xref: /openbsd/sys/crypto/curve25519.c (revision 771fbea0)
1 /*	$OpenBSD: curve25519.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $	*/
2 /*
3  * Copyright (C) 2018-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright (C) 2015-2016 The fiat-crypto Authors.
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * This contains two implementation: a machine-generated formally verified
19  * implementation of Curve25519 ECDH from:
20  * <https://github.com/mit-plv/fiat-crypto>. Though originally machine
21  * generated, it has been tweaked to be suitable for use in the kernel.  It is
22  * optimized for 32-bit machines and machines that cannot work efficiently with
23  * 128-bit integer types.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/systm.h>
28 #include <crypto/curve25519.h>
29 
30 #define __always_inline __inline __attribute__((__always_inline__))
31 static const uint8_t null_point[CURVE25519_KEY_SIZE];
32 static const uint8_t base_point[CURVE25519_KEY_SIZE] = { 9 };
33 
34 int curve25519_generate_public(uint8_t pub[CURVE25519_KEY_SIZE],
35 			       const uint8_t secret[CURVE25519_KEY_SIZE])
36 {
37 	if (timingsafe_bcmp(secret, null_point, CURVE25519_KEY_SIZE) == 0)
38 		return 0;
39 	return curve25519(pub, secret, base_point);
40 }
41 
42 static __always_inline uint32_t get_unaligned_le32(const uint8_t *a)
43 {
44 	uint32_t l;
45 	__builtin_memcpy(&l, a, sizeof(l));
46 	return letoh32(l);
47 }
48 
49 /* fe means field element. Here the field is \Z/(2^255-19). An element t,
50  * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
51  * t[3]+2^102 t[4]+...+2^230 t[9].
52  * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
53  * Multiplication and carrying produce fe from fe_loose.
54  */
55 typedef struct fe { uint32_t v[10]; } fe;
56 
57 /* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
58  * Addition and subtraction produce fe_loose from (fe, fe).
59  */
60 typedef struct fe_loose { uint32_t v[10]; } fe_loose;
61 
62 static __always_inline void fe_frombytes_impl(uint32_t h[10], const uint8_t *s)
63 {
64 	/* Ignores top bit of s. */
65 	uint32_t a0 = get_unaligned_le32(s);
66 	uint32_t a1 = get_unaligned_le32(s+4);
67 	uint32_t a2 = get_unaligned_le32(s+8);
68 	uint32_t a3 = get_unaligned_le32(s+12);
69 	uint32_t a4 = get_unaligned_le32(s+16);
70 	uint32_t a5 = get_unaligned_le32(s+20);
71 	uint32_t a6 = get_unaligned_le32(s+24);
72 	uint32_t a7 = get_unaligned_le32(s+28);
73 	h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
74 	h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
75 	h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
76 	h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
77 	h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
78 	h[5] = a4&((1<<25)-1);                    /*                        25 */
79 	h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
80 	h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
81 	h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
82 	h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
83 }
84 
85 static __always_inline void fe_frombytes(fe *h, const uint8_t *s)
86 {
87 	fe_frombytes_impl(h->v, s);
88 }
89 
90 static __always_inline uint8_t /*bool*/
91 addcarryx_u25(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
92 {
93 	/* This function extracts 25 bits of result and 1 bit of carry
94 	 * (26 total), so a 32-bit intermediate is sufficient.
95 	 */
96 	uint32_t x = a + b + c;
97 	*low = x & ((1 << 25) - 1);
98 	return (x >> 25) & 1;
99 }
100 
101 static __always_inline uint8_t /*bool*/
102 addcarryx_u26(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
103 {
104 	/* This function extracts 26 bits of result and 1 bit of carry
105 	 * (27 total), so a 32-bit intermediate is sufficient.
106 	 */
107 	uint32_t x = a + b + c;
108 	*low = x & ((1 << 26) - 1);
109 	return (x >> 26) & 1;
110 }
111 
112 static __always_inline uint8_t /*bool*/
113 subborrow_u25(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
114 {
115 	/* This function extracts 25 bits of result and 1 bit of borrow
116 	 * (26 total), so a 32-bit intermediate is sufficient.
117 	 */
118 	uint32_t x = a - b - c;
119 	*low = x & ((1 << 25) - 1);
120 	return x >> 31;
121 }
122 
123 static __always_inline uint8_t /*bool*/
124 subborrow_u26(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
125 {
126 	/* This function extracts 26 bits of result and 1 bit of borrow
127 	 *(27 total), so a 32-bit intermediate is sufficient.
