xref: /openbsd/sys/dev/ic/ar5416.c (revision 9b7c3dbb)
1 /*	$OpenBSD: ar5416.c,v 1.19 2016/01/05 18:41:15 stsp Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2008-2009 Atheros Communications Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros 802.11a/g/n chipsets.
22  * Routines for AR5416, AR5418 and AR9160 chipsets.
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/queue.h>
35 #include <sys/timeout.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/endian.h>
39 
40 #include <machine/bus.h>
41 #include <machine/intr.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_media.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/if_ether.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 
56 #include <dev/ic/athnreg.h>
57 #include <dev/ic/athnvar.h>
58 
59 #include <dev/ic/ar5008reg.h>
60 #include <dev/ic/ar5416reg.h>
61 
62 int	ar5416_attach(struct athn_softc *);
63 void	ar5416_setup(struct athn_softc *);
64 void	ar5416_swap_rom(struct athn_softc *);
65 const struct ar_spur_chan *
66 	ar5416_get_spur_chans(struct athn_softc *, int);
67 int	ar5416_set_synth(struct athn_softc *, struct ieee80211_channel *,
68 	    struct ieee80211_channel *);
69 uint8_t	ar5416_reverse_bits(uint8_t, int);
70 uint8_t	ar5416_get_rf_rev(struct athn_softc *);
71 void	ar5416_init_from_rom(struct athn_softc *, struct ieee80211_channel *,
72 	    struct ieee80211_channel *);
73 int	ar5416_init_calib(struct athn_softc *, struct ieee80211_channel *,
74 	    struct ieee80211_channel *);
75 void	ar5416_set_power_calib(struct athn_softc *,
76 	    struct ieee80211_channel *);
77 void	ar5416_set_txpower(struct athn_softc *, struct ieee80211_channel *,
78 	    struct ieee80211_channel *);
79 void	ar5416_spur_mitigate(struct athn_softc *, struct ieee80211_channel *,
80 	    struct ieee80211_channel *);
81 void	ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int);
82 void	ar5416_rw_bank6tpc(struct athn_softc *, struct ieee80211_channel *,
83 	    uint32_t *);
84 void	ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *);
85 void	ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *);
86 void	ar5416_force_bias(struct athn_softc *, struct ieee80211_channel *);
87 void	ar9160_rw_addac(struct athn_softc *, struct ieee80211_channel *,
88 	    uint32_t *);
89 void	ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *);
90 void	ar5416_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
91 	    int, int, uint8_t, uint8_t *, uint8_t *);
92 
93 /* Extern functions. */
94 uint8_t	athn_chan2fbin(struct ieee80211_channel *);
95 void	athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *);
96 int	ar5008_attach(struct athn_softc *);
97 void	ar5008_write_txpower(struct athn_softc *, int16_t power[]);
98 void	ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *,
99 	    struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *);
100 void	ar5008_set_viterbi_mask(struct athn_softc *, int);
101 void	ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
102 	    uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]);
103 void	ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
104 	    uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]);
105 void	ar9280_olpc_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
106 	    int, uint8_t *, uint8_t *, uint8_t *);
107 
108 
109 int
110 ar5416_attach(struct athn_softc *sc)
111 {
112 	sc->eep_base = AR5416_EEP_START_LOC;
113 	sc->eep_size = sizeof(struct ar5416_eeprom);
114 	sc->def_nf = AR5416_PHY_CCA_MAX_GOOD_VALUE;
115 	sc->ngpiopins = 14;
116 	sc->led_pin = 1;
117 	sc->workaround = AR5416_WA_DEFAULT;
118 	sc->ops.setup = ar5416_setup;
119 	sc->ops.swap_rom = ar5416_swap_rom;
120 	sc->ops.init_from_rom = ar5416_init_from_rom;
121 	sc->ops.set_txpower = ar5416_set_txpower;
122 	sc->ops.set_synth = ar5416_set_synth;
123 	sc->ops.spur_mitigate = ar5416_spur_mitigate;
124 	sc->ops.get_spur_chans = ar5416_get_spur_chans;
125 	if (AR_SREV_9160_10_OR_LATER(sc))
126 		sc->ini = &ar9160_ini;
127 	else
128 		sc->ini = &ar5416_ini;
129 	sc->serdes = &ar5416_serdes;
130 
131 	return (ar5008_attach(sc));
132 }
133 
134 void
135 ar5416_setup(struct athn_softc *sc)
136 {
137 	/* Select ADDAC programming. */
138 	if (AR_SREV_9160_11(sc))
139 		sc->addac = &ar9160_1_1_addac;
140 	else if (AR_SREV_9160_10_OR_LATER(sc))
141 		sc->addac = &ar9160_1_0_addac;
142 	else if (AR_SREV_5416_22_OR_LATER(sc))
143 		sc->addac = &ar5416_2_2_addac;
144 	else
