1 /* $OpenBSD: rt2560.c,v 1.88 2020/07/20 07:45:44 stsp Exp $ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2560 chipset driver 22 * http://www.ralinktech.com/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/timeout.h> 35 #include <sys/conf.h> 36 #include <sys/device.h> 37 #include <sys/endian.h> 38 39 #include <machine/bus.h> 40 #include <machine/intr.h> 41 42 #if NBPFILTER > 0 43 #include <net/bpf.h> 44 #endif 45 #include <net/if.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 49 #include <netinet/in.h> 50 #include <netinet/if_ether.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_amrr.h> 54 #include <net80211/ieee80211_radiotap.h> 55 56 #include <dev/ic/rt2560reg.h> 57 #include <dev/ic/rt2560var.h> 58 59 #ifdef RAL_DEBUG 60 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0) 61 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0) 62 int rt2560_debug = 1; 63 #else 64 #define DPRINTF(x) 65 #define DPRINTFN(n, x) 66 #endif 67 68 int rt2560_alloc_tx_ring(struct rt2560_softc *, 69 struct rt2560_tx_ring *, int); 70 void rt2560_reset_tx_ring(struct rt2560_softc *, 71 struct rt2560_tx_ring *); 72 void rt2560_free_tx_ring(struct rt2560_softc *, 73 struct rt2560_tx_ring *); 74 int rt2560_alloc_rx_ring(struct rt2560_softc *, 75 struct rt2560_rx_ring *, int); 76 void rt2560_reset_rx_ring(struct rt2560_softc *, 77 struct rt2560_rx_ring *); 78 void rt2560_free_rx_ring(struct rt2560_softc *, 79 struct rt2560_rx_ring *); 80 struct ieee80211_node *rt2560_node_alloc(struct ieee80211com *); 81 int rt2560_media_change(struct ifnet *); 82 void rt2560_next_scan(void *); 83 void rt2560_iter_func(void *, struct ieee80211_node *); 84 void rt2560_amrr_timeout(void *); 85 void rt2560_newassoc(struct ieee80211com *, struct ieee80211_node *, 86 int); 87 int rt2560_newstate(struct ieee80211com *, enum ieee80211_state, 88 int); 89 uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 90 void rt2560_encryption_intr(struct rt2560_softc *); 91 void rt2560_tx_intr(struct rt2560_softc *); 92 void rt2560_prio_intr(struct rt2560_softc *); 93 void rt2560_decryption_intr(struct rt2560_softc *); 94 void rt2560_rx_intr(struct rt2560_softc *); 95 #ifndef IEEE80211_STA_ONLY 96 void rt2560_beacon_expire(struct rt2560_softc *); 97 #endif 98 void rt2560_wakeup_expire(struct rt2560_softc *); 99 #if NBPFILTER > 0 100 uint8_t rt2560_rxrate(const struct rt2560_rx_desc *); 101 #endif 102 int rt2560_ack_rate(struct ieee80211com *, int); 103 uint16_t rt2560_txtime(int, int, uint32_t); 104 uint8_t rt2560_plcp_signal(int); 105 void rt2560_setup_tx_desc(struct rt2560_softc *, 106 struct rt2560_tx_desc *, uint32_t, int, int, int, 107 bus_addr_t); 108 #ifndef IEEE80211_STA_ONLY 109 int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 110 struct ieee80211_node *); 111 #endif 112 int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 113 struct ieee80211_node *); 114 int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 115 struct ieee80211_node *); 116 void rt2560_start(struct ifnet *); 117 void rt2560_watchdog(struct ifnet *); 118 int rt2560_ioctl(struct ifnet *, u_long, caddr_t); 119 void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t); 120 uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 121 void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t); 122 void rt2560_set_chan(struct rt2560_softc *, 123 struct ieee80211_channel *); 124 void rt2560_disable_rf_tune(struct rt2560_softc *); 125 void rt2560_enable_tsf_sync(struct rt2560_softc *); 126 void rt2560_update_plcp(struct rt2560_softc *); 127 void rt2560_updateslot(struct ieee80211com *); 128 void rt2560_set_slottime(struct rt2560_softc *); 129 void rt2560_set_basicrates(struct rt2560_softc *); 130 void rt2560_update_led(struct