128 	 */
129 	uint32_t x = a - b - c;
130 	*low = x & ((1 << 26) - 1);
131 	return x >> 31;
132 }
133 
134 static __always_inline uint32_t cmovznz32(uint32_t t, uint32_t z, uint32_t nz)
135 {
136 	t = -!!t; /* all set if nonzero, 0 if 0 */
137 	return (t&nz) | ((~t)&z);
138 }
139 
140 static __always_inline void fe_freeze(uint32_t out[10], const uint32_t in1[10])
141 {
142 	const uint32_t x17 = in1[9];
143 	const uint32_t x18 = in1[8];
144 	const uint32_t x16 = in1[7];
145 	const uint32_t x14 = in1[6];
146 	const uint32_t x12 = in1[5];
147 	const uint32_t x10 = in1[4];
148 	const uint32_t x8 = in1[3];
149 	const uint32_t x6 = in1[2];
150 	const uint32_t x4 = in1[1];
151 	const uint32_t x2 = in1[0];
152 	uint32_t x20; uint8_t/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
153 	uint32_t x23; uint8_t/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
154 	uint32_t x26; uint8_t/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
155 	uint32_t x29; uint8_t/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
156 	uint32_t x32; uint8_t/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
157 	uint32_t x35; uint8_t/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
158 	uint32_t x38; uint8_t/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
159 	uint32_t x41; uint8_t/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
160 	uint32_t x44; uint8_t/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
161 	uint32_t x47; uint8_t/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
162 	uint32_t x49 = cmovznz32(x48, 0x0, 0xffffffff);
163 	uint32_t x50 = (x49 & 0x3ffffed);
164 	uint32_t x52; uint8_t/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
165 	uint32_t x54 = (x49 & 0x1ffffff);
166 	uint32_t x56; uint8_t/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
167 	uint32_t x58 = (x49 & 0x3ffffff);
168 	uint32_t x60; uint8_t/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
169 	uint32_t x62 = (x49 & 0x1ffffff);
170 	uint32_t x64; uint8_t/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
171 	uint32_t x66 = (x49 & 0x3ffffff);
172 	uint32_t x68; uint8_t/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
173 	uint32_t x70 = (x49 & 0x1ffffff);
174 	uint32_t x72; uint8_t/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
175 	uint32_t x74 = (x49 & 0x3ffffff);
176 	uint32_t x76; uint8_t/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
177 	uint32_t x78 = (x49 & 0x1ffffff);
178 	uint32_t x80; uint8_t/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
179 	uint32_t x82 = (x49 & 0x3ffffff);
180 	uint32_t x84; uint8_t/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
181 	uint32_t x86 = (x49 & 0x1ffffff);
182 	uint32_t x88; addcarryx_u25(x85, x47, x86, &x88);
183 	out[0] = x52;
184 	out[1] = x56;
185 	out[2] = x60;
186 	out[3] = x64;
187 	out[4] = x68;
188 	out[5] = x72;
189 	out[6] = x76;
190 	out[7] = x80;
191 	out[8] = x84;
192 	out[9] = x88;
193 }
194 
195 static __always_inline void fe_tobytes(uint8_t s[32], const fe *f)
196 {
197 	uint32_t h[10];
198 	fe_freeze(h, f->v);
199 	s[0] = h[0] >> 0;
200 	s[1] = h[0] >> 8;
201 	s[2] = h[0] >> 16;
202 	s[3] = (h[0] >> 24) | (h[1] << 2);
203 	s[4] = h[1] >> 6;
204 	s[5] = h[1] >> 14;
205 	s[6] = (h[1] >> 22) | (h[2] << 3);
206 	s[7] = h[2] >> 5;
207 	s[8] = h[2] >> 13;
208 	s[9] = (h[2] >> 21) | (h[3] << 5);
209 	s[10] = h[3] >> 3;
210 	s[11] = h[3] >> 11;
211 	s[12] = (h[3] >> 19) | (h[4] << 6);
212 	s[13] = h[4] >> 2;
213 	s[14] = h[4] >> 10;
214 	s[15] = h[4] >> 18;
215 	s[16] = h[5] >> 0;
216 	s[17] = h[5] >> 8;
217 	s[18] = h[5] >> 16;
218 	s[19] = (h[5] >> 24) | (h[6] << 1);
219 	s[20] = h[6] >> 7;
220 	s[21] = h[6] >> 15;
221 	s[22] = (h[6] >> 23) | (h[7] << 3);
222 	s[23] = h[7] >> 5;
223 	s[24] = h[7] >> 13;
224 	s[25] = (h[7] >> 21) | (h[8] << 4);
225 	s[26] = h[8] >> 4;
226 	s[27] = h[8] >> 12;
227 	s[28] = (h[8] >> 20) | (h[9] << 6);
228 	s[29] = h[9] >> 2;
229 	s[30] = h[9] >> 10;
230 	s[31] = h[9] >> 18;
231 }
232 
233 /* h = f */
234 static __always_inline void fe_copy(fe *h, const fe *f)
235 {
236 	memmove(h, f, sizeof(uint32_t) * 10);
237 }
238 
239 static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
240 {
241 	memmove(h, f, sizeof(uint32_t) * 10);
242 }
243 
244 /* h = 0 */
245 static __always_inline void fe_0(fe *h)
246 {
247 	memset(h, 0, sizeof(uint32_t) * 10);
248 }
249 
250 /* h = 1 */
251 static __always_inline void fe_1(fe *h)
252 {
253 	memset(h, 0, sizeof(uint32_t) * 10);
254 	h->v[0] = 1;
255 }
256 
257 static void fe_add_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
258 {
259 	const uint32_t x20 = in1[9];
260 	const uint32_t x21 = in1[8];
261 	const uint32_t x19 = in1[7];
262 	const uint32_t x17 = in1[6];
263 	const uint32_t x15 = in1[5];
264 	const uint32_t x13 = in1[4];
265 	const uint32_t x11 = in1[3];
266 	const uint32_t x9 = in1[2];
267 	const uint32_t x7 = in1[1];
268 	const uint32_t x5 = in1[0];
269 	const uint32_t x38 = in2[9];
270 	const uint32_t x39 = in2[8];
271 	const uint32_t x37 = in2[7];
272 	const uint32_t x35 = in2[6];
273 	const uint32_t x33 = in2[5];
274 	const uint32_t x31 = in2[4];
275 	const uint32_t x29 = in2[3];
276 	const uint32_t x27 = in2[2];
277 	const uint32_t x25 = in2[1];
278 	const uint32_t x23 = in2[0];
279 	out[0] = (x5 + x23);
280 	out[1] = (x7 + x25);
281 	out[2] = (x9 + x27);
282 	out[3] = (x11 + x29);
283 	out[4] = (x13 + x31);
284 	out[5] = (x15 + x33);
285 	out[6] = (x17 + x35);
286 	out[7] = (x19 + x37);
287 	out[8] = (x21 + x39);
288 	out[9] = (x20 + x38);
289 }
290 
291 /* h = f + g
292  * Can overlap h with f or g.
293  */
294 static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
295 {
296 	fe_add_impl(h->v, f->v, g->v);
297 }
298 
299 static void fe_sub_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
300 {
301 	const uint32_t x20 = in1[9];
302 	const uint32_t x21 = in1[8];
303 	const uint32_t x19 = in1[7];
304 	const uint32_t x17 = in1[6];
305 	const uint32_t x15 = in1[5];
306 	const uint32_t x13 = in1[4];
307 	const uint32_t x11 = in1[3];
308 	const uint32_t x9 = in1[2];
309 	const uint32_t x7 = in1[1];
310 	const uint32_t x5 = in1[0];
311 	const uint32_t x38 = in2[9];
312 	const uint32_t x39 = in2[8];
313 	const uint32_t x37 = in2[7];
314 	const uint32_t x35 = in2[6];
315 	const uint32_t x33 = in2[5];
316 	const uint32_t x31 = in2[4];
317 	const uint32_t x29 = in2[3];
318 	const uint32_t x27 = in2[2];
319 	const uint32_t x25 = in2[1];
320 	const uint32_t x23 = in2[0];
321 	out[0] = ((0x7ffffda + x5) - x23);
322 	out[1] = ((0x3fffffe + x7) - x25);
323 	out[2] = ((0x7fffffe + x9) - x27);
324 	out[3] = ((0x3fffffe + x11) - x29);
325 	out[4] = ((0x7fffffe + x13) - x31);
326 	out[5] = ((0x3fffffe + x15) - x33);
327 	out[6] = ((0x7fffffe + x17) - x35);
328 	out[7] = ((0x3fffffe + x19) - x37);
329 	out[8] = ((0x7fffffe + x21) - x39);
330 	out[9] = ((0x3fffffe + x20) - x38);
331 }
332 
333 /* h = f - g
334  * Can overlap h with f or g.
