1 /* $OpenBSD: cryptosoft.c,v 1.81 2016/09/02 09:12:49 tom Exp $ */ 2 3 /* 4 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 5 * 6 * This code was written by Angelos D. Keromytis in Athens, Greece, in 7 * February 2000. Network Security Technologies Inc. (NSTI) kindly 8 * supported the development of this code. 9 * 10 * Copyright (c) 2000, 2001 Angelos D. Keromytis 11 * 12 * Permission to use, copy, and modify this software with or without fee 13 * is hereby granted, provided that this entire notice is included in 14 * all source code copies of any software which is or includes a copy or 15 * modification of this software. 16 * 17 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 18 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 19 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 20 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 21 * PURPOSE. 22 */ 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/mbuf.h> 28 #include <sys/errno.h> 29 #include <dev/rndvar.h> 30 #include <crypto/md5.h> 31 #include <crypto/sha1.h> 32 #include <crypto/rmd160.h> 33 #include <crypto/cast.h> 34 #include <crypto/cryptodev.h> 35 #include <crypto/cryptosoft.h> 36 #include <crypto/xform.h> 37 38 const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = { 39 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 40 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 41 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 42 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 43 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 44 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 45 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 46 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 47 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 48 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 49 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 50 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 51 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 52 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 53 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 54 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 55 }; 56 57 const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = { 58 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 59 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 60 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 61 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 62 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 63 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 64 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 65 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 66 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 67 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 68 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 69 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 70 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 71 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 72 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 73 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C 74 }; 75 76 77 struct swcr_data **swcr_sessions = NULL; 78 u_int32_t swcr_sesnum = 0; 79 int32_t swcr_id = -1; 80 81 #define COPYBACK(x, a, b, c, d) \ 82 do { \ 83 if ((x) == CRYPTO_BUF_MBUF) \ 84 m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \ 85 else \ 86 cuio_copyback((struct uio *)a,b,c,d); \ 87 } while (0) 88 #define COPYDATA(x, a, b, c, d) \ 89 do { \ 90 if ((x) == CRYPTO_BUF_MBUF) \ 91 m_copydata((struct mbuf *)a,b,c,d); \ 92 else \ 93 cuio_copydata((struct uio *)a,b,c,d); \ 94 } while (0) 95 96 /* 97 * Apply a symmetric encryption/decryption algorithm. 