rt2560_softc *, int, int); 131 void rt2560_set_bssid(struct rt2560_softc *, uint8_t *); 132 void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 133 void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 134 void rt2560_update_promisc(struct rt2560_softc *); 135 void rt2560_set_txantenna(struct rt2560_softc *, int); 136 void rt2560_set_rxantenna(struct rt2560_softc *, int); 137 const char *rt2560_get_rf(int); 138 void rt2560_read_eeprom(struct rt2560_softc *); 139 int rt2560_bbp_init(struct rt2560_softc *); 140 int rt2560_init(struct ifnet *); 141 void rt2560_stop(struct ifnet *, int); 142 143 static const struct { 144 uint32_t reg; 145 uint32_t val; 146 } rt2560_def_mac[] = { 147 RT2560_DEF_MAC 148 }; 149 150 static const struct { 151 uint8_t reg; 152 uint8_t val; 153 } rt2560_def_bbp[] = { 154 RT2560_DEF_BBP 155 }; 156 157 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 158 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 159 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 160 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 161 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 162 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 163 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 164 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 165 166 int 167 rt2560_attach(void *xsc, int id) 168 { 169 struct rt2560_softc *sc = xsc; 170 struct ieee80211com *ic = &sc->sc_ic; 171 struct ifnet *ifp = &ic->ic_if; 172 int error, i; 173 174 sc->amrr.amrr_min_success_threshold = 1; 175 sc->amrr.amrr_max_success_threshold = 15; 176 timeout_set(&sc->amrr_to, rt2560_amrr_timeout, sc); 177 timeout_set(&sc->scan_to, rt2560_next_scan, sc); 178 179 /* retrieve RT2560 rev. no */ 180 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 181 182 /* retrieve MAC address */ 183 rt2560_get_macaddr(sc, ic->ic_myaddr); 184 printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); 185 186 /* retrieve RF rev. no and various other things from EEPROM */ 187 rt2560_read_eeprom(sc); 188 189 printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname, 190 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 191 192 /* 193 * Allocate Tx and Rx rings. 194 */ 195 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 196 if (error != 0) { 197 printf("%s: could not allocate Tx ring\n", 198 sc->sc_dev.dv_xname); 199 goto fail1; 200 } 201 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 202 if (error != 0) { 203 printf("%s: could not allocate ATIM ring\n", 204 sc->sc_dev.dv_xname); 205 goto fail2; 206 } 207 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 208 if (error != 0) { 209 printf("%s: could not allocate Prio ring\n", 210 sc->sc_dev.dv_xname); 211 goto fail3; 212 } 213 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 214 if (error != 0) { 215 printf("%s: could not allocate Beacon ring\n", 216 sc->sc_dev.dv_xname); 217 goto fail4; 218 } 219 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 220 if (error != 0) { 221 printf("%s: could not allocate Rx ring\n", 222 sc->sc_dev.dv_xname); 223 goto fail5; 224 } 225 226 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 227 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 228 ic->ic_state = IEEE80211_S_INIT; 229 230 /* set device capabilities */ 231 ic->ic_caps = 232 IEEE80211_C_MONITOR | /* monitor mode supported */ 233 #ifndef IEEE80211_STA_ONLY 234 IEEE80211_C_IBSS | /* IBSS mode supported */ 235 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 236 #endif 237 IEEE80211_C_TXPMGT | /* tx power management */ 238 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 239 IEEE80211_C_SHSLOT | /* short slot time supported */ 240 IEEE80211_C_WEP | /* s/w WEP */ 241 IEEE80211_C_RSN; /* WPA/RSN */ 242 243 /* set supported .11b and .11g rates */ 244 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 245 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 246 247 /* set supported .11b and .11g channels (1 through 14) */ 248 for (i = 1; i <= 14; i++) { 249 ic->ic_channels[i].ic_freq = 250 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 251 ic->ic_channels[i].ic_flags = 252 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 253 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 254 } 255 256 ifp->if_softc = sc; 257 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 258 ifp->if_ioctl = rt2560_ioctl; 259 ifp->if_start = rt2560_start; 260 ifp->if_watchdog = rt2560_watchdog; 261 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 262 263 if_attach(ifp); 264 ieee80211_ifattach(ifp); 265 ic->ic_node_alloc = rt2560_node_alloc; 266 ic->ic_newassoc = rt2560_newassoc; 267 ic->ic_updateslot = rt2560_updateslot; 268 269 /* XXX RTS causes throughput problems -- where is the bug? */ 270 ic->ic_rtsthreshold = IEEE80211_RTS_MAX; 271 272 /* override state transition machine */ 273 sc->sc_newstate = ic->ic_newstate; 274 ic->ic_newstate = rt2560_newstate; 275 ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status); 276 277 #if NBPFILTER > 0 278 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 279 sizeof (struct ieee80211_frame) + 64); 280 281 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 282 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 283 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 284 285 sc->sc_txtap_len = sizeof sc->sc_txtapu; 286 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 287 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 288 #endif 289 return 0; 290 291 fail5: rt2560_free_tx_ring(sc, &sc->bcnq); 292 fail4: rt2560_free_tx_ring(sc, &sc->prioq); 293 fail3: rt2560_free_tx_ring(sc, &sc->atimq); 294 fail2: rt2560_free_tx_ring(sc, &sc->txq); 295 fail1: return ENXIO; 296 } 297 298 int 299 rt2560_detach(void *xsc) 300 { 301 struct rt2560_softc *sc = xsc; 302 struct ifnet *ifp = &sc->sc_ic.ic_if; 303 304 timeout_del(&sc->scan_to); 305 timeout_del(&sc->amrr_to); 306 307 ieee80211_ifdetach(ifp); /* free all nodes */ 308 if_detach(ifp); 309 310 rt2560_free_tx_ring(sc, &sc->txq); 311 rt2560_free_tx_ring(sc, &sc->atimq); 312 rt2560_free_tx_ring(sc, &sc->prioq); 313 rt2560_free_tx_ring(sc, &sc->bcnq); 314 rt2560_free_rx_ring(sc, &sc->rxq); 315 316 return 0; 317 } 318 319 void 320 rt2560_suspend(void *xsc) 321 { 322 struct rt2560_softc *sc = xsc; 323 struct ifnet *ifp = &sc->sc_ic.ic_if; 324 325 if (ifp->if_flags & IFF_RUNNING) 326 rt2560_stop(ifp, 1); 327 } 328 329 void 330 rt2560_wakeup(void *xsc) 331 { 332 struct rt2560_softc *sc = xsc; 333 struct ifnet *ifp = &sc->sc_ic.ic_if; 334 335 if (ifp->if_flags & IFF_UP) 336 rt2560_init(ifp); 337 } 338 339 int 340 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 341 int count) 342 { 343 int i, nsegs, error; 344 345 ring->count = count; 346 ring->queued = 0; 347 ring->cur = ring->next = 0; 348 ring->cur_encrypt = ring->next_encrypt = 0; 349 350 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1, 351 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 352 if (error != 0) { 353 printf("%s: could not create desc DMA map\n", 354 sc->sc_dev.dv_xname); 355 goto fail; 356 } 357 358 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 359 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 360 if (error != 0) { 361 printf("%s: could not allocate DMA memory\n", 362 sc->sc_dev.dv_xname); 363 goto fail; 364 } 365 366 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 367 count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc, 368 BUS_DMA_NOWAIT); 369 if (error != 0) { 370 