335  */
336 static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
337 {
338 	fe_sub_impl(h->v, f->v, g->v);
339 }
340 
341 static void fe_mul_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
342 {
343 	const uint32_t x20 = in1[9];
344 	const uint32_t x21 = in1[8];
345 	const uint32_t x19 = in1[7];
346 	const uint32_t x17 = in1[6];
347 	const uint32_t x15 = in1[5];
348 	const uint32_t x13 = in1[4];
349 	const uint32_t x11 = in1[3];
350 	const uint32_t x9 = in1[2];
351 	const uint32_t x7 = in1[1];
352 	const uint32_t x5 = in1[0];
353 	const uint32_t x38 = in2[9];
354 	const uint32_t x39 = in2[8];
355 	const uint32_t x37 = in2[7];
356 	const uint32_t x35 = in2[6];
357 	const uint32_t x33 = in2[5];
358 	const uint32_t x31 = in2[4];
359 	const uint32_t x29 = in2[3];
360 	const uint32_t x27 = in2[2];
361 	const uint32_t x25 = in2[1];
362 	const uint32_t x23 = in2[0];
363 	uint64_t x40 = ((uint64_t)x23 * x5);
364 	uint64_t x41 = (((uint64_t)x23 * x7) + ((uint64_t)x25 * x5));
365 	uint64_t x42 = ((((uint64_t)(0x2 * x25) * x7) + ((uint64_t)x23 * x9)) + ((uint64_t)x27 * x5));
366 	uint64_t x43 = (((((uint64_t)x25 * x9) + ((uint64_t)x27 * x7)) + ((uint64_t)x23 * x11)) + ((uint64_t)x29 * x5));
367 	uint64_t x44 = (((((uint64_t)x27 * x9) + (0x2 * (((uint64_t)x25 * x11) + ((uint64_t)x29 * x7)))) + ((uint64_t)x23 * x13)) + ((uint64_t)x31 * x5));
368 	uint64_t x45 = (((((((uint64_t)x27 * x11) + ((uint64_t)x29 * x9)) + ((uint64_t)x25 * x13)) + ((uint64_t)x31 * x7)) + ((uint64_t)x23 * x15)) + ((uint64_t)x33 * x5));
369 	uint64_t x46 = (((((0x2 * ((((uint64_t)x29 * x11) + ((uint64_t)x25 * x15)) + ((uint64_t)x33 * x7))) + ((uint64_t)x27 * x13)) + ((uint64_t)x31 * x9)) + ((uint64_t)x23 * x17)) + ((uint64_t)x35 * x5));
370 	uint64_t x47 = (((((((((uint64_t)x29 * x13) + ((uint64_t)x31 * x11)) + ((uint64_t)x27 * x15)) + ((uint64_t)x33 * x9)) + ((uint64_t)x25 * x17)) + ((uint64_t)x35 * x7)) + ((uint64_t)x23 * x19)) + ((uint64_t)x37 * x5));
371 	uint64_t x48 = (((((((uint64_t)x31 * x13) + (0x2 * (((((uint64_t)x29 * x15) + ((uint64_t)x33 * x11)) + ((uint64_t)x25 * x19)) + ((uint64_t)x37 * x7)))) + ((uint64_t)x27 * x17)) + ((uint64_t)x35 * x9)) + ((uint64_t)x23 * x21)) + ((uint64_t)x39 * x5));
372 	uint64_t x49 = (((((((((((uint64_t)x31 * x15) + ((uint64_t)x33 * x13)) + ((uint64_t)x29 * x17)) + ((uint64_t)x35 * x11)) + ((uint64_t)x27 * x19)) + ((uint64_t)x37 * x9)) + ((uint64_t)x25 * x21)) + ((uint64_t)x39 * x7)) + ((uint64_t)x23 * x20)) + ((uint64_t)x38 * x5));
373 	uint64_t x50 = (((((0x2 * ((((((uint64_t)x33 * x15) + ((uint64_t)x29 * x19)) + ((uint64_t)x37 * x11)) + ((uint64_t)x25 * x20)) + ((uint64_t)x38 * x7))) + ((uint64_t)x31 * x17)) + ((uint64_t)x35 * x13)) + ((uint64_t)x27 * x21)) + ((uint64_t)x39 * x9));
374 	uint64_t x51 = (((((((((uint64_t)x33 * x17) + ((uint64_t)x35 * x15)) + ((uint64_t)x31 * x19)) + ((uint64_t)x37 * x13)) + ((uint64_t)x29 * x21)) + ((uint64_t)x39 * x11)) + ((uint64_t)x27 * x20)) + ((uint64_t)x38 * x9));
375 	uint64_t x52 = (((((uint64_t)x35 * x17) + (0x2 * (((((uint64_t)x33 * x19) + ((uint64_t)x37 * x15)) + ((uint64_t)x29 * x20)) + ((uint64_t)x38 * x11)))) + ((uint64_t)x31 * x21)) + ((uint64_t)x39 * x13));
376 	uint64_t x53 = (((((((uint64_t)x35 * x19) + ((uint64_t)x37 * x17)) + ((uint64_t)x33 * x21)) + ((uint64_t)x39 * x15)) + ((uint64_t)x31 * x20)) + ((uint64_t)x38 * x13));
377 	uint64_t x54 = (((0x2 * ((((uint64_t)x37 * x19) + ((uint64_t)x33 * x20)) + ((uint64_t)x38 * x15))) + ((uint64_t)x35 * x21)) + ((uint64_t)x39 * x17));
378 	uint64_t x55 = (((((uint64_t)x37 * x21) + ((uint64_t)x39 * x19)) + ((uint64_t)x35 * x20)) + ((uint64_t)x38 * x17));
379 	uint64_t x56 = (((uint64_t)x39 * x21) + (0x2 * (((uint64_t)x37 * x20) + ((uint64_t)x38 * x19))));
380 	uint64_t x57 = (((uint64_t)x39 * x20) + ((uint64_t)x38 * x21));
381 	uint64_t x58 = ((uint64_t)(0x2 * x38) * x20);
382 	uint64_t x59 = (x48 + (x58 << 0x4));
383 	uint64_t x60 = (x59 + (x58 << 0x1));
384 	uint64_t x61 = (x60 + x58);
385 	uint64_t x62 = (x47 + (x57 << 0x4));
386 	uint64_t x63 = (x62 + (x57 << 0x1));
387 	uint64_t x64 = (x63 + x57);
