xref: /openbsd/sys/arch/sparc64/fpu/fpu_explode.c (revision 3bef86f7)
1 /*	$OpenBSD: fpu_explode.c,v 1.6 2022/10/16 01:22:39 jsg Exp $	*/
2 /*	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $ */
3 
4 /*
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
42  */
43 
44 /*
45  * FPU subroutines: `explode' the machine's `packed binary' format numbers
46  * into our internal format.
47  */
48 
49 #include <sys/types.h>
50 #include <sys/systm.h>
51 
52 #include <machine/ieee.h>
53 #include <machine/instr.h>
54 #include <machine/reg.h>
55 
56 #include <sparc64/fpu/fpu_arith.h>
57 #include <sparc64/fpu/fpu_emu.h>
58 #include <sparc64/fpu/fpu_extern.h>
59 
60 /*
61  * N.B.: in all of the following, we assume the FP format is
62  *
63  *	---------------------------
64  *	| s | exponent | fraction |
65  *	---------------------------
66  *
67  * (which represents -1**s * 1.fraction * 2**exponent), so that the
68  * sign bit is way at the top (bit 31), the exponent is next, and
69  * then the remaining bits mark the fraction.  A zero exponent means
70  * zero or denormalized (0.fraction rather than 1.fraction), and the
71  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
72  *
73  * Since the sign bit is always the topmost bit---this holds even for
74  * integers---we set that outside all the *tof functions.  Each function
75  * returns the class code for the new number (but note that we use
76  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
77  */
78 
79 /*
80  * int -> fpn.
81  */
82 int
83 fpu_itof(register struct fpn *fp, register u_int i)
84 {
85 
86 	if (i == 0)
87 		return (FPC_ZERO);
88 	/*
89 	 * The value FP_1 represents 2^FP_LG, so set the exponent
90 	 * there and let normalization fix it up.  Convert negative
91 	 * numbers to sign-and-magnitude.  Note that this relies on
92 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
93 	 */
94 	fp->fp_exp = FP_LG;
95 	fp->fp_mant[0] = (fp->fp_sign && (int)i < 0) ? -i : i;
96 	fp->fp_mant[1] = 0;
97 	fp->fp_mant[2] = 0;
98 	fp->fp_mant[3] = 0;
99 	fpu_norm(fp);
100 	return (FPC_NUM);
101 }
102 
103 /*
104  * 64-bit int -> fpn.
105  */
106 int
107 fpu_xtof(register struct fpn *fp, register u_int64_t i)
108 {
109 	if (i == 0)
110 		return (FPC_ZERO);
111 
112 	/*
113 	 * The value FP_1 represents 2^FP_LG, so set the exponent
114 	 * there and let normalization fix it up.  Convert negative
115 	 * numbers to sign-and-magnitude.  Note that this relies on
116 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
117 	 */
118 	fp->fp_exp = FP_LG2;
119 	i = (fp->fp_sign && (int64_t)i < 0) ? -i : i;
120 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
121 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
122 	fp->fp_mant[2] = 0;
123 	fp->fp_mant[3] = 0;
124 	fpu_norm(fp);
125 	return (FPC_NUM);
126 }
127 
128 #define	mask(nbits) ((1L << (nbits)) - 1)
129 
130 /*
131  * All external floating formats convert to internal in the same manner,
132  * as defined here.  Note that only normals get an implied 1.0 inserted.
133  */
134 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
135 	if (exp == 0) { \
136 		if (allfrac == 0) \
137 			return (FPC_ZERO); \
138 		fp->fp_exp = 1 - expbias; \
139 		fp->fp_mant[0] = f0; \
140 		fp->fp_mant[1] = f1; \
141 		fp->fp_mant[2] = f2; \
142 		fp->fp_mant[3] = f3; \
143 		fpu_norm(fp); \
144 		return (FPC_NUM); \
145 	} \
146 	if (exp == (2 * expbias + 1)) { \
147 		if (allfrac == 0) \
148 			return (FPC_INF); \
149 		fp->fp_mant[0] = f0; \
150 		fp->fp_mant[1] = f1; \
151 		fp->fp_mant[2] = f2; \
152 		fp->fp_mant[3] = f3; \
153 		return (FPC_QNAN); \
154 	} \
155 	fp->fp_exp = exp - expbias; \
156 	fp->fp_mant[0] = FP_1 | f0; \
157 	fp->fp_mant[1] = f1; \
158 	fp->fp_mant[2] = f2; \
159 	fp->fp_mant[3] = f3; \
160 	return (FPC_NUM)
161 
162 /*
163  * 32-bit single precision -> fpn.
