xref: /openbsd/sys/dev/ic/athn.c (revision 17df1aa7)
1 /*	$OpenBSD: athn.c,v 1.38 2010/05/11 19:34:20 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2008-2010 Atheros Communications Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros 802.11a/g/n chipsets.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/queue.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/stdint.h>	/* uintptr_t */
38 
39 #include <machine/bus.h>
40 #include <machine/endian.h>
41 #include <machine/intr.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/if_ether.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/athnreg.h>
63 #include <dev/ic/athnvar.h>
64 
65 #ifdef ATHN_DEBUG
66 int athn_debug = 0;
67 #endif
68 
69 void		athn_radiotap_attach(struct athn_softc *);
70 void		athn_get_chanlist(struct athn_softc *);
71 const char *	athn_get_mac_name(struct athn_softc *);
72 const char *	athn_get_rf_name(struct athn_softc *);
73 void		athn_led_init(struct athn_softc *);
74 void		athn_btcoex_init(struct athn_softc *);
75 void		athn_btcoex_enable(struct athn_softc *);
76 void		athn_btcoex_disable(struct athn_softc *);
77 void		athn_set_rxfilter(struct athn_softc *, uint32_t);
78 void		athn_get_chipid(struct athn_softc *);
79 int		athn_reset_power_on(struct athn_softc *);
80 int		athn_reset(struct athn_softc *, int);
81 void		athn_init_pll(struct athn_softc *,
82 		    const struct ieee80211_channel *);
83 int		athn_set_power_awake(struct athn_softc *);
84 void		athn_set_power_sleep(struct athn_softc *);
85 void		athn_write_serdes(struct athn_softc *, const uint32_t [9]);
86 void		athn_config_pcie(struct athn_softc *);
87 void		athn_config_nonpcie(struct athn_softc *);
88 int		athn_set_chan(struct athn_softc *, struct ieee80211_channel *,
89 		    struct ieee80211_channel *);
90 int		athn_switch_chan(struct athn_softc *,
91 		    struct ieee80211_channel *, struct ieee80211_channel *);
92 void		athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
93 void		athn_reset_key(struct athn_softc *, int);
94 int		athn_set_key(struct ieee80211com *, struct ieee80211_node *,
95 		    struct ieee80211_key *);
96 void		athn_delete_key(struct ieee80211com *, struct ieee80211_node *,
97 		    struct ieee80211_key *);
98 void		athn_iter_func(void *, struct ieee80211_node *);
99 void		athn_calib_to(void *);
100 int		athn_init_calib(struct athn_softc *,
101 		    struct ieee80211_channel *, struct ieee80211_channel *);
102 uint8_t		athn_chan2fbin(struct ieee80211_channel *);
103 int		athn_interpolate(int, int, int, int, int);
104 void		athn_get_pier_ival(uint8_t, const uint8_t *, int, int *,
105 		    int *);
106 void		athn_init_dma(struct athn_softc *);
107 void		athn_rx_start(struct athn_softc *);
108 void		athn_inc_tx_trigger_level(struct athn_softc *);
109 int		athn_stop_rx_dma(struct athn_softc *);
110 int		athn_rx_abort(struct athn_softc *);
111 void		athn_tx_reclaim(struct athn_softc *, int);
112 int		athn_tx_pending(struct athn_softc *, int);
113 void		athn_stop_tx_dma(struct athn_softc *, int);
114 int		athn_txtime(struct athn_softc *, int, int, u_int);
115 void		athn_set_beacon_timers(struct athn_softc *);
116 void		athn_set_opmode(struct athn_softc *);
117 void		athn_set_bss(struct athn_softc *, struct ieee80211_node *);
118 void		athn_enable_interrupts(struct athn_softc *);
119 void		athn_disable_interrupts(struct athn_softc *);
120 void		athn_init_qos(struct athn_softc *);
121 int		athn_hw_reset(struct athn_softc *, struct ieee80211_channel *,
122 		    struct ieee80211_channel *);
123 struct		ieee80211_node *athn_node_alloc(struct ieee80211com *);
124 void		athn_newassoc(struct ieee80211com *, struct ieee80211_node *,
125 		    int);
126 int		athn_media_change(struct ifnet *);
127 void		athn_next_scan(void *);
128 int		athn_newstate(struct ieee80211com *, enum ieee80211_state,
129 		    int);
130 void		athn_updateedca(struct ieee80211com *);
131 void		athn_updateslot(struct ieee80211com *);
132 void		athn_start(struct ifnet *);
133 void		athn_watchdog(struct ifnet *);
134 void		athn_set_multi(struct athn_softc *);
135 int		athn_ioctl(struct ifnet *, u_long, caddr_t);
136 int		athn_init(struct ifnet *);
137 void		athn_stop(struct ifnet *, int);
138 void		athn_init_tx_queues(struct athn_softc *);
139 int32_t		athn_ani_get_rssi(struct athn_softc *);
140 void		athn_ani_ofdm_err_trigger(struct athn_softc *);
141 void		athn_ani_cck_err_trigger(struct athn_softc *);
142 void		athn_ani_lower_immunity(struct athn_softc *);
143 void		athn_ani_restart(struct athn_softc *);
144 void		athn_ani_monitor(struct athn_softc *);
145 
146 /* Extern functions. */
147 int		ar5416_attach(struct athn_softc *);
148 int		ar9280_attach(struct athn_softc *);
149 int		ar9285_attach(struct athn_softc *);
150 int		ar9287_attach(struct athn_softc *);
151 int		ar9380_attach(struct athn_softc *);
152 int		ar5416_init_calib(struct athn_softc *,
153 		    struct ieee80211_channel *, struct ieee80211_channel *);
154 int		ar9285_1_2_init_calib(struct athn_softc *,
155 		    struct ieee80211_channel *, struct ieee80211_channel *);
156 int		ar9003_init_calib(struct athn_softc *);
157 void		ar9285_pa_calib(struct athn_softc *);
158 void		ar9287_1_2_enable_async_fifo(struct athn_softc *);
159 void		ar9287_1_2_setup_async_fifo(struct athn_softc *);
160 void		ar9003_reset_txsring(struct athn_softc *);
161 
162 struct cfdriver athn_cd = {
163 	NULL, "athn", DV_IFNET
164 };
165 
166 int
167 athn_attach(struct athn_softc *sc)
168 {
169 	struct ieee80211com *ic = &sc->sc_ic;
170 	struct ifnet *ifp = &ic->ic_if;
171 	int error;
172 
173 	if ((error = athn_reset_power_on(sc)) != 0) {
174 		printf(": could not reset chip\n");
175 		return (error);
176 	}
177 
178 	if ((error = athn_set_power_awake(sc)) != 0) {
179 		printf(": could not wakeup chip\n");
180 		return (error);
181 	}
182 
183 	if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
184 		error = ar5416_attach(sc);
185 	else if (AR_SREV_9280(sc))
186 		error = ar9280_attach(sc);
187 	else if (AR_SREV_9285(sc))
188 		error = ar9285_attach(sc);
189 	else if (AR_SREV_9287(sc))
190 		error = ar9287_attach(sc);
191 	else if (AR_SREV_9380(sc))
192 		error = ar9380_attach(sc);
193 	if (error != 0) {
194 		printf(": could not attach chip\n");
195 		return (error);
196 	}
197 
198 	/* We can put the chip in sleep state now. */
199 	athn_set_power_sleep(sc);
200 
201 	error = sc->ops.dma_alloc(sc);
202 	if (error != 0) {
203 		printf("%s: could not allocate DMA resources\n",
204 		    sc->sc_dev.dv_xname);
205 		return (error);
206 	}
207 
208 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
209 
210 	if (sc->flags & ATHN_FLAG_RFSILENT) {
211 		DPRINTF(("found RF switch connected to GPIO pin %d\n",
212 		    sc->rfsilent_pin));
213 	}
214 	DPRINTF(("%d key cache entries\n", sc->kc_entries));
215 
216 	/*
217 	 * In HostAP mode, the number of STAs that we can handle is
218 	 * limited by the number of entries in the HW key cache.
219 	 * XXX TKIP MMIC
220 	 */
221 	ic->ic_max_nnodes = sc->kc_entries - IEEE80211_GROUP_NKID;
222 
223 	DPRINTF(("using %s loop power control\n",
224 	    (sc->flags & ATHN_FLAG_OLPC) ? "open" : "closed"));
225 
226 	DPRINTF(("txchainmask=0x%x rxchainmask=0x%x\n",
227 	    sc->txchainmask, sc->rxchainmask));
228 	/* Count the number of bits set (in lowest 3 bits). */
229 	sc->ntxchains =
230 	    ((sc->txchainmask >> 2) & 1) +
231 	    ((sc->txchainmask >> 1) & 1) +
232 	    ((sc->txchainmask >> 0) & 1);
233 	sc->nrxchains =
234 	    ((sc->rxchainmask >> 2) & 1) +
235 	    ((sc->rxchainmask >> 1) & 1) +
236 	    ((sc->rxchainmask >> 0) & 1);
237 
238 	if (AR_SINGLE_CHIP(sc)) {
239 		printf("%s: %s rev %d (%dT%dR), ROM rev %d\n",
240 		    sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
241 		    sc->ntxchains, sc->nrxchains, sc->eep_rev);
242 	} else {
243 		printf("%s: MAC %s rev %d, RF %s (%dT%dR), ROM rev %d\n",
244 		    sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
245 		    athn_get_rf_name(sc), sc->ntxchains, sc->nrxchains,
246 		    sc->eep_rev);
247 	}
248 
249 	timeout_set(&sc->scan_to, athn_next_scan, sc);
250 	timeout_set(&sc->calib_to, athn_calib_to, sc);
251 
252 	sc->amrr.amrr_min_success_threshold =  1;
253 	sc->amrr.amrr_max_success_threshold = 15;
254 
255 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
256 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
257 	ic->ic_state = IEEE80211_S_INIT;
258 
259 	/* Set device capabilities. */
260 	ic->ic_caps =
261 	    IEEE80211_C_WEP |		/* WEP */
262 	    IEEE80211_C_RSN |		/* WPA/RSN */
263 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
264 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
265 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
266 	    IEEE80211_C_PMGT;		/* power saving supported */
267 
268 #ifndef IEEE80211_NO_HT
269 	if (sc->flags & ATHN_FLAG_11N) {
270 		int i, ntxstreams, nrxstreams;
271 
272 		/* Set HT capabilities. */
273 		ic->ic_htcaps =
274 		    IEEE80211_HTCAP_SMPS_DIS |
275 		    IEEE80211_HTCAP_CBW20_40 |
276 		    IEEE80211_HTCAP_SGI40 |
277 		    IEEE80211_HTCAP_DSSSCCK40;
278 		if (AR_SREV_9380_10_OR_LATER(sc))
279 			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
280 		if (AR_SREV_9280_10_OR_LATER(sc)) {
281 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
282 			ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
283 		}
284 		ntxstreams = sc->ntxchains;
285 		nrxstreams = sc->nrxchains;
286 		if (!AR_SREV_9380_10_OR_LATER(sc)) {
287 			ntxstreams = MIN(ntxstreams, 2);
288 			nrxstreams = MIN(nrxstreams, 2);
289 		}
290 		/* Set supported HT rates. */
291 		for (i = 0; i < nrxstreams; i++)
292 			ic->ic_sup_mcs[i] = 0xff;
293 		/* Set the "Tx MCS Set Defined" bit. */
294 		ic->ic_sup_mcs[12] |= 0x01;
295 		if (ntxstreams != nrxstreams) {
296 			/* Set "Tx Rx MCS Set Not Equal" bit. */
297 			ic->ic_sup_mcs[12] |= 0x02;
298 			ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
299 		}
300 	}
301 #endif
302 
303 	/* Set supported rates. */
304 	if (sc->flags & ATHN_FLAG_11G) {
305 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
306 		    ieee80211_std_rateset_11b;
307 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
308 		    ieee80211_std_rateset_11g;
309 	}
310 	if (sc->flags & ATHN_FLAG_11A) {
311 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
312 		    ieee80211_std_rateset_11a;
313 	}
314 
315 	/* Get the list of auhtorized/supported channels. */
316 	athn_get_chanlist(sc);
317 
318 	/* IBSS channel undefined for now. */
319 	ic->ic_ibss_chan = &ic->ic_channels[0];
320 
321 	ifp->if_softc = sc;
322 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
323 	ifp->if_init = athn_init;
324 	ifp->if_ioctl = athn_ioctl;
325 	ifp->if_start = athn_start;
326 	ifp->if_watchdog = athn_watchdog;
327 	IFQ_SET_READY(&ifp->if_snd);
328 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
329 
330 	if_attach(ifp);
331 	ieee80211_ifattach(ifp);
332 	ic->ic_node_alloc = athn_node_alloc;
333 	ic->ic_newassoc = athn_newassoc;
334 	ic->ic_updateslot = athn_updateslot;
335 	ic->ic_updateedca = athn_updateedca;
336 #ifdef notyet
337 	ic->ic_set_key = athn_set_key;
338 	ic->ic_delete_key = athn_delete_key;
339 #endif
340 
341 	/* Override 802.11 state transition machine. */
342 	sc->sc_newstate = ic->ic_newstate;
343 	ic->ic_newstate = athn_newstate;
344 	ieee80211_media_init(ifp, athn_media_change, ieee80211_media_status);
345 
346 #if NBPFILTER > 0
347 	athn_radiotap_attach(sc);
348 #endif
349 
350 	return (0);
351 }
352 
353 void
354 athn_detach(struct athn_softc *sc)
355 {
356 	struct ifnet *ifp = &sc->sc_ic.ic_if;
357 	int qid;
358 
359 	timeout_del(&sc->scan_to);
360 	timeout_del(&sc->calib_to);
361 
362 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
363 		athn_tx_reclaim(sc, qid);
364 
365 	/* Free Tx/Rx DMA resources. */
366 	sc->ops.dma_free(sc);
367 
368 	/* Free ROM copy. */
369 	if (sc->eep != NULL)
370 		free(sc->eep, M_DEVBUF);
371 
372 	ieee80211_ifdetach(ifp);
373 	if_detach(ifp);
374 }
375 
376 #if NBPFILTER > 0
377 /*
378  * Attach the interface to 802.11 radiotap.