printf("%s: can't map desc DMA memory\n", 371 sc->sc_dev.dv_xname); 372 goto fail; 373 } 374 375 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 376 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 377 if (error != 0) { 378 printf("%s: could not load desc DMA map\n", 379 sc->sc_dev.dv_xname); 380 goto fail; 381 } 382 383 ring->physaddr = ring->map->dm_segs->ds_addr; 384 385 ring->data = mallocarray(count, sizeof (struct rt2560_tx_data), 386 M_DEVBUF, M_NOWAIT | M_ZERO); 387 if (ring->data == NULL) { 388 printf("%s: could not allocate soft data\n", 389 sc->sc_dev.dv_xname); 390 error = ENOMEM; 391 goto fail; 392 } 393 394 for (i = 0; i < count; i++) { 395 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 396 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, 397 &ring->data[i].map); 398 if (error != 0) { 399 printf("%s: could not create DMA map\n", 400 sc->sc_dev.dv_xname); 401 goto fail; 402 } 403 } 404 405 return 0; 406 407 fail: rt2560_free_tx_ring(sc, ring); 408 return error; 409 } 410 411 void 412 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 413 { 414 int i; 415 416 for (i = 0; i < ring->count; i++) { 417 struct rt2560_tx_desc *desc = &ring->desc[i]; 418 struct rt2560_tx_data *data = &ring->data[i]; 419 420 if (data->m != NULL) { 421 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 422 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 423 bus_dmamap_unload(sc->sc_dmat, data->map); 424 m_freem(data->m); 425 data->m = NULL; 426 } 427 428 /* 429 * The node has already been freed at that point so don't call 430 * ieee80211_release_node() here. 431 */ 432 data->ni = NULL; 433 434 desc->flags = 0; 435 } 436 437 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 438 BUS_DMASYNC_PREWRITE); 439 440 ring->queued = 0; 441 ring->cur = ring->next = 0; 442 ring->cur_encrypt = ring->next_encrypt = 0; 443 } 444 445 void 446 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 447 { 448 int i; 449 450 if (ring->desc != NULL) { 451 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 452 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 453 bus_dmamap_unload(sc->sc_dmat, ring->map); 454 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, 455 ring->count * RT2560_TX_DESC_SIZE); 456 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 457 } 458 459 if (ring->data != NULL) { 460 for (i = 0; i < ring->count; i++) { 461 struct rt2560_tx_data *data = &ring->data[i]; 462 463 if (data->m != NULL) { 464 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 465 data->map->dm_mapsize, 466 BUS_DMASYNC_POSTWRITE); 467 bus_dmamap_unload(sc->sc_dmat, data->map); 468 m_freem(data->m); 469 } 470 471 /* 472 * The node has already been freed at that point so 473 * don't call ieee80211_release_node() here. 474 */ 475 data->ni = NULL; 476 477 if (data->map != NULL) 478 bus_dmamap_destroy(sc->sc_dmat, data->map); 479 } 480 free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data); 481 } 482 } 483 484 int 485 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 486 int count) 487 { 488 int i, nsegs, error; 489 490 ring->count = count; 491 ring->cur = ring->next = 0; 492 ring->cur_decrypt = 0; 493 494 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1, 495 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); 496 if (error != 0) { 497 printf("%s: could not create desc DMA map\n", 498 sc->sc_dev.dv_xname); 499 goto fail; 500 } 501 502 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 503 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 504 if (error != 0) { 505 printf("%s: could not allocate DMA memory\n", 506 sc->sc_dev.dv_xname); 507 goto fail; 508 } 509 510 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 511 