899 900 _bus_dmamap_sync(t, map, offset, len, op); 901 902 if (op & BUS_DMASYNC_POSTREAD) { 903 /* 904 * If we're bouncing this transfer, copy the 905 * bounce buffer to the caller's buffer. 906 */ 907 if (cookie->id_flags & ID_IS_BOUNCING) 908 memcpy(cookie->id_origbuf + offset, 909 (char *)cookie->id_bouncebuf + offset, len); 910 } 911 } 912 913 /* 914 * Allocate memory safe for ISA DMA. 915 */ 916 int 917 _isa_bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment, 918 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, 919 int flags) 920 { 921 int error; 922 923 /* Try in ISA addressable region first */ 924 error = _bus_dmamem_alloc_range(t, size, alignment, boundary, 925 segs, nsegs, rsegs, flags, 0, ISA_DMA_BOUNCE_THRESHOLD); 926 if (!error) 927 return (error); 928 929 /* Otherwise try anywhere (we'll bounce later) */ 930 error = _bus_dmamem_alloc_range(t, size, alignment, boundary, 931 segs, nsegs, rsegs, flags, (bus_addr_t)0, (bus_addr_t)-1); 932 return (error); 933 } 934 935 936 /********************************************************************** 937 * ISA DMA utility functions 938 **********************************************************************/ 939 940 /* 941 * Return 0 if all pages in the passed buffer lie within the DMA'able 942 * range RAM. 943 */ 944 int 945 _isa_dma_check_buffer(void *buf, bus_size_t buflen, int segcnt, 946 bus_size_t boundary, struct proc *p) 947 { 948 vaddr_t vaddr = (vaddr_t)buf; 949 vaddr_t endva; 950 paddr_t pa, lastpa; 951 u_long pagemask = ~(boundary - 1); 952 pmap_t pmap; 953 int nsegs; 954 955 endva = round_page(vaddr + buflen); 956 957 nsegs = 1; 958 lastpa = 0; 959 960 if (p != NULL) 961 pmap = p->p_vmspace->vm_map.pmap; 962 else 963 pmap = pmap_kernel(); 964 965 for (; vaddr < endva; vaddr += NBPG) { 966 /* 967 * Get physical address for this segment. 968 */ 969 pmap_extract(pmap, (vaddr_t)vaddr, &pa); 970 pa = trunc_page(pa); 971 972 /* 973 * Is it below the DMA'able threshold? 974 */ 975 if (pa > ISA_DMA_BOUNCE_THRESHOLD) 976 return (EINVAL); 977 978 if (lastpa) { 979 /* 980 * Check excessive segment count. 981 */ 982 if (lastpa + NBPG != pa) { 983 if (++nsegs > segcnt) 984 return (EFBIG); 985 } 986 987 /* 988 * Check boundary restriction. 989 */ 990 if (boundary) { 991 if ((lastpa ^ pa) & pagemask) 992 return (EINVAL); 993 } 994 } 995 lastpa = pa; 996 } 997 998 return (0); 999 } 1000 1001 int 1002 _isa_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t size, int flags) 1003 { 1004 struct isa_dma_cookie *cookie = map->_dm_cookie; 1005 int error = 0; 1006 1007 cookie->id_bouncebuflen = round_page(size); 1008 error = _bus_dmamem_alloc_range(t, cookie->id_bouncebuflen, 1009 NBPG, map->_dm_boundary, cookie->id_bouncesegs, 1010 map->_dm_segcnt, &cookie->id_nbouncesegs, flags, 1011 0, ISA_DMA_BOUNCE_THRESHOLD); 1012 if (error) 1013 goto out; 1014 error = _bus_dmamem_map(t, cookie->id_bouncesegs, 1015 cookie->id_nbouncesegs, cookie->id_bouncebuflen, 1016 (caddr_t *)&cookie->id_bouncebuf, flags); 1017 1018 out: 1019 if (error) { 1020 _bus_dmamem_free(t, cookie->id_bouncesegs, 1021 cookie->id_nbouncesegs); 1022 cookie->id_bouncebuflen = 0; 1023 cookie->id_nbouncesegs = 0; 1024 } else { 1025 cookie->id_flags |= ID_HAS_BOUNCE; 1026 STAT_INCR(isa_dma_stats_nbouncebufs); 1027 } 1028 1029 return (error); 1030 } 1031 1032 void 1033 _isa_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map) 1034 { 1035 struct isa_dma_cookie *cookie = map->_dm_cookie; 1036 1037 STAT_DECR(isa_dma_stats_nbouncebufs); 1038 1039 _bus_dmamem_unmap(t, cookie->id_bouncebuf, 1040 cookie->id_bouncebuflen); 1041 _bus_dmamem_free(t, cookie->id_bouncesegs, 1042 cookie->id_nbouncesegs); 1043 cookie->id_bouncebuflen = 0; 1044 cookie->id_nbouncesegs = 0; 1045 cookie->id_flags &= ~ID_HAS_BOUNCE; 1046 } 1047 #endif /* NISADMA > 0 */ 1048