xref: /openbsd/sys/dev/ic/ar9285.c (revision 891d7ab6)
1 /*	$OpenBSD: ar9285.c,v 1.18 2011/01/15 11:39:28 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2008-2010 Atheros Communications Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros 802.11a/g/n chipsets.
22  * Routines for AR9285 and AR9271 chipsets.
23  */
24 
25 #include "athn_usb.h"
26 #include "bpfilter.h"
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/queue.h>
36 #include <sys/timeout.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42 #include <machine/intr.h>
43 
44 #if NBPFILTER > 0
45 #include <net/bpf.h>
46 #endif
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/if_ether.h>
57 #include <netinet/ip.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/ic/athnreg.h>
64 #include <dev/ic/athnvar.h>
65 
66 #include <dev/ic/ar5008reg.h>
67 #include <dev/ic/ar9280reg.h>
68 #include <dev/ic/ar9285reg.h>
69 
70 int	ar9285_attach(struct athn_softc *);
71 void	ar9285_setup(struct athn_softc *);
72 void	ar9285_swap_rom(struct athn_softc *);
73 const	struct ar_spur_chan *ar9285_get_spur_chans(struct athn_softc *, int);
74 void	ar9285_init_from_rom(struct athn_softc *, struct ieee80211_channel *,
75 	    struct ieee80211_channel *);
76 void	ar9285_pa_calib(struct athn_softc *);
77 void	ar9271_pa_calib(struct athn_softc *);
78 int	ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *,
79 	    struct ieee80211_channel *);
80 void	ar9271_load_ani(struct athn_softc *);
81 int	ar9285_init_calib(struct athn_softc *, struct ieee80211_channel *,
82 	    struct ieee80211_channel *);
83 void	ar9285_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
84 	    int, uint8_t, uint8_t *, uint8_t *);
85 void	ar9285_set_power_calib(struct athn_softc *,
86 	    struct ieee80211_channel *);
87 void	ar9285_set_txpower(struct athn_softc *, struct ieee80211_channel *,
88 	    struct ieee80211_channel *);
89 
90 /* Extern functions. */
91 uint8_t	athn_chan2fbin(struct ieee80211_channel *);
92 void	athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *);
93 int	ar5008_attach(struct athn_softc *);
94 void	ar5008_write_txpower(struct athn_softc *, int16_t power[]);
95 void	ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *,
96 	    struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *);
97 void	ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
98 	    uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]);
99 void	ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
100 	    uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]);
101 int	ar9280_set_synth(struct athn_softc *, struct ieee80211_channel *,
102 	    struct ieee80211_channel *);
103 void	ar9280_spur_mitigate(struct athn_softc *, struct ieee80211_channel *,
104 	    struct ieee80211_channel *);
105 
106 
107 int
108 ar9285_attach(struct athn_softc *sc)
109 {
110 	sc->eep_base = AR9285_EEP_START_LOC;
111 	sc->eep_size = sizeof(struct ar9285_eeprom);
112 	sc->def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE;
113 	sc->ngpiopins = (sc->flags & ATHN_FLAG_USB) ? 16 : 12;
114 	sc->led_pin = (sc->flags & ATHN_FLAG_USB) ? 15 : 1;
115 	sc->workaround = AR9285_WA_DEFAULT;
116 	sc->ops.setup = ar9285_setup;
117 	sc->ops.swap_rom = ar9285_swap_rom;
118 	sc->ops.init_from_rom = ar9285_init_from_rom;
119 	sc->ops.set_txpower = ar9285_set_txpower;
120 	sc->ops.set_synth = ar9280_set_synth;
121 	sc->ops.spur_mitigate = ar9280_spur_mitigate;
122 	sc->ops.get_spur_chans = ar9285_get_spur_chans;
123 #if NATHN_USB > 0
124 	if (AR_SREV_9271(sc))
125 		sc->ini = &ar9271_ini;
126 	else
127 #endif
128 		sc->ini = &ar9285_1_2_ini;
129 	sc->serdes = ar9280_2_0_serdes;
130 
131 	return (ar5008_attach(sc));
132 }
133 
134 void
135 ar9285_setup(struct athn_softc *sc)
136 {
137 	const struct ar9285_eeprom *eep = sc->eep;
138 	uint8_t type;
139 
140 	/* Select initialization values based on ROM. */
141 	type = eep->baseEepHeader.txGainType;
142 	DPRINTF(("Tx gain type=0x%x\n", type));
143 #if NATHN_USB > 0
144 	if (AR_SREV_9271(sc)) {
145 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
146 			sc->tx_gain = &ar9271_tx_gain_high_power;
147 		else
148 			sc->tx_gain = &ar9271_tx_gain;
149 	} else
150 #endif	/* NATHN_USB */
151 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) {	/* XE rev. */
152 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
153 			sc->tx_gain = &ar9285_2_0_tx_gain_high_power;
154 		else
155 			sc->tx_gain = &ar9285_2_0_tx_gain;
156 	} else {
157 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