count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc, 512 BUS_DMA_NOWAIT); 513 if (error != 0) { 514 printf("%s: can't map desc DMA memory\n", 515 sc->sc_dev.dv_xname); 516 goto fail; 517 } 518 519 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, 520 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); 521 if (error != 0) { 522 printf("%s: could not load desc DMA map\n", 523 sc->sc_dev.dv_xname); 524 goto fail; 525 } 526 527 ring->physaddr = ring->map->dm_segs->ds_addr; 528 529 ring->data = mallocarray(count, sizeof (struct rt2560_rx_data), 530 M_DEVBUF, M_NOWAIT | M_ZERO); 531 if (ring->data == NULL) { 532 printf("%s: could not allocate soft data\n", 533 sc->sc_dev.dv_xname); 534 error = ENOMEM; 535 goto fail; 536 } 537 538 /* 539 * Pre-allocate Rx buffers and populate Rx ring. 540 */ 541 for (i = 0; i < count; i++) { 542 struct rt2560_rx_desc *desc = &sc->rxq.desc[i]; 543 struct rt2560_rx_data *data = &sc->rxq.data[i]; 544 545 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 546 0, BUS_DMA_NOWAIT, &data->map); 547 if (error != 0) { 548 printf("%s: could not create DMA map\n", 549 sc->sc_dev.dv_xname); 550 goto fail; 551 } 552 553 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 554 if (data->m == NULL) { 555 printf("%s: could not allocate rx mbuf\n", 556 sc->sc_dev.dv_xname); 557 error = ENOMEM; 558 goto fail; 559 } 560 MCLGET(data->m, M_DONTWAIT); 561 if (!(data->m->m_flags & M_EXT)) { 562 printf("%s: could not allocate rx mbuf cluster\n", 563 sc->sc_dev.dv_xname); 564 error = ENOMEM; 565 goto fail; 566 } 567 568 error = bus_dmamap_load(sc->sc_dmat, data->map, 569 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 570 if (error != 0) { 571 printf("%s: could not load rx buf DMA map", 572 sc->sc_dev.dv_xname); 573 goto fail; 574 } 575 576 desc->flags = htole32(RT2560_RX_BUSY); 577 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 578 } 579 580 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 581 BUS_DMASYNC_PREWRITE); 582 583 return 0; 584 585 fail: rt2560_free_rx_ring(sc, ring); 586 return error; 587 } 588 589 void 590 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 591 { 592 int i; 593 594 for (i = 0; i < ring->count; i++) { 595 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 596 ring->data[i].drop = 0; 597 } 598 599 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 600 BUS_DMASYNC_PREWRITE); 601 602 ring->cur = ring->next = 0; 603 ring->cur_decrypt = 0; 604 } 605 606 void 607 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 608 { 609 int i; 610 611 if (ring->desc != NULL) { 612 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 613 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 614 bus_dmamap_unload(sc->sc_dmat, ring->map); 615 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, 616 ring->count * RT2560_RX_DESC_SIZE); 617 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 618 } 619 620 if (ring->data != NULL) { 621 for (i = 0; i < ring->count; i++) { 622 struct rt2560_rx_data *data = &ring->data[i]; 623 624 if (data->m != NULL) { 625 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 626 data->map->dm_mapsize, 627 BUS_DMASYNC_POSTREAD); 628 bus_dmamap_unload(sc->sc_dmat, data->map); 629 m_freem(data->m); 630 } 631 632 if (data->map != NULL) 633 bus_dmamap_destroy(sc->sc_dmat, data->map); 634 } 635 free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data); 636 } 637 } 638 639 struct ieee80211_node * 640 rt2560_node_alloc(struct ieee80211com *ic) 641 { 642 return malloc(sizeof (struct rt2560_node), M_DEVBUF, 643 M_NOWAIT | M_ZERO); 644 } 645 646 int 647 rt2560_media_change(struct ifnet *ifp) 648 { 649 int error; 650 651 error = ieee80211_media_change(ifp); 652 if (error != ENETRESET) 653 return error; 654 655 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 656 rt2560_init(ifp); 657 658 return 0; 659 } 660 661 /* 662 * This function is called periodically (every 200ms) during scanning to 663 * switch from one channel to another. 