xref: /openbsd/sys/dev/ic/ar9285.c (revision cecf84d4)
1 /*	$OpenBSD: ar9285.c,v 1.22 2014/12/19 22:44:58 guenther Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2008-2010 Atheros Communications Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros 802.11a/g/n chipsets.
22  * Routines for AR9285 and AR9271 chipsets.
23  */
24 
25 #include "athn_usb.h"
26 #include "bpfilter.h"
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/queue.h>
36 #include <sys/timeout.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/endian.h>
40 
41 #include <machine/bus.h>
42 #include <machine/intr.h>
43 
44 #if NBPFILTER > 0
45 #include <net/bpf.h>
46 #endif
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/ic/athnreg.h>
61 #include <dev/ic/athnvar.h>
62 
63 #include <dev/ic/ar5008reg.h>
64 #include <dev/ic/ar9280reg.h>
65 #include <dev/ic/ar9285reg.h>
66 
67 int	ar9285_attach(struct athn_softc *);
68 void	ar9285_setup(struct athn_softc *);
69 void	ar9285_swap_rom(struct athn_softc *);
70 const	struct ar_spur_chan *ar9285_get_spur_chans(struct athn_softc *, int);
71 void	ar9285_init_from_rom(struct athn_softc *, struct ieee80211_channel *,
72 	    struct ieee80211_channel *);
73 void	ar9285_pa_calib(struct athn_softc *);
74 void	ar9271_pa_calib(struct athn_softc *);
75 int	ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *,
76 	    struct ieee80211_channel *);
77 void	ar9271_load_ani(struct athn_softc *);
78 int	ar9285_init_calib(struct athn_softc *, struct ieee80211_channel *,
79 	    struct ieee80211_channel *);
80 void	ar9285_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
81 	    int, uint8_t, uint8_t *, uint8_t *);
82 void	ar9285_set_power_calib(struct athn_softc *,
83 	    struct ieee80211_channel *);
84 void	ar9285_set_txpower(struct athn_softc *, struct ieee80211_channel *,
85 	    struct ieee80211_channel *);
86 
87 /* Extern functions. */
88 uint8_t	athn_chan2fbin(struct ieee80211_channel *);
89 void	athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *);
90 int	ar5008_attach(struct athn_softc *);
91 void	ar5008_write_txpower(struct athn_softc *, int16_t power[]);
92 void	ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *,
93 	    struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *);
94 void	ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
95 	    uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]);
96 void	ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
97 	    uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]);
98 int	ar9280_set_synth(struct athn_softc *, struct ieee80211_channel *,
99 	    struct ieee80211_channel *);
100 void	ar9280_spur_mitigate(struct athn_softc *, struct ieee80211_channel *,
101 	    struct ieee80211_channel *);
102 
103 
104 int
105 ar9285_attach(struct athn_softc *sc)
106 {
107 	sc->eep_base = AR9285_EEP_START_LOC;
108 	sc->eep_size = sizeof(struct ar9285_eeprom);
109 	sc->def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE;
110 	sc->ngpiopins = (sc->flags & ATHN_FLAG_USB) ? 16 : 12;
111 	sc->led_pin = (sc->flags & ATHN_FLAG_USB) ? 15 : 1;
112 	sc->workaround = AR9285_WA_DEFAULT;
113 	sc->ops.setup = ar9285_setup;
114 	sc->ops.swap_rom = ar9285_swap_rom;
115 	sc->ops.init_from_rom = ar9285_init_from_rom;
116 	sc->ops.set_txpower = ar9285_set_txpower;
117 	sc->ops.set_synth = ar9280_set_synth;
118 	sc->ops.spur_mitigate = ar9280_spur_mitigate;
119 	sc->ops.get_spur_chans = ar9285_get_spur_chans;
120 #if NATHN_USB > 0
121 	if (AR_SREV_9271(sc))
122 		sc->ini = &ar9271_ini;
123 	else
124 #endif
125 		sc->ini = &ar9285_1_2_ini;
126 	sc->serdes = &ar9280_2_0_serdes;
127 
128 	return (ar5008_attach(sc));
129 }
130 
131 void
132 ar9285_setup(struct athn_softc *sc)
133 {
134 	const struct ar9285_eeprom *eep = sc->eep;
135 	uint8_t type;
136 
137 	/* Select initialization values based on ROM. */
138 	type = eep->baseEepHeader.txGainType;
139 	DPRINTF(("Tx gain type=0x%x\n", type));
140 #if NATHN_USB > 0
141 	if (AR_SREV_9271(sc)) {
142 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
143 			sc->tx_gain = &ar9271_tx_gain_high_power;
144 		else
145 			sc->tx_gain = &ar9271_tx_gain;
146 	} else
147 #endif	/* NATHN_USB */
148 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) {	/* XE rev. */
149 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
150 			sc->tx_gain = &ar9285_2_0_tx_gain_high_power;
151 		else
152 			sc->tx_gain = &ar9285_2_0_tx_gain;
153 	} else {
154 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
155 			sc->tx_gain = &ar9285_1_2_tx_gain_high_power;
156 		else
