1 /* $OpenBSD: mc146818reg.h,v 1.8 2019/04/29 15:46:11 cheloha Exp $ */ 2 /* $NetBSD: mc146818reg.h,v 1.1 1995/05/04 19:31:18 cgd Exp $ */ 3 4 /* 5 * Copyright (c) 1995 Carnegie-Mellon University. 6 * All rights reserved. 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /* 30 * Definitions for the Motorola MC146818A Real Time Clock. 31 * They also apply for the (compatible) Dallas Semiconductor DS1287A RTC. 32 * 33 * Though there are undoubtedly other (better) sources, this material was 34 * culled from the DEC "KN121 System Module Programmer's Reference 35 * Information." 36 * 37 * The MC146818A has 16 registers. The first 10 contain time-of-year 38 * and alarm data. The rest contain various control and status bits. 39 * 40 * To read or write the registers, one writes the register number to 41 * the RTC's control port, then either reads from or writes the new 42 * data to the RTC's data port. Since the locations of these ports 43 * and the method used to access them can be machine-dependent, the 44 * low-level details of reading and writing the RTC's registers are 45 * handled by machine-specific functions. 46 * 47 * The time-of-year and alarm data can be expressed in either binary 48 * or BCD, and they are selected by a bit in register B. 49 * 50 * The "hour" time-of-year and alarm fields can either be expressed in 51 * AM/PM format, or in 24-hour format. If AM/PM format is chosen, the 52 * hour fields can have the values: 1-12 and 81-92 (the latter being 53 * PM). If the 24-hour format is chosen, they can have the values 54 * 0-24. The hour format is selectable by a bit in register B. 55 * (XXX IS AM/PM MODE DESCRIPTION CORRECT?) 56 * 57 * It is assumed the if systems are going to use BCD (rather than 58 * binary) mode, or AM/PM hour format, they'll do the appropriate 59 * conversions in machine-dependent code. Also, if the clock is 60 * switched between BCD and binary mode, or between AM/PM mode and 61 * 24-hour mode, the time-of-day and alarm registers are NOT 62 * automatically reset; they must be reprogrammed with correct values. 63 */ 64 65 /* 66 * The registers, and the bits within each register. 67 */ 68 69 #define MC_SEC 0x0 /* Time of year: seconds (0-59) */ 70 #define MC_ASEC 0x1 /* Alarm: seconds */ 71 #define MC_MIN 0x2 /* Time of year: minutes (0-59) */ 72 #define MC_AMIN 0x3 /* Alarm: minutes */ 73 #define MC_HOUR 0x4 /* Time of year: hour (see above) */ 74 #define MC_AHOUR 0x5 /* Alarm: hour */ 75 #define MC_DOW 0x6 /* Time of year: day of week (1-7) */ 76 #define MC_DOM 0x7 /* Time of year: day of month (1-31) */ 77 #define MC_MONTH 0x8 /* Time of year: month (1-12) */ 78 #define MC_YEAR 0x9 /* Time of year: year in century (0-99) */ 79 80 #define MC_REGA 0xa /* Control register A */ 81 82 #define MC_REGA_RSMASK 0x0f /* Interrupt rate select mask (see below) */ 83 #define MC_REGA_DVMASK 0x70 /* Divisor select mask (see below) */ 84 #define MC_REGA_UIP 0x80 /* Update in progress; read only. */ 85 86 #define MC_REGB 0xb /* Control register B */ 87 88 #define MC_REGB_DSE 0x01 /* Daylight Saving Enable */ 89 #define MC_REGB_24HR 0x02 /* 24-hour mode (AM/PM mode when clear) */ 90 #define MC_REGB_BINARY 0x04 /* Binary mode (BCD mode when clear) */ 91 #define MC_REGB_SQWE 0x08 /* Square wave enable, ONLY in BQ3285E */ 92 #define MC_REGB_UIE 0x10 /* Update End interrupt enable */ 93 #define MC_REGB_AIE 0x20 /* Alarm interrupt enable */ 94 #define MC_REGB_PIE 0x40 /* Periodic interrupt enable */ 95 #define MC_REGB_SET 0x80 /* Allow time to be set; stops updates */ 96 97 #define