664 */ 665 void 666 rt2560_next_scan(void *arg) 667 { 668 struct rt2560_softc *sc = arg; 669 struct ieee80211com *ic = &sc->sc_ic; 670 struct ifnet *ifp = &ic->ic_if; 671 int s; 672 673 s = splnet(); 674 if (ic->ic_state == IEEE80211_S_SCAN) 675 ieee80211_next_scan(ifp); 676 splx(s); 677 } 678 679 /* 680 * This function is called for each neighbor node. 681 */ 682 void 683 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 684 { 685 struct rt2560_softc *sc = arg; 686 struct rt2560_node *rn = (struct rt2560_node *)ni; 687 688 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn); 689 } 690 691 void 692 rt2560_amrr_timeout(void *arg) 693 { 694 struct rt2560_softc *sc = arg; 695 struct ieee80211com *ic = &sc->sc_ic; 696 int s; 697 698 s = splnet(); 699 if (ic->ic_opmode == IEEE80211_M_STA) 700 rt2560_iter_func(sc, ic->ic_bss); 701 #ifndef IEEE80211_STA_ONLY 702 else 703 ieee80211_iterate_nodes(ic, rt2560_iter_func, sc); 704 #endif 705 splx(s); 706 707 timeout_add_msec(&sc->amrr_to, 500); 708 } 709 710 void 711 rt2560_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 712 { 713 struct rt2560_softc *sc = ic->ic_softc; 714 int i; 715 716 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2560_node *)ni)->amn); 717 718 /* set rate to some reasonable initial value */ 719 for (i = ni->ni_rates.rs_nrates - 1; 720 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 721 i--); 722 ni->ni_txrate = i; 723 } 724 725 int 726 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 727 { 728 struct rt2560_softc *sc = ic->ic_if.if_softc; 729 enum ieee80211_state ostate; 730 struct ieee80211_node *ni; 731 int error = 0; 732 733 ostate = ic->ic_state; 734 timeout_del(&sc->scan_to); 735 timeout_del(&sc->amrr_to); 736 737 switch (nstate) { 738 case IEEE80211_S_INIT: 739 if (ostate == IEEE80211_S_RUN) { 740 /* abort TSF synchronization */ 741 RAL_WRITE(sc, RT2560_CSR14, 0); 742 743 /* turn association led off */ 744 rt2560_update_led(sc, 0, 0); 745 } 746 break; 747 748 case IEEE80211_S_SCAN: 749 rt2560_set_chan(sc, ic->ic_bss->ni_chan); 750 timeout_add_msec(&sc->scan_to, 200); 751 break; 752 753 case IEEE80211_S_AUTH: 754 rt2560_set_chan(sc, ic->ic_bss->ni_chan); 755 break; 756 757 case IEEE80211_S_ASSOC: 758 rt2560_set_chan(sc, ic->ic_bss->ni_chan); 759 break; 760 761 case IEEE80211_S_RUN: 762 rt2560_set_chan(sc, ic->ic_bss->ni_chan); 763 764 ni = ic->ic_bss; 765 766 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 767 rt2560_update_plcp(sc); 768 rt2560_set_slottime(sc); 769 rt2560_set_basicrates(sc); 770 rt2560_set_bssid(sc, ni->ni_bssid); 771 } 772 773 #ifndef IEEE80211_STA_ONLY 774 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 775 ic->ic_opmode == IEEE80211_M_IBSS) { 776 struct mbuf *m = ieee80211_beacon_alloc(ic, ni); 777 if (m == NULL) { 778 printf("%s: could not allocate beacon\n", 779 sc->sc_dev.dv_xname); 780 error = ENOBUFS; 781 break; 782 } 783 784 error = rt2560_tx_bcn(sc, m, ni); 785 if (error != 0) 786 break; 787 } 788 #endif 789 790 /* turn assocation led on */ 791 rt2560_update_led(sc, 1, 0); 792 793 if (ic->ic_opmode == IEEE80211_M_STA) { 794 /* fake a join to init the tx rate */ 795 rt2560_newassoc(ic, ni, 1); 796 } 797 798 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 799 /* start automatic rate control timer */ 800 if (ic->ic_fixed_rate == -1) 801 timeout_add_msec(&sc->amrr_to, 500); 802 803 rt2560_enable_tsf_sync(sc); 804 } 805 break; 806 } 807 808 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 809 } 810 811 /* 812 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 813 * 93C66). 