145 		sc->addac = &ar5416_2_1_addac;
146 }
147 
148 void
149 ar5416_swap_rom(struct athn_softc *sc)
150 {
151 	struct ar5416_eeprom *eep = sc->eep;
152 	struct ar5416_modal_eep_header *modal;
153 	int i, j;
154 
155 	for (i = 0; i < 2; i++) {	/* Dual-band. */
156 		modal = &eep->modalHeader[i];
157 
158 		modal->antCtrlCommon = swap32(modal->antCtrlCommon);
159 		for (j = 0; j < AR5416_MAX_CHAINS; j++) {
160 			modal->antCtrlChain[j] =
161 			    swap32(modal->antCtrlChain[j]);
162 		}
163 		for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) {
164 			modal->spurChans[j].spurChan =
165 			    swap16(modal->spurChans[j].spurChan);
166 		}
167 	}
168 }
169 
170 const struct ar_spur_chan *
171 ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz)
172 {
173 	const struct ar5416_eeprom *eep = sc->eep;
174 
175 	return (eep->modalHeader[is2ghz].spurChans);
176 }
177 
178 int
179 ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
180     struct ieee80211_channel *extc)
181 {
182 	uint32_t phy, reg;
183 	uint32_t freq = c->ic_freq;
184 	uint8_t chansel;
185 
186 	phy = 0;
187 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
188 		if (((freq - 2192) % 5) == 0) {
189 			chansel = ((freq - 672) * 2 - 3040) / 10;
190 		} else if (((freq - 2224) % 5) == 0) {
191 			chansel = ((freq - 704) * 2 - 3040) / 10;
192 			phy |= AR5416_BMODE_SYNTH;
193 		} else
194 			return (EINVAL);
195 		chansel <<= 2;
196 
197 		reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
198 		if (freq == 2484)	/* Channel 14. */
199 			reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
200 		else
201 			reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
202 		AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
203 
204 		/* Fix for orientation sensitivity issue. */
205 		if (AR_SREV_5416(sc))
206 			ar5416_force_bias(sc, c);
207 	} else {
208 		if (freq >= 5120 && (freq % 20) == 0) {
209 			chansel = (freq - 4800) / 20;
210 			chansel <<= 2;
211 			phy |= SM(AR5416_AMODE_REFSEL, 2);
212 		} else if ((freq % 10) == 0) {
213 			chansel = (freq - 4800) / 10;
214 			chansel <<= 1;
215 			if (AR_SREV_9160_10_OR_LATER(sc))
216 				phy |= SM(AR5416_AMODE_REFSEL, 1);
217 			else
218 				phy |= SM(AR5416_AMODE_REFSEL, 2);
219 		} else if ((freq % 5) == 0) {
220 			chansel = (freq - 4800) / 5;
221 			phy |= SM(AR5416_AMODE_REFSEL, 2);
222 		} else
223 			return (EINVAL);
224 	}
225 	chansel = ar5416_reverse_bits(chansel, 8);
226 	phy |= chansel << 8 | 1 << 5 | 1;
227 	DPRINTFN(4, ("AR_PHY(0x37)=0x%08x\n", phy));
228 	AR_WRITE(sc, AR_PHY(0x37), phy);
229 	return (0);
230 }
231 
232 void
233 ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
234     struct ieee80211_channel *extc)
235 {
236 	static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
237 	const struct ar5416_eeprom *eep = sc->eep;
238 	const struct ar5416_modal_eep_header *modal;
239 	uint32_t reg, offset;
240 	uint8_t txRxAtten;
241 	int i;
242 
243 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
244 
245 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
246 
247 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
248 		if (AR_SREV_5416_20_OR_LATER(sc) &&
249 		    (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5))
250 			offset = chainoffset[i];
251 		else
252 			offset = i * 0x1000;
253 
254 		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
255 		    modal->antCtrlChain[i]);
256 
257 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
258 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
259 		    modal->iqCalICh[i]);
260 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
261 		    modal->iqCalQCh[i]);
262 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);
263 
264 		if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc))
265 			continue;
266 
267 		if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
268 			reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
269 			reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN,
270 			    modal->bswMargin[i]);
271 			reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN,
272 			    modal->bswAtten[i]);
273 			AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
274 		}
275 		if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
276 			txRxAtten = modal->txRxAttenCh[i];
277 		else	/* Workaround for ROM versions < 14.3. */
278 			txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