157 			sc->tx_gain = &ar9285_1_2_tx_gain;
158 	}
159 }
160 
161 void
162 ar9285_swap_rom(struct athn_softc *sc)
163 {
164 	struct ar9285_eeprom *eep = sc->eep;
165 	int i;
166 
167 	eep->modalHeader.antCtrlCommon =
168 	    swap32(eep->modalHeader.antCtrlCommon);
169 	eep->modalHeader.antCtrlChain =
170 	    swap32(eep->modalHeader.antCtrlChain);
171 
172 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
173 		eep->modalHeader.spurChans[i].spurChan =
174 		    swap16(eep->modalHeader.spurChans[i].spurChan);
175 	}
176 }
177 
178 const struct ar_spur_chan *
179 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz)
180 {
181 	const struct ar9285_eeprom *eep = sc->eep;
182 
183 	KASSERT(is2ghz);
184 	return (eep->modalHeader.spurChans);
185 }
186 
187 void
188 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
189     struct ieee80211_channel *extc)
190 {
191 	const struct ar9285_eeprom *eep = sc->eep;
192 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
193 	uint32_t reg, offset = 0x1000;
194 	uint8_t ob[5], db1[5], db2[5];
195 	uint8_t txRxAtten;
196 
197 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
198 	AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);
199 
200 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
201 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
202 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
203 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
204 
205 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
206 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
207 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
208 		    modal->bswMargin);
209 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
210 		    modal->bswAtten);
211 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
212 		    modal->xatten2Margin);
213 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
214 		    modal->xatten2Db);
215 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);
216 
217 		/* Duplicate values of chain 0 for chain 1. */
218 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
219 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
220 		    modal->bswMargin);
221 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
222 		    modal->bswAtten);
223 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
224 		    modal->xatten2Margin);
225 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
226 		    modal->xatten2Db);
227 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
228 	}
229 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
230 		txRxAtten = modal->txRxAtten;
231 	else	/* Workaround for ROM versions < 14.3. */
232 		txRxAtten = 23;
233 	reg = AR_READ(sc, AR_PHY_RXGAIN);
234 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
235 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
236 	AR_WRITE(sc, AR_PHY_RXGAIN, reg);
237 
238 	/* Duplicate values of chain 0 for chain 1. */
239 	reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
240 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
241 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
242 	AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
243 
244 	if (modal->version >= 3) {
245 		/* Setup antenna diversity from ROM. */
246 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
247 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
248 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
249 		    (modal->ob_234  >> 12) & 0x1);
250 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
251 		    (modal->db1_234 >> 12) & 0x3);
252 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
253 		    (modal->db1_234 >> 14) & 0x3);
254 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
255 		    (modal->ob_234  >> 13) & 0x1);
256 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
257 		    (modal->ob_234  >> 14) & 0x1);
258 		AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
259 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);	/* Flush. */
260 
261 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
262 		if (modal->ob_234 & (1 << 15))
263 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
264 		else
265 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
266 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
267 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);		/* Flush. */
268 	}
269 	if (modal->version >= 2) {
270 		ob [0] = (modal->ob_01   >> 0) & 0xf;
271 		ob [1] = (modal->ob_01   >> 4) & 0xf;
272 		ob [2] = (modal->ob_234  >> 0) & 0xf;
273 		ob [3] = (modal->ob_234  >> 4) & 0xf;
