xref: /openbsd/sys/dev/fdt/amlpwm.c (revision 274d7c50)
1 /*	$OpenBSD: amlpwm.c,v 1.1 2019/09/30 20:42:45 kettenis Exp $	*/
2 /*
3  * Copyright (c) 2019 Mark Kettenis <kettenis@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <sys/param.h>
19 #include <sys/systm.h>
20 #include <sys/device.h>
21 
22 #include <machine/intr.h>
23 #include <machine/bus.h>
24 #include <machine/fdt.h>
25 
26 #include <dev/ofw/openfirm.h>
27 #include <dev/ofw/ofw_clock.h>
28 #include <dev/ofw/ofw_misc.h>
29 #include <dev/ofw/fdt.h>
30 
31 #define PWM_PWM_A		0x00
32 #define PWM_PWM_B		0x01
33 #define  PWM_PWM_HIGH(x)	((x) >> 16)
34 #define  PWM_PWM_HIGH_SHIFT	16
35 #define  PWM_PWM_LOW(x)		((x) & 0xffff)
36 #define  PWM_PWM_LOW_SHIFT	0
37 #define PWM_MISC_REG_AB		0x02
38 #define  PWM_B_CLK_EN		(1 << 23)
39 #define  PWM_B_CLK_DIV_MASK	(0x7f << 16)
40 #define  PWM_B_CLK_DIV_SHIFT	16
41 #define  PWM_B_CLK_DIV(x)	((((x) >> 16) & 0x7f) + 1)
42 #define  PWM_A_CLK_EN		(1 << 15)
43 #define  PWM_A_CLK_DIV_MASK	(0x7f << 8)
44 #define  PWM_A_CLK_DIV_SHIFT	8
45 #define  PWM_A_CLK_DIV(x)	((((x) >> 8) & 0x7f) + 1)
46 #define  PWM_B_EN		(1 << 1)
47 #define  PWM_A_EN		(1 << 0)
48 
49 #define HREAD4(sc, reg)							\
50 	(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg) << 2))
51 #define HWRITE4(sc, reg, val)						\
52 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg) << 2, (val))
53 #define HSET4(sc, reg, bits)						\
54 	HWRITE4((sc), (reg), HREAD4((sc), (reg)) | (bits))
55 #define HCLR4(sc, reg, bits)						\
56 	HWRITE4((sc), (reg), HREAD4((sc), (reg)) & ~(bits))
57 
58 struct amlpwm_softc {
59 	struct device		sc_dev;
60 	bus_space_tag_t		sc_iot;
61 	bus_space_handle_t	sc_ioh;
62 
63 	uint32_t		sc_clkin[2];
64 
65 	struct pwm_device	sc_pd;
66 };
67 
68 int amlpwm_match(struct device *, void *, void *);
69 void amlpwm_attach(struct device *, struct device *, void *);
70 
71 struct cfattach	amlpwm_ca = {
72 	sizeof (struct amlpwm_softc), amlpwm_match, amlpwm_attach
73 };
74 
75 struct cfdriver amlpwm_cd = {
76 	NULL, "amlpwm", DV_DULL
77 };
78 
79 int	amlpwm_get_state(void *, uint32_t *, struct pwm_state *);
80 int	amlpwm_set_state(void *, uint32_t *, struct pwm_state *);
81 
82 int
83 amlpwm_match(struct device *parent, void *match, void *aux)
84 {
85 	struct fdt_attach_args *faa = aux;
86 	int node = faa->fa_node;
87 
88 	return (OF_is_compatible(node, "amlogic,meson-g12a-ao-pwm-cd") ||
89 	    OF_is_compatible(node, "amlogic,meson-g12a-ee-pwm"));
90 }
91 
92 void
93 amlpwm_attach(struct device *parent, struct device *self, void *aux)
94 {
95 	struct amlpwm_softc *sc = (struct amlpwm_softc *)self;
96 	struct fdt_attach_args *faa = aux;
97 
98 	if (faa->fa_nreg < 1) {
99 		printf(": no registers\n");
100 		return;
101 	}
102 
103 	sc->sc_iot = faa->fa_iot;
104 	if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr,
105 	    faa->fa_reg[0].size, 0, &sc->sc_ioh)) {
106 		printf(": can't map registers\n");
107 		return;
108 	}
109 
110 	sc->sc_clkin[0] = clock_get_frequency(faa->fa_node, "clkin0");
111 	sc->sc_clkin[1] = clock_get_frequency(faa->fa_node, "clkin1");
112 