379  */
380 void
381 athn_radiotap_attach(struct athn_softc *sc)
382 {
383 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
384 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
385 
386 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
387 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
388 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
389 
390 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
391 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
392 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
393 }
394 #endif
395 
396 void
397 athn_get_chanlist(struct athn_softc *sc)
398 {
399 	struct ieee80211com *ic = &sc->sc_ic;
400 	uint8_t chan;
401 	int i;
402 
403 	if (sc->flags & ATHN_FLAG_11G) {
404 		for (i = 1; i <= 14; i++) {
405 			chan = i;
406 			ic->ic_channels[chan].ic_freq =
407 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
408 			ic->ic_channels[chan].ic_flags =
409 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
410 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
411 		}
412 	}
413 	if (sc->flags & ATHN_FLAG_11A) {
414 		for (i = 0; i < nitems(athn_5ghz_chans); i++) {
415 			chan = athn_5ghz_chans[i];
416 			ic->ic_channels[chan].ic_freq =
417 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
418 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
419 		}
420 	}
421 }
422 
423 void
424 athn_rx_start(struct athn_softc *sc)
425 {
426 	struct ieee80211com *ic = &sc->sc_ic;
427 	uint32_t rfilt;
428 
429 	/* Setup Rx DMA descriptors. */
430 	sc->ops.rx_enable(sc);
431 
432 	/* Set Rx filter. */
433 	rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
434 #ifndef IEEE80211_NO_HT
435 	/* Want Compressed Block Ack Requests. */
436 	rfilt |= AR_RX_FILTER_COMPR_BAR;
437 #endif
438 	if (ic->ic_opmode != IEEE80211_M_STA) {
439 		rfilt |= AR_RX_FILTER_PROBEREQ;
440 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
441 			rfilt |= AR_RX_FILTER_PROM;
442 #ifndef IEEE80211_STA_ONLY
443 		if (AR_SREV_9280_10_OR_LATER(sc) &&
444 		    ic->ic_opmode == IEEE80211_M_HOSTAP)
445 			rfilt |= AR_RX_FILTER_PSPOLL;
446 #endif
447 		rfilt |= AR_RX_FILTER_BEACON;
448 	} else
449 		rfilt |= AR_RX_FILTER_BEACON; /* XXX AR_RX_FILTER_MYBEACON */
450 	athn_set_rxfilter(sc, rfilt);
451 
452 	/* Set BSSID mask. */
453 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
454 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
455 
456 	athn_set_opmode(sc);
457 
458 	/* Set multicast filter. */
459 	AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
460 	AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
461 
462 	AR_WRITE(sc, AR_FILT_OFDM, 0);
463 	AR_WRITE(sc, AR_FILT_CCK, 0);
464 	AR_WRITE(sc, AR_MIBC, 0);
465 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
466 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
467 
468 	/* XXX ANI. */
469 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
470 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
471 
472 	/* Disable HW crypto for now. */
473 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
474 
475 	/* Start PCU Rx. */
476 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
477 }
478 
479 void
480 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
481 {
482 	AR_WRITE(sc, AR_RX_FILTER, rfilt);
483 
484 #ifdef notyet
485 	reg = AR_READ(sc, AR_PHY_ERR);
486 	reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
487 	    AR_PHY_ERR_CCK_TIMING);
488 	AR_WRITE(sc, AR_PHY_ERR, reg);
489 	if (reg != 0)
490 		AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
491 	else
492 		AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
493 #else
494 	AR_WRITE(sc, AR_PHY_ERR, 0);
495 	AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
496 #endif
497 }
498 
499 int
500 athn_intr(void *xsc)
501 {
502 	struct athn_softc *sc = xsc;
503 	struct ifnet *ifp = &sc->sc_ic.ic_if;
504 
505 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
506 	    (IFF_UP | IFF_RUNNING))
507 		return (0);
508 
509 	return (sc->ops.intr(sc));
510 }
511 
512 void
513 athn_get_chipid(struct athn_softc *sc)
514 {
515 	uint32_t reg;
516 
517 	reg = AR_READ(sc, AR_SREV);
518 	if (MS(reg, AR_SREV_ID) == 0xff) {
519 		sc->mac_ver = MS(reg, AR_SREV_VERSION2);
520 		sc->mac_rev = MS(reg, AR_SREV_REVISION2);
521 		if (!(reg & AR_SREV_TYPE2_HOST_MODE))
522 			sc->flags |= ATHN_FLAG_PCIE;
523 	} else {
524 		sc->mac_ver = MS(reg, AR_SREV_VERSION);
525 		sc->mac_rev = MS(reg, AR_SREV_REVISION);
526 		if (sc->mac_ver == AR_SREV_VERSION_5416_PCIE)
527 			sc->flags |= ATHN_FLAG_PCIE;
528 	}
529 }
530 
531 const char *
532 athn_get_mac_name(struct athn_softc *sc)
533 {
534 	switch (sc->mac_ver) {
535 	case AR_SREV_VERSION_5416_PCI:
536 		return ("AR5416");
537 	case AR_SREV_VERSION_5416_PCIE:
538 		return ("AR5418");
539 	case AR_SREV_VERSION_9160:
540 		return ("AR9160");
541 	case AR_SREV_VERSION_9280:
542 		return ("AR9280");
543 	case AR_SREV_VERSION_9285:
544 		return ("AR9285");
545 	case AR_SREV_VERSION_9287:
546 		return ("AR9287");
547 	case AR_SREV_VERSION_9380:
548 		return ("AR9380");
549 	}
550 	return ("unknown");
551 }
552 
553 /*
554  * Return RF chip name (not for single-chip solutions.)
555  */
556 const char *
557 athn_get_rf_name(struct athn_softc *sc)
558 {
559 	KASSERT(!AR_SINGLE_CHIP(sc));
560 
561 	switch (sc->rf_rev) {
562 	case AR_RAD5133_SREV_MAJOR:	/* Dual-band 3T3R. */
563 		return ("AR5133");
564 	case AR_RAD2133_SREV_MAJOR:	/* Single-band 3T3R. */
565 		return ("AR2133");
566 	case AR_RAD5122_SREV_MAJOR:	/* Dual-band 2T2R. */
567 		return ("AR5122");
568 	case AR_RAD2122_SREV_MAJOR:	/* Single-band 2T2R. */
569 		return ("AR2122");
570 	}
571 	return ("unknown");
572 }
573 
574 int
575 athn_reset_power_on(struct athn_softc *sc)
576 {
577 	int ntries;
578 
579 	/* Set force wake. */
580 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
581 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
582 
583 	/* XXX on first call, we do not know the chip id yet. */
584 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
585 		/* Make sure no DMA is active by doing an AHB reset. */
586 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
587 	}
588 	/* RTC reset and clear. */
589 	AR_WRITE(sc, AR_RTC_RESET, 0);
590 	DELAY(2);
591 	if (!AR_SREV_9380_10_OR_LATER(sc))
592 		AR_WRITE(sc, AR_RC, 0);
593 	AR_WRITE(sc, AR_RTC_RESET, 1);
594 
595 	/* Poll until RTC is ON. */
596 	for (ntries = 0; ntries < 1000; ntries++) {
597 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
598 		    AR_RTC_STATUS_ON)
599 			break;
600 		DELAY(10);
601 	}
602 	if (ntries == 1000) {
603 		DPRINTF(("RTC not waking up\n"));
604 		return (ETIMEDOUT);
605 	}
606 
607 	/* Read hardware revision. */
608 	athn_get_chipid(sc);
609 
610 	return (athn_reset(sc, 0));
611 }
612 
613 int
614 athn_reset(struct athn_softc *sc, int cold)
615 {
616 	int ntries;
617 
618 	/* Set force wake. */
619 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
620 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
621 
622 	if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
623 	    (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
624 		AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
625 		AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
626 		    (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
627 	} else if (!AR_SREV_9380_10_OR_LATER(sc))
628 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
629 
630 	AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
631 	    (cold ? AR_RTC_RC_MAC_COLD : 0));
632 	DELAY(50);
633 	AR_WRITE(sc, AR_RTC_RC, 0);
634 	for (ntries = 0; ntries < 1000; ntries++) {
635 		if (!(AR_READ(sc, AR_RTC_RC) &
636 		      (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
637 			break;
638 		DELAY(10);
639 	}
640 	if (ntries == 1000) {
641 		DPRINTF(("RTC stuck in MAC reset\n"));
642 		return (ETIMEDOUT);
643 	}
644 	AR_WRITE(sc, AR_RC, 0);
645 	return (0);
646 }
647 
648 int
649 athn_set_power_awake(struct athn_softc *sc)
650 {
651 	int ntries, error;
652 
653 	/* Do a Power-On-Reset if shutdown. */
654 	if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
655 	    AR_RTC_STATUS_SHUTDOWN) {
656 		if ((error = athn_reset_power_on(sc)) != 0)
657 			return (error);
658 		if (!AR_SREV_9380_10_OR_LATER(sc))
659 			athn_init_pll(sc, NULL);
660 	}
661 	AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
662 	DELAY(50);	/* Give chip the chance to awake. */
663 
664 	/* Poll until RTC is ON. */
665 	for (ntries = 0; ntries < 4000; ntries++) {
666 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
667 		    AR_RTC_STATUS_ON)
668 			break;
669 		DELAY(50);
670 		AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
671 	}
672 	if (ntries == 4000) {
673 		DPRINTF(("RTC not waking up\n"));
674 		return (ETIMEDOUT);
675 	}
676 
677 	AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
678 	return (0);
679 }
680 
681 void
682 athn_set_power_sleep(struct athn_softc *sc)
683 {
684 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
685 	/* Allow the MAC to go to sleep. */
686 	AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
687 	if (!AR_SREV_9380_10_OR_LATER(sc))
688 		AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
689 	/*
690 	 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
691 	 * results in high power consumption on AR5416 chipsets.