274 		ob [4] = (modal->ob_234  >> 8) & 0xf;
275 
276 		db1[0] = (modal->db1_01  >> 0) & 0xf;
277 		db1[1] = (modal->db1_01  >> 4) & 0xf;
278 		db1[2] = (modal->db1_234 >> 0) & 0xf;
279 		db1[3] = (modal->db1_234 >> 4) & 0xf;
280 		db1[4] = (modal->db1_234 >> 8) & 0xf;
281 
282 		db2[0] = (modal->db2_01  >> 0) & 0xf;
283 		db2[1] = (modal->db2_01  >> 4) & 0xf;
284 		db2[2] = (modal->db2_234 >> 0) & 0xf;
285 		db2[3] = (modal->db2_234 >> 4) & 0xf;
286 		db2[4] = (modal->db2_234 >> 8) & 0xf;
287 
288 	} else if (modal->version == 1) {
289 		ob [0] = (modal->ob_01   >> 0) & 0xf;
290 		ob [1] = (modal->ob_01   >> 4) & 0xf;
291 		/* Field ob_234 does not exist, use ob_01. */
292 		ob [2] = ob [3] = ob [4] = ob [1];
293 
294 		db1[0] = (modal->db1_01  >> 0) & 0xf;
295 		db1[1] = (modal->db1_01  >> 4) & 0xf;
296 		/* Field db1_234 does not exist, use db1_01. */
297 		db1[2] = db1[3] = db1[4] = db1[1];
298 
299 		db2[0] = (modal->db2_01  >> 0) & 0xf;
300 		db2[1] = (modal->db2_01  >> 4) & 0xf;
301 		/* Field db2_234 does not exist, use db2_01. */
302 		db2[2] = db2[3] = db2[4] = db2[1];
303 
304 	} else {
305 		ob [0] = modal->ob_01;
306 		ob [1] = ob [2] = ob [3] = ob [4] = ob [0];
307 
308 		db1[0] = modal->db1_01;
309 		db1[1] = db1[2] = db1[3] = db1[4] = db1[0];
310 
311 		/* Field db2_01 does not exist, use db1_01. */
312 		db2[0] = modal->db1_01;
313 		db2[1] = db2[2] = db2[3] = db2[4] = db2[0];
314 	}
315 #if NATHN_USB > 0
316 	if (AR_SREV_9271(sc)) {
317 		reg = AR_READ(sc, AR9285_AN_RF2G3);
318 		reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]);
319 		reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]);
320 		reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]);
321 		reg = RW(reg, AR9271_AN_RF2G3_DB1,    db1[0]);
322 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
323 		AR_WRITE_BARRIER(sc);
324 		DELAY(100);
325 		reg = AR_READ(sc, AR9285_AN_RF2G4);
326 		reg = RW(reg, AR9271_AN_RF2G4_DB2,    db2[0]);
327 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
328 		AR_WRITE_BARRIER(sc);
329 		DELAY(100);
330 	} else
331 #endif	/* ATHN_USB */
332 	{
333 		reg = AR_READ(sc, AR9285_AN_RF2G3);
334 		reg = RW(reg, AR9285_AN_RF2G3_OB_0,  ob [0]);
335 		reg = RW(reg, AR9285_AN_RF2G3_OB_1,  ob [1]);
336 		reg = RW(reg, AR9285_AN_RF2G3_OB_2,  ob [2]);
337 		reg = RW(reg, AR9285_AN_RF2G3_OB_3,  ob [3]);
338 		reg = RW(reg, AR9285_AN_RF2G3_OB_4,  ob [4]);
339 		reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]);
340 		reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]);
341 		reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]);
342 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
343 		AR_WRITE_BARRIER(sc);
344 		DELAY(100);
345 		reg = AR_READ(sc, AR9285_AN_RF2G4);
346 		reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]);
347 		reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]);
348 		reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]);
349 		reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]);
350 		reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]);
351 		reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]);
352 		reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]);
353 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
354 		AR_WRITE_BARRIER(sc);
355 		DELAY(100);
356 	}
357 
358 	reg = AR_READ(sc, AR_PHY_SETTLING);
359 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
360 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
361 
362 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
363 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
364 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
365 
366 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
367 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
368 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
369 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
370 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
371 
372 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
373 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
374 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
375 
376 	reg = AR_READ(sc, AR_PHY_CCA(0));
377 	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
378 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
379 
380 	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
381 	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
382 	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
383 
384 	if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