98 */ 99 int 100 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, 101 int outtype) 102 { 103 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat; 104 unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN]; 105 struct enc_xform *exf; 106 int i, k, j, blks, ind, count, ivlen; 107 struct mbuf *m = NULL; 108 struct uio *uio = NULL; 109 110 exf = sw->sw_exf; 111 blks = exf->blocksize; 112 ivlen = exf->ivsize; 113 114 /* Check for non-padded data */ 115 if (crd->crd_len % blks) 116 return EINVAL; 117 118 if (outtype == CRYPTO_BUF_MBUF) 119 m = (struct mbuf *) buf; 120 else 121 uio = (struct uio *) buf; 122 123 /* Initialize the IV */ 124 if (crd->crd_flags & CRD_F_ENCRYPT) { 125 /* IV explicitly provided ? */ 126 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 127 bcopy(crd->crd_iv, iv, ivlen); 128 else 129 arc4random_buf(iv, ivlen); 130 131 /* Do we need to write the IV */ 132 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) 133 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv); 134 135 } else { /* Decryption */ 136 /* IV explicitly provided ? */ 137 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 138 bcopy(crd->crd_iv, iv, ivlen); 139 else { 140 /* Get IV off buf */ 141 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv); 142 } 143 } 144 145 ivp = iv; 146 147 /* 148 * xforms that provide a reinit method perform all IV 149 * handling themselves. 150 */ 151 if (exf->reinit) 152 exf->reinit(sw->sw_kschedule, iv); 153 154 if (outtype == CRYPTO_BUF_MBUF) { 155 /* Find beginning of data */ 156 m = m_getptr(m, crd->crd_skip, &k); 157 if (m == NULL) 158 return EINVAL; 159 160 i = crd->crd_len; 161 162 while (i > 0) { 163 /* 164 * If there's insufficient data at the end of 165 * an mbuf, we have to do some copying. 166 */ 167 if (m->m_len < k + blks && m->m_len != k) { 168 m_copydata(m, k, blks, blk); 169 170 /* Actual encryption/decryption */ 171 if (exf->reinit) { 172 if (crd->crd_flags & CRD_F_ENCRYPT) { 173 exf->encrypt(sw->sw_kschedule, 174 blk); 175 } else { 176 exf->decrypt(sw->sw_kschedule, 177 blk); 178 } 179 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 180 /* XOR with previous block */ 181 for (j = 0; j < blks; j++) 182 blk[j] ^= ivp[j]; 183 184 exf->encrypt(sw->sw_kschedule, blk); 185 186 /* 187 * Keep encrypted block for XOR'ing 188 * with next block 189 */ 190 bcopy(blk, iv, blks); 191 ivp = iv; 192 } else { /* decrypt */ 193 /* 194 * Keep encrypted block for XOR'ing 195 * with next block 196 */ 197 nivp = (ivp == iv) ? iv2 : iv; 198 bcopy(blk, nivp, blks); 199 200 exf->decrypt(sw->sw_kschedule, blk); 201 202 /* XOR with previous block */ 203 for (j = 0; j < blks; j++) 204 blk[j] ^= ivp[j]; 205 ivp = nivp; 206 } 207 208 /* Copy back decrypted block */ 209 m_copyback(m, k, blks, blk, M_NOWAIT); 210 211 /* Advance pointer */ 212 m = m_getptr(m, k + blks, &k); 213 if (m == NULL) 214 return EINVAL; 215 216 i -= blks; 217 218 /* Could be done... */ 219 if (i == 0) 220 break; 221 } 222 223 /* Skip possibly empty mbufs */ 224 if (k == m->m_len) { 225 for (m = m->m_next; m && m->m_len == 0; 226 m = m->m_next) 227 ; 228 k = 0; 229 } 230 231 /* Sanity check */ 232 if (m == NULL) 233 return EINVAL; 234 235 /* 236 * Warning: idat may point to garbage here, but 237 * we only use it in the while() loop, only if 238 * there are indeed enough data. 239 */ 240 idat = mtod(m, unsigned char *) + k; 241 242 while (m->m_len >= k + blks && i > 0) { 243 if (exf->reinit) { 244 if (crd->crd_flags & CRD_F_ENCRYPT) { 245 exf->encrypt(sw->sw_kschedule, 246 idat); 247 } else { 248 exf->decrypt(sw->sw_kschedule, 249 idat); 250 } 251 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 252 /* XOR with previous block/IV */ 253 for (j = 0; j < blks; j++) 254 idat[j] ^= ivp[j]; 255 256 exf->encrypt(sw->sw_kschedule, idat); 257 ivp = idat; 258 } else { /* decrypt */ 259 /* 260 * Keep encrypted block to be used 261 * in next block's processing. 