279 		reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
280 		reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
281 		AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
282 
283 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
284 		reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN,
285 		    modal->rxTxMarginCh[i]);
286 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
287 	}
288 	reg = AR_READ(sc, AR_PHY_SETTLING);
289 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
290 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
291 
292 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
293 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
294 	reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize);
295 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
296 
297 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
298 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
299 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
300 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
301 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
302 
303 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
304 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
305 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
306 
307 	reg = AR_READ(sc, AR_PHY_CCA(0));
308 	reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62);
309 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
310 
311 	reg = AR_READ(sc, AR_PHY_EXT_CCA(0));
312 	reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62);
313 	AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg);
314 
315 	if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
316 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
317 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
318 		    modal->txFrameToDataStart);
319 		reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
320 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
321 	}
322 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
323 		/* Overwrite switch settling with HT-40 value. */
324 		reg = AR_READ(sc, AR_PHY_SETTLING);
325 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
326 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
327 	}
328 }
329 
330 int
331 ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
332     struct ieee80211_channel *extc)
333 {
334 	int ntries;
335 
336 	if (AR_SREV_9280_10_OR_LATER(sc)) {
337 		/* XXX Linux tests AR9287?! */
338 		AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
339 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL,
340 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
341 	}
342 	/* Calibrate the AGC. */
343 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
344 	/* Poll for offset calibration completion. */
345 	for (ntries = 0; ntries < 10000; ntries++) {
346 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
347 		    AR_PHY_AGC_CONTROL_CAL))
348 			break;
349 		DELAY(10);
350 	}
351 	if (ntries == 10000)
352 		return (ETIMEDOUT);
353 	if (AR_SREV_9280_10_OR_LATER(sc)) {
354 		AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
355 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
356 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
357 	}
358 	return (0);
359 }
360 
361 void
362 ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
363     int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
364     uint8_t *pdadcs)
365 {
366 	const struct ar5416_eeprom *eep = sc->eep;
367 	const struct ar5416_cal_data_per_freq *pierdata;
368 	const uint8_t *pierfreq;
369 	struct athn_pier lopier, hipier;
370 	int16_t delta;
371 	uint8_t fbin, pwroff;
372 	int i, lo, hi, npiers;
373 
374 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
375 		pierfreq = eep->calFreqPier2G;
376 		pierdata = eep->calPierData2G[chain];
377 		npiers = AR5416_NUM_2G_CAL_PIERS;
378 	} else {
379 		pierfreq = eep->calFreqPier5G;
380 		pierdata = eep->calPierData5G[chain];
381 		npiers = AR5416_NUM_5G_CAL_PIERS;
382 	}
383 	/* Find channel in ROM pier table. */
384 	fbin = athn_chan2fbin(c);
385 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
386 
387 	lopier.fbin = pierfreq[lo];
388 	hipier.fbin = pierfreq[hi];
389 	for (i = 0; i < nxpdgains; i++) {
390 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
391 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
392 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