385 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
386 		reg = RW(reg, AR_PHY_TX_END_PA_ON,
387 		    modal->txFrameToPaOn);
388 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
389 		    modal->txFrameToDataStart);
390 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
391 	}
392 #ifndef IEEE80211_NO_HT
393 	if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
394 		reg = AR_READ(sc, AR_PHY_SETTLING);
395 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
396 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
397 	}
398 #endif
399 	AR_WRITE_BARRIER(sc);
400 }
401 
402 void
403 ar9285_pa_calib(struct athn_softc *sc)
404 {
405 	/* List of registers that need to be saved/restored. */
406 	static const uint16_t regs[] = {
407 		AR9285_AN_TOP3,
408 		AR9285_AN_RXTXBB1,
409 		AR9285_AN_RF2G1,
410 		AR9285_AN_RF2G2,
411 		AR9285_AN_TOP2,
412 		AR9285_AN_RF2G8,
413 		AR9285_AN_RF2G7
414 	};
415 	uint32_t svg[7], reg, ccomp_svg;
416 	int i;
417 
418 	/* No PA calibration needed for high power solutions. */
419 	if (AR_SREV_9285(sc) &&
420 	    ((struct ar9285_base_eep_header *)sc->eep)->txGainType ==
421 	     AR_EEP_TXGAIN_HIGH_POWER)	/* XXX AR9287? */
422 		return;
423 
424 	/* Save registers. */
425 	for (i = 0; i < nitems(regs); i++)
426 		svg[i] = AR_READ(sc, regs[i]);
427 
428 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
429 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
430 
431 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
432 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
433 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
434 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
435 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
436 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
437 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
438 	/* Power down PA drivers. */
439 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
440 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
441 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
442 
443 	reg = AR_READ(sc, AR9285_AN_RF2G8);
444 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
445 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
446 
447 	reg = AR_READ(sc, AR9285_AN_RF2G7);
448 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
449 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
450 
451 	reg = AR_READ(sc, AR9285_AN_RF2G6);
452 	/* Save compensation capacitor value. */
453 	ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP);
454 	/* Program compensation capacitor for dynamic PA. */
455 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf);
456 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
457 
458 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
459 	AR_WRITE_BARRIER(sc);
460 	DELAY(30);
461 
462 	/* Clear offsets 6-1. */
463 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1);
464 	/* Clear offset 0. */
465 	AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
466 	/* Set offsets 6-1. */
467 	for (i = 6; i >= 1; i--) {
468 		AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i));
469 		AR_WRITE_BARRIER(sc);
470 		DELAY(1);
471 		if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) {
472 			AR_SETBITS(sc, AR9285_AN_RF2G6,
473 			    AR9285_AN_RF2G6_OFFS(i));
474 		} else {
475 			AR_CLRBITS(sc, AR9285_AN_RF2G6,
476 			    AR9285_AN_RF2G6_OFFS(i));
477 		}
478 	}
479 	/* Set offset 0. */
480 	AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
481 	AR_WRITE_BARRIER(sc);
482 	DELAY(1);
483 	if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)
484 		AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
485 	else
486 		AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
487 
488 	AR_WRITE_BARRIER(sc);
489 
490 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
491 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
492 
493 	/* Restore registers. */
494 	for (i = 0; i < nitems(regs); i++)
495 		AR_WRITE(sc, regs[i], svg[i]);
496 
497 	/* Restore compensation capacitor value. */
498 	reg = AR_READ(sc, AR9285_AN_RF2G6);
499 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg);
500 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
501 	AR_WRITE_BARRIER(sc);
502 }
503 
504 void
505 ar9271_pa_calib(struct athn_softc *sc)
506 {
507 #if NATHN_USB > 0
508 	/* List of registers that need to be saved/restored. */
509 	static const uint16_t regs[] = {
510 		AR9285_AN_TOP3,
511 		AR9285_AN_RXTXBB1,
512 		AR9285_AN_RF2G1,
513 		AR9285_AN_RF2G2,