164  * We assume a single occupies at most (64-FP_LG) bits in the internal
165  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
166  */
167 int
168 fpu_stof(register struct fpn *fp, register u_int i)
169 {
170 	register int exp;
171 	register u_int frac, f0, f1;
172 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
173 
174 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
175 	frac = i & mask(SNG_FRACBITS);
176 	f0 = frac >> SNG_SHIFT;
177 	f1 = frac << (32 - SNG_SHIFT);
178 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
179 }
180 
181 /*
182  * 64-bit double -> fpn.
183  * We assume this uses at most (96-FP_LG) bits.
184  */
185 int
186 fpu_dtof(register struct fpn *fp, register u_int i, register u_int j)
187 {
188 	register int exp;
189 	register u_int frac, f0, f1, f2;
190 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
191 
192 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
193 	frac = i & mask(DBL_FRACBITS - 32);
194 	f0 = frac >> DBL_SHIFT;
195 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
196 	f2 = j << (32 - DBL_SHIFT);
197 	frac |= j;
198 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
199 }
200 
201 /*
202  * 128-bit extended -> fpn.
203  */
204 int
205 fpu_qtof(register struct fpn *fp, register u_int i, register u_int j,
206     register u_int k, register u_int l)
207 {
208 	register int exp;
209 	register u_int frac, f0, f1, f2, f3;
210 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
211 
212 	/*
213 	 * Note that ext and fpn `line up', hence no shifting needed.
214 	 */
215 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
216 	frac = i & mask(EXT_FRACBITS - 3 * 32);
217 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
218 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
219 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
220 	f3 = l << EXT_SHIFT;
221 	frac |= j | k | l;
222 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
223 }
224 
225 /*
226  * Explode the contents of a register / regpair / regquad.
227  * If the input is a signalling NaN, an NV (invalid) exception
228  * will be set.  (Note that nothing but NV can occur until ALU
229  * operations are performed.)
230  */
231 void
232 fpu_explode(register struct fpemu *fe, register struct fpn *fp, int type,
233     int reg)
234 {
235 	register u_int s, *space;
236 	u_int64_t l, *xspace;
237 
238 	xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
239 	l = xspace[0];
240 	space = &fe->fe_fpstate->fs_regs[reg];
241 	s = space[0];
242 	fp->fp_sign = (type == FTYPE_LNG) ? l >> 63 : s >> 31;
243 	fp->fp_sticky = 0;
244 	DPRINTF(FPE_INSN, ("fpu_explode: "));
245 	switch (type) {
246 	case FTYPE_LNG:
247 		DPRINTF(FPE_INSN, ("LNG: %llx", l));
248 		s = fpu_xtof(fp, l);
249 		break;
250 
251 	case FTYPE_INT:
252 		DPRINTF(FPE_INSN, ("INT: %x", s));
253 		s = fpu_itof(fp, s);
254 		break;
255 
256 	case FTYPE_SNG:
257 		DPRINTF(FPE_INSN, ("SNG: %x", s));
258 		s = fpu_stof(fp, s);
259 		break;
260 
261 	case FTYPE_DBL:
262 		DPRINTF(FPE_INSN, ("DBL: %x %x", s, space[1]));
263 		s = fpu_dtof(fp, s, space[1]);
264 		break;
265 
266 	case FTYPE_EXT:
267 		DPRINTF(FPE_INSN, ("EXT: %x %x %x %x", s, space[1],
268 		    space[2], space[3]));
269 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
270 		break;
271 
272 	default:
273 		panic("fpu_explode");
274 	}
275 	DPRINTF(FPE_INSN, ("\n"));
276 
277 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
278 		/*
279 		 * Input is a signalling NaN.  All operations that return
280 		 * an input NaN operand put it through a ``NaN conversion'',
281 		 * which basically just means ``turn on the quiet bit''.
282 		 * We do this here so that all NaNs internally look quiet
283 		 * (we can tell signalling ones by their class).
284 		 */
285 		fp->fp_mant[0] |= FP_QUIETBIT;
286 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
287 		s = FPC_SNAN;
288 	}
289 	fp->fp_class = s;
290 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
291 	    ((type == FTYPE_INT) ? 'i' :
292 		((type == FTYPE_SNG) ? 's' :
293 		    ((type == FTYPE_DBL) ? 'd' :
294 			((type == FTYPE_EXT) ? 'q' : '?')))),
295 	    reg));
296 	DUMPFPN(FPE_REG, fp);
297 	DPRINTF(FPE_REG, ("\n"));
298 }
299