393 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
394 	}
395 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
396 	    AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
397 
398 	if (!AR_SREV_9280_20_OR_LATER(sc))
399 		return;
400 
401 	if (sc->eep_rev >= AR_EEP_MINOR_VER_21)
402 		pwroff = eep->baseEepHeader.pwrTableOffset;
403 	else
404 		pwroff = AR_PWR_TABLE_OFFSET_DB;
405 	delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2;	/* In half dB. */
406 
407 	/* Change the original gain boundaries setting. */
408 	for (i = 0; i < nxpdgains; i++) {
409 		/* XXX Possible overflows? */
410 		boundaries[i] -= delta;
411 		if (boundaries[i] > AR_MAX_RATE_POWER - overlap)
412 			boundaries[i] = AR_MAX_RATE_POWER - overlap;
413 	}
414 	if (delta != 0) {
415 		/* Shift the PDADC table to start at the new offset. */
416 		for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
417 			pdadcs[i] = pdadcs[MIN(i + delta,
418 			    AR_NUM_PDADC_VALUES - 1)];
419 	}
420 }
421 
422 void
423 ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
424 {
425 	static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
426 	const struct ar5416_eeprom *eep = sc->eep;
427 	const struct ar5416_modal_eep_header *modal;
428 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
429 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
430 	uint8_t xpdgains[AR5416_NUM_PD_GAINS];
431 	uint8_t overlap, txgain;
432 	uint32_t reg, offset;
433 	int i, j, nxpdgains;
434 
435 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
436 
437 	if (sc->eep_rev < AR_EEP_MINOR_VER_2) {
438 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
439 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
440 	} else
441 		overlap = modal->pdGainOverlap;
442 
443 	if ((sc->flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) {
444 		/* XXX not here. */
445 		sc->pdadc =
446 		    ((const struct ar_cal_data_per_freq_olpc *)
447 		     eep->calPierData2G[0])->vpdPdg[0][0];
448 	}
449 
450 	nxpdgains = 0;
451 	memset(xpdgains, 0, sizeof(xpdgains));
452 	for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
453 		if (nxpdgains >= AR5416_NUM_PD_GAINS)
454 			break;	/* Can't happen. */
455 		if (modal->xpdGain & (1 << i))
456 			xpdgains[nxpdgains++] = i;
457 	}
458 	reg = AR_READ(sc, AR_PHY_TPCRG1);
459 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
460 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
461 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
462 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]);
463 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
464 
465 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
466 		if (!(sc->txchainmask & (1 << i)))
467 			continue;
468 
469 		if (AR_SREV_5416_20_OR_LATER(sc) &&
470 		    (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5))
471 			offset = chainoffset[i];
472 		else
473 			offset = i * 0x1000;
474 
475 		if (sc->flags & ATHN_FLAG_OLPC) {
476 			ar9280_olpc_get_pdadcs(sc, c, i, boundaries,
477 			    pdadcs, &txgain);
478 
479 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
480 			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
481 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);
482 
483 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
484 			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
485 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);
486 
487 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
488 			reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain);
489 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg);
490 
491 			overlap = 6;
492 		} else {
493 			ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap,
494 			    boundaries, pdadcs);
495 		}
496 		/* Write boundaries. */
497 		if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) {
498 			reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
499 			    overlap);
500 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
501 			    boundaries[0]);
502 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
503 			    boundaries[1]);
504 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
505 			    boundaries[2]);
506 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
507 			    boundaries[3]);
508 			AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
509 		}
510 		/* Write PDADC values. */
511 		for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
512 			AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