514 		AR9285_AN_TOP2,
515 		AR9285_AN_RF2G8,
516 		AR9285_AN_RF2G7
517 	};
518 	uint32_t svg[7], reg, rf2g3_svg;
519 	int i;
520 
521 	/* Save registers. */
522 	for (i = 0; i < nitems(regs); i++)
523 		svg[i] = AR_READ(sc, regs[i]);
524 
525 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
526 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
527 
528 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
529 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
530 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
531 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
532 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
533 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
534 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
535 	/* Power down PA drivers. */
536 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
537 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
538 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
539 
540 	reg = AR_READ(sc, AR9285_AN_RF2G8);
541 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
542 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
543 
544 	reg = AR_READ(sc, AR9285_AN_RF2G7);
545 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
546 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
547 
548 	/* Save compensation capacitor value. */
549 	reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3);
550 	/* Program compensation capacitor for dynamic PA. */
551 	reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff);
552 	AR_WRITE(sc, AR9285_AN_RF2G3, reg);
553 
554 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
555 	AR_WRITE_BARRIER(sc);
556 	DELAY(30);
557 
558 	/* Clear offsets 6-0. */
559 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0);
560 	/* Set offsets 6-1. */
561 	for (i = 6; i >= 1; i--) {
562 		reg = AR_READ(sc, AR9285_AN_RF2G6);
563 		reg |= AR9271_AN_RF2G6_OFFS(i);
564 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
565 		AR_WRITE_BARRIER(sc);
566 		DELAY(1);
567 		if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9))
568 			reg &= ~AR9271_AN_RF2G6_OFFS(i);
569 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
570 	}
571 	AR_WRITE_BARRIER(sc);
572 
573 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
574 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
575 
576 	/* Restore registers. */
577 	for (i = 0; i < nitems(regs); i++)
578 		AR_WRITE(sc, regs[i], svg[i]);
579 
580 	/* Restore compensation capacitor value. */
581 	AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg);
582 	AR_WRITE_BARRIER(sc);
583 #endif	/* NATHN_USB */
584 }
585 
586 /*
587  * Carrier Leakage Calibration.
588  */
589 int
590 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c,
591     struct ieee80211_channel *extc)
592 {
593 	int ntries;
594 
595 	AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
596 #ifndef IEEE80211_NO_HT
597 	if (0 && extc == NULL) {	/* XXX IS_CHAN_HT20!! */
598 		AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
599 		AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
600 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
601 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
602 		AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
603 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
604 		for (ntries = 0; ntries < 10000; ntries++) {
605 			if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
606 			    AR_PHY_AGC_CONTROL_CAL))
607 				break;
608 			DELAY(10);
609 		}
610 		if (ntries == 10000)
611 			return (ETIMEDOUT);
612 		AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
613 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
614 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
615 	}
616 #endif
617 	AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
618 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
619 	AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
620 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
621 	for (ntries = 0; ntries < 10000; ntries++) {
622 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
623 		    AR_PHY_AGC_CONTROL_CAL))
624 			break;
625 		DELAY(10);
626 	}
627 	if (ntries == 10000)
628 		return (ETIMEDOUT);
629 	AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
630 	AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
631 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
632 	AR_WRITE_BARRIER(sc);
633 	return (0);
634 }
635 
636 void
637 ar9271_load_ani(struct athn_softc *sc)
638 {
639 #if NATHN_USB > 0