388 	uint64_t x65 = (x46 + (x56 << 0x4));
389 	uint64_t x66 = (x65 + (x56 << 0x1));
390 	uint64_t x67 = (x66 + x56);
391 	uint64_t x68 = (x45 + (x55 << 0x4));
392 	uint64_t x69 = (x68 + (x55 << 0x1));
393 	uint64_t x70 = (x69 + x55);
394 	uint64_t x71 = (x44 + (x54 << 0x4));
395 	uint64_t x72 = (x71 + (x54 << 0x1));
396 	uint64_t x73 = (x72 + x54);
397 	uint64_t x74 = (x43 + (x53 << 0x4));
398 	uint64_t x75 = (x74 + (x53 << 0x1));
399 	uint64_t x76 = (x75 + x53);
400 	uint64_t x77 = (x42 + (x52 << 0x4));
401 	uint64_t x78 = (x77 + (x52 << 0x1));
402 	uint64_t x79 = (x78 + x52);
403 	uint64_t x80 = (x41 + (x51 << 0x4));
404 	uint64_t x81 = (x80 + (x51 << 0x1));
405 	uint64_t x82 = (x81 + x51);
406 	uint64_t x83 = (x40 + (x50 << 0x4));
407 	uint64_t x84 = (x83 + (x50 << 0x1));
408 	uint64_t x85 = (x84 + x50);
409 	uint64_t x86 = (x85 >> 0x1a);
410 	uint32_t x87 = ((uint32_t)x85 & 0x3ffffff);
411 	uint64_t x88 = (x86 + x82);
412 	uint64_t x89 = (x88 >> 0x19);
413 	uint32_t x90 = ((uint32_t)x88 & 0x1ffffff);
414 	uint64_t x91 = (x89 + x79);
415 	uint64_t x92 = (x91 >> 0x1a);
416 	uint32_t x93 = ((uint32_t)x91 & 0x3ffffff);
417 	uint64_t x94 = (x92 + x76);
418 	uint64_t x95 = (x94 >> 0x19);
419 	uint32_t x96 = ((uint32_t)x94 & 0x1ffffff);
420 	uint64_t x97 = (x95 + x73);
421 	uint64_t x98 = (x97 >> 0x1a);
422 	uint32_t x99 = ((uint32_t)x97 & 0x3ffffff);
423 	uint64_t x100 = (x98 + x70);
424 	uint64_t x101 = (x100 >> 0x19);
425 	uint32_t x102 = ((uint32_t)x100 & 0x1ffffff);
426 	uint64_t x103 = (x101 + x67);
427 	uint64_t x104 = (x103 >> 0x1a);
428 	uint32_t x105 = ((uint32_t)x103 & 0x3ffffff);
429 	uint64_t x106 = (x104 + x64);
430 	uint64_t x107 = (x106 >> 0x19);
431 	uint32_t x108 = ((uint32_t)x106 & 0x1ffffff);
432 	uint64_t x109 = (x107 + x61);
433 	uint64_t x110 = (x109 >> 0x1a);
434 	uint32_t x111 = ((uint32_t)x109 & 0x3ffffff);
435 	uint64_t x112 = (x110 + x49);
436 	uint64_t x113 = (x112 >> 0x19);
437 	uint32_t x114 = ((uint32_t)x112 & 0x1ffffff);
438 	uint64_t x115 = (x87 + (0x13 * x113));
439 	uint32_t x116 = (uint32_t) (x115 >> 0x1a);
440 	uint32_t x117 = ((uint32_t)x115 & 0x3ffffff);
441 	uint32_t x118 = (x116 + x90);
442 	uint32_t x119 = (x118 >> 0x19);
443 	uint32_t x120 = (x118 & 0x1ffffff);
444 	out[0] = x117;
445 	out[1] = x120;
446 	out[2] = (x119 + x93);
447 	out[3] = x96;
448 	out[4] = x99;
449 	out[5] = x102;
450 	out[6] = x105;
451 	out[7] = x108;
452 	out[8] = x111;
453 	out[9] = x114;
454 }
455 
456 static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
457 {
458 	fe_mul_impl(h->v, f->v, g->v);
459 }
460 
461 static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
462 {
463 	fe_mul_impl(h->v, f->v, g->v);
464 }
465 
466 static __always_inline void
467 fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
468 {
469 	fe_mul_impl(h->v, f->v, g->v);
470 }
471 
472 static void fe_sqr_impl(uint32_t out[10], const uint32_t in1[10])
473 {
474 	const uint32_t x17 = in1[9];
475 	const uint32_t x18 = in1[8];
476 	const uint32_t x16 = in1[7];
477 	const uint32_t x14 = in1[6];
478 	const uint32_t x12 = in1[5];
479 	const uint32_t x10 = in1[4];
480 	const uint32_t x8 = in1[3];
481 	const uint32_t x6 = in1[2];
482 	const uint32_t x4 = in1[1];
483 	const uint32_t x2 = in1[0];
484 	uint64_t x19 = ((uint64_t)x2 * x2);
485 	uint64_t x20 = ((uint64_t)(0x2 * x2) * x4);
486 	uint64_t x21 = (0x2 * (((uint64_t)x4 * x4) + ((uint64_t)x2 * x6)));
487 	uint64_t x22 = (0x2 * (((uint64_t)x4 * x6) + ((uint64_t)x2 * x8)));
488 	uint64_t x23 = ((((uint64_t)x6 * x6) + ((uint64_t)(0x4 * x4) * x8)) + ((uint64_t)(0x2 * x2) * x10));
489 	uint64_t x24 = (0x2 * ((((uint64_t)x6 * x8) + ((uint64_t)x4 * x10)) + ((uint64_t)x2 * x12)));
490 	uint64_t x25 = (0x2 * (((((uint64_t)x8 * x8) + ((uint64_t)x6 * x10)) + ((uint64_t)x2 * x14)) + ((uint64_t)(0x2 * x4) * x12)));
491 	uint64_t x26 = (0x2 * (((((uint64_t)x8 * x10) + ((uint64_t)x6 * x12)) + ((uint64_t)x4 * x14)) + ((uint64_t)x2 * x16)));
492 	uint64_t x27 = (((uint64_t)x10 * x10) + (0x2 * ((((uint64_t)x6 * x14) + ((uint64_t)x2 * x18)) + (0x2 * (((uint64_t)x4 * x16) + ((uint64_t)x8 * x12))))));