513 			    pdadcs[j + 0] <<  0 |
514 			    pdadcs[j + 1] <<  8 |
515 			    pdadcs[j + 2] << 16 |
516 			    pdadcs[j + 3] << 24);
517 		}
518 	}
519 }
520 
521 void
522 ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
523     struct ieee80211_channel *extc)
524 {
525 	const struct ar5416_eeprom *eep = sc->eep;
526 	const struct ar5416_modal_eep_header *modal;
527 	uint8_t tpow_cck[4], tpow_ofdm[4];
528 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
529 	uint8_t tpow_ht20[8], tpow_ht40[8];
530 	uint8_t ht40inc;
531 	int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT];
532 	uint8_t cckinc;
533 	int i;
534 
535 	ar5416_set_power_calib(sc, c);
536 
537 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
538 
539 	/* Compute transmit power reduction due to antenna gain. */
540 	max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
541 	max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain);
542 	/* XXX */
543 
544 	/*
545 	 * Reduce scaled power by number of active chains to get per-chain
546 	 * transmit power level.
547 	 */
548 	if (sc->ntxchains == 2)
549 		pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
550 	else if (sc->ntxchains == 3)
551 		pwr -= AR_PWR_DECREASE_FOR_3_CHAIN;
552 	if (pwr < 0)
553 		pwr = 0;
554 
555 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
556 		/* Get CCK target powers. */
557 		ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
558 		    AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
559 
560 		/* Get OFDM target powers. */
561 		ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
562 		    AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
563 
564 		/* Get HT-20 target powers. */
565 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20,
566 		    eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS,
567 		    tpow_ht20);
568 
569 		if (extc != NULL) {
570 			/* Get HT-40 target powers. */
571 			ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
572 			    eep->calTargetPower2GHT40,
573 			    AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40);
574 
575 			/* Get secondary channel CCK target powers. */
576 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
577 			    eep->calTargetPowerCck,
578 			    AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext);
579 
580 			/* Get secondary channel OFDM target powers. */
581 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
582 			    eep->calTargetPower2G,
583 			    AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext);
584 		}
585 	} else {
586 		/* Get OFDM target powers. */
587 		ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G,
588 		    AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm);
589 
590 		/* Get HT-20 target powers. */
591 		ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20,
592 		    eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS,
593 		    tpow_ht20);
594 
595 		if (extc != NULL) {
596 			/* Get HT-40 target powers. */
597 			ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40,
598 			    eep->calTargetPower5GHT40,
599 			    AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40);
600 
601 			/* Get secondary channel OFDM target powers. */
602 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11A,
603 			    eep->calTargetPower5G,
604 			    AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext);
605 		}
606 	}
607 
608 	/* Compute CCK/OFDM delta. */
609 	cckinc = (sc->flags & ATHN_FLAG_OLPC) ? -2 : 0;
610 
611 	memset(power, 0, sizeof(power));
612 	/* Shuffle target powers accross transmit rates. */
613 	power[ATHN_POWER_OFDM6 ] =
614 	power[ATHN_POWER_OFDM9 ] =
615 	power[ATHN_POWER_OFDM12] =
616 	power[ATHN_POWER_OFDM18] =
617 	power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
618 	power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
619 	power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
620 	power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
621 	power[ATHN_POWER_XR    ] = tpow_ofdm[0];
622 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
623 		power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc;
624 		power[ATHN_POWER_CCK2_LP ] =
625 		power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc;
626 		power[ATHN_POWER_CCK55_LP] =
627 		power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc;
628 		power[ATHN_POWER_CCK11_LP] =