640 	/* Write ANI registers. */
641 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2);
642 	AR_WRITE(sc, AR_PHY_AGC_CTL1,   0x3139605e);
643 	AR_WRITE(sc, AR_PHY_FIND_SIG,   0x7ec84d2e);
644 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881);
645 	AR_WRITE(sc, AR_PHY_SFCORR,     0x5ac640d0);
646 	AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8);
647 	AR_WRITE(sc, AR_PHY_TIMING5,    0xd00a8007);
648 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4);
649 	AR_WRITE_BARRIER(sc);
650 #endif	/* NATHN_USB */
651 }
652 
653 int
654 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
655     struct ieee80211_channel *extc)
656 {
657 	uint32_t reg, mask, clcgain, rf2g5_svg;
658 	int i, maxgain, nclcs, thresh, error;
659 
660 	/* Do carrier leakage calibration. */
661 	if ((error = ar9285_cl_cal(sc, c, extc)) != 0)
662 		return (error);
663 
664 	/* Workaround for high temperature is not applicable on AR9271. */
665 	if (AR_SREV_9271(sc))
666 		return (0);
667 
668 	mask = 0;
669 	nclcs = 0;
670 	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
671 	maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
672 	for (i = 0; i <= maxgain; i++) {
673 		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
674 		clcgain = MS(reg, AR_PHY_TX_GAIN_CLC);
675 		/* NB: clcgain <= 0xf. */
676 		if (!(mask & (1 << clcgain))) {
677 			mask |= 1 << clcgain;
678 			nclcs++;
679 		}
680 	}
681 	thresh = 0;
682 	for (i = 0; i < nclcs; i++) {
683 		reg = AR_READ(sc, AR_PHY_CLC_TBL(i));
684 		if (MS(reg, AR_PHY_CLC_I0) == 0)
685 			thresh++;
686 		if (MS(reg, AR_PHY_CLC_Q0) == 0)
687 			thresh++;
688 	}
689 	if (thresh <= AR9285_CL_CAL_REDO_THRESH)
690 		return (0);	/* No need to redo. */
691 
692 	/* Threshold reached, redo carrier leakage calibration. */
693 	DPRINTFN(2, ("CLC threshold=%d\n", thresh));
694 	rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5);
695 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1)	/* XE rev. */
696 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5);
697 	else
698 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4);
699 	AR_WRITE(sc, AR9285_AN_RF2G5, reg);
700 	AR_WRITE_BARRIER(sc);
701 	error = ar9285_cl_cal(sc, c, extc);
702 	AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg);
703 	AR_WRITE_BARRIER(sc);
704 	return (error);
705 }
706 
707 void
708 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
709     int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
710 {
711 	const struct ar9285_eeprom *eep = sc->eep;
712 	const struct ar9285_cal_data_per_freq *pierdata;
713 	const uint8_t *pierfreq;
714 	struct athn_pier lopier, hipier;
715 	uint8_t fbin;
716 	int i, lo, hi, npiers;
717 
718 	pierfreq = eep->calFreqPier2G;
719 	pierdata = eep->calPierData2G;
720 	npiers = AR9285_NUM_2G_CAL_PIERS;
721 
722 	/* Find channel in ROM pier table. */
723 	fbin = athn_chan2fbin(c);
724 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
725 
726 	lopier.fbin = pierfreq[lo];
727 	hipier.fbin = pierfreq[hi];
728 	for (i = 0; i < nxpdgains; i++) {
729 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
730 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
731 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
732 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
733 	}
734 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
735 	    AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
736 }
737 
738 void
739 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
740 {
741 	const struct ar9285_eeprom *eep = sc->eep;
742 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
743 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
744 	uint8_t xpdgains[AR9285_NUM_PD_GAINS];
745 	uint8_t overlap;
746 	uint32_t reg;
747 	int i, nxpdgains;
748 
749 	if (sc->eep_rev < AR_EEP_MINOR_VER_2) {
750 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
751 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
752 	} else
753 		overlap = eep->modalHeader.pdGainOverlap;
754 
755 	nxpdgains = 0;
756 	memset(xpdgains, 0, sizeof(xpdgains));
757 	for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
758 		if (nxpdgains >= AR9285_NUM_PD_GAINS)
759 			break;
760 		if (eep->modalHeader.xpdGain & (1 << i))
761 			xpdgains[nxpdgains++] = i;
762 	}
763 	reg = AR_READ(sc, AR_PHY_TPCRG1);
764 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
765 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
766 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
767 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