493 	uint64_t x28 = (0x2 * ((((((uint64_t)x10 * x12) + ((uint64_t)x8 * x14)) + ((uint64_t)x6 * x16)) + ((uint64_t)x4 * x18)) + ((uint64_t)x2 * x17)));
494 	uint64_t x29 = (0x2 * (((((uint64_t)x12 * x12) + ((uint64_t)x10 * x14)) + ((uint64_t)x6 * x18)) + (0x2 * (((uint64_t)x8 * x16) + ((uint64_t)x4 * x17)))));
495 	uint64_t x30 = (0x2 * (((((uint64_t)x12 * x14) + ((uint64_t)x10 * x16)) + ((uint64_t)x8 * x18)) + ((uint64_t)x6 * x17)));
496 	uint64_t x31 = (((uint64_t)x14 * x14) + (0x2 * (((uint64_t)x10 * x18) + (0x2 * (((uint64_t)x12 * x16) + ((uint64_t)x8 * x17))))));
497 	uint64_t x32 = (0x2 * ((((uint64_t)x14 * x16) + ((uint64_t)x12 * x18)) + ((uint64_t)x10 * x17)));
498 	uint64_t x33 = (0x2 * ((((uint64_t)x16 * x16) + ((uint64_t)x14 * x18)) + ((uint64_t)(0x2 * x12) * x17)));
499 	uint64_t x34 = (0x2 * (((uint64_t)x16 * x18) + ((uint64_t)x14 * x17)));
500 	uint64_t x35 = (((uint64_t)x18 * x18) + ((uint64_t)(0x4 * x16) * x17));
501 	uint64_t x36 = ((uint64_t)(0x2 * x18) * x17);
502 	uint64_t x37 = ((uint64_t)(0x2 * x17) * x17);
503 	uint64_t x38 = (x27 + (x37 << 0x4));
504 	uint64_t x39 = (x38 + (x37 << 0x1));
505 	uint64_t x40 = (x39 + x37);
506 	uint64_t x41 = (x26 + (x36 << 0x4));
507 	uint64_t x42 = (x41 + (x36 << 0x1));
508 	uint64_t x43 = (x42 + x36);
509 	uint64_t x44 = (x25 + (x35 << 0x4));
510 	uint64_t x45 = (x44 + (x35 << 0x1));
511 	uint64_t x46 = (x45 + x35);
512 	uint64_t x47 = (x24 + (x34 << 0x4));
513 	uint64_t x48 = (x47 + (x34 << 0x1));
514 	uint64_t x49 = (x48 + x34);
515 	uint64_t x50 = (x23 + (x33 << 0x4));
516 	uint64_t x51 = (x50 + (x33 << 0x1));
517 	uint64_t x52 = (x51 + x33);
518 	uint64_t x53 = (x22 + (x32 << 0x4));
519 	uint64_t x54 = (x53 + (x32 << 0x1));
520 	uint64_t x55 = (x54 + x32);
521 	uint64_t x56 = (x21 + (x31 << 0x4));
522 	uint64_t x57 = (x56 + (x31 << 0x1));
523 	uint64_t x58 = (x57 + x31);
524 	uint64_t x59 = (x20 + (x30 << 0x4));
525 	uint64_t x60 = (x59 + (x30 << 0x1));
526 	uint64_t x61 = (x60 + x30);
527 	uint64_t x62 = (x19 + (x29 << 0x4));
528 	uint64_t x63 = (x62 + (x29 << 0x1));
529 	uint64_t x64 = (x63 + x29);
530 	uint64_t x65 = (x64 >> 0x1a);
531 	uint32_t x66 = ((uint32_t)x64 & 0x3ffffff);
532 	uint64_t x67 = (x65 + x61);
533 	uint64_t x68 = (x67 >> 0x19);
534 	uint32_t x69 = ((uint32_t)x67 & 0x1ffffff);
535 	uint64_t x70 = (x68 + x58);
536 	uint64_t x71 = (x70 >> 0x1a);
537 	uint32_t x72 = ((uint32_t)x70 & 0x3ffffff);
538 	uint64_t x73 = (x71 + x55);
539 	uint64_t x74 = (x73 >> 0x19);
540 	uint32_t x75 = ((uint32_t)x73 & 0x1ffffff);
541 	uint64_t x76 = (x74 + x52);
542 	uint64_t x77 = (x76 >> 0x1a);
543 	uint32_t x78 = ((uint32_t)x76 & 0x3ffffff);
544 	uint64_t x79 = (x77 + x49);
545 	uint64_t x80 = (x79 >> 0x19);
546 	uint32_t x81 = ((uint32_t)x79 & 0x1ffffff);
547 	uint64_t x82 = (x80 + x46);
548 	uint64_t x83 = (x82 >> 0x1a);
549 	uint32_t x84 = ((uint32_t)x82 & 0x3ffffff);
550 	uint64_t x85 = (x83 + x43);
551 	uint64_t x86 = (x85 >> 0x19);
552 	uint32_t x87 = ((uint32_t)x85 & 0x1ffffff);
553 	uint64_t x88 = (x86 + x40);
554 	uint64_t x89 = (x88 >> 0x1a);
555 	uint32_t x90 = ((uint32_t)x88 & 0x3ffffff);
556 	uint64_t x91 = (x89 + x28);
557 	uint64_t x92 = (x91 >> 0x19);
558 	uint32_t x93 = ((uint32_t)x91 & 0x1ffffff);
559 	uint64_t x94 = (x66 + (0x13 * x92));
560 	uint32_t x95 = (uint32_t) (x94 >> 0x1a);
561 	uint32_t x96 = ((uint32_t)x94 & 0x3ffffff);
562 	uint32_t x97 = (x95 + x69);
563 	uint32_t x98 = (x97 >> 0x19);
564 	uint32_t x99 = (x97 & 0x1ffffff);
565 	out[0] = x96;
566 	out[1] = x99;
567 	out[2] = (x98 + x72);
568 	out[3] = x75;
569 	out[4] = x78;
570 	out[5] = x81;
571 	out[6] = x84;
572 	out[7] = x87;
573 	out[8] = x90;
574 	out[9] = x93;
575 }
576 
577 static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
578 {
579 	fe_sqr_impl(h->v, f->v);
580 }
581 
582 static __always_inline void fe_sq_tt(fe *h, const fe *f)
583 {
584 	fe_sqr_impl(h->v, f->v);
585 }
586 
587 static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
588 {
589 	fe t0;
590 	fe t1;
591 	fe t2;
592 	fe t3;
593 	int i;
594 
595 	fe_sq_tl(&t0, z);
596 	fe_sq_tt(&t1, &t0);