113 	printf("\n");
114 
115 	sc->sc_pd.pd_node = faa->fa_node;
116 	sc->sc_pd.pd_cookie = sc;
117 	sc->sc_pd.pd_get_state = amlpwm_get_state;
118 	sc->sc_pd.pd_set_state = amlpwm_set_state;
119 	pwm_register(&sc->sc_pd);
120 }
121 
122 static inline uint32_t
123 cycles_to_ns(uint64_t clk_freq, uint32_t clk_div, uint32_t cycles)
124 {
125 	return cycles * clk_div * 1000000000ULL / clk_freq;
126 }
127 
128 static inline uint32_t
129 ns_to_cycles(uint64_t clk_freq, uint32_t clk_div, uint32_t ns)
130 {
131 	return ns * clk_freq / (clk_div * 1000000000ULL);
132 }
133 
134 int
135 amlpwm_get_state(void *cookie, uint32_t *cells, struct pwm_state *ps)
136 {
137 	struct amlpwm_softc *sc = cookie;
138 	uint32_t idx = cells[0];
139 	uint32_t pwm, misc;
140 	uint32_t total, high;
141 	uint32_t clk_div;
142 	int enabled = 0;
143 
144 	if (idx > 1 || sc->sc_clkin[idx] == 0)
145 		return EINVAL;
146 
147 	pwm = HREAD4(sc, idx == 0 ? PWM_PWM_A : PWM_PWM_B);
148 	misc = HREAD4(sc, PWM_MISC_REG_AB);
149 
150 	if (idx == 0) {
151 		if ((misc & PWM_A_CLK_EN) && (misc & PWM_A_EN))
152 			enabled = 1;
153 		clk_div = PWM_A_CLK_DIV(misc);
154 	} else {
155 		if ((misc & PWM_B_CLK_EN) && (misc & PWM_B_EN))
156 			enabled = 1;
157 		clk_div = PWM_B_CLK_DIV(misc);
158 	}
159 
160 	total = PWM_PWM_LOW(pwm) + PWM_PWM_HIGH(pwm);
161 	high = PWM_PWM_HIGH(pwm);
162 
163 	memset(ps, 0, sizeof(struct pwm_state));
164 	ps->ps_period = cycles_to_ns(sc->sc_clkin[idx], clk_div, total);
165 	ps->ps_pulse_width = cycles_to_ns(sc->sc_clkin[idx], clk_div, high);
166 	ps->ps_enabled = enabled;
167 
168 	return 0;
169 }
170 
171 int
172 amlpwm_set_state(void *cookie, uint32_t *cells, struct pwm_state *ps)
173 {
174 	struct amlpwm_softc *sc = cookie;
175 	uint32_t idx = cells[0];
176 	uint32_t pwm, misc;
177 	uint32_t total, high, low;
178 	uint32_t clk_div = 1;
179 
180 	if (idx > 1 || sc->sc_clkin[idx] == 0)
181 		return EINVAL;
182 
183 	/* Hardware doesn't support polarity inversion. */
184 	if (ps->ps_flags & PWM_POLARITY_INVERTED)
185 		return EINVAL;
186 
187 	if (!ps->ps_enabled) {
188 		HCLR4(sc, PWM_MISC_REG_AB, (idx == 0) ? PWM_A_EN : PWM_B_EN);
189 		return 0;
190 	}
191 
192 	total = ns_to_cycles(sc->sc_clkin[idx], clk_div, ps->ps_period);
193 	while ((total / clk_div) > 0xffff)
194 		clk_div++;
195 	if (clk_div > 128)
196 		return EINVAL;
197 
198 	total = ns_to_cycles(sc->sc_clkin[idx], clk_div, ps->ps_period);
199 	high = ns_to_cycles(sc->sc_clkin[idx], clk_div, ps->ps_pulse_width);
200 	low = total - high;
201 
202 	pwm = (high << PWM_PWM_HIGH_SHIFT) | (low << PWM_PWM_LOW_SHIFT);
203 	misc = HREAD4(sc, PWM_MISC_REG_AB);
204 
205 	if (idx == 0) {
206 		misc &= ~PWM_A_CLK_DIV_MASK;
207 		misc |= (clk_div - 1) << PWM_A_CLK_DIV_SHIFT;
208 		misc |= PWM_A_CLK_EN;
209 	} else {
210 		misc &= ~PWM_B_CLK_DIV_MASK;
211 		misc |= (clk_div - 1) << PWM_B_CLK_DIV_SHIFT;
212 		misc |= PWM_B_CLK_EN;
213 	}
214 
215 	HWRITE4(sc, PWM_MISC_REG_AB, misc);
216 	HWRITE4(sc, (idx == 0) ? PWM_PWM_A : PWM_PWM_B, pwm);
217 	HSET4(sc, PWM_MISC_REG_AB, (idx == 0) ? PWM_A_EN : PWM_B_EN);
218 
219 	return 0;
220 }
221