692 	 */
693 	if (!AR_SREV_5416(sc))
694 		AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
695 }
696 
697 void
698 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
699 {
700 	uint32_t pll;
701 
702 	if (AR_SREV_9380_10_OR_LATER(sc)) {
703 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
704 		pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
705 	} else if (AR_SREV_9280_10_OR_LATER(sc)) {
706 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
707 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
708 			if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)
709 				pll = 0x142c;
710 			else if (AR_SREV_9280_20(sc))
711 		 		pll = 0x2850;
712 			else
713 				pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
714 		} else
715 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
716 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
717 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
718 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
719 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
720 		else
721 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
722 	} else {
723 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
724 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
725 			pll |= SM(AR_RTC_PLL_DIV, 0x0a);
726 		else
727 			pll |= SM(AR_RTC_PLL_DIV, 0x0b);
728 	}
729 	DPRINTFN(5, ("AR_RTC_PLL_CONTROL=0x%08x\n", pll));
730 	AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
731 	DELAY(100);
732 	AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
733 }
734 
735 void
736 athn_write_serdes(struct athn_softc *sc, const uint32_t val[9])
737 {
738 	int i;
739 
740 	/* Write 288-bit value to Serializer/Deserializer. */
741 	for (i = 0; i < 288 / 32; i++)
742 		AR_WRITE(sc, AR_PCIE_SERDES, val[i]);
743 	AR_WRITE(sc, AR_PCIE_SERDES2, 0);
744 }
745 
746 void
747 athn_config_pcie(struct athn_softc *sc)
748 {
749 	/* Disable PLL when in L0s as well as receiver clock when in L1. */
750 	athn_write_serdes(sc, sc->serdes);
751 
752 	DELAY(1000);
753 	/* Allow forcing of PCIe core into L1 state. */
754 	AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
755 
756 #ifndef ATHN_PCIE_WAEN
757 	AR_WRITE(sc, AR_WA, sc->workaround);
758 #else
759 	AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
760 #endif
761 }
762 
763 void
764 athn_config_nonpcie(struct athn_softc *sc)
765 {
766 	athn_write_serdes(sc, ar_nonpcie_serdes);
767 }
768 
769 int
770 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *c,
771     struct ieee80211_channel *extc)
772 {
773 	struct athn_ops *ops = &sc->ops;
774 	int error, qid;
775 
776 	/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
777 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
778 		if (athn_tx_pending(sc, qid))
779 			return (EBUSY);
780 
781 	/* Request RF Bus grant. */
782 	if ((error = ops->rf_bus_request(sc)) != 0)
783 		return (error);
784 
785 	ops->set_phy(sc, c, extc);
786 
787 	/* Change the synthesizer. */
788 	if ((error = ops->set_synth(sc, c, extc)) != 0)
789 		return (error);
790 
791 	sc->curchan = c;
792 	sc->curchanext = extc;
793 
794 	/* Set transmit power values for new channel. */
795 	ops->set_txpower(sc, c, extc);
796 
797 	/* Release the RF Bus grant. */
798 	ops->rf_bus_release(sc);
799 
800 	/* Write delta slope coeffs for modes where OFDM may be used. */
801 	if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
802 		ops->set_delta_slope(sc, c, extc);
803 
804 	ops->spur_mitigate(sc, c, extc);
805 	/* XXX Load noisefloor values and start calibration. */
806 
807 	return (0);
808 }
809 
810 int
811 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *c,
812     struct ieee80211_channel *extc)
813 {
814 	int error, qid;
815 
816 	/* Disable interrupts. */
817 	athn_disable_interrupts(sc);
818 
819 	/* Stop all Tx queues. */
820 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
821 		athn_stop_tx_dma(sc, qid);
822 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
823 		athn_tx_reclaim(sc, qid);
824 
825 	/* Stop Rx. */
826 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS);
827 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
828 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
829 	AR_WRITE(sc, AR_FILT_OFDM, 0);
830 	AR_WRITE(sc, AR_FILT_CCK, 0);
831 	athn_set_rxfilter(sc, 0);
832 	error = athn_stop_rx_dma(sc);
833 	if (error != 0)
834 		goto reset;
835 
836 	/* AR9280 always needs a full reset. */
837 /*	if (AR_SREV_9280(sc))*/
838 		goto reset;
839 
840 	/* If band or bandwidth changes, we need to do a full reset. */
841 	if (c->ic_flags != sc->curchan->ic_flags ||
842 	    ((extc != NULL) ^ (sc->curchanext != NULL))) {
843 		DPRINTFN(2, ("channel band switch\n"));
844 		goto reset;
845 	}
846 	error = athn_set_power_awake(sc);
847 	if (error != 0)
848 		goto reset;
849 
850 	error = athn_set_chan(sc, c, extc);
851 	if (error != 0) {
852  reset:		/* Error found, try a full reset. */
853 		DPRINTFN(3, ("needs a full reset\n"));
854 		error = athn_hw_reset(sc, c, extc);
855 		if (error != 0)	/* Hopeless case. */
856 			return (error);
857 	}
858 	athn_rx_start(sc);
859 
860 	/* Re-enable interrupts. */
861 	athn_enable_interrupts(sc);
862 	return (0);
863 }
864 
865 void
866 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
867 {
868 #define COEFF_SCALE_SHIFT	24
869 	uint32_t exp, man;
870 
871 	/* exponent = 14 - floor(log2(coeff)) */
872 	for (exp = 31; exp > 0; exp--)
873 		if (coeff & (1 << exp))
874 			break;
875 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
876 
877 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
878 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
879 
880 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
881 	*exponent = exp - 16;
882 #undef COEFF_SCALE_SHIFT
883 }
884 
885 void
886 athn_reset_key(struct athn_softc *sc, int entry)
887 {
888 	/*
889 	 * NB: Key cache registers access special memory area that requires
890 	 * two 32-bit writes to actually update the values in the internal
891 	 * memory.  Consequently, writes must be grouped by pair.
892 	 */
893 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
894 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
895 
896 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
897 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
898 
899 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
900 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
901 
902 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
903 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
904 }
905 
906 int
907 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
908     struct ieee80211_key *k)
909 {
910 	struct athn_softc *sc = ic->ic_softc;
911 	uint32_t type, lo, hi;
912 	uint16_t keybuf[8], micbuf[8];
913 	const uint8_t *addr;
914 	uintptr_t entry, micentry;
915 
916 	switch (k->k_cipher) {
917 	case IEEE80211_CIPHER_WEP40:
918 		type = AR_KEYTABLE_TYPE_40;
919 		break;
920 	case IEEE80211_CIPHER_WEP104:
921 		type = AR_KEYTABLE_TYPE_104;
922 		break;
923 	case IEEE80211_CIPHER_TKIP:
924 		type = AR_KEYTABLE_TYPE_TKIP;
925 		break;
926 	case IEEE80211_CIPHER_CCMP:
927 		type = AR_KEYTABLE_TYPE_CCM;
928 		break;
929 	default:
930 		/* Fallback to software crypto for other ciphers. */
931 		return (ieee80211_set_key(ic, ni, k));
932 	}
933 
934 	memset(keybuf, 0, sizeof keybuf);
935 	memcpy(keybuf, k->k_key, MIN(k->k_len, 16));
936 
937 	if (!(k->k_flags & IEEE80211_KEY_GROUP))
938 		entry = IEEE80211_GROUP_NKID + IEEE80211_AID(ni->ni_associd);
939 	else
940 		entry = k->k_id;
941 	k->k_priv = (void *)entry;
942 
943 	/* NB: See note about key cache registers access above. */
944 	if (type == AR_KEYTABLE_TYPE_TKIP) {
945 		micentry = entry + 64;
946 
947 		/* XXX Split MIC. */
948 		AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry),
949 		    micbuf[0] | micbuf[1] << 16);
950 		AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), micbuf[2]);
951 
952 		AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry),
953 		    micbuf[3] | micbuf[4] << 16);
954 		AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), micbuf[5]);
955 
956 		AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry),
957 		    micbuf[6] | micbuf[7] << 16);
958 		AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
959 
960 		/* MAC address registers are reserved for the MIC entry. */
961 		AR_WRITE(sc, AR_KEYTABLE_MAC0(micentry), 0);
962 		AR_WRITE(sc, AR_KEYTABLE_MAC1(micentry), 0);
963 	} else {
964 		AR_WRITE(sc, AR_KEYTABLE_KEY0(entry),
965 		    keybuf[0] | keybuf[1] << 16);
966 		AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), keybuf[2]);
967 
968 		AR_WRITE(sc, AR_KEYTABLE_KEY2(entry),
969 		    keybuf[3] | keybuf[4] << 16);
970 		AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), keybuf[5]);
971 
972 		AR_WRITE(sc, AR_KEYTABLE_KEY4(entry),
973 		    keybuf[6] | keybuf[7] << 16);
974 		AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
975 	}
976 
977 	/* Clear keys from the stack. */
978 	memset(keybuf, 0, sizeof keybuf);
979 	memset(micbuf, 0, sizeof micbuf);
980 
981 	if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
982 		addr = ni->ni_macaddr;
983 		lo = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
984 		hi = addr[4] | addr[5] << 8;
985 		lo = lo >> 1 | hi << 31;
986 		hi = hi >> 1;
987 	} else
988 		lo = hi = 0;
989 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
990 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
991 	return (0);
992 }
993 
994 void
995 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
996     struct ieee80211_key *k)
997 {
998 	struct athn_softc *sc = ic->ic_softc;
999 	uintptr_t entry;
1000 
1001 	switch (k->k_cipher) {
1002 	case IEEE80211_CIPHER_WEP40:
1003 	case IEEE80211_CIPHER_WEP104:
1004 	case IEEE80211_CIPHER_TKIP:
1005 	case IEEE80211_CIPHER_CCMP:
1006 		entry = (uintptr_t)k->k_priv;
1007 		athn_reset_key(sc, entry);
1008 		break;
1009 	default:
1010 		/* Fallback to software crypto for other ciphers. */
1011 		ieee80211_delete_key(ic, ni, k);
1012 	}
1013 }
1014 
1015 void
1016 athn_led_init(struct athn_softc *sc)
1017 {
1018 	struct athn_ops *ops = &sc->ops;
1019 
1020 	ops->gpio_config_output(sc, sc->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1021 	/* LED off, active low. */