158 			sc->tx_gain = &ar9285_1_2_tx_gain_high_power;
159 		else
160 			sc->tx_gain = &ar9285_1_2_tx_gain;
161 	}
162 }
163 
164 void
165 ar9285_swap_rom(struct athn_softc *sc)
166 {
167 	struct ar9285_eeprom *eep = sc->eep;
168 	int i;
169 
170 	eep->modalHeader.antCtrlCommon =
171 	    swap32(eep->modalHeader.antCtrlCommon);
172 	eep->modalHeader.antCtrlChain =
173 	    swap32(eep->modalHeader.antCtrlChain);
174 
175 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
176 		eep->modalHeader.spurChans[i].spurChan =
177 		    swap16(eep->modalHeader.spurChans[i].spurChan);
178 	}
179 }
180 
181 const struct ar_spur_chan *
182 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz)
183 {
184 	const struct ar9285_eeprom *eep = sc->eep;
185 
186 	KASSERT(is2ghz);
187 	return (eep->modalHeader.spurChans);
188 }
189 
190 void
191 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
192     struct ieee80211_channel *extc)
193 {
194 	const struct ar9285_eeprom *eep = sc->eep;
195 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
196 	uint32_t reg, offset = 0x1000;
197 	uint8_t ob[5], db1[5], db2[5];
198 	uint8_t txRxAtten;
199 
200 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
201 	AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);
202 
203 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
204 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
205 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
206 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
207 
208 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
209 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
210 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
211 		    modal->bswMargin);
212 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
213 		    modal->bswAtten);
214 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
215 		    modal->xatten2Margin);
216 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
217 		    modal->xatten2Db);
218 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);
219 
220 		/* Duplicate values of chain 0 for chain 1. */
221 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
222 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
223 		    modal->bswMargin);
224 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
225 		    modal->bswAtten);
226 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
227 		    modal->xatten2Margin);
228 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
229 		    modal->xatten2Db);
230 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
231 	}
232 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
233 		txRxAtten = modal->txRxAtten;
234 	else	/* Workaround for ROM versions < 14.3. */
235 		txRxAtten = 23;
236 	reg = AR_READ(sc, AR_PHY_RXGAIN);
237 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
238 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
239 	AR_WRITE(sc, AR_PHY_RXGAIN, reg);
240 
241 	/* Duplicate values of chain 0 for chain 1. */
242 	reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
243 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
244 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
245 	AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
246 
247 	if (modal->version >= 3) {
248 		/* Setup antenna diversity from ROM. */
249 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
250 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
251 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
252 		    (modal->ob_234  >> 12) & 0x1);
253 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
254 		    (modal->db1_234 >> 12) & 0x3);
255 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
256 		    (modal->db1_234 >> 14) & 0x3);
257 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
258 		    (modal->ob_234  >> 13) & 0x1);
259 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
260 		    (modal->ob_234  >> 14) & 0x1);
261 		AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
262 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);	/* Flush. */
263 
264 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
265 		if (modal->ob_234 & (1 << 15))
266 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
267 		else
268 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
269 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
270 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);		/* Flush. */
271 	}
272 	if (modal->version >= 2) {
273 		ob [0] = (modal->ob_01   >> 0) & 0xf;
274 		ob [1] = (modal->ob_01   >> 4) & 0xf;
275 		ob [2] = (modal->ob_234  >> 0) & 0xf;