262 */ 263 nivp = (ivp == iv) ? iv2 : iv; 264 bcopy(idat, nivp, blks); 265 266 exf->decrypt(sw->sw_kschedule, idat); 267 268 /* XOR with previous block/IV */ 269 for (j = 0; j < blks; j++) 270 idat[j] ^= ivp[j]; 271 ivp = nivp; 272 } 273 274 idat += blks; 275 k += blks; 276 i -= blks; 277 } 278 } 279 } else { 280 /* Find beginning of data */ 281 count = crd->crd_skip; 282 ind = cuio_getptr(uio, count, &k); 283 if (ind == -1) 284 return EINVAL; 285 286 i = crd->crd_len; 287 288 while (i > 0) { 289 /* 290 * If there's insufficient data at the end, 291 * we have to do some copying. 292 */ 293 if (uio->uio_iov[ind].iov_len < k + blks && 294 uio->uio_iov[ind].iov_len != k) { 295 cuio_copydata(uio, count, blks, blk); 296 297 /* Actual encryption/decryption */ 298 if (exf->reinit) { 299 if (crd->crd_flags & CRD_F_ENCRYPT) { 300 exf->encrypt(sw->sw_kschedule, 301 blk); 302 } else { 303 exf->decrypt(sw->sw_kschedule, 304 blk); 305 } 306 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 307 /* XOR with previous block */ 308 for (j = 0; j < blks; j++) 309 blk[j] ^= ivp[j]; 310 311 exf->encrypt(sw->sw_kschedule, blk); 312 313 /* 314 * Keep encrypted block for XOR'ing 315 * with next block 316 */ 317 bcopy(blk, iv, blks); 318 ivp = iv; 319 } else { /* decrypt */ 320 /* 321 * Keep encrypted block for XOR'ing 322 * with next block 323 */ 324 nivp = (ivp == iv) ? iv2 : iv; 325 bcopy(blk, nivp, blks); 326 327 exf->decrypt(sw->sw_kschedule, blk); 328 329 /* XOR with previous block */ 330 for (j = 0; j < blks; j++) 331 blk[j] ^= ivp[j]; 332 ivp = nivp; 333 } 334 335 /* Copy back decrypted block */ 336 cuio_copyback(uio, count, blks, blk); 337 338 count += blks; 339 340 /* Advance pointer */ 341 ind = cuio_getptr(uio, count, &k); 342 if (ind == -1) 343 return (EINVAL); 344 345 i -= blks; 346 347 /* Could be done... */ 348 if (i == 0) 349 break; 350 } 351 352 /* 353 * Warning: idat may point to garbage here, but 354 * we only use it in the while() loop, only if 355 * there are indeed enough data. 356 */ 357 idat = (char *)uio->uio_iov[ind].iov_base + k; 358 359 while (uio->uio_iov[ind].iov_len >= k + blks && 360 i > 0) { 361 if (exf->reinit) { 362 if (crd->crd_flags & CRD_F_ENCRYPT) { 363 exf->encrypt(sw->sw_kschedule, 364 idat); 365 } else { 366 exf->decrypt(sw->sw_kschedule, 367 idat); 368 } 369 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 370 /* XOR with previous block/IV */ 371 for (j = 0; j < blks; j++) 372 idat[j] ^= ivp[j]; 373 374 exf->encrypt(sw->sw_kschedule, idat); 375 ivp = idat; 376 } else { /* decrypt */ 377 /* 378 * Keep encrypted block to be used 379 * in next block's processing. 380 */ 381 nivp = (ivp == iv) ? iv2 : iv; 382 bcopy(idat, nivp, blks); 383 384 exf->decrypt(sw->sw_kschedule, idat); 385 386 /* XOR with previous block/IV */ 387 for (j = 0; j < blks; j++) 388 idat[j] ^= ivp[j]; 389 ivp = nivp; 390 } 391 392 idat += blks; 393 count += blks; 394 k += blks; 395 i -= blks; 396 } 397 398 /* 399 * Advance to the next iov if the end of the current iov 400 * is aligned with the end of a cipher block. 401 * Note that the code is equivalent to calling: 402 * ind = cuio_getptr(uio, count, &k); 403 */ 404 if (i > 0 && k == uio->uio_iov[ind].iov_len) { 405 k = 0; 406 ind++; 407 if (ind >= uio->uio_iovcnt) 408 return (EINVAL); 409 } 410 } 411 } 412 413 return 0; /* Done with encryption/decryption */ 414 } 415 416 /* 417 * Compute keyed-hash authenticator. 418 */ 419 int 420 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd, 421 struct swcr_data *sw, caddr_t buf, int outtype) 422 { 423 unsigned char aalg[AALG_MAX_RESULT_LEN]; 424 struct auth_hash *axf; 425 union authctx ctx; 426 int err; 427 428 if (sw->sw_ictx == 0) 429 return EINVAL; 430 431 axf = sw->sw_axf; 432 433 bcopy(sw->sw_ictx, &ctx, axf->ctxsize); 434 435 if (outtype == CRYPTO_BUF_MBUF) 436 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len, 437 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 438 (caddr_t) &ctx); 439 else 440 err = cuio_apply((struct uio *) buf, crd->crd_skip, 441 crd->crd_len, 442 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 