629 		power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc;
630 	}
631 	for (i = 0; i < nitems(tpow_ht20); i++)
632 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
633 	if (extc != NULL) {
634 		/* Correct PAR difference between HT40 and HT20/Legacy. */
635 		if (sc->eep_rev >= AR_EEP_MINOR_VER_2)
636 			ht40inc = modal->ht40PowerIncForPdadc;
637 		else
638 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
639 		for (i = 0; i < nitems(tpow_ht40); i++)
640 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
641 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
642 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc;
643 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
644 		if (IEEE80211_IS_CHAN_2GHZ(c))
645 			power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc;
646 	}
647 
648 	if (AR_SREV_9280_10_OR_LATER(sc)) {
649 		if (sc->eep_rev >= AR_EEP_MINOR_VER_21)
650 			pwroff = eep->baseEepHeader.pwrTableOffset;
651 		else
652 			pwroff = AR_PWR_TABLE_OFFSET_DB;
653 		for (i = 0; i < ATHN_POWER_COUNT; i++)
654 			power[i] -= pwroff * 2;	/* In half dB. */
655 	}
656 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
657 		if (power[i] > AR_MAX_RATE_POWER)
658 			power[i] = AR_MAX_RATE_POWER;
659 	}
660 
661 	/* Write transmit power values to hardware. */
662 	ar5008_write_txpower(sc, power);
663 
664 	/*
665 	 * Write transmit power substraction for dynamic chain changing
666 	 * and per-packet transmit power.
667 	 */
668 	AR_WRITE(sc, AR_PHY_POWER_TX_SUB,
669 	    (modal->pwrDecreaseFor3Chain & 0x3f) << 6 |
670 	    (modal->pwrDecreaseFor2Chain & 0x3f));
671 }
672 
673 void
674 ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
675     struct ieee80211_channel *extc)
676 {
677 	const struct ar_spur_chan *spurchans;
678 	int i, spur, bin, spur_delta_phase, spur_freq_sd;
679 
680 	spurchans = sc->ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c));
681 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
682 		spur = spurchans[i].spurChan;
683 		if (spur == AR_NO_SPUR)
684 			return; /* XXX disable if it was enabled! */
685 		spur -= c->ic_freq * 10;
686 		/* Verify range +/-9.5MHz */
687 		if (abs(spur) < 95)
688 			break;
689 	}
690 	if (i == AR_EEPROM_MODAL_SPURS)
691 		return; /* XXX disable if it was enabled! */
692 	DPRINTFN(2, ("enabling spur mitigation\n"));
693 
694 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
695 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
696 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
697 	    AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
698 	    AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
699 
700 	AR_WRITE(sc, AR_PHY_SPUR_REG,
701 	    AR_PHY_SPUR_REG_MASK_RATE_CNTL |
702 	    AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
703 	    AR_PHY_SPUR_REG_MASK_RATE_SELECT |
704 	    AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
705 	    SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH));
706 
707 	spur_delta_phase = (spur * 524288) / 100;
708 	if (IEEE80211_IS_CHAN_2GHZ(c))
709 		spur_freq_sd = (spur * 2048) / 440;
710 	else
711 		spur_freq_sd = (spur * 2048) / 400;
712 
713 	AR_WRITE(sc, AR_PHY_TIMING11,
714 	    AR_PHY_TIMING11_USE_SPUR_IN_AGC |
715 	    SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) |
716 	    SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase));
717 
718 	bin = spur * 32;
719 	ar5008_set_viterbi_mask(sc, bin);
720 }
721 
722 uint8_t
723 ar5416_reverse_bits(uint8_t v, int nbits)
724 {
725 	KASSERT(nbits <= 8);
726 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
727 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
728 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
729 	return (v >> (8 - nbits));
730 }
731 
732 uint8_t
733 ar5416_get_rf_rev(struct athn_softc *sc)
734 {
735 	uint8_t rev, reg;
736 	int i;
737 
738 	/* Allow access to analog chips. */
739 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
740 
741 	AR_WRITE(sc, AR_PHY(0x36), 0x00007058);
742 	for (i = 0; i < 8; i++)
743 		AR_WRITE(sc, AR_PHY(0x20), 0x00010000);
744 	reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff;
745 	reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4;
746 
747 	rev = ar5416_reverse_bits(reg, 8);
748 	if ((rev & AR_RADIO_SREV_MAJOR) == 0)
749 		rev = AR_RAD5133_SREV_MAJOR;
750 	return (rev);
751 }
752 
753 /*
754  * Replace bits "off" to "off+nbits-1" in column "col" with the specified
755  * value.