276 		ob [3] = (modal->ob_234  >> 4) & 0xf;
277 		ob [4] = (modal->ob_234  >> 8) & 0xf;
278 
279 		db1[0] = (modal->db1_01  >> 0) & 0xf;
280 		db1[1] = (modal->db1_01  >> 4) & 0xf;
281 		db1[2] = (modal->db1_234 >> 0) & 0xf;
282 		db1[3] = (modal->db1_234 >> 4) & 0xf;
283 		db1[4] = (modal->db1_234 >> 8) & 0xf;
284 
285 		db2[0] = (modal->db2_01  >> 0) & 0xf;
286 		db2[1] = (modal->db2_01  >> 4) & 0xf;
287 		db2[2] = (modal->db2_234 >> 0) & 0xf;
288 		db2[3] = (modal->db2_234 >> 4) & 0xf;
289 		db2[4] = (modal->db2_234 >> 8) & 0xf;
290 
291 	} else if (modal->version == 1) {
292 		ob [0] = (modal->ob_01   >> 0) & 0xf;
293 		ob [1] = (modal->ob_01   >> 4) & 0xf;
294 		/* Field ob_234 does not exist, use ob_01. */
295 		ob [2] = ob [3] = ob [4] = ob [1];
296 
297 		db1[0] = (modal->db1_01  >> 0) & 0xf;
298 		db1[1] = (modal->db1_01  >> 4) & 0xf;
299 		/* Field db1_234 does not exist, use db1_01. */
300 		db1[2] = db1[3] = db1[4] = db1[1];
301 
302 		db2[0] = (modal->db2_01  >> 0) & 0xf;
303 		db2[1] = (modal->db2_01  >> 4) & 0xf;
304 		/* Field db2_234 does not exist, use db2_01. */
305 		db2[2] = db2[3] = db2[4] = db2[1];
306 
307 	} else {
308 		ob [0] = modal->ob_01;
309 		ob [1] = ob [2] = ob [3] = ob [4] = ob [0];
310 
311 		db1[0] = modal->db1_01;
312 		db1[1] = db1[2] = db1[3] = db1[4] = db1[0];
313 
314 		/* Field db2_01 does not exist, use db1_01. */
315 		db2[0] = modal->db1_01;
316 		db2[1] = db2[2] = db2[3] = db2[4] = db2[0];
317 	}
318 #if NATHN_USB > 0
319 	if (AR_SREV_9271(sc)) {
320 		reg = AR_READ(sc, AR9285_AN_RF2G3);
321 		reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]);
322 		reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]);
323 		reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]);
324 		reg = RW(reg, AR9271_AN_RF2G3_DB1,    db1[0]);
325 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
326 		AR_WRITE_BARRIER(sc);
327 		DELAY(100);
328 		reg = AR_READ(sc, AR9285_AN_RF2G4);
329 		reg = RW(reg, AR9271_AN_RF2G4_DB2,    db2[0]);
330 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
331 		AR_WRITE_BARRIER(sc);
332 		DELAY(100);
333 	} else
334 #endif	/* ATHN_USB */
335 	{
336 		reg = AR_READ(sc, AR9285_AN_RF2G3);
337 		reg = RW(reg, AR9285_AN_RF2G3_OB_0,  ob [0]);
338 		reg = RW(reg, AR9285_AN_RF2G3_OB_1,  ob [1]);
339 		reg = RW(reg, AR9285_AN_RF2G3_OB_2,  ob [2]);
340 		reg = RW(reg, AR9285_AN_RF2G3_OB_3,  ob [3]);
341 		reg = RW(reg, AR9285_AN_RF2G3_OB_4,  ob [4]);
342 		reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]);
343 		reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]);
344 		reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]);
345 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
346 		AR_WRITE_BARRIER(sc);
347 		DELAY(100);
348 		reg = AR_READ(sc, AR9285_AN_RF2G4);
349 		reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]);
350 		reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]);
351 		reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]);
352 		reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]);
353 		reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]);
354 		reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]);
355 		reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]);
356 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
357 		AR_WRITE_BARRIER(sc);
358 		DELAY(100);
359 	}
360 
361 	reg = AR_READ(sc, AR_PHY_SETTLING);
362 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
363 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
364 
365 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
366 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
367 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
368 
369 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
370 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
371 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
372 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
373 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
374 
375 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
376 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
377 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
378 
379 	reg = AR_READ(sc, AR_PHY_CCA(0));
380 	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
381 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
382 
383 	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
384 	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
385 	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
386 