443 (caddr_t) &ctx); 444 445 if (err) 446 return err; 447 448 if (crd->crd_flags & CRD_F_ESN) 449 axf->Update(&ctx, crd->crd_esn, 4); 450 451 switch (sw->sw_alg) { 452 case CRYPTO_MD5_HMAC: 453 case CRYPTO_SHA1_HMAC: 454 case CRYPTO_RIPEMD160_HMAC: 455 case CRYPTO_SHA2_256_HMAC: 456 case CRYPTO_SHA2_384_HMAC: 457 case CRYPTO_SHA2_512_HMAC: 458 if (sw->sw_octx == NULL) 459 return EINVAL; 460 461 axf->Final(aalg, &ctx); 462 bcopy(sw->sw_octx, &ctx, axf->ctxsize); 463 axf->Update(&ctx, aalg, axf->hashsize); 464 axf->Final(aalg, &ctx); 465 break; 466 } 467 468 /* Inject the authentication data */ 469 if (outtype == CRYPTO_BUF_MBUF) 470 COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg); 471 else 472 bcopy(aalg, crp->crp_mac, axf->authsize); 473 474 return 0; 475 } 476 477 /* 478 * Apply a combined encryption-authentication transformation 479 */ 480 int 481 swcr_authenc(struct cryptop *crp) 482 { 483 uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; 484 u_char *blk = (u_char *)blkbuf; 485 u_char aalg[AALG_MAX_RESULT_LEN]; 486 u_char iv[EALG_MAX_BLOCK_LEN]; 487 union authctx ctx; 488 struct cryptodesc *crd, *crda = NULL, *crde = NULL; 489 struct swcr_data *sw, *swa, *swe = NULL; 490 struct auth_hash *axf = NULL; 491 struct enc_xform *exf = NULL; 492 caddr_t buf = (caddr_t)crp->crp_buf; 493 uint32_t *blkp; 494 int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip; 495 496 ivlen = blksz = iskip = oskip = 0; 497 498 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 499 for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; 500 sw && sw->sw_alg != crd->crd_alg; 501 sw = sw->sw_next) 502 ; 503 if (sw == NULL) 504 return (EINVAL); 505 506 switch (sw->sw_alg) { 507 case CRYPTO_AES_GCM_16: 508 case CRYPTO_AES_GMAC: 509 case CRYPTO_CHACHA20_POLY1305: 510 swe = sw; 511 crde = crd; 512 exf = swe->sw_exf; 513 ivlen = exf->ivsize; 514 break; 515 case CRYPTO_AES_128_GMAC: 516 case CRYPTO_AES_192_GMAC: 517 case CRYPTO_AES_256_GMAC: 518 case CRYPTO_CHACHA20_POLY1305_MAC: 519 swa = sw; 520 crda = crd; 521 axf = swa->sw_axf; 522 if (swa->sw_ictx == 0) 523 return (EINVAL); 524 bcopy(swa->sw_ictx, &ctx, axf->ctxsize); 525 blksz = axf->blocksize; 526 break; 527 default: 528 return (EINVAL); 529 } 530 } 531 if (crde == NULL || crda == NULL) 532 return (EINVAL); 533 534 if (crp->crp_flags & CRYPTO_F_IMBUF) { 535 outtype = CRYPTO_BUF_MBUF; 536 } else { 537 outtype = CRYPTO_BUF_IOV; 538 } 539 540 /* Initialize the IV */ 541 if (crde->crd_flags & CRD_F_ENCRYPT) { 542 /* IV explicitly provided ? */ 543 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 544 bcopy(crde->crd_iv, iv, ivlen); 545 else 546 arc4random_buf(iv, ivlen); 547 548 /* Do we need to write the IV */ 549 if (!(crde->crd_flags & CRD_F_IV_PRESENT)) 550 COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv); 551 552 } else { /* Decryption */ 553 /* IV explicitly provided ? */ 554 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 555 bcopy(crde->crd_iv, iv, ivlen); 556 else { 557 /* Get IV off buf */ 558 COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv); 559 } 560 } 561 562 /* Supply MAC with IV */ 563 if (axf->Reinit) 564 axf->Reinit(&ctx, iv, ivlen); 565 566 /* Supply MAC with AAD */ 567 aadlen = crda->crd_len; 568 /* 569 * Section 5 of RFC 4106 specifies that AAD construction consists of 570 * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. 571 * Unfortunately it doesn't follow a good example set in the Section 572 * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the 573 * external (to the packet) memory buffer, is processed by the hash 574 * function in the end thus allowing to retain simple programming 575 * interfaces and avoid kludges like the one below. 