1022 	ops->gpio_write(sc, sc->led_pin, 1);
1023 }
1024 
1025 #ifdef ATHN_BT_COEXISTENCE
1026 void
1027 athn_btcoex_init(struct athn_softc *sc)
1028 {
1029 	struct athn_ops *ops = &sc->ops;
1030 	uint32_t reg;
1031 
1032 	if (sc->flags & ATHN_FLAG_BTCOEX2WIRE) {
1033 		/* Connect bt_active to baseband. */
1034 		AR_CLRBITS(sc, sc->gpio_input_en_off,
1035 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1036 		    AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1037 		AR_SETBITS(sc, sc->gpio_input_en_off,
1038 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1039 
1040 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1041 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1042 		    AR_GPIO_BTACTIVE_PIN);
1043 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1044 
1045 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1046 	} else {	/* 3-wire. */
1047 		AR_SETBITS(sc, sc->gpio_input_en_off,
1048 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1049 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1050 
1051 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1052 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1053 		    AR_GPIO_BTACTIVE_PIN);
1054 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1055 		    AR_GPIO_BTPRIORITY_PIN);
1056 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1057 
1058 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1059 		ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1060 	}
1061 }
1062 
1063 void
1064 athn_btcoex_enable(struct athn_softc *sc)
1065 {
1066 	struct athn_ops *ops = &sc->ops;
1067 	uint32_t reg;
1068 
1069 	if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
1070 		AR_WRITE(sc, AR_BT_COEX_MODE,
1071 		    SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1072 		    SM(AR_BT_PRIORITY_TIME, 2) |
1073 		    SM(AR_BT_FIRST_SLOT_TIME, 5) |
1074 		    SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1075 		    AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1076 		    AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1077 		AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1078 		    SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1079 		    SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1080 		AR_WRITE(sc, AR_BT_COEX_MODE2,
1081 		    SM(AR_BT_BCN_MISS_THRESH, 50) |
1082 		    AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1083 
1084 		AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1085 		AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1086 
1087 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1088 		    AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1089 
1090 	} else {	/* 2-wire. */
1091 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1092 		    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1093 	}
1094 	reg = AR_READ(sc, AR_GPIO_PDPU);
1095 	reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1096 	reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1097 	AR_WRITE(sc, AR_GPIO_PDPU, reg);
1098 
1099 	/* Disable PCIe Active State Power Management (ASPM). */
1100 	if (sc->sc_disable_aspm != NULL)
1101 		sc->sc_disable_aspm(sc);
1102 
1103 	/* XXX Start periodic timer. */
1104 }
1105 
1106 void
1107 athn_btcoex_disable(struct athn_softc *sc)
1108 {
1109 	struct athn_ops *ops = &sc->ops;
1110 
1111 	ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1112 
1113 	ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1114 	    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1115 
1116 	if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
1117 		AR_WRITE(sc, AR_BT_COEX_MODE,
1118 		    SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1119 		AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1120 		AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1121 		/* XXX Stop periodic timer. */
1122 	}
1123 	/* XXX Restore ASPM setting? */
1124 }
1125 #endif
1126 
1127 void
1128 athn_iter_func(void *arg, struct ieee80211_node *ni)
1129 {
1130 	struct athn_softc *sc = arg;
1131 	struct athn_node *an = (struct athn_node *)ni;
1132 
1133 	ieee80211_amrr_choose(&sc->amrr, ni, &an->amn);
1134 }
1135 
1136 void
1137 athn_calib_to(void *arg)
1138 {
1139 	struct athn_softc *sc = arg;
1140 	struct ieee80211com *ic = &sc->sc_ic;
1141 	int s;
1142 
1143 	s = splnet();
1144 #ifdef notyet
1145 	/* XXX ANI. */
1146 	athn_ani_monitor(sc);
1147 	/* XXX OLPC temperature compensation. */
1148 
1149 	sc->ops.next_calib(sc);
1150 #endif
1151 	if (ic->ic_fixed_rate == -1) {
1152 		if (ic->ic_opmode == IEEE80211_M_STA)
1153 			athn_iter_func(sc, ic->ic_bss);
1154 		else
1155 			ieee80211_iterate_nodes(ic, athn_iter_func, sc);
1156 	}
1157 	timeout_add_msec(&sc->calib_to, 500);
1158 	splx(s);
1159 }
1160 
1161 int
1162 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
1163     struct ieee80211_channel *extc)
1164 {
1165 	struct athn_ops *ops = &sc->ops;
1166 	int error;
1167 
1168 	if (AR_SREV_9380_10_OR_LATER(sc))
1169 		error = ar9003_init_calib(sc);
1170 	else if (AR_SREV_9285_12_OR_LATER(sc))
1171 		error = ar9285_1_2_init_calib(sc, c, extc);
1172 	else
1173 		error = ar5416_init_calib(sc, c, extc);
1174 	if (error != 0)
1175 		return (error);
1176 
1177 	/* Do PA calibration. */
1178 	if (AR_SREV_9285_11_OR_LATER(sc))
1179 		ar9285_pa_calib(sc);
1180 
1181 	/* Do noisefloor calibration. */
1182 	ops->noisefloor_calib(sc);
1183 
1184 	if (!AR_SREV_9160_10_OR_LATER(sc))
1185 		return (0);
1186 
1187 	/* Enable IQ calibration. */
1188 	sc->calib_mask = ATHN_CAL_IQ;
1189 
1190 	if (!AR_SREV_9380_10_OR_LATER(sc) &&
1191 	    (IEEE80211_IS_CHAN_5GHZ(c) || extc != NULL)) {
1192 		/* Enable ADC gain and ADC DC offset calibrations. */
1193 		sc->calib_mask |= ATHN_CAL_ADC_GAIN | ATHN_CAL_ADC_DC;
1194 	}
1195 
1196 	ops->do_calib(sc);
1197 	return (0);
1198 }
1199 
1200 /*
1201  * Adaptive noise immunity.
1202  */
1203 int32_t
1204 athn_ani_get_rssi(struct athn_softc *sc)
1205 {
1206 	return (0);	/* XXX */
1207 }
1208 
1209 void
1210 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1211 {
1212 	struct athn_ani *ani = &sc->ani;
1213 	struct athn_ops *ops = &sc->ops;
1214 	int32_t rssi;
1215 
1216 	/* First, raise noise immunity level, up to max. */
1217 	if (ani->noise_immunity_level < 4) {
1218 		ani->noise_immunity_level++;
1219 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1220 		return;
1221 	}
1222 
1223 	/* Then, raise our spur immunity level, up to max. */
1224 	if (ani->spur_immunity_level < 7) {
1225 		ani->spur_immunity_level++;
1226 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1227 		return;
1228 	}
1229 
1230 #ifndef IEEE80211_STA_ONLY
1231 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1232 		if (ani->firstep_level < 2) {
1233 			ani->firstep_level++;
1234 			ops->set_firstep_level(sc, ani->firstep_level);
1235 		}
1236 		return;
1237 	}
1238 #endif
1239 	rssi = athn_ani_get_rssi(sc);
1240 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1241 		/*
1242 		 * Beacon RSSI is high, turn off OFDM weak signal detection
1243 		 * or raise first step level as last resort.
1244 		 */
1245 		if (ani->ofdm_weak_signal) {
1246 			ani->ofdm_weak_signal = 0;
1247 			ops->disable_ofdm_weak_signal(sc);
1248 			ani->spur_immunity_level = 0;
1249 			ops->set_spur_immunity_level(sc, 0);
1250 		} else if (ani->firstep_level < 2) {
1251 			ani->firstep_level++;
1252 			ops->set_firstep_level(sc, ani->firstep_level);
1253 		}
1254 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1255 		/*
1256 		 * Beacon RSSI is in mid range, we need OFDM weak signal
1257 		 * detection but we can raise first step level.
1258 		 */
1259 		if (!ani->ofdm_weak_signal) {
1260 			ani->ofdm_weak_signal = 1;
1261 			ops->enable_ofdm_weak_signal(sc);
1262 		}
1263 		if (ani->firstep_level < 2) {
1264 			ani->firstep_level++;
1265 			ops->set_firstep_level(sc, ani->firstep_level);
1266 		}
1267 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1268 		/*
1269 		 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1270 		 * signal detection and zero first step level to maximize
1271 		 * CCK sensitivity.
1272 		 */
1273 		if (ani->ofdm_weak_signal) {
1274 			ani->ofdm_weak_signal = 0;
1275 			ops->disable_ofdm_weak_signal(sc);
1276 		}
1277 		if (ani->firstep_level > 0) {
1278 			ani->firstep_level = 0;
1279 			ops->set_firstep_level(sc, 0);
1280 		}
1281 	}
1282 }
1283 
1284 void
1285 athn_ani_cck_err_trigger(struct athn_softc *sc)
1286 {
1287 	struct athn_ani *ani = &sc->ani;
1288 	struct athn_ops *ops = &sc->ops;
1289 	int32_t rssi;
1290 
1291 	/* Raise noise immunity level, up to max. */
1292 	if (ani->noise_immunity_level < 4) {
1293 		ani->noise_immunity_level++;
1294 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1295 		return;
1296 	}
1297 
1298 #ifndef IEEE80211_STA_ONLY
1299 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1300 		if (ani->firstep_level < 2) {
1301 			ani->firstep_level++;
1302 			ops->set_firstep_level(sc, ani->firstep_level);
1303 		}
1304 		return;
1305 	}
1306 #endif
1307 	rssi = athn_ani_get_rssi(sc);
1308 	if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1309 		/*
1310 		 * Beacon RSSI is in mid or high range, raise first step
1311 		 * level.
1312 		 */
1313 		if (ani->firstep_level < 2) {
1314 			ani->firstep_level++;
1315 			ops->set_firstep_level(sc, ani->firstep_level);
1316 		}
1317 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1318 		/*
1319 		 * Beacon RSSI is low, zero first step level to maximize
1320 		 * CCK sensitivity.
1321 		 */
1322 		if (ani->firstep_level > 0) {
1323 			ani->firstep_level = 0;
1324 			ops->set_firstep_level(sc, 0);
1325 		}
1326 	}
1327 }
1328 
1329 void
1330 athn_ani_lower_immunity(struct athn_softc *sc)
1331 {
1332 	struct athn_ani *ani = &sc->ani;
1333 	struct athn_ops *ops = &sc->ops;
1334 	int32_t rssi;
1335 
1336 #ifndef IEEE80211_STA_ONLY
1337 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1338 		if (ani->firstep_level > 0) {
1339 			ani->firstep_level--;
1340 			ops->set_firstep_level(sc, ani->firstep_level);
1341 		}
1342 		return;
1343 	}
1344 #endif
1345 	rssi = athn_ani_get_rssi(sc);
1346 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1347 		/*
1348 		 * Beacon RSSI is high, leave OFDM weak signal detection
1349 		 * off or it may oscillate.