387 	if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
388 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
389 		reg = RW(reg, AR_PHY_TX_END_PA_ON,
390 		    modal->txFrameToPaOn);
391 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
392 		    modal->txFrameToDataStart);
393 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
394 	}
395 #ifndef IEEE80211_NO_HT
396 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
397 		reg = AR_READ(sc, AR_PHY_SETTLING);
398 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
399 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
400 	}
401 #endif
402 	AR_WRITE_BARRIER(sc);
403 }
404 
405 void
406 ar9285_pa_calib(struct athn_softc *sc)
407 {
408 	/* List of registers that need to be saved/restored. */
409 	static const uint16_t regs[] = {
410 		AR9285_AN_TOP3,
411 		AR9285_AN_RXTXBB1,
412 		AR9285_AN_RF2G1,
413 		AR9285_AN_RF2G2,
414 		AR9285_AN_TOP2,
415 		AR9285_AN_RF2G8,
416 		AR9285_AN_RF2G7
417 	};
418 	uint32_t svg[7], reg, ccomp_svg;
419 	int i;
420 
421 	/* No PA calibration needed for high power solutions. */
422 	if (AR_SREV_9285(sc) &&
423 	    ((struct ar9285_base_eep_header *)sc->eep)->txGainType ==
424 	     AR_EEP_TXGAIN_HIGH_POWER)	/* XXX AR9287? */
425 		return;
426 
427 	/* Save registers. */
428 	for (i = 0; i < nitems(regs); i++)
429 		svg[i] = AR_READ(sc, regs[i]);
430 
431 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
432 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
433 
434 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
435 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
436 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
437 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
438 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
439 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
440 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
441 	/* Power down PA drivers. */
442 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
443 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
444 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
445 
446 	reg = AR_READ(sc, AR9285_AN_RF2G8);
447 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
448 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
449 
450 	reg = AR_READ(sc, AR9285_AN_RF2G7);
451 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
452 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
453 
454 	reg = AR_READ(sc, AR9285_AN_RF2G6);
455 	/* Save compensation capacitor value. */
456 	ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP);
457 	/* Program compensation capacitor for dynamic PA. */
458 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf);
459 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
460 
461 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
462 	AR_WRITE_BARRIER(sc);
463 	DELAY(30);
464 
465 	/* Clear offsets 6-1. */
466 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1);
467 	/* Clear offset 0. */
468 	AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
469 	/* Set offsets 6-1. */
470 	for (i = 6; i >= 1; i--) {
471 		AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i));
472 		AR_WRITE_BARRIER(sc);
473 		DELAY(1);
474 		if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) {
475 			AR_SETBITS(sc, AR9285_AN_RF2G6,
476 			    AR9285_AN_RF2G6_OFFS(i));
477 		} else {
478 			AR_CLRBITS(sc, AR9285_AN_RF2G6,
479 			    AR9285_AN_RF2G6_OFFS(i));
480 		}
481 	}
482 	/* Set offset 0. */
483 	AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
484 	AR_WRITE_BARRIER(sc);
485 	DELAY(1);
486 	if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)
487 		AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
488 	else
489 		AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
490 
491 	AR_WRITE_BARRIER(sc);
492 
493 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
494 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
495 
496 	/* Restore registers. */
497 	for (i = 0; i < nitems(regs); i++)
498 		AR_WRITE(sc, regs[i], svg[i]);
499 
500 	/* Restore compensation capacitor value. */
501 	reg = AR_READ(sc, AR9285_AN_RF2G6);
502 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg);
503 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
504 	AR_WRITE_BARRIER(sc);
505 }
506 
507 void
508 ar9271_pa_calib(struct athn_softc *sc)
509 {
510 #if NATHN_USB > 0
511 	/* List of registers that need to be saved/restored. */
512 	static const uint16_t regs[] = {
513 		AR9285_AN_TOP3,
514 		AR9285_AN_RXTXBB1,
515 		AR9285_AN_RF2G1,