597 	for (i = 1; i < 2; ++i)
598 		fe_sq_tt(&t1, &t1);
599 	fe_mul_tlt(&t1, z, &t1);
600 	fe_mul_ttt(&t0, &t0, &t1);
601 	fe_sq_tt(&t2, &t0);
602 	fe_mul_ttt(&t1, &t1, &t2);
603 	fe_sq_tt(&t2, &t1);
604 	for (i = 1; i < 5; ++i)
605 		fe_sq_tt(&t2, &t2);
606 	fe_mul_ttt(&t1, &t2, &t1);
607 	fe_sq_tt(&t2, &t1);
608 	for (i = 1; i < 10; ++i)
609 		fe_sq_tt(&t2, &t2);
610 	fe_mul_ttt(&t2, &t2, &t1);
611 	fe_sq_tt(&t3, &t2);
612 	for (i = 1; i < 20; ++i)
613 		fe_sq_tt(&t3, &t3);
614 	fe_mul_ttt(&t2, &t3, &t2);
615 	fe_sq_tt(&t2, &t2);
616 	for (i = 1; i < 10; ++i)
617 		fe_sq_tt(&t2, &t2);
618 	fe_mul_ttt(&t1, &t2, &t1);
619 	fe_sq_tt(&t2, &t1);
620 	for (i = 1; i < 50; ++i)
621 		fe_sq_tt(&t2, &t2);
622 	fe_mul_ttt(&t2, &t2, &t1);
623 	fe_sq_tt(&t3, &t2);
624 	for (i = 1; i < 100; ++i)
625 		fe_sq_tt(&t3, &t3);
626 	fe_mul_ttt(&t2, &t3, &t2);
627 	fe_sq_tt(&t2, &t2);
628 	for (i = 1; i < 50; ++i)
629 		fe_sq_tt(&t2, &t2);
630 	fe_mul_ttt(&t1, &t2, &t1);
631 	fe_sq_tt(&t1, &t1);
632 	for (i = 1; i < 5; ++i)
633 		fe_sq_tt(&t1, &t1);
634 	fe_mul_ttt(out, &t1, &t0);
635 }
636 
637 static __always_inline void fe_invert(fe *out, const fe *z)
638 {
639 	fe_loose l;
640 	fe_copy_lt(&l, z);
641 	fe_loose_invert(out, &l);
642 }
643 
644 /* Replace (f,g) with (g,f) if b == 1;
645  * replace (f,g) with (f,g) if b == 0.
646  *
647  * Preconditions: b in {0,1}
648  */
649 static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b)
650 {
651 	unsigned i;
652 	b = 0 - b;
653 	for (i = 0; i < 10; i++) {
654 		uint32_t x = f->v[i] ^ g->v[i];
655 		x &= b;
656 		f->v[i] ^= x;
657 		g->v[i] ^= x;
658 	}
659 }
660 
661 /* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
662 static __always_inline void fe_mul_121666_impl(uint32_t out[10], const uint32_t in1[10])
663 {
664 	const uint32_t x20 = in1[9];
665 	const uint32_t x21 = in1[8];
666 	const uint32_t x19 = in1[7];
667 	const uint32_t x17 = in1[6];
668 	const uint32_t x15 = in1[5];
669 	const uint32_t x13 = in1[4];
670 	const uint32_t x11 = in1[3];
671 	const uint32_t x9 = in1[2];
672 	const uint32_t x7 = in1[1];
673 	const uint32_t x5 = in1[0];
674 	const uint32_t x38 = 0;
675 	const uint32_t x39 = 0;
676 	const uint32_t x37 = 0;
677 	const uint32_t x35 = 0;
678 	const uint32_t x33 = 0;
679 	const uint32_t x31 = 0;
680 	const uint32_t x29 = 0;
681 	const uint32_t x27 = 0;
682 	const uint32_t x25 = 0;
683 	const uint32_t x23 = 121666;
684 	uint64_t x40 = ((uint64_t)x23 * x5);
685 	uint64_t x41 = (((uint64_t)x23 * x7) + ((uint64_t)x25 * x5));
686 	uint64_t x42 = ((((uint64_t)(0x2 * x25) * x7) + ((uint64_t)x23 * x9)) + ((uint64_t)x27 * x5));
687 	uint64_t x43 = (((((uint64_t)x25 * x9) + ((uint64_t)x27 * x7)) + ((uint64_t)x23 * x11)) + ((uint64_t)x29 * x5));
688 	uint64_t x44 = (((((uint64_t)x27 * x9) + (0x2 * (((uint64_t)x25 * x11) + ((uint64_t)x29 * x7)))) + ((uint64_t)x23 * x13)) + ((uint64_t)x31 * x5));
689 	uint64_t x45 = (((((((uint64_t)x27 * x11) + ((uint64_t)x29 * x9)) + ((uint64_t)x25 * x13)) + ((uint64_t)x31 * x7)) + ((uint64_t)x23 * x15)) + ((uint64_t)x33 * x5));
690 	uint64_t x46 = (((((0x2 * ((((uint64_t)x29 * x11) + ((uint64_t)x25 * x15)) + ((uint64_t)x33 * x7))) + ((uint64_t)x27 * x13)) + ((uint64_t)x31 * x9)) + ((uint64_t)x23 * x17)) + ((uint64_t)x35 * x5));
691 	uint64_t x47 = (((((((((uint64_t)x29 * x13) + ((uint64_t)x31 * x11)) + ((uint64_t)x27 * x15)) + ((uint64_t)x33 * x9)) + ((uint64_t)x25 * x17)) + ((uint64_t)x35 * x7)) + ((uint64_t)x23 * x19)) + ((uint64_t)x37 * x5));
692 	uint64_t x48 = (((((((uint64_t)x31 * x13) + (0x2 * (((((uint64_t)x29 * x15) + ((uint64_t)x33 * x11)) + ((uint64_t)x25 * x19)) + ((uint64_t)x37 * x7)))) + ((uint64_t)x27 * x17)) + ((uint64_t)x35 * x9)) + ((uint64_t)x23 * x21)) + ((uint64_t)x39 * x5));
693 	uint64_t x49 = (((((((((((uint64_t)x31 * x15) + ((uint64_t)x33 * x13)) + ((uint64_t)x29 * x17)) + ((uint64_t)x35 * x11)) + ((uint64_t)x27 * x19)) + ((uint64_t)x37 * x9)) + ((uint64_t)x25 * x21)) + ((uint64_t)x39 * x7)) + ((uint64_t)x23 * x20)) + ((uint64_t)x38 * x5));