1350 		 */
1351 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1352 		/*
1353 		 * Beacon RSSI is in mid range, turn on OFDM weak signal
1354 		 * detection or lower first step level.
1355 		 */
1356 		if (!ani->ofdm_weak_signal) {
1357 			ani->ofdm_weak_signal = 1;
1358 			ops->enable_ofdm_weak_signal(sc);
1359 			return;
1360 		}
1361 		if (ani->firstep_level > 0) {
1362 			ani->firstep_level--;
1363 			ops->set_firstep_level(sc, ani->firstep_level);
1364 			return;
1365 		}
1366 	} else {
1367 		/* Beacon RSSI is low, lower first step level. */
1368 		if (ani->firstep_level > 0) {
1369 			ani->firstep_level--;
1370 			ops->set_firstep_level(sc, ani->firstep_level);
1371 			return;
1372 		}
1373 	}
1374 	/*
1375 	 * Lower spur immunity level down to zero, or if all else fails,
1376 	 * lower noise immunity level down to zero.
1377 	 */
1378 	if (ani->spur_immunity_level > 0) {
1379 		ani->spur_immunity_level--;
1380 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1381 	} else if (ani->noise_immunity_level > 0) {
1382 		ani->noise_immunity_level--;
1383 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1384 	}
1385 }
1386 
1387 void
1388 athn_ani_restart(struct athn_softc *sc)
1389 {
1390 	struct athn_ani *ani = &sc->ani;
1391 
1392 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
1393 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
1394 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1395 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1396 
1397 	ani->listen_time = 0;
1398 	ani->ofdm_phy_err_count = 0;
1399 	ani->cck_phy_err_count = 0;
1400 }
1401 
1402 void
1403 athn_ani_monitor(struct athn_softc *sc)
1404 {
1405 	struct athn_ani *ani = &sc->ani;
1406 	uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1407 	int32_t cycdelta, txfdelta, rxfdelta;
1408 	int32_t listen_time;
1409 
1410 	txfcnt = AR_READ(sc, AR_TFCNT);	/* Tx frame count. */
1411 	rxfcnt = AR_READ(sc, AR_RFCNT);	/* Rx frame count. */
1412 	cyccnt = AR_READ(sc, AR_CCCNT);	/* Cycle count. */
1413 
1414 	if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1415 		cycdelta = cyccnt - ani->cyccnt;
1416 		txfdelta = txfcnt - ani->txfcnt;
1417 		rxfdelta = rxfcnt - ani->rxfcnt;
1418 		listen_time = (cycdelta - txfdelta - rxfdelta) / 44000;
1419 	} else
1420 		listen_time = 0;
1421 
1422 	ani->cyccnt = cyccnt;
1423 	ani->txfcnt = txfcnt;
1424 	ani->rxfcnt = rxfcnt;
1425 
1426 	if (listen_time < 0) {
1427 		athn_ani_restart(sc);
1428 		return;
1429 	}
1430 	ani->listen_time += listen_time;
1431 
1432 	phy1 = AR_READ(sc, AR_PHY_ERR_1);
1433 	phy2 = AR_READ(sc, AR_PHY_ERR_2);
1434 
1435 	if (phy1 < ani->ofdm_phy_err_base) {
1436 		AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1437 		AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1438 	}
1439 	if (phy2 < ani->cck_phy_err_base) {
1440 		AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1441 		AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1442 	}
1443 	if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base)
1444 		return;
1445 
1446 	ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1447 	ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1448 
1449 	if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1450 		/* Check to see if we need to lower immunity. */
1451 		if (ani->ofdm_phy_err_count <=
1452 		    ani->listen_time * ani->ofdm_trig_low / 1000 &&
1453 		    ani->cck_phy_err_count <=
1454 		    ani->listen_time * ani->cck_trig_low / 1000)
1455 			athn_ani_lower_immunity(sc);
1456 		athn_ani_restart(sc);
1457 
1458 	} else if (ani->listen_time > ATHN_ANI_PERIOD) {
1459 		/* Check to see if we need to raise immunity. */
1460 		if (ani->ofdm_phy_err_count >
1461 		    ani->listen_time * ani->ofdm_trig_high / 1000) {
1462 			athn_ani_ofdm_err_trigger(sc);
1463 			athn_ani_restart(sc);
1464 		} else if (ani->cck_phy_err_count >
1465 		    ani->listen_time * ani->cck_trig_high / 1000) {
1466 			athn_ani_cck_err_trigger(sc);
1467 			athn_ani_restart(sc);
1468 		}
1469 	}
1470 }
1471 
1472 uint8_t
1473 athn_chan2fbin(struct ieee80211_channel *c)
1474 {
1475 	if (IEEE80211_IS_CHAN_2GHZ(c))
1476 		return (c->ic_freq - 2300);
1477 	else
1478 		return ((c->ic_freq - 4800) / 5);
1479 }
1480 
1481 int
1482 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1483 {
1484 	if (x1 == x2)	/* Prevents division by zero. */
1485 		return (y1);
1486 	/* Linear interpolation. */
1487 	return (y1 + ((x - x1) * (y2 - y1)) / (x2 - x1));
1488 }
1489 
1490 void
1491 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1492     int *lo, int *hi)
1493 {
1494 	int i;
1495 
1496 	for (i = 0; i < npiers; i++)
1497 		if (pierfreq[i] == AR_BCHAN_UNUSED ||
1498 		    pierfreq[i] > fbin)
1499 			break;
1500 	*hi = i;
1501 	*lo = *hi - 1;
1502 	if (*lo == -1)
1503 		*lo = *hi;
1504 	else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1505 		*hi = *lo;
1506 }
1507 
1508 void
1509 athn_init_dma(struct athn_softc *sc)
1510 {
1511 	uint32_t reg;
1512 
1513 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1514 		/* Set AHB not to do cacheline prefetches. */
1515 		AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1516 	}
1517 	reg = AR_READ(sc, AR_TXCFG);
1518 	/* Let MAC DMA reads be in 128-byte chunks. */
1519 	reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1520 
1521 	/* Set initial Tx trigger level. */
1522 	if (AR_SREV_9285(sc))
1523 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1524 	else if (!AR_SREV_9380_10_OR_LATER(sc))
1525 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1526 	AR_WRITE(sc, AR_TXCFG, reg);
1527 
1528 	/* Let MAC DMA writes be in 128-byte chunks. */
1529 	reg = AR_READ(sc, AR_RXCFG);
1530 	reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1531 	AR_WRITE(sc, AR_RXCFG, reg);
1532 
1533 	/* Setup Rx FIFO threshold to hold off Tx activities. */
1534 	AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1535 
1536 	/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1537 	AR_WRITE(sc, AR_PCU_TXBUF_CTRL, AR_SREV_9285(sc) ?
1538 	    AR9285_PCU_TXBUF_CTRL_USABLE_SIZE :
1539 	    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1540 
1541 	/* Reset Tx status ring. */
1542 	if (AR_SREV_9380_10_OR_LATER(sc))
1543 		ar9003_reset_txsring(sc);
1544 }
1545 
1546 void
1547 athn_inc_tx_trigger_level(struct athn_softc *sc)
1548 {
1549 	uint32_t reg, ftrig;
1550 
1551 	reg = AR_READ(sc, AR_TXCFG);
1552 	ftrig = MS(reg, AR_TXCFG_FTRIG);
1553 	/*
1554 	 * NB: The AR9285 and all single-stream parts have an issue that
1555 	 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1556 	 */
1557 	if (ftrig == (AR_SREV_9285(sc) ? 0x1f : 0x3f))
1558 		return;		/* Already at max. */
1559 	reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1560 	AR_WRITE(sc, AR_TXCFG, reg);
1561 }
1562 
1563 int
1564 athn_stop_rx_dma(struct athn_softc *sc)
1565 {
1566 	int ntries;
1567 
1568 	AR_WRITE(sc, AR_CR, AR_CR_RXD);
1569 	/* Wait for Rx enable bit to go low. */
1570 	for (ntries = 0; ntries < 100; ntries++) {
1571 		if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1572 			return (0);
1573 		DELAY(100);
1574 	}
1575 	DPRINTF(("Rx DMA failed to stop\n"));
1576 	return (ETIMEDOUT);
1577 }
1578 
1579 int
1580 athn_rx_abort(struct athn_softc *sc)
1581 {
1582 	int ntries;
1583 
1584 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1585 	for (ntries = 0; ntries < 1000; ntries++) {
1586 		if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1587 			return (0);
1588 		DELAY(10);
1589 	}
1590 	DPRINTF(("Rx failed to go idle in 10ms\n"));
1591 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1592 	return (ETIMEDOUT);
1593 }
1594 
1595 void
1596 athn_tx_reclaim(struct athn_softc *sc, int qid)
1597 {
1598 	struct athn_txq *txq = &sc->txq[qid];
1599 	struct athn_tx_buf *bf;
1600 
1601 	/* Reclaim all buffers queued in the specified Tx queue. */
1602 	/* NB: Tx DMA must be stopped. */
1603 	while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1604 		SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1605 
1606 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1607 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1608 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1609 		m_freem(bf->bf_m);
1610 		bf->bf_m = NULL;
1611 		bf->bf_ni = NULL;	/* Nodes already freed! */
1612 
1613 		/* Link Tx buffer back to global free list. */
1614 		SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
1615 	}
1616 }
1617 
1618 int
1619 athn_tx_pending(struct athn_softc *sc, int qid)
1620 {
1621 	return (MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1622 	    (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0);
1623 }
1624 
1625 void
1626 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1627 {
1628 	uint32_t tsflo;
1629 	int ntries, i;
1630 
1631 	AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1632 	for (ntries = 0; ntries < 40; ntries++) {
1633 		if (!athn_tx_pending(sc, qid))
1634 			break;
1635 		DELAY(100);
1636 	}
1637 	if (ntries == 40) {
1638 		for (i = 0; i < 2; i++) {
1639 			tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1640 			AR_WRITE(sc, AR_QUIET2,
1641 			    SM(AR_QUIET2_QUIET_DUR, 10));
1642 			AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1643 			AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1644 			AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1645 			if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1646 				break;
1647 		}
1648 		AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1649 		DELAY(200);
1650 		AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1651 
1652 		for (ntries = 0; ntries < 40; ntries++) {
1653 			if (!athn_tx_pending(sc, qid))
1654 				break;
1655 			DELAY(100);
1656 		}
1657 
1658 		AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1659 	}
1660 	AR_WRITE(sc, AR_Q_TXD, 0);
1661 }
1662 
1663 int
1664 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1665 {
1666 #define divround(a, b)	(((a) + (b) - 1) / (b))
1667 	int txtime;
1668 
1669 	/* XXX HT. */
1670 	if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1671 		txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1672 		/* SIFS is 10us for 11g but Signal Extension adds 6us. */
1673 		txtime = 16 + 4 + 4 * txtime + 16;
1674 	} else {
1675 		txtime = divround(16 * len, athn_rates[ridx].rate);
1676 		if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1677 			txtime +=  72 + 24;
1678 		else
1679 			txtime += 144 + 48;
1680 		txtime += 10;	/* 10us SIFS. */
1681 	}
1682 	return (txtime);
1683 #undef divround
1684 }
1685 
1686 void
1687 athn_init_tx_queues(struct athn_softc *sc)
1688 {
1689 	uint32_t reg;
1690 	int qid;
1691 
1692 	for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1693 		SIMPLEQ_INIT(&sc->txq[qid].head);
1694 		sc->txq[qid].lastds = NULL;
1695 
1696 		AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1697 		    SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1698 		    SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1699 		    SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1700 		AR_WRITE(sc, AR_QMISC(qid),