768 
769 	/* NB: No open loop power control for AR9285. */
770 	ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs);
771 
772 	/* Write boundaries. */
773 	reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap);
774 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]);
775 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]);
776 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]);
777 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]);
778 	AR_WRITE(sc, AR_PHY_TPCRG5, reg);
779 
780 	/* Write PDADC values. */
781 	for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) {
782 		AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i,
783 		    pdadcs[i + 0] <<  0 |
784 		    pdadcs[i + 1] <<  8 |
785 		    pdadcs[i + 2] << 16 |
786 		    pdadcs[i + 3] << 24);
787 	}
788 	AR_WRITE_BARRIER(sc);
789 }
790 
791 void
792 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
793     struct ieee80211_channel *extc)
794 {
795 	const struct ar9285_eeprom *eep = sc->eep;
796 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
797 	uint8_t tpow_cck[4], tpow_ofdm[4];
798 #ifndef IEEE80211_NO_HT
799 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
800 	uint8_t tpow_ht20[8], tpow_ht40[8];
801 	uint8_t ht40inc;
802 #endif
803 	int16_t max_ant_gain, power[ATHN_POWER_COUNT];
804 	int i;
805 
806 	ar9285_set_power_calib(sc, c);
807 
808 	/* Compute transmit power reduction due to antenna gain. */
809 	max_ant_gain = modal->antennaGain;
810 	/* XXX */
811 
812 	/* Get CCK target powers. */
813 	ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
814 	    AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
815 
816 	/* Get OFDM target powers. */
817 	ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
818 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
819 
820 #ifndef IEEE80211_NO_HT
821 	/* Get HT-20 target powers. */
822 	ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
823 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20);
824 
825 	if (extc != NULL) {
826 		/* Get HT-40 target powers. */
827 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
828 		    eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS,
829 		    tpow_ht40);
830 
831 		/* Get secondary channel CCK target powers. */
832 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
833 		    eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS,
834 		    tpow_cck_ext);
835 
836 		/* Get secondary channel OFDM target powers. */
837 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
838 		    eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS,
839 		    tpow_ofdm_ext);
840 	}
841 #endif
842 
843 	memset(power, 0, sizeof(power));
844 	/* Shuffle target powers accross transmit rates. */
845 	power[ATHN_POWER_OFDM6   ] =
846 	power[ATHN_POWER_OFDM9   ] =
847 	power[ATHN_POWER_OFDM12  ] =
848 	power[ATHN_POWER_OFDM18  ] =
849 	power[ATHN_POWER_OFDM24  ] = tpow_ofdm[0];
850 	power[ATHN_POWER_OFDM36  ] = tpow_ofdm[1];
851 	power[ATHN_POWER_OFDM48  ] = tpow_ofdm[2];
852 	power[ATHN_POWER_OFDM54  ] = tpow_ofdm[3];
853 	power[ATHN_POWER_XR      ] = tpow_ofdm[0];
854 	power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
855 	power[ATHN_POWER_CCK2_LP ] =
856 	power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
857 	power[ATHN_POWER_CCK55_LP] =
858 	power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
859 	power[ATHN_POWER_CCK11_LP] =
860 	power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
861 #ifndef IEEE80211_NO_HT
862 	for (i = 0; i < nitems(tpow_ht20); i++)
863 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
864 	if (extc != NULL) {
865 		/* Correct PAR difference between HT40 and HT20/Legacy. */
866 		if (sc->eep_rev >= AR_EEP_MINOR_VER_2)
867 			ht40inc = modal->ht40PowerIncForPdadc;
868 		else
869 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
870 		for (i = 0; i < nitems(tpow_ht40); i++)
871 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
872 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
873 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
874 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
875 		power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0];
876 	}
877 #endif
878 
879 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
880 		power[i] -= AR_PWR_TABLE_OFFSET_DB * 2;	/* In half dB. */
881 		if (power[i] > AR_MAX_RATE_POWER)
882 			power[i] = AR_MAX_RATE_POWER;
883 	}
884 
885 	/* Commit transmit power values to hardware. */
886 	ar5008_write_txpower(sc, power);
887 }
888