516 		AR9285_AN_RF2G2,
517 		AR9285_AN_TOP2,
518 		AR9285_AN_RF2G8,
519 		AR9285_AN_RF2G7
520 	};
521 	uint32_t svg[7], reg, rf2g3_svg;
522 	int i;
523 
524 	/* Save registers. */
525 	for (i = 0; i < nitems(regs); i++)
526 		svg[i] = AR_READ(sc, regs[i]);
527 
528 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
529 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
530 
531 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
532 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
533 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
534 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
535 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
536 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
537 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
538 	/* Power down PA drivers. */
539 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
540 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
541 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
542 
543 	reg = AR_READ(sc, AR9285_AN_RF2G8);
544 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
545 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
546 
547 	reg = AR_READ(sc, AR9285_AN_RF2G7);
548 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
549 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
550 
551 	/* Save compensation capacitor value. */
552 	reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3);
553 	/* Program compensation capacitor for dynamic PA. */
554 	reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff);
555 	AR_WRITE(sc, AR9285_AN_RF2G3, reg);
556 
557 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
558 	AR_WRITE_BARRIER(sc);
559 	DELAY(30);
560 
561 	/* Clear offsets 6-0. */
562 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0);
563 	/* Set offsets 6-1. */
564 	for (i = 6; i >= 1; i--) {
565 		reg = AR_READ(sc, AR9285_AN_RF2G6);
566 		reg |= AR9271_AN_RF2G6_OFFS(i);
567 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
568 		AR_WRITE_BARRIER(sc);
569 		DELAY(1);
570 		if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9))
571 			reg &= ~AR9271_AN_RF2G6_OFFS(i);
572 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
573 	}
574 	AR_WRITE_BARRIER(sc);
575 
576 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
577 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
578 
579 	/* Restore registers. */
580 	for (i = 0; i < nitems(regs); i++)
581 		AR_WRITE(sc, regs[i], svg[i]);
582 
583 	/* Restore compensation capacitor value. */
584 	AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg);
585 	AR_WRITE_BARRIER(sc);
586 #endif	/* NATHN_USB */
587 }
588 
589 /*
590  * Carrier Leakage Calibration.
591  */
592 int
593 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c,
594     struct ieee80211_channel *extc)
595 {
596 	int ntries;
597 
598 	AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
599 #ifndef IEEE80211_NO_HT
600 	if (0 && extc == NULL) {	/* XXX IS_CHAN_HT20!! */
601 		AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
602 		AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
603 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
604 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
605 		AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
606 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
607 		for (ntries = 0; ntries < 10000; ntries++) {
608 			if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
609 			    AR_PHY_AGC_CONTROL_CAL))
610 				break;
611 			DELAY(10);
612 		}
613 		if (ntries == 10000)
614 			return (ETIMEDOUT);
615 		AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
616 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
617 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
618 	}
619 #endif
620 	AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
621 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
622 	AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
623 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
624 	for (ntries = 0; ntries < 10000; ntries++) {
625 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
626 		    AR_PHY_AGC_CONTROL_CAL))
627 			break;
628 		DELAY(10);
629 	}
630 	if (ntries == 10000)
631 		return (ETIMEDOUT);
632 	AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
633 	AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
634 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
635 	AR_WRITE_BARRIER(sc);
636 	return (0);
637 }
638 
639 void
640 ar9271_load_ani(struct athn_softc *sc)
641 {
642 #if NATHN_USB > 0