1701 		    AR_Q_MISC_DCU_EARLY_TERM_REQ);
1702 		AR_WRITE(sc, AR_DMISC(qid),
1703 		    SM(AR_D_MISC_BKOFF_THRESH, 2) |
1704 		    AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1705 	}
1706 
1707 	/* Init beacon queue. */
1708 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1709 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1710 	    AR_Q_MISC_CBR_INCR_DIS1);
1711 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1712 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1713 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1714 	    AR_D_MISC_BEACON_USE |
1715 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1716 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1717 		/* CWmin and CWmax should be 0 for beacon queue. */
1718 		reg = AR_READ(sc, AR_DLCL_IFS(ATHN_QID_BEACON));
1719 		reg = RW(reg, AR_D_LCL_IFS_CWMIN, 0);
1720 		reg = RW(reg, AR_D_LCL_IFS_CWMAX, 0);
1721 		AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON), reg);
1722 	}
1723 
1724 	/* Init CAB (Content After Beacon) queue. */
1725 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1726 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1727 	    AR_Q_MISC_CBR_INCR_DIS0);
1728 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1729 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1730 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1731 
1732 	/* Init PS-Poll queue. */
1733 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1734 	    AR_Q_MISC_CBR_INCR_DIS1);
1735 
1736 	/* Init UAPSD queue. */
1737 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1738 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1739 
1740 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1741 		/* Enable MAC descriptor CRC check. */
1742 		AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1743 	}
1744 	/* Enable DESC interrupts for all Tx queues. */
1745 	AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1746 	/* Enable EOL interrupts for all Tx queues except UAPSD. */
1747 	AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1748 }
1749 
1750 void
1751 athn_set_beacon_timers(struct athn_softc *sc)
1752 {
1753 	struct ieee80211com *ic = &sc->sc_ic;
1754 	struct ieee80211_node *ni = ic->ic_bss;
1755 	uint32_t tsfhi, tsflo, tsftu, reg;
1756 	uint32_t intval, next_tbtt, next_dtim;
1757 	int dtim_period, dtim_count, rem_dtim_count;
1758 
1759 	tsfhi = AR_READ(sc, AR_TSF_U32);
1760 	tsflo = AR_READ(sc, AR_TSF_L32);
1761 	tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1762 
1763 	/* Beacon interval in TU. */
1764 	intval = ni->ni_intval;
1765 
1766 	next_tbtt = roundup(tsftu, intval);
1767 #ifdef notyet
1768 	dtim_period = ic->ic_dtim_period;
1769 	if (dtim_period <= 0)
1770 #endif
1771 		dtim_period = 1;	/* Assume all TIMs are DTIMs. */
1772 
1773 #ifdef notyet
1774 	dtim_count = ic->ic_dtim_count;
1775 	if (dtim_count >= dtim_period)	/* Should not happen. */
1776 #endif
1777 		dtim_count = 0;	/* Assume last TIM was a DTIM. */
1778 
1779 	/* Compute number of remaining TIMs until next DTIM. */
1780 	rem_dtim_count = 0;	/* XXX */
1781 	next_dtim = next_tbtt + rem_dtim_count * intval;
1782 
1783 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
1784 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1785 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1786 
1787 	/*
1788 	 * Set the number of consecutive beacons to miss before raising
1789 	 * a BMISS interrupt to 10.
1790 	 */
1791 	reg = AR_READ(sc, AR_RSSI_THR);
1792 	reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
1793 	AR_WRITE(sc, AR_RSSI_THR, reg);
1794 
1795 	AR_WRITE(sc, AR_NEXT_DTIM,
1796 	    (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1797 	AR_WRITE(sc, AR_NEXT_TIM,
1798 	    (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1799 
1800 	/* CAB timeout is in 1/8 TU. */
1801 	AR_WRITE(sc, AR_SLEEP1,
1802 	    SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
1803 	    AR_SLEEP1_ASSUME_DTIM);
1804 	AR_WRITE(sc, AR_SLEEP2,
1805 	    SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
1806 
1807 	AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
1808 	AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
1809 
1810 	AR_SETBITS(sc, AR_TIMER_MODE,
1811 	    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
1812 
1813 	/* Set TSF out-of-range threshold (fixed at 16k us). */
1814 	AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
1815 }
1816 
1817 void
1818 athn_set_opmode(struct athn_softc *sc)
1819 {
1820 	uint32_t reg;
1821 
1822 	switch (sc->sc_ic.ic_opmode) {
1823 #ifndef IEEE80211_STA_ONLY
1824 	case IEEE80211_M_HOSTAP:
1825 		reg = AR_READ(sc, AR_STA_ID1);
1826 		reg &= ~AR_STA_ID1_ADHOC;
1827 		reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
1828 		AR_WRITE(sc, AR_STA_ID1, reg);
1829 
1830 		AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1831 		break;
1832 	case IEEE80211_M_IBSS:
1833 	case IEEE80211_M_AHDEMO:
1834 		reg = AR_READ(sc, AR_STA_ID1);
1835 		reg &= ~AR_STA_ID1_STA_AP;
1836 		reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
1837 		AR_WRITE(sc, AR_STA_ID1, reg);
1838 
1839 		AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1840 		break;
1841 #endif
1842 	default:
1843 		reg = AR_READ(sc, AR_STA_ID1);
1844 		reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
1845 		reg |= AR_STA_ID1_KSRCH_MODE;
1846 		AR_WRITE(sc, AR_STA_ID1, reg);
1847 		break;
1848 	}
1849 }
1850 
1851 void
1852 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
1853 {
1854 	const uint8_t *bssid = ni->ni_bssid;
1855 
1856 	AR_WRITE(sc, AR_BSS_ID0, bssid[0] | bssid[1] << 8 |
1857 	    bssid[2] << 16 | bssid[3] << 24);
1858 	AR_WRITE(sc, AR_BSS_ID1, bssid[4] | bssid[5] << 8 |
1859 	    SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
1860 }
1861 
1862 void
1863 athn_enable_interrupts(struct athn_softc *sc)
1864 {
1865 	uint32_t mask, mask2;
1866 
1867 	athn_disable_interrupts(sc);	/* XXX */
1868 
1869 	/* XXX cleanup, use sc->imask */
1870 	mask = AR_IMR_TXDESC | AR_IMR_TXEOL | AR_IMR_RXERR | AR_IMR_RXEOL |
1871 	    AR_IMR_RXORN | AR_IMR_GENTMR | AR_IMR_BCNMISC | AR_IMR_RXMINTR |
1872 	    AR_IMR_RXINTM;
1873 	if (AR_SREV_9380_10_OR_LATER(sc))
1874 		mask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
1875 	AR_WRITE(sc, AR_IMR, mask);
1876 
1877 	mask2 = AR_READ(sc, AR_IMR_S2);
1878 	mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
1879 	    AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
1880 	mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
1881 	AR_WRITE(sc, AR_IMR_S2, mask2);
1882 
1883 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1884 
1885 	AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
1886 
1887 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
1888 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
1889 
1890 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
1891 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->isync);
1892 }
1893 
1894 void
1895 athn_disable_interrupts(struct athn_softc *sc)
1896 {
1897 	AR_WRITE(sc, AR_IER, 0);
1898 	(void)AR_READ(sc, AR_IER);
1899 
1900 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
1901 	(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
1902 
1903 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
1904 	(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
1905 
1906 	AR_WRITE(sc, AR_IMR, 0);
1907 
1908 	AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
1909 	    AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
1910 	    AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
1911 
1912 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1913 }
1914 
1915 void
1916 athn_init_qos(struct athn_softc *sc)
1917 {
1918 	/* Initialize QoS settings. */
1919 	AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
1920 	AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
1921 	AR_WRITE(sc, AR_QOS_NO_ACK,
1922 	    SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
1923 	    SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
1924 	    SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
1925 	AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
1926 	/* Initialize TXOP for all TIDs. */
1927 	AR_WRITE(sc, AR_TXOP_0_3,   0xffffffff);
1928 	AR_WRITE(sc, AR_TXOP_4_7,   0xffffffff);
1929 	AR_WRITE(sc, AR_TXOP_8_11,  0xffffffff);
1930 	AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
1931 }
1932 
1933 int
1934 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *c,
1935     struct ieee80211_channel *extc)
1936 {
1937 	struct ieee80211com *ic = &sc->sc_ic;
1938 	struct athn_ops *ops = &sc->ops;
1939 	uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
1940 	int i, error;
1941 
1942 	/* XXX not if already awake */
1943 	if ((error = athn_set_power_awake(sc)) != 0) {
1944 		printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
1945 		return (error);
1946 	}
1947 
1948 	/* Preserve the antenna on a channel switch. */
1949 	if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
1950 		def_ant = 1;
1951 	/* Preserve other registers. */
1952 	sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1953 	cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
1954 	    AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
1955 	    AR_CFG_LED_BLINK_SLOW);
1956 
1957 	/* Mark PHY as inactive. */
1958 	ops->disable_phy(sc);
1959 
1960 	if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
1961 		/* Save TSF before it gets cleared. */
1962 		tsfhi = AR_READ(sc, AR_TSF_U32);
1963 		tsflo = AR_READ(sc, AR_TSF_L32);
1964 
1965 		/* NB: RTC reset clears TSF. */
1966 		error = athn_reset_power_on(sc);
1967 	} else
1968 		error = athn_reset(sc, 0);
1969 	if (error != 0) {
1970 		printf("%s: could not reset chip (error=%d)\n",
1971 		    sc->sc_dev.dv_xname);
1972 		return (error);
1973 	}
1974 
1975 	/* XXX not if already awake */
1976 	if ((error = athn_set_power_awake(sc)) != 0) {
1977 		printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
1978 		return (error);
1979 	}
1980 
1981 	athn_init_pll(sc, c);
1982 	ops->set_rf_mode(sc, c);
1983 
1984 	if (sc->flags & ATHN_FLAG_RFSILENT) {
1985 		/* Check that the radio is not disabled by hardware switch. */
1986 		reg = ops->gpio_read(sc, sc->rfsilent_pin);
1987 		if (sc->flags & ATHN_FLAG_RFSILENT_REVERSED)
1988 			reg = !reg;
1989 		if (!reg) {
1990 			printf("%s: radio is disabled by hardware switch\n",
1991 			    sc->sc_dev.dv_xname);
1992 			return (EPERM);
1993 		}
1994 	}
1995 	if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
1996 		/* Restore TSF if it got cleared. */
1997 		AR_WRITE(sc, AR_TSF_L32, tsflo);
1998 		AR_WRITE(sc, AR_TSF_U32, tsfhi);
1999 	}
2000 
2001 	if (AR_SREV_9280_10_OR_LATER(sc))
2002 		AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2003 
2004 	if (AR_SREV_9287_12_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2005 		ar9287_1_2_enable_async_fifo(sc);
2006 
2007 	/* Write init values to hardware. */
2008 	ops->hw_init(sc, c, extc);
2009 
2010 	/*
2011 	 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2012 	 * management frames using CCMP.