756  */
757 void
758 ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits)
759 {
760 	int idx, bit;
761 
762 	KASSERT(off >= 1 && col < 4 && nbits <= 32);
763 
764 	off--;	/* Starts at 1. */
765 	while (nbits-- > 0) {
766 		idx = off / 8;
767 		bit = off % 8;
768 		buf[idx] &= ~(1 << (bit + col * 8));
769 		buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8);
770 		off++;
771 	}
772 }
773 
774 /*
775  * Overwrite db and ob based on ROM settings.
776  */
777 void
778 ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c,
779     uint32_t *rwbank6tpc)
780 {
781 	const struct ar5416_eeprom *eep = sc->eep;
782 	const struct ar5416_modal_eep_header *modal;
783 
784 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
785 		modal = &eep->modalHeader[0];
786 		/* 5GHz db in column 0, bits [200-202]. */
787 		ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3);
788 		/* 5GHz ob in column 0, bits [203-205]. */
789 		ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3);
790 	} else {
791 		modal = &eep->modalHeader[1];
792 		/* 2GHz db in column 0, bits [194-196]. */
793 		ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3);
794 		/* 2GHz ob in column 0, bits [197-199]. */
795 		ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3);
796 	}
797 }
798 
799 /*
800  * Program analog RF.
801  */
802 void
803 ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c)
804 {
805 	const uint32_t *bank6tpc;
806 	int i;
807 
808 	/* Bank 0. */
809 	AR_WRITE(sc, 0x98b0, 0x1e5795e5);
810 	AR_WRITE(sc, 0x98e0, 0x02008020);
811 
812 	/* Bank 1. */
813 	AR_WRITE(sc, 0x98b0, 0x02108421);
814 	AR_WRITE(sc, 0x98ec, 0x00000008);
815 
816 	/* Bank 2. */
817 	AR_WRITE(sc, 0x98b0, 0x0e73ff17);
818 	AR_WRITE(sc, 0x98e0, 0x00000420);
819 
820 	/* Bank 3. */
821 	if (IEEE80211_IS_CHAN_5GHZ(c))
822 		AR_WRITE(sc, 0x98f0, 0x01400018);
823 	else
824 		AR_WRITE(sc, 0x98f0, 0x01c00018);
825 
826 	/* Select the Bank 6 TPC values to use. */
827 	if (AR_SREV_9160_10_OR_LATER(sc))
828 		bank6tpc = ar9160_bank6tpc_vals;
829 	else
830 		bank6tpc = ar5416_bank6tpc_vals;
831 	if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
832 		uint32_t *rwbank6tpc = sc->rwbuf;
833 
834 		/* Copy values from .rodata to writable buffer. */
835 		memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t));
836 		ar5416_rw_bank6tpc(sc, c, rwbank6tpc);
837 		bank6tpc = rwbank6tpc;
838 	}
839 	/* Bank 6 TPC. */
840 	for (i = 0; i < 32; i++)
841 		AR_WRITE(sc, 0x989c, bank6tpc[i]);
842 	if (IEEE80211_IS_CHAN_5GHZ(c))
843 		AR_WRITE(sc, 0x98d0, 0x0000000f);
844 	else
845 		AR_WRITE(sc, 0x98d0, 0x0010000f);
846 
847 	/* Bank 7. */
848 	AR_WRITE(sc, 0x989c, 0x00000500);
849 	AR_WRITE(sc, 0x989c, 0x00000800);
850 	AR_WRITE(sc, 0x98cc, 0x0000000e);
851 }
852 
853 void
854 ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c)
855 {
856 	const uint32_t *pvals;
857 	int i;
858 
859 	if (IEEE80211_IS_CHAN_2GHZ(c))
860 		pvals = ar5416_bb_rfgain_vals_2g;
861 	else
862 		pvals = ar5416_bb_rfgain_vals_5g;
863 	for (i = 0; i < 64; i++)
864 		AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]);
865 }
866 
867 /*
868  * Fix orientation sensitivity issue on AR5416/2GHz by increasing
869  * rf_pwd_icsyndiv.