694 	uint64_t x50 = (((((0x2 * ((((((uint64_t)x33 * x15) + ((uint64_t)x29 * x19)) + ((uint64_t)x37 * x11)) + ((uint64_t)x25 * x20)) + ((uint64_t)x38 * x7))) + ((uint64_t)x31 * x17)) + ((uint64_t)x35 * x13)) + ((uint64_t)x27 * x21)) + ((uint64_t)x39 * x9));
695 	uint64_t x51 = (((((((((uint64_t)x33 * x17) + ((uint64_t)x35 * x15)) + ((uint64_t)x31 * x19)) + ((uint64_t)x37 * x13)) + ((uint64_t)x29 * x21)) + ((uint64_t)x39 * x11)) + ((uint64_t)x27 * x20)) + ((uint64_t)x38 * x9));
696 	uint64_t x52 = (((((uint64_t)x35 * x17) + (0x2 * (((((uint64_t)x33 * x19) + ((uint64_t)x37 * x15)) + ((uint64_t)x29 * x20)) + ((uint64_t)x38 * x11)))) + ((uint64_t)x31 * x21)) + ((uint64_t)x39 * x13));
697 	uint64_t x53 = (((((((uint64_t)x35 * x19) + ((uint64_t)x37 * x17)) + ((uint64_t)x33 * x21)) + ((uint64_t)x39 * x15)) + ((uint64_t)x31 * x20)) + ((uint64_t)x38 * x13));
698 	uint64_t x54 = (((0x2 * ((((uint64_t)x37 * x19) + ((uint64_t)x33 * x20)) + ((uint64_t)x38 * x15))) + ((uint64_t)x35 * x21)) + ((uint64_t)x39 * x17));
699 	uint64_t x55 = (((((uint64_t)x37 * x21) + ((uint64_t)x39 * x19)) + ((uint64_t)x35 * x20)) + ((uint64_t)x38 * x17));
700 	uint64_t x56 = (((uint64_t)x39 * x21) + (0x2 * (((uint64_t)x37 * x20) + ((uint64_t)x38 * x19))));
701 	uint64_t x57 = (((uint64_t)x39 * x20) + ((uint64_t)x38 * x21));
702 	uint64_t x58 = ((uint64_t)(0x2 * x38) * x20);
703 	uint64_t x59 = (x48 + (x58 << 0x4));
704 	uint64_t x60 = (x59 + (x58 << 0x1));
705 	uint64_t x61 = (x60 + x58);
706 	uint64_t x62 = (x47 + (x57 << 0x4));
707 	uint64_t x63 = (x62 + (x57 << 0x1));
708 	uint64_t x64 = (x63 + x57);
709 	uint64_t x65 = (x46 + (x56 << 0x4));
710 	uint64_t x66 = (x65 + (x56 << 0x1));
711 	uint64_t x67 = (x66 + x56);
712 	uint64_t x68 = (x45 + (x55 << 0x4));
713 	uint64_t x69 = (x68 + (x55 << 0x1));
714 	uint64_t x70 = (x69 + x55);
715 	uint64_t x71 = (x44 + (x54 << 0x4));
716 	uint64_t x72 = (x71 + (x54 << 0x1));
717 	uint64_t x73 = (x72 + x54);
718 	uint64_t x74 = (x43 + (x53 << 0x4));
719 	uint64_t x75 = (x74 + (x53 << 0x1));
720 	uint64_t x76 = (x75 + x53);
721 	uint64_t x77 = (x42 + (x52 << 0x4));
722 	uint64_t x78 = (x77 + (x52 << 0x1));
723 	uint64_t x79 = (x78 + x52);
724 	uint64_t x80 = (x41 + (x51 << 0x4));
725 	uint64_t x81 = (x80 + (x51 << 0x1));
726 	uint64_t x82 = (x81 + x51);
727 	uint64_t x83 = (x40 + (x50 << 0x4));
728 	uint64_t x84 = (x83 + (x50 << 0x1));
729 	uint64_t x85 = (x84 + x50);
730 	uint64_t x86 = (x85 >> 0x1a);
731 	uint32_t x87 = ((uint32_t)x85 & 0x3ffffff);
732 	uint64_t x88 = (x86 + x82);
733 	uint64_t x89 = (x88 >> 0x19);
734 	uint32_t x90 = ((uint32_t)x88 & 0x1ffffff);
735 	uint64_t x91 = (x89 + x79);
736 	uint64_t x92 = (x91 >> 0x1a);
737 	uint32_t x93 = ((uint32_t)x91 & 0x3ffffff);
738 	uint64_t x94 = (x92 + x76);
739 	uint64_t x95 = (x94 >> 0x19);
740 	uint32_t x96 = ((uint32_t)x94 & 0x1ffffff);
741 	uint64_t x97 = (x95 + x73);
742 	uint64_t x98 = (x97 >> 0x1a);
743 	uint32_t x99 = ((uint32_t)x97 & 0x3ffffff);
744 	uint64_t x100 = (x98 + x70);
745 	uint64_t x101 = (x100 >> 0x19);
746 	uint32_t x102 = ((uint32_t)x100 & 0x1ffffff);
747 	uint64_t x103 = (x101 + x67);
748 	uint64_t x104 = (x103 >> 0x1a);
749 	uint32_t x105 = ((uint32_t)x103 & 0x3ffffff);
750 	uint64_t x106 = (x104 + x64);
751 	uint64_t x107 = (x106 >> 0x19);
752 	uint32_t x108 = ((uint32_t)x106 & 0x1ffffff);
753 	uint64_t x109 = (x107 + x61);
754 	uint64_t x110 = (x109 >> 0x1a);
755 	uint32_t x111 = ((uint32_t)x109 & 0x3ffffff);
756 	uint64_t x112 = (x110 + x49);
757 	uint64_t x113 = (x112 >> 0x19);
758 	uint32_t x114 = ((uint32_t)x112 & 0x1ffffff);
759 	uint64_t x115 = (x87 + (0x13 * x113));
760 	uint32_t x116 = (uint32_t) (x115 >> 0x1a);
761 	uint32_t x117 = ((uint32_t)x115 & 0x3ffffff);
762 	uint32_t x118 = (x116 + x90);
763 	uint32_t x119 = (x118 >> 0x19);
764 	uint32_t x120 = (x118 & 0x1ffffff);
765 	out[0] = x117;
766 	out[1] = x120;
767 	out[2] = (x119 + x93);
768 	out[3] = x96;
769 	out[4] = x99;
770 	out[5] = x102;
771 	out[6] = x105;
772 	out[7] = x108;
773 	out[8] = x111;
774 	out[9] = x114;
775 }
776 
777 static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
778 {
779 	fe_mul_121666_impl(h->v, f->v);
780 }
781 