2013 	 */
2014 	if (AR_SREV_9280_20_OR_LATER(sc)) {
2015 		reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2016 		/* Do not mask the subtype field in management frames. */
2017 		reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2018 		reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2019 		    ~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2020 		      IEEE80211_FC1_MORE_DATA));
2021 		AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2022 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
2023 		/* Disable hardware crypto for management frames. */
2024 		AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2025 		    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2026 		AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2027 		    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2028 	}
2029 
2030 	if (ic->ic_curmode != IEEE80211_MODE_11B)
2031 		ops->set_delta_slope(sc, c, extc);
2032 
2033 	ops->spur_mitigate(sc, c, extc);
2034 	ops->init_from_rom(sc, c, extc);
2035 
2036 	AR_WRITE(sc, AR_STA_ID0,
2037 	    ic->ic_myaddr[0] <<  0 | ic->ic_myaddr[1] <<  8 |
2038 	    ic->ic_myaddr[2] << 16 | ic->ic_myaddr[3] << 24);
2039 	/* XXX */
2040 	AR_WRITE(sc, AR_STA_ID1,
2041 	    ic->ic_myaddr[4] <<  0 | ic->ic_myaddr[5] <<  8 |
2042 	    sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2043 
2044 	athn_set_opmode(sc);
2045 
2046 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2047 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2048 
2049 	/* Restore previous antenna. */
2050 	AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2051 
2052 	AR_WRITE(sc, AR_BSS_ID0, 0);
2053 	AR_WRITE(sc, AR_BSS_ID1, 0);
2054 
2055 	AR_WRITE(sc, AR_ISR, 0xffffffff);
2056 
2057 	AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2058 
2059 	if ((error = ops->set_synth(sc, c, extc)) != 0) {
2060 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2061 		return (error);
2062 	}
2063 	sc->curchan = c;
2064 	sc->curchanext = extc;
2065 
2066 	for (i = 0; i < AR_NUM_DCU; i++)
2067 		AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2068 
2069 	athn_init_tx_queues(sc);
2070 
2071 	/* Initialize interrupt mask. */
2072 	sc->imask = AR_IMR_DEFAULT;
2073 	if (AR_SREV_9380_10_OR_LATER(sc))
2074 		sc->imask |= AR_IMR_HP_RXOK;
2075 #ifndef IEEE80211_STA_ONLY
2076 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2077 		sc->imask |= AR_IMR_MIB;
2078 #endif
2079 	AR_WRITE(sc, AR_IMR, sc->imask);
2080 	AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2081 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2082 	sc->isync = AR_INTR_SYNC_DEFAULT;
2083 	if (sc->flags & ATHN_FLAG_RFSILENT)
2084 		sc->isync |= AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin);
2085 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
2086 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2087 	if (AR_SREV_9380_10_OR_LATER(sc)) {
2088 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2089 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2090 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2091 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2092 	}
2093 
2094 	athn_init_qos(sc);
2095 
2096 	if (!AR_SREV_9280_10(sc))
2097 		AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2098 
2099 	if (AR_SREV_9287_12_OR_LATER(sc))
2100 		ar9287_1_2_setup_async_fifo(sc);
2101 
2102 	/* Disable sequence number generation in hardware. */
2103 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2104 
2105 	athn_init_dma(sc);
2106 
2107 	/* Program observation bus to see MAC interrupts. */
2108 	AR_WRITE(sc, sc->obs_off, 8);
2109 
2110 	/* Setup Rx interrupt mitigation. */
2111 	AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2112 
2113 	ops->init_baseband(sc);
2114 
2115 	if ((error = athn_init_calib(sc, c, extc)) != 0) {
2116 		printf("%s: could not initialize calibration\n",
2117 		    sc->sc_dev.dv_xname);
2118 		return (error);
2119 	}
2120 
2121 	ops->set_rxchains(sc);
2122 
2123 	AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2124 
2125 #if BYTE_ORDER == BIG_ENDIAN
2126 	/* Default is little-endian, turn on swapping for big-endian. */
2127 	AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2128 #endif
2129 	return (0);
2130 }
2131 
2132 struct ieee80211_node *
2133 athn_node_alloc(struct ieee80211com *ic)
2134 {
2135 	return (malloc(sizeof (struct athn_node), M_DEVBUF,
2136 	    M_NOWAIT | M_ZERO));
2137 }
2138 
2139 void
2140 athn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2141 {
2142 	struct athn_softc *sc = ic->ic_softc;
2143 	struct athn_node *an = (void *)ni;
2144 	struct ieee80211_rateset *rs = &ni->ni_rates;
2145 	uint8_t rate;
2146 	int ridx, i, j;
2147 
2148 	ieee80211_amrr_node_init(&sc->amrr, &an->amn);
2149 	/* Start at lowest available bit-rate, AMRR will raise. */
2150 	ni->ni_txrate = 0;
2151 
2152 	for (i = 0; i < rs->rs_nrates; i++) {
2153 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2154 
2155 		/* Map 802.11 rate to HW rate index. */
2156 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2157 			if (athn_rates[ridx].rate == rate)
2158 				break;
2159 		an->ridx[i] = ridx;
2160 		DPRINTFN(2, ("rate %d index %d\n", rate, ridx));
2161 
2162 		/* Compute fallback rate for retries. */
2163 		an->fallback[i] = i;
2164 		for (j = i - 1; j >= 0; j--) {
2165 			if (athn_rates[an->ridx[j]].phy ==
2166 			    athn_rates[an->ridx[i]].phy) {
2167 				an->fallback[i] = j;
2168 				break;
2169 			}
2170 		}
2171 		DPRINTFN(2, ("%d fallbacks to %d\n", i, an->fallback[i]));
2172 	}
2173 }
2174 
2175 int
2176 athn_media_change(struct ifnet *ifp)
2177 {
2178 	struct athn_softc *sc = ifp->if_softc;
2179 	struct ieee80211com *ic = &sc->sc_ic;
2180 	uint8_t rate, ridx;
2181 	int error;
2182 
2183 	error = ieee80211_media_change(ifp);
2184 	if (error != ENETRESET)
2185 		return (error);
2186 
2187 	if (ic->ic_fixed_rate != -1) {
2188 		rate = ic->ic_sup_rates[ic->ic_curmode].
2189 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2190 		/* Map 802.11 rate to HW rate index. */
2191 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2192 			if (athn_rates[ridx].rate == rate)
2193 				break;
2194 		sc->fixed_ridx = ridx;
2195 	}
2196 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2197 	    (IFF_UP | IFF_RUNNING)) {
2198 		athn_stop(ifp, 0);
2199 		error = athn_init(ifp);
2200 	}
2201 	return (error);
2202 }
2203 
2204 void
2205 athn_next_scan(void *arg)
2206 {
2207 	struct athn_softc *sc = arg;
2208 	struct ieee80211com *ic = &sc->sc_ic;
2209 	int s;
2210 
2211 	s = splnet();
2212 	if (ic->ic_state == IEEE80211_S_SCAN)
2213 		ieee80211_next_scan(&ic->ic_if);
2214 	splx(s);
2215 }
2216 
2217 int
2218 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2219 {
2220 	struct ifnet *ifp = &ic->ic_if;
2221 	struct athn_softc *sc = ifp->if_softc;
2222 	struct athn_ops *ops = &sc->ops;
2223 	int error;
2224 
2225 	timeout_del(&sc->calib_to);
2226 	if (nstate != IEEE80211_S_SCAN)
2227 		ops->gpio_write(sc, sc->led_pin, 1);
2228 
2229 	switch (nstate) {
2230 	case IEEE80211_S_INIT:
2231 		break;
2232 	case IEEE80211_S_SCAN:
2233 		/* Make the LED blink while scanning. */
2234 		ops->gpio_write(sc, sc->led_pin,
2235 		    !ops->gpio_read(sc, sc->led_pin));
2236 		error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
2237 		if (error != 0)
2238 			return (error);
2239 		timeout_add_msec(&sc->scan_to, 200);
2240 		break;
2241 	case IEEE80211_S_AUTH:
2242 		error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
2243 		if (error != 0)
2244 			return (error);
2245 		break;
2246 	case IEEE80211_S_ASSOC:
2247 		break;
2248 	case IEEE80211_S_RUN:
2249 		ops->gpio_write(sc, sc->led_pin, 0);
2250 
2251 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
2252 			break;
2253 
2254 		/* Fake a join to initialize the Tx rate. */
2255 		athn_newassoc(ic, ic->ic_bss, 1);
2256 
2257 		athn_set_bss(sc, ic->ic_bss);
2258 		athn_disable_interrupts(sc);
2259 		athn_set_beacon_timers(sc);
2260 		/* XXX Enable BMISS interrupts. */
2261 		athn_enable_interrupts(sc);
2262 		/* XXX Start ANI. */
2263 
2264 		timeout_add_msec(&sc->calib_to, 500);
2265 		break;
2266 	}
2267 
2268 	return (sc->sc_newstate(ic, nstate, arg));
2269 }
2270 
2271 void
2272 athn_updateedca(struct ieee80211com *ic)
2273 {
2274 #define ATHN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2275 	struct athn_softc *sc = ic->ic_softc;
2276 	const struct ieee80211_edca_ac_params *ac;
2277 	int aci, qid;
2278 
2279 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2280 		ac = &ic->ic_edca_ac[aci];
2281 		qid = athn_ac2qid[aci];
2282 
2283 		AR_WRITE(sc, AR_DLCL_IFS(qid),
2284 		    SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2285 		    SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2286 		    SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2287 		if (ac->ac_txoplimit != 0) {
2288 			AR_WRITE(sc, AR_DCHNTIME(qid),
2289 			    SM(AR_D_CHNTIME_DUR,
2290 			       IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2291 			    AR_D_CHNTIME_EN);
2292 		} else
2293 			AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2294 	}
2295 #undef ATHN_EXP2
2296 }
2297 
2298 void
2299 athn_updateslot(struct ieee80211com *ic)
2300 {
2301 	struct athn_softc *sc = ic->ic_softc;
2302 	uint32_t clks;
2303 
2304 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2305 		clks = AR_CLOCK_RATE_CCK;
2306 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2307 		clks = AR_CLOCK_RATE_5GHZ_OFDM;
2308 	else
2309 		clks = AR_CLOCK_RATE_2GHZ_OFDM;
2310 	clks *= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2311 