643 	/* Write ANI registers. */
644 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2);
645 	AR_WRITE(sc, AR_PHY_AGC_CTL1,   0x3139605e);
646 	AR_WRITE(sc, AR_PHY_FIND_SIG,   0x7ec84d2e);
647 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881);
648 	AR_WRITE(sc, AR_PHY_SFCORR,     0x5ac640d0);
649 	AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8);
650 	AR_WRITE(sc, AR_PHY_TIMING5,    0xd00a8007);
651 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4);
652 	AR_WRITE_BARRIER(sc);
653 #endif	/* NATHN_USB */
654 }
655 
656 int
657 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
658     struct ieee80211_channel *extc)
659 {
660 	uint32_t reg, mask, clcgain, rf2g5_svg;
661 	int i, maxgain, nclcs, thresh, error;
662 
663 	/* Do carrier leakage calibration. */
664 	if ((error = ar9285_cl_cal(sc, c, extc)) != 0)
665 		return (error);
666 
667 	/* Workaround for high temperature is not applicable on AR9271. */
668 	if (AR_SREV_9271(sc))
669 		return (0);
670 
671 	mask = 0;
672 	nclcs = 0;
673 	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
674 	maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
675 	for (i = 0; i <= maxgain; i++) {
676 		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
677 		clcgain = MS(reg, AR_PHY_TX_GAIN_CLC);
678 		/* NB: clcgain <= 0xf. */
679 		if (!(mask & (1 << clcgain))) {
680 			mask |= 1 << clcgain;
681 			nclcs++;
682 		}
683 	}
684 	thresh = 0;
685 	for (i = 0; i < nclcs; i++) {
686 		reg = AR_READ(sc, AR_PHY_CLC_TBL(i));
687 		if (MS(reg, AR_PHY_CLC_I0) == 0)
688 			thresh++;
689 		if (MS(reg, AR_PHY_CLC_Q0) == 0)
690 			thresh++;
691 	}
692 	if (thresh <= AR9285_CL_CAL_REDO_THRESH)
693 		return (0);	/* No need to redo. */
694 
695 	/* Threshold reached, redo carrier leakage calibration. */
696 	DPRINTFN(2, ("CLC threshold=%d\n", thresh));
697 	rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5);
698 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1)	/* XE rev. */
699 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5);
700 	else
701 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4);
702 	AR_WRITE(sc, AR9285_AN_RF2G5, reg);
703 	AR_WRITE_BARRIER(sc);
704 	error = ar9285_cl_cal(sc, c, extc);
705 	AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg);
706 	AR_WRITE_BARRIER(sc);
707 	return (error);
708 }
709 
710 void
711 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
712     int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
713 {
714 	const struct ar9285_eeprom *eep = sc->eep;
715 	const struct ar9285_cal_data_per_freq *pierdata;
716 	const uint8_t *pierfreq;
717 	struct athn_pier lopier, hipier;
718 	uint8_t fbin;
719 	int i, lo, hi, npiers;
720 
721 	pierfreq = eep->calFreqPier2G;
722 	pierdata = eep->calPierData2G;
723 	npiers = AR9285_NUM_2G_CAL_PIERS;
724 
725 	/* Find channel in ROM pier table. */
726 	fbin = athn_chan2fbin(c);
727 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
728 
729 	lopier.fbin = pierfreq[lo];
730 	hipier.fbin = pierfreq[hi];
731 	for (i = 0; i < nxpdgains; i++) {
732 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
733 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
734 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
735 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
736 	}
737 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
738 	    AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
739 }
740 
741 void
742 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
743 {
744 	const struct ar9285_eeprom *eep = sc->eep;
745 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
746 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
747 	uint8_t xpdgains[AR9285_NUM_PD_GAINS];
748 	uint8_t overlap;
749 	uint32_t reg;
750 	int i, nxpdgains;
751 
752 	if (sc->eep_rev < AR_EEP_MINOR_VER_2) {
753 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
754 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
755 	} else
756 		overlap = eep->modalHeader.pdGainOverlap;
757 
758 	nxpdgains = 0;
759 	memset(xpdgains, 0, sizeof(xpdgains));
760 	for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
761 		if (nxpdgains >= AR9285_NUM_PD_GAINS)
762 			break;
763 		if (eep->modalHeader.xpdGain & (1 << i))
764 			xpdgains[nxpdgains++] = i;
765 	}
766 	reg = AR_READ(sc, AR_PHY_TPCRG1);
767 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
768 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
769 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
770 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