576 */ 577 if (crda->crd_flags & CRD_F_ESN) { 578 aadlen += 4; 579 /* SPI */ 580 COPYDATA(outtype, buf, crda->crd_skip, 4, blk); 581 iskip = 4; /* loop below will start with an offset of 4 */ 582 /* ESN */ 583 bcopy(crda->crd_esn, blk + 4, 4); 584 oskip = iskip + 4; /* offset output buffer blk by 8 */ 585 } 586 for (i = iskip; i < crda->crd_len; i += axf->hashsize) { 587 len = MIN(crda->crd_len - i, axf->hashsize - oskip); 588 COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip); 589 bzero(blk + len + oskip, axf->hashsize - len - oskip); 590 axf->Update(&ctx, blk, axf->hashsize); 591 oskip = 0; /* reset initial output offset */ 592 } 593 594 if (exf->reinit) 595 exf->reinit(swe->sw_kschedule, iv); 596 597 /* Do encryption/decryption with MAC */ 598 for (i = 0; i < crde->crd_len; i += blksz) { 599 len = MIN(crde->crd_len - i, blksz); 600 if (len < blksz) 601 bzero(blk, blksz); 602 COPYDATA(outtype, buf, crde->crd_skip + i, len, blk); 603 if (crde->crd_flags & CRD_F_ENCRYPT) { 604 exf->encrypt(swe->sw_kschedule, blk); 605 axf->Update(&ctx, blk, len); 606 } else { 607 axf->Update(&ctx, blk, len); 608 exf->decrypt(swe->sw_kschedule, blk); 609 } 610 COPYBACK(outtype, buf, crde->crd_skip + i, len, blk); 611 } 612 613 /* Do any required special finalization */ 614 switch (crda->crd_alg) { 615 case CRYPTO_AES_128_GMAC: 616 case CRYPTO_AES_192_GMAC: 617 case CRYPTO_AES_256_GMAC: 618 /* length block */ 619 bzero(blk, axf->hashsize); 620 blkp = (uint32_t *)blk + 1; 621 *blkp = htobe32(aadlen * 8); 622 blkp = (uint32_t *)blk + 3; 623 *blkp = htobe32(crde->crd_len * 8); 624 axf->Update(&ctx, blk, axf->hashsize); 625 break; 626 case CRYPTO_CHACHA20_POLY1305_MAC: 627 /* length block */ 628 bzero(blk, axf->hashsize); 629 blkp = (uint32_t *)blk; 630 *blkp = htole32(aadlen); 631 blkp = (uint32_t *)blk + 2; 632 *blkp = htole32(crde->crd_len); 633 axf->Update(&ctx, blk, axf->hashsize); 634 break; 635 } 636 637 /* Finalize MAC */ 638 axf->Final(aalg, &ctx); 639 640 /* Inject the authentication data */ 641 if (outtype == CRYPTO_BUF_MBUF) 642 COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg); 643 else 644 bcopy(aalg, crp->crp_mac, axf->authsize); 645 646 return (0); 647 } 648 649 /* 650 * Apply a compression/decompression algorithm 651 */ 652 int 653 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw, 654 caddr_t buf, int outtype) 655 { 656 u_int8_t *data, *out; 657 struct comp_algo *cxf; 658 int adj; 659 u_int32_t result; 660 661 cxf = sw->sw_cxf; 662 663 /* We must handle the whole buffer of data in one time 664 * then if there is not all the data in the mbuf, we must 665 * copy in a buffer. 666 */ 667 668 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT); 669 if (data == NULL) 670 return (EINVAL); 671 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data); 672 673 if (crd->crd_flags & CRD_F_COMP) 674 result = cxf->compress(data, crd->crd_len, &out); 675 else 676 result = cxf->decompress(data, crd->crd_len, &out); 677 678 free(data, M_CRYPTO_DATA, crd->crd_len); 679 if (result == 0) 680 return EINVAL; 681 682 /* Copy back the (de)compressed data. m_copyback is 683 * extending the mbuf as necessary. 684 */ 685 sw->sw_size = result; 686 /* Check the compressed size when doing compression */ 687 if (crd->crd_flags & CRD_F_COMP) { 688 if (result > crd->crd_len) { 689 /* Compression was useless, we lost time */ 690 free(out, M_CRYPTO_DATA, 0); 691 return 0; 692 } 693 } 694 695 COPYBACK(outtype, buf, crd->crd_skip, result, out); 696 if (result < crd->crd_len) { 697 adj = result - crd->crd_len; 698 if (outtype == CRYPTO_BUF_MBUF) { 699 adj = result - crd->crd_len; 700 m_adj((struct mbuf *)buf, adj); 701 } else { 702 struct uio *uio = (struct uio *)buf; 703 int ind; 704 705 adj = crd->crd_len - result; 706 ind = uio->uio_iovcnt - 1; 707 708 while (adj > 0 && ind >= 0) { 709 if (adj < uio->uio_iov[ind].iov_len) { 710 uio->uio_iov[ind].iov_len -= adj; 711 break; 712 } 713 714 adj -= uio->uio_iov[ind].iov_len; 715 uio->uio_iov[ind].iov_len = 0; 716 ind--; 717 uio->uio_iovcnt--; 718 } 719 } 720 } 721 free(out, M_CRYPTO_DATA, 0); 722 return 0; 723 } 724 725 /* 726 * Generate a new software session. 