2312 	/* XXX 40MHz. */
2313 
2314 	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, clks);
2315 }
2316 
2317 void
2318 athn_start(struct ifnet *ifp)
2319 {
2320 	struct athn_softc *sc = ifp->if_softc;
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	struct ieee80211_node *ni;
2323 	struct mbuf *m;
2324 
2325 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2326 		return;
2327 
2328 	for (;;) {
2329 		if (SIMPLEQ_EMPTY(&sc->txbufs)) {
2330 			ifp->if_flags |= IFF_OACTIVE;
2331 			break;
2332 		}
2333 		/* Send pending management frames first. */
2334 		IF_DEQUEUE(&ic->ic_mgtq, m);
2335 		if (m != NULL) {
2336 			ni = (void *)m->m_pkthdr.rcvif;
2337 			goto sendit;
2338 		}
2339 		if (ic->ic_state != IEEE80211_S_RUN)
2340 			break;
2341 
2342 		/* Encapsulate and send data frames. */
2343 		IFQ_DEQUEUE(&ifp->if_snd, m);
2344 		if (m == NULL)
2345 			break;
2346 #if NBPFILTER > 0
2347 		if (ifp->if_bpf != NULL)
2348 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
2349 #endif
2350 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
2351 			continue;
2352  sendit:
2353 #if NBPFILTER > 0
2354 		if (ic->ic_rawbpf != NULL)
2355 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
2356 #endif
2357 		if (sc->ops.tx(sc, m, ni) != 0) {
2358 			ieee80211_release_node(ic, ni);
2359 			ifp->if_oerrors++;
2360 			continue;
2361 		}
2362 
2363 		sc->sc_tx_timer = 5;
2364 		ifp->if_timer = 1;
2365 	}
2366 }
2367 
2368 void
2369 athn_watchdog(struct ifnet *ifp)
2370 {
2371 	struct athn_softc *sc = ifp->if_softc;
2372 
2373 	ifp->if_timer = 0;
2374 
2375 	if (sc->sc_tx_timer > 0) {
2376 		if (--sc->sc_tx_timer == 0) {
2377 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2378 			athn_stop(ifp, 1);
2379 			(void)athn_init(ifp);
2380 			ifp->if_oerrors++;
2381 			return;
2382 		}
2383 		ifp->if_timer = 1;
2384 	}
2385 
2386 	ieee80211_watchdog(ifp);
2387 }
2388 
2389 void
2390 athn_set_multi(struct athn_softc *sc)
2391 {
2392 	struct arpcom *ac = &sc->sc_ic.ic_ac;
2393 	struct ifnet *ifp = &ac->ac_if;
2394 	struct ether_multi *enm;
2395 	struct ether_multistep step;
2396 	const uint8_t *addr;
2397 	uint32_t val, lo, hi;
2398 	uint8_t bit;
2399 
2400 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2401 		lo = hi = 0xffffffff;
2402 		goto done;
2403 	}
2404 	lo = hi = 0;
2405 	ETHER_FIRST_MULTI(step, ac, enm);
2406 	while (enm != NULL) {
2407 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2408 			ifp->if_flags |= IFF_ALLMULTI;
2409 			lo = hi = 0xffffffff;
2410 			goto done;
2411 		}
2412 		addr = enm->enm_addrlo;
2413 		/* Calculate the XOR value of all eight 6-bit words. */
2414 		val = addr[0] | addr[1] << 8 | addr[2] << 16;
2415 		bit  = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2416 		val = addr[3] | addr[4] << 8 | addr[5] << 16;
2417 		bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2418 		bit &= 0x3f;
2419 		if (bit < 32)
2420 			lo |= 1 << bit;
2421 		else
2422 			hi |= 1 << (bit - 32);
2423 		ETHER_NEXT_MULTI(step, enm);
2424 	}
2425  done:
2426 	AR_WRITE(sc, AR_MCAST_FIL0, lo);
2427 	AR_WRITE(sc, AR_MCAST_FIL1, hi);
2428 }
2429 
2430 int
2431 athn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2432 {
2433 	struct athn_softc *sc = ifp->if_softc;
2434 	struct ieee80211com *ic = &sc->sc_ic;
2435 	struct ifaddr *ifa;
2436 	struct ifreq *ifr;
2437 	int s, error = 0;
2438 
2439 	s = splnet();
2440 
2441 	switch (cmd) {
2442 	case SIOCSIFADDR:
2443 		ifa = (struct ifaddr *)data;
2444 		ifp->if_flags |= IFF_UP;
2445 #ifdef INET
2446 		if (ifa->ifa_addr->sa_family == AF_INET)
2447 			arp_ifinit(&ic->ic_ac, ifa);
2448 #endif
2449 		/* FALLTHROUGH */
2450 	case SIOCSIFFLAGS:
2451 		if (ifp->if_flags & IFF_UP) {
2452 			if ((ifp->if_flags & IFF_RUNNING) &&
2453 			    ((ifp->if_flags ^ sc->sc_if_flags) &
2454 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2455 				athn_set_multi(sc);
2456 			} else if (!(ifp->if_flags & IFF_RUNNING))
2457 				error = athn_init(ifp);
2458 		} else {
2459 			if (ifp->if_flags & IFF_RUNNING)
2460 				athn_stop(ifp, 1);
2461 		}
2462 		sc->sc_if_flags = ifp->if_flags;
2463 		break;
2464 
2465 	case SIOCADDMULTI:
2466 	case SIOCDELMULTI:
2467 		ifr = (struct ifreq *)data;
2468 		error = (cmd == SIOCADDMULTI) ?
2469 		    ether_addmulti(ifr, &ic->ic_ac) :
2470 		    ether_delmulti(ifr, &ic->ic_ac);
2471 		if (error == ENETRESET) {
2472 			athn_set_multi(sc);
2473 			error = 0;
2474 		}
2475 		break;
2476 
2477 	case SIOCS80211CHANNEL:
2478 		error = ieee80211_ioctl(ifp, cmd, data);
2479 		if (error == ENETRESET &&
2480 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2481 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2482 			    (IFF_UP | IFF_RUNNING))
2483 				athn_switch_chan(sc, ic->ic_ibss_chan, NULL);
2484 			error = 0;
2485 		}
2486 		break;
2487 
2488 	default:
2489 		error = ieee80211_ioctl(ifp, cmd, data);
2490 	}
2491 
2492 	if (error == ENETRESET) {
2493 		error = 0;
2494 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2495 		    (IFF_UP | IFF_RUNNING)) {
2496 			athn_stop(ifp, 0);
2497 			error = athn_init(ifp);
2498 		}
2499 	}
2500 
2501 	splx(s);
2502 	return (error);
2503 }
2504 
2505 int
2506 athn_init(struct ifnet *ifp)
2507 {
2508 	struct athn_softc *sc = ifp->if_softc;
2509 	struct athn_ops *ops = &sc->ops;
2510 	struct ieee80211com *ic = &sc->sc_ic;
2511 	struct ieee80211_channel *c, *extc;
2512 	int i, error;
2513 
2514 	c = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2515 	extc = NULL;
2516 
2517 	/* In case a new MAC address has been configured. */
2518 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2519 
2520 	/* For CardBus, power on the socket. */
2521 	if (sc->sc_enable != NULL) {
2522 		if ((error = sc->sc_enable(sc)) != 0) {
2523 			printf("%s: could not enable device\n",
2524 			    sc->sc_dev.dv_xname);
2525 			goto fail;
2526 		}
2527 		if ((error = athn_reset_power_on(sc)) != 0) {
2528 			printf("%s: could not power on device\n",
2529 			    sc->sc_dev.dv_xname);
2530 			goto fail;
2531 		}
2532 	}
2533 	if (!(sc->flags & ATHN_FLAG_PCIE))
2534 		athn_config_nonpcie(sc);
2535 	else
2536 		athn_config_pcie(sc);
2537 
2538 	/* Reset HW key cache entries. */
2539 	for (i = 0; i < sc->kc_entries; i++)
2540 		athn_reset_key(sc, i);
2541 
2542 	ops->enable_antenna_diversity(sc);
2543 
2544 #ifdef ATHN_BT_COEXISTENCE
2545 	/* Configure bluetooth coexistence for combo chips. */
2546 	if (sc->flags & ATHN_FLAG_BTCOEX)
2547 		athn_btcoex_init(sc);
2548 #endif
2549 
2550 	/* Configure LED. */
2551 	athn_led_init(sc);
2552 
2553 	/* Configure hardware radio switch. */
2554 	if (sc->flags & ATHN_FLAG_RFSILENT)
2555 		ops->rfsilent_init(sc);
2556 
2557 	if ((error = athn_hw_reset(sc, c, extc)) != 0) {
2558 		printf("%s: unable to reset hardware; reset status %d\n",
2559 		    sc->sc_dev.dv_xname, error);
2560 		goto fail;
2561 	}
2562 
2563 	/* Enable Rx. */
2564 	athn_rx_start(sc);
2565 
2566 	/* Enable interrupts. */
2567 	athn_enable_interrupts(sc);
2568 
2569 #ifdef ATHN_BT_COEXISTENCE
2570 	/* Enable bluetooth coexistence for combo chips. */
2571 	if (sc->flags & ATHN_FLAG_BTCOEX)
2572 		athn_btcoex_enable(sc);
2573 #endif
2574 
2575 	ifp->if_flags &= ~IFF_OACTIVE;
2576 	ifp->if_flags |= IFF_RUNNING;
2577 
2578 #ifdef notyet
2579 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2580 		/* Configure WEP keys. */
2581 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2582 			(void)athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2583 	}
2584 #endif
2585 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2586 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2587 	else
2588 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2589 
2590 	return (0);
2591  fail:
2592 	athn_stop(ifp, 1);
2593 	return (error);
2594 }
2595 
2596 void
2597 athn_stop(struct ifnet *ifp, int disable)
2598 {
2599 	struct athn_softc *sc = ifp->if_softc;
2600 	struct ieee80211com *ic = &sc->sc_ic;
2601 	int qid;
2602 
2603 	ifp->if_timer = sc->sc_tx_timer = 0;
2604 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2605 
2606 	timeout_del(&sc->scan_to);
2607 	/* In case we were scanning, release the scan "lock". */
2608 	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;
2609 
2610 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2611 
2612 #ifdef ATHN_BT_COEXISTENCE
2613 	/* Disable bluetooth coexistence for combo chips. */
2614 	if (sc->flags & ATHN_FLAG_BTCOEX)
2615 		athn_btcoex_disable(sc);
2616 #endif
2617 
2618 	/* Disable interrupts. */
2619 	athn_disable_interrupts(sc);
2620 	/* Acknowledge interrupts (avoids interrupt storms.) */
2621 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2622 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2623 
2624 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2625 		athn_stop_tx_dma(sc, qid);
2626 	/* XXX call athn_hw_reset if Tx still pending? */
2627 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2628 		athn_tx_reclaim(sc, qid);
2629 
2630 	/* Stop Rx. */
2631 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS);
2632 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2633 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2634 	AR_WRITE(sc, AR_FILT_OFDM, 0);
2635 	AR_WRITE(sc, AR_FILT_CCK, 0);
2636 	athn_set_rxfilter(sc, 0);
2637 	athn_stop_rx_dma(sc);
2638 
2639 	athn_reset(sc, 0);
2640 	athn_init_pll(sc, NULL);
2641 	athn_set_power_awake(sc);
2642 	athn_reset(sc, 1);
2643 	athn_init_pll(sc, NULL);
2644 
2645 	athn_set_power_sleep(sc);
2646 
2647 	/* For CardBus, power down the socket. */
2648 	if (disable && sc->sc_disable != NULL)
2649 		sc->sc_disable(sc);
2650 }
2651