782 int curve25519(uint8_t out[CURVE25519_KEY_SIZE],
783 	       const uint8_t scalar[CURVE25519_KEY_SIZE],
784 	       const uint8_t point[CURVE25519_KEY_SIZE])
785 {
786 	fe x1, x2, z2, x3, z3;
787 	fe_loose x2l, z2l, x3l;
788 	unsigned swap = 0;
789 	int pos;
790 	uint8_t e[32];
791 
792 	memcpy(e, scalar, 32);
793 	curve25519_clamp_secret(e);
794 
795 	/* The following implementation was transcribed to Coq and proven to
796 	 * correspond to unary scalar multiplication in affine coordinates given
797 	 * that x1 != 0 is the x coordinate of some point on the curve. It was
798 	 * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
799 	 * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
800 	 * quantified over the underlying field, so it applies to Curve25519
801 	 * itself and the quadratic twist of Curve25519. It was not proven in
802 	 * Coq that prime-field arithmetic correctly simulates extension-field
803 	 * arithmetic on prime-field values. The decoding of the byte array
804 	 * representation of e was not considered.
805 	 *
806 	 * Specification of Montgomery curves in affine coordinates:
807 	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
808 	 *
809 	 * Proof that these form a group that is isomorphic to a Weierstrass
810 	 * curve:
811 	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
812 	 *
813 	 * Coq transcription and correctness proof of the loop
814 	 * (where scalarbits=255):
815 	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
816 	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
817 	 * preconditions: 0 <= e < 2^255 (not necessarily e < order),
818 	 * fe_invert(0) = 0
819 	 */
820 	fe_frombytes(&x1, point);
821 	fe_1(&x2);
822 	fe_0(&z2);
823 	fe_copy(&x3, &x1);
824 	fe_1(&z3);
825 
826 	for (pos = 254; pos >= 0; --pos) {
827 		fe tmp0, tmp1;
828 		fe_loose tmp0l, tmp1l;
829 		/* loop invariant as of right before the test, for the case
830 		 * where x1 != 0:
831 		 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
832 		 *   is nonzero
833 		 *   let r := e >> (pos+1) in the following equalities of
834 		 *   projective points:
835 		 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
836 		 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
837 		 *   x1 is the nonzero x coordinate of the nonzero
838 		 *   point (r*P-(r+1)*P)
839 		 */
840 		unsigned b = 1 & (e[pos / 8] >> (pos & 7));
841 		swap ^= b;
842 		fe_cswap(&x2, &x3, swap);
843 		fe_cswap(&z2, &z3, swap);
844 		swap = b;
845 		/* Coq transcription of ladderstep formula (called from
846 		 * transcribed loop):
847 		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
848 		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
849 		 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
850 		 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
851 		 */
852 		fe_sub(&tmp0l, &x3, &z3);
853 		fe_sub(&tmp1l, &x2, &z2);
854 		fe_add(&x2l, &x2, &z2);
855 		fe_add(&z2l, &x3, &z3);
856 		fe_mul_tll(&z3, &tmp0l, &x2l);
857 		fe_mul_tll(&z2, &z2l, &tmp1l);
858 		fe_sq_tl(&tmp0, &tmp1l);
859 		fe_sq_tl(&tmp1, &x2l);
860 		fe_add(&x3l, &z3, &z2);
861 		fe_sub(&z2l, &z3, &z2);
862 		fe_mul_ttt(&x2, &tmp1, &tmp0);
863 		fe_sub(&tmp1l, &tmp1, &tmp0);
864 		fe_sq_tl(&z2, &z2l);
865 		fe_mul121666(&z3, &tmp1l);
866 		fe_sq_tl(&x3, &x3l);
867 		fe_add(&tmp0l, &tmp0, &z3);
868 		fe_mul_ttt(&z3, &x1, &z2);
869 		fe_mul_tll(&z2, &tmp1l, &tmp0l);
870 	}
871 	/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
872 	 * else (x2, z2)
873 	 */
874 	fe_cswap(&x2, &x3, swap);
875 	fe_cswap(&z2, &z3, swap);
876 
877 	fe_invert(&z2, &z2);
878 	fe_mul_ttt(&x2, &x2, &z2);
879 	fe_tobytes(out, &x2);
880 
881 	explicit_bzero(&x1, sizeof(x1));
882 	explicit_bzero(&x2, sizeof(x2));
883 	explicit_bzero(&z2, sizeof(z2));
884 	explicit_bzero(&x3, sizeof(x3));
885 	explicit_bzero(&z3, sizeof(z3));
886 	explicit_bzero(&x2l, sizeof(x2l));
887 	explicit_bzero(&z2l, sizeof(z2l));
888 	explicit_bzero(&x3l, sizeof(x3l));
889 	explicit_bzero(&e, sizeof(e));
890 	return timingsafe_bcmp(out, null_point, CURVE25519_KEY_SIZE);
891 }
892