MC_REGC 0xc /* Control register C */ 98 99 /* MC_REGC_UNUSED 0x0f UNUSED */ 100 #define MC_REGC_UF 0x10 /* Update End interrupt flag */ 101 #define MC_REGC_AF 0x20 /* Alarm interrupt flag */ 102 #define MC_REGC_PF 0x40 /* Periodic interrupt flag */ 103 #define MC_REGC_IRQF 0x80 /* Interrupt request pending flag */ 104 105 #define MC_REGD 0xd /* Control register D */ 106 107 /* MC_REGD_UNUSED 0x7f UNUSED */ 108 #define MC_REGD_VRT 0x80 /* Valid RAM and Time bit */ 109 110 111 #define MC_NREGS 0xe /* 14 registers; CMOS follows */ 112 #define MC_NTODREGS 0xa /* 10 of those regs are for TOD and alarm */ 113 114 #define MC_NVRAM_START 0xe /* start of NVRAM: offset 14 */ 115 #define MC_NVRAM_SIZE 50 /* 50 bytes of NVRAM */ 116 117 /* 118 * Periodic Interrupt Rate Select constants (Control register A) 119 */ 120 #define MC_RATE_NONE 0x0 /* No periodic interrupt */ 121 #define MC_RATE_1 0x1 /* 256 Hz if MC_BASE_32_KHz, else 32768 Hz */ 122 #define MC_RATE_2 0x2 /* 128 Hz if MC_BASE_32_KHz, else 16384 Hz */ 123 #define MC_RATE_8192_Hz 0x3 /* 122.070 us period */ 124 #define MC_RATE_4096_Hz 0x4 /* 244.141 us period */ 125 #define MC_RATE_2048_Hz 0x5 /* 488.281 us period */ 126 #define MC_RATE_1024_Hz 0x6 /* 976.562 us period */ 127 #define MC_RATE_512_Hz 0x7 /* 1.953125 ms period */ 128 #define MC_RATE_256_Hz 0x8 /* 3.90625 ms period */ 129 #define MC_RATE_128_Hz 0x9 /* 7.8125 ms period */ 130 #define MC_RATE_64_Hz 0xa /* 15.625 ms period */ 131 #define MC_RATE_32_Hz 0xb /* 31.25 ms period */ 132 #define MC_RATE_16_Hz 0xc /* 62.5 ms period */ 133 #define MC_RATE_8_Hz 0xd /* 125 ms period */ 134 #define MC_RATE_4_Hz 0xe /* 250 ms period */ 135 #define MC_RATE_2_Hz 0xf /* 500 ms period */ 136 137 /* 138 * Time base (divisor select) constants (Control register A) 139 */ 140 #define MC_BASE_4_MHz 0x00 /* 4MHz crystal */ 141 #define MC_BASE_1_MHz 0x10 /* 1MHz crystal */ 142 #define MC_BASE_32_KHz 0x20 /* 32KHz crystal */ 143 #define MC_BASE_NONE 0x60 /* actually, both of these reset */ 144 #define MC_BASE_RESET 0x70 145 146 #ifndef _LOCORE 147 /* 148 * RTC register/NVRAM read and write functions -- machine-dependent. 149 * Appropriately manipulate RTC registers to get/put data values. 150 */ 151 u_int mc146818_read(void *sc, u_int reg); 152 void mc146818_write(void *sc, u_int reg, u_int datum); 153 154 /* 155 * A collection of TOD/Alarm registers. 156 */ 157 typedef u_int mc_todregs[MC_NTODREGS]; 158 159 /* 160 * Get all of the TOD/Alarm registers 161 * Must be called at splhigh(), and with the RTC properly set up. 162 */ 163 #define MC146818_GETTOD(sc, regs) \ 164 do { \ 165 int i; \ 166 \ 167 /* update in progress; spin loop */ \ 168 while (mc146818_read(sc, MC_REGA) & MC_REGA_UIP) \ 169 continue; \ 170 \ 171 do { \ 172 /* read all of the tod/alarm regs */ \ 173 for (i = 0; i < MC_NTODREGS; i++) \ 174 (*regs)[i] = mc146818_read(sc, i); \ 175 } while ((*regs)[MC_SEC] != mc146818_read(sc, MC_SEC)); \ 176 } while (0); 177 178 /* 179 * Set all of the TOD/Alarm registers 180 * Must be called at splhigh(), and with the RTC properly set up. 181 */ 182 #define MC146818_PUTTOD(sc, regs) \ 183 do { \ 184 int i; \ 185 \ 186 /* stop updates while setting */ \ 187 mc146818_write(sc, MC_REGB, \ 188 mc146818_read(sc, MC_REGB) | MC_REGB_SET); \ 189 \ 190 /* write all of the tod/alarm regs */ \ 191 for (i = 0; i < MC_NTODREGS; i++) \ 192 mc146818_write(sc, i, (*regs)[i]); \ 193 \ 194 /* reenable updates */ \ 195 mc146818_write(sc, MC_REGB, \ 196 mc146818_read(sc, MC_REGB) & ~MC_REGB_SET); \ 197 } while (0); 198 #endif 199 200