727 */ 728 int 729 swcr_newsession(u_int32_t *sid, struct cryptoini *cri) 730 { 731 struct swcr_data **swd; 732 struct auth_hash *axf; 733 struct enc_xform *txf; 734 struct comp_algo *cxf; 735 u_int32_t i; 736 int k; 737 738 if (sid == NULL || cri == NULL) 739 return EINVAL; 740 741 if (swcr_sessions) { 742 for (i = 1; i < swcr_sesnum; i++) 743 if (swcr_sessions[i] == NULL) 744 break; 745 } 746 747 if (swcr_sessions == NULL || i == swcr_sesnum) { 748 if (swcr_sessions == NULL) { 749 i = 1; /* We leave swcr_sessions[0] empty */ 750 swcr_sesnum = CRYPTO_SW_SESSIONS; 751 } else 752 swcr_sesnum *= 2; 753 754 swd = mallocarray(swcr_sesnum, sizeof(struct swcr_data *), 755 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 756 if (swd == NULL) { 757 /* Reset session number */ 758 if (swcr_sesnum == CRYPTO_SW_SESSIONS) 759 swcr_sesnum = 0; 760 else 761 swcr_sesnum /= 2; 762 return ENOBUFS; 763 } 764 765 /* Copy existing sessions */ 766 if (swcr_sessions) { 767 bcopy(swcr_sessions, swd, 768 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 769 free(swcr_sessions, M_CRYPTO_DATA, 770 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 771 } 772 773 swcr_sessions = swd; 774 } 775 776 swd = &swcr_sessions[i]; 777 *sid = i; 778 779 while (cri) { 780 *swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, 781 M_NOWAIT | M_ZERO); 782 if (*swd == NULL) { 783 swcr_freesession(i); 784 return ENOBUFS; 785 } 786 787 switch (cri->cri_alg) { 788 case CRYPTO_3DES_CBC: 789 txf = &enc_xform_3des; 790 goto enccommon; 791 case CRYPTO_BLF_CBC: 792 txf = &enc_xform_blf; 793 goto enccommon; 794 case CRYPTO_CAST_CBC: 795 txf = &enc_xform_cast5; 796 goto enccommon; 797 case CRYPTO_RIJNDAEL128_CBC: 798 txf = &enc_xform_rijndael128; 799 goto enccommon; 800 case CRYPTO_AES_CTR: 801 txf = &enc_xform_aes_ctr; 802 goto enccommon; 803 case CRYPTO_AES_XTS: 804 txf = &enc_xform_aes_xts; 805 goto enccommon; 806 case CRYPTO_AES_GCM_16: 807 txf = &enc_xform_aes_gcm; 808 goto enccommon; 809 case CRYPTO_AES_GMAC: 810 txf = &enc_xform_aes_gmac; 811 (*swd)->sw_exf = txf; 812 break; 813 case CRYPTO_CHACHA20_POLY1305: 814 txf = &enc_xform_chacha20_poly1305; 815 goto enccommon; 816 case CRYPTO_NULL: 817 txf = &enc_xform_null; 818 goto enccommon; 819 enccommon: 820 if (txf->ctxsize > 0) { 821 (*swd)->sw_kschedule = malloc(txf->ctxsize, 822 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 823 if ((*swd)->sw_kschedule == NULL) { 824 swcr_freesession(i); 825 return EINVAL; 826 } 827 } 828 if (txf->setkey((*swd)->sw_kschedule, cri->cri_key, 829 cri->cri_klen / 8) < 0) { 830 swcr_freesession(i); 831 return EINVAL; 832 } 833 (*swd)->sw_exf = txf; 834 break; 835 836 case CRYPTO_MD5_HMAC: 837 axf = &auth_hash_hmac_md5_96; 838 goto authcommon; 839 case CRYPTO_SHA1_HMAC: 840 axf = &auth_hash_hmac_sha1_96; 841 goto authcommon; 842 case CRYPTO_RIPEMD160_HMAC: 843 axf = &auth_hash_hmac_ripemd_160_96; 844 goto authcommon; 845 case CRYPTO_SHA2_256_HMAC: 846 axf = &auth_hash_hmac_sha2_256_128; 847 goto authcommon; 848 case CRYPTO_SHA2_384_HMAC: 849 axf = &auth_hash_hmac_sha2_384_192; 850 goto authcommon; 851 case CRYPTO_SHA2_512_HMAC: 852 axf = &auth_hash_hmac_sha2_512_256; 853 goto authcommon; 854 authcommon: 855 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 856 M_NOWAIT); 857 if ((*swd)->sw_ictx == NULL) { 858 swcr_freesession(i); 859 return ENOBUFS; 860 } 861 862 (*swd)->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, 863 M_NOWAIT); 864 if ((*swd)->sw_octx == NULL) { 865 swcr_freesession(i); 866 return ENOBUFS; 867 } 868 869 for (k = 0; k < cri->cri_klen / 8; k++) 870 cri->cri_key[k] ^= HMAC_IPAD_VAL; 871 872 axf->Init((*swd)->sw_ictx); 873 axf->Update((*swd)->sw_ictx, cri->cri_key, 874 cri->cri_klen / 8); 875 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer, 876 axf->blocksize - (cri->cri_klen / 8)); 877 878 for (k = 0; k < cri->cri_klen / 8; k++) 879 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 880 881 axf->Init((*swd)->sw_octx); 882 axf->Update((*swd)->sw_octx, cri->cri_key, 883 cri->cri_klen / 8); 884 axf->Update((*swd)->sw_octx, hmac_opad_buffer, 885 axf->blocksize - (cri->cri_klen / 8)); 886 887 for (k = 0; k < cri->cri_klen / 8; k++) 888 cri->cri_key[k] ^= HMAC_OPAD_VAL; 889 (*swd)->sw_axf = axf; 890 break; 891 892 case CRYPTO_AES_128_GMAC: 893 axf = &auth_hash_gmac_aes_128; 894 goto authenccommon; 895 case CRYPTO_AES_192_GMAC: 896 axf = &auth_hash_gmac_aes_192; 897 goto authenccommon; 898 case CRYPTO_AES_256_GMAC: 899 axf = &auth_hash_gmac_aes_256; 900 goto authenccommon; 901 case CRYPTO_CHACHA20_POLY1305_MAC: 902 axf = &auth_hash_chacha20_poly1305; 903 goto authenccommon; 904 authenccommon: 905 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 906 M_NOWAIT); 907 if ((*swd)->sw_ictx == NULL) { 908 swcr_freesession(i); 909 return ENOBUFS; 910 } 911 axf->Init((*swd)->sw_ictx); 912 axf->Setkey((*swd)->sw_ictx, cri->cri_key, 913 cri->cri_klen / 8); 914 (*swd)->sw_axf = axf; 915 break; 916 917 case CRYPTO_DEFLATE_COMP: 918 cxf = &comp_algo_deflate; 919 (*swd)->sw_cxf = cxf; 920 break; 921 case CRYPTO_ESN: 922 /* nothing to do */ 923 break; 924 default: 925 swcr_freesession(i); 926 return EINVAL; 927 } 928 929 (*swd)->sw_alg = cri->cri_alg; 930 cri = cri->cri_next; 931 swd = &((*swd)->sw_next); 932 } 933 return 0; 934 } 935 936 /* 937 * Free a session. 938 */ 939 int 940 swcr_freesession(u_int64_t tid) 941 { 942 struct swcr_data *swd; 943 struct enc_xform *txf; 944 struct auth_hash *axf; 945 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 946 947 if (sid > swcr_sesnum || swcr_sessions == NULL || 948 swcr_sessions[sid] == NULL) 949 return EINVAL; 950 951 /* Silently accept and return */ 952 if (sid == 0) 953 return 0; 954 955 while ((swd = swcr_sessions[sid]) != NULL) { 956 swcr_sessions[sid] = swd->sw_next; 957 958 switch (swd->sw_alg) { 959 case CRYPTO_3DES_CBC: 960 case CRYPTO_BLF_CBC: 961 case CRYPTO_CAST_CBC: 962 case CRYPTO_RIJNDAEL128_CBC: 963 case CRYPTO_AES_CTR: 964 case CRYPTO_AES_XTS: 965 case CRYPTO_AES_GCM_16: 966 case CRYPTO_AES_GMAC: 967 case CRYPTO_CHACHA20_POLY1305: 968 case CRYPTO_NULL: 969 txf = swd->sw_exf; 970 971 if (swd->sw_kschedule) { 972 explicit_bzero(swd->sw_kschedule, txf->ctxsize); 973 free(swd->sw_kschedule, M_CRYPTO_DATA, 0); 974 } 975 break; 976 977 case CRYPTO_MD5_HMAC: 978 case CRYPTO_SHA1_HMAC: 979 case CRYPTO_RIPEMD160_HMAC: 980 case CRYPTO_SHA2_256_HMAC: 981 case CRYPTO_SHA2_384_HMAC: 982 case CRYPTO_SHA2_512_HMAC: 983 axf = swd->sw_axf; 984 985 if (swd->sw_ictx) { 986 explicit_bzero(swd->sw_ictx, axf->ctxsize); 987 free(swd->sw_ictx, M_CRYPTO_DATA, 0); 988 } 989 if (swd->sw_octx) { 990 explicit_bzero(swd->sw_octx, axf->ctxsize); 991 free(swd->sw_octx, M_CRYPTO_DATA, 0); 992 } 993 break; 994 995 case CRYPTO_AES_128_GMAC: 996 case CRYPTO_AES_192_GMAC: 997 case CRYPTO_AES_256_GMAC: 998 case CRYPTO_CHACHA20_POLY1305_MAC: 999 axf = swd->sw_axf; 1000 1001 if (swd->sw_ictx) { 1002 explicit_bzero(swd->sw_ictx, axf->ctxsize); 1003 free(swd->sw_ictx, M_CRYPTO_DATA, 0); 1004 } 1005 break; 1006 } 1007 1008 free(swd, M_CRYPTO_DATA, 0); 1009 } 1010 return 0; 1011 } 1012 1013 /* 1014 * Process a software request. 1015 */ 1016 int 1017 swcr_process(struct cryptop *crp) 1018 { 1019 struct cryptodesc *crd; 1020 struct swcr_data *sw; 1021 u_int32_t lid; 1022 int type; 1023 1024 /* Sanity check */ 1025 if (crp == NULL) 1026 return EINVAL; 1027 1028 if (crp->crp_desc == NULL || crp->crp_buf == NULL) { 1029 crp->crp_etype = EINVAL; 1030 goto done; 1031 } 1032 1033 lid = crp->crp_sid & 0xffffffff; 1034 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { 1035 crp->crp_etype = ENOENT; 1036 goto done; 1037 } 1038 1039 if (crp->crp_flags & CRYPTO_F_IMBUF) 1040 type = CRYPTO_BUF_MBUF; 1041 else 1042 type = CRYPTO_BUF_IOV; 1043 1044 /* Go through crypto descriptors, processing as we go */ 1045 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1046 /* 1047 * Find the crypto context. 