771 
772 	/* NB: No open loop power control for AR9285. */
773 	ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs);
774 
775 	/* Write boundaries. */
776 	reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap);
777 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]);
778 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]);
779 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]);
780 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]);
781 	AR_WRITE(sc, AR_PHY_TPCRG5, reg);
782 
783 	/* Write PDADC values. */
784 	for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) {
785 		AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i,
786 		    pdadcs[i + 0] <<  0 |
787 		    pdadcs[i + 1] <<  8 |
788 		    pdadcs[i + 2] << 16 |
789 		    pdadcs[i + 3] << 24);
790 	}
791 	AR_WRITE_BARRIER(sc);
792 }
793 
794 void
795 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
796     struct ieee80211_channel *extc)
797 {
798 	const struct ar9285_eeprom *eep = sc->eep;
799 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
800 	uint8_t tpow_cck[4], tpow_ofdm[4];
801 #ifndef IEEE80211_NO_HT
802 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
803 	uint8_t tpow_ht20[8], tpow_ht40[8];
804 	uint8_t ht40inc;
805 #endif
806 	int16_t max_ant_gain, power[ATHN_POWER_COUNT];
807 	int i;
808 
809 	ar9285_set_power_calib(sc, c);
810 
811 	/* Compute transmit power reduction due to antenna gain. */
812 	max_ant_gain = modal->antennaGain;
813 	/* XXX */
814 
815 	/* Get CCK target powers. */
816 	ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
817 	    AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
818 
819 	/* Get OFDM target powers. */
820 	ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
821 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
822 
823 #ifndef IEEE80211_NO_HT
824 	/* Get HT-20 target powers. */
825 	ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
826 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20);
827 
828 	if (extc != NULL) {
829 		/* Get HT-40 target powers. */
830 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
831 		    eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS,
832 		    tpow_ht40);
833 
834 		/* Get secondary channel CCK target powers. */
835 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
836 		    eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS,
837 		    tpow_cck_ext);
838 
839 		/* Get secondary channel OFDM target powers. */
840 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
841 		    eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS,
842 		    tpow_ofdm_ext);
843 	}
844 #endif
845 
846 	memset(power, 0, sizeof(power));
847 	/* Shuffle target powers accross transmit rates. */
848 	power[ATHN_POWER_OFDM6   ] =
849 	power[ATHN_POWER_OFDM9   ] =
850 	power[ATHN_POWER_OFDM12  ] =
851 	power[ATHN_POWER_OFDM18  ] =
852 	power[ATHN_POWER_OFDM24  ] = tpow_ofdm[0];
853 	power[ATHN_POWER_OFDM36  ] = tpow_ofdm[1];
854 	power[ATHN_POWER_OFDM48  ] = tpow_ofdm[2];
855 	power[ATHN_POWER_OFDM54  ] = tpow_ofdm[3];
856 	power[ATHN_POWER_XR      ] = tpow_ofdm[0];
857 	power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
858 	power[ATHN_POWER_CCK2_LP ] =
859 	power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
860 	power[ATHN_POWER_CCK55_LP] =
861 	power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
862 	power[ATHN_POWER_CCK11_LP] =
863 	power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
864 #ifndef IEEE80211_NO_HT
865 	for (i = 0; i < nitems(tpow_ht20); i++)
866 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
867 	if (extc != NULL) {
868 		/* Correct PAR difference between HT40 and HT20/Legacy. */
869 		if (sc->eep_rev >= AR_EEP_MINOR_VER_2)
870 			ht40inc = modal->ht40PowerIncForPdadc;
871 		else
872 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
873 		for (i = 0; i < nitems(tpow_ht40); i++)
874 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
875 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
876 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
877 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
878 		power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0];
879 	}
880 #endif
881 
882 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
883 		power[i] -= AR_PWR_TABLE_OFFSET_DB * 2;	/* In half dB. */
884 		if (power[i] > AR_MAX_RATE_POWER)
885 			power[i] = AR_MAX_RATE_POWER;
886 	}
887 
888 	/* Commit transmit power values to hardware. */
889 	ar5008_write_txpower(sc, power);
890 }
891