870  */
871 void
872 ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c)
873 {
874 	uint32_t *rwbank6 = sc->rwbuf;
875 	uint8_t bias;
876 	int i;
877 
878 	KASSERT(IEEE80211_IS_CHAN_2GHZ(c));
879 
880 	/* Copy values from .rodata to writable buffer. */
881 	memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals));
882 
883 	if (c->ic_freq < 2412)
884 		bias = 0;
885 	else if (c->ic_freq < 2422)
886 		bias = 1;
887 	else
888 		bias = 2;
889 	ar5416_reverse_bits(bias, 3);
890 
891 	/* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */
892 	ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3);
893 
894 	/* Write Bank 6. */
895 	for (i = 0; i < 32; i++)
896 		AR_WRITE(sc, 0x989c, rwbank6[i]);
897 	AR_WRITE(sc, 0x98d0, 0x0010000f);
898 }
899 
900 /*
901  * Overwrite XPA bias level based on ROM setting.
902  */
903 void
904 ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c,
905     uint32_t *addac)
906 {
907 	struct ar5416_eeprom *eep = sc->eep;
908 	struct ar5416_modal_eep_header *modal;
909 	uint8_t fbin, bias;
910 	int i;
911 
912 	/* XXX xpaBiasLvlFreq values have not been endian-swapped? */
913 
914 	/* Get the XPA bias level to use for the specified channel. */
915 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
916 	if (modal->xpaBiasLvl == 0xff) {
917 		bias = modal->xpaBiasLvlFreq[0] >> 14;
918 		fbin = athn_chan2fbin(c);
919 		for (i = 1; i < 3; i++) {
920 			if (modal->xpaBiasLvlFreq[i] == 0)
921 				break;
922 			if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin)
923 				break;
924 			bias = modal->xpaBiasLvlFreq[i] >> 14;
925 		}
926 	} else
927 		bias = modal->xpaBiasLvl & 0x3;
928 
929 	bias = ar5416_reverse_bits(bias, 2);	/* Put in host bit-order. */
930 	DPRINTFN(4, ("bias level=%d\n", bias));
931 	if (IEEE80211_IS_CHAN_2GHZ(c))
932 		ar5416_rw_rfbits(addac, 0, 60, bias, 2);
933 	else
934 		ar5416_rw_rfbits(addac, 0, 55, bias, 2);
935 }
936 
937 void
938 ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c)
939 {
940 	const struct athn_addac *addac = sc->addac;
941 	const uint32_t *pvals;
942 	int i;
943 
944 	if (AR_SREV_9160(sc) && sc->eep_rev >= AR_EEP_MINOR_VER_7) {
945 		uint32_t *rwaddac = sc->rwbuf;
946 
947 		/* Copy values from .rodata to writable buffer. */
948 		memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t));
949 		ar9160_rw_addac(sc, c, rwaddac);
950 		pvals = rwaddac;
951 	} else
952 		pvals = addac->vals;
953 	for (i = 0; i < addac->nvals; i++)
954 		AR_WRITE(sc, 0x989c, pvals[i]);
955 	AR_WRITE(sc, 0x98cc, 0);	/* Finalize. */
956 }
957