1048 * 1049 * XXX Note that the logic here prevents us from having 1050 * XXX the same algorithm multiple times in a session 1051 * XXX (or rather, we can but it won't give us the right 1052 * XXX results). To do that, we'd need some way of differentiating 1053 * XXX between the various instances of an algorithm (so we can 1054 * XXX locate the correct crypto context). 1055 */ 1056 for (sw = swcr_sessions[lid]; 1057 sw && sw->sw_alg != crd->crd_alg; 1058 sw = sw->sw_next) 1059 ; 1060 1061 /* No such context ? */ 1062 if (sw == NULL) { 1063 crp->crp_etype = EINVAL; 1064 goto done; 1065 } 1066 1067 switch (sw->sw_alg) { 1068 case CRYPTO_NULL: 1069 break; 1070 case CRYPTO_3DES_CBC: 1071 case CRYPTO_BLF_CBC: 1072 case CRYPTO_CAST_CBC: 1073 case CRYPTO_RIJNDAEL128_CBC: 1074 case CRYPTO_AES_CTR: 1075 case CRYPTO_AES_XTS: 1076 if ((crp->crp_etype = swcr_encdec(crd, sw, 1077 crp->crp_buf, type)) != 0) 1078 goto done; 1079 break; 1080 case CRYPTO_MD5_HMAC: 1081 case CRYPTO_SHA1_HMAC: 1082 case CRYPTO_RIPEMD160_HMAC: 1083 case CRYPTO_SHA2_256_HMAC: 1084 case CRYPTO_SHA2_384_HMAC: 1085 case CRYPTO_SHA2_512_HMAC: 1086 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, 1087 crp->crp_buf, type)) != 0) 1088 goto done; 1089 break; 1090 1091 case CRYPTO_AES_GCM_16: 1092 case CRYPTO_AES_GMAC: 1093 case CRYPTO_AES_128_GMAC: 1094 case CRYPTO_AES_192_GMAC: 1095 case CRYPTO_AES_256_GMAC: 1096 case CRYPTO_CHACHA20_POLY1305: 1097 case CRYPTO_CHACHA20_POLY1305_MAC: 1098 crp->crp_etype = swcr_authenc(crp); 1099 goto done; 1100 1101 case CRYPTO_DEFLATE_COMP: 1102 if ((crp->crp_etype = swcr_compdec(crd, sw, 1103 crp->crp_buf, type)) != 0) 1104 goto done; 1105 else 1106 crp->crp_olen = (int)sw->sw_size; 1107 break; 1108 1109 default: 1110 /* Unknown/unsupported algorithm */ 1111 crp->crp_etype = EINVAL; 1112 goto done; 1113 } 1114 } 1115 1116 done: 1117 crypto_done(crp); 1118 return 0; 1119 } 1120 1121 /* 1122 * Initialize the driver, called from the kernel main(). 1123 */ 1124 void 1125 swcr_init(void) 1126 { 1127 int algs[CRYPTO_ALGORITHM_MAX + 1]; 1128 int flags = CRYPTOCAP_F_SOFTWARE; 1129 1130 swcr_id = crypto_get_driverid(flags); 1131 if (swcr_id < 0) { 1132 /* This should never happen */ 1133 panic("Software crypto device cannot initialize!"); 1134 } 1135 1136 bzero(algs, sizeof(algs)); 1137 1138 algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1139 algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1140 algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1141 algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1142 algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1143 algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1144 algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1145 algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; 1146 algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; 1147 algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; 1148 algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1149 algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED; 1150 algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; 1151 algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1152 algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1153 algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1154 algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1155 algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1156 algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1157 algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; 1158 algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1159 algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; 1160 1161 crypto_register(swcr_id, algs, swcr_newsession, 1162 swcr_freesession, swcr_process); 1163 } 1164