814 */ 815 uint16_t 816 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 817 { 818 uint32_t tmp; 819 uint16_t val; 820 int n; 821 822 /* clock C once before the first command */ 823 RT2560_EEPROM_CTL(sc, 0); 824 825 RT2560_EEPROM_CTL(sc, RT2560_S); 826 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 827 RT2560_EEPROM_CTL(sc, RT2560_S); 828 829 /* write start bit (1) */ 830 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 831 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 832 833 /* write READ opcode (10) */ 834 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 835 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 836 RT2560_EEPROM_CTL(sc, RT2560_S); 837 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 838 839 /* write address (A5-A0 or A7-A0) */ 840 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 841 for (; n >= 0; n--) { 842 RT2560_EEPROM_CTL(sc, RT2560_S | 843 (((addr >> n) & 1) << RT2560_SHIFT_D)); 844 RT2560_EEPROM_CTL(sc, RT2560_S | 845 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 846 } 847 848 RT2560_EEPROM_CTL(sc, RT2560_S); 849 850 /* read data Q15-Q0 */ 851 val = 0; 852 for (n = 15; n >= 0; n--) { 853 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 854 tmp = RAL_READ(sc, RT2560_CSR21); 855 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 856 RT2560_EEPROM_CTL(sc, RT2560_S); 857 } 858 859 RT2560_EEPROM_CTL(sc, 0); 860 861 /* clear Chip Select and clock C */ 862 RT2560_EEPROM_CTL(sc, RT2560_S); 863 RT2560_EEPROM_CTL(sc, 0); 864 RT2560_EEPROM_CTL(sc, RT2560_C); 865 866 return val; 867 } 868 869 /* 870 * Some frames were processed by the hardware cipher engine and are ready for 871 * transmission. 872 */ 873 void 874 rt2560_encryption_intr(struct rt2560_softc *sc) 875 { 876 int hw; 877 878 /* retrieve last descriptor index processed by cipher engine */ 879 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) / 880 RT2560_TX_DESC_SIZE; 881 882 for (; sc->txq.next_encrypt != hw;) { 883 struct rt2560_tx_desc *desc = 884 &sc->txq.desc[sc->txq.next_encrypt]; 885 886 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 887 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE, 888 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); 889 890 if (letoh32(desc->flags) & 891 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY)) 892 break; 893 894 /* for TKIP, swap eiv field to fix a bug in ASIC */ 895 if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) == 896 RT2560_TX_CIPHER_TKIP) 897 desc->eiv = swap32(desc->eiv); 898 899 /* mark the frame ready for transmission */ 900 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 901 902 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 903 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE, 904 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 905 906 DPRINTFN(15, ("encryption done idx=%u\n", 907 sc->txq.next_encrypt)); 908 909 sc->txq.next_encrypt = 910 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 911 } 912 913 /* kick Tx */ 914 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 915 } 916 917 void 918 rt2560_tx_intr(struct rt2560_softc *sc) 919 { 920 struct ieee80211com *ic = &sc->sc_ic; 921 struct ifnet *ifp = &ic->ic_if; 922 923 for (;;) { 924 struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next]; 925 struct rt2560_tx_data *data = &sc->txq.data[sc->txq.next]; 926 struct rt2560_node *rn; 927 928 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 929 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 930 BUS_DMASYNC_POSTREAD); 931 932 if ((letoh32(desc->flags) & RT2560_TX_BUSY) || 933 (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) || 934 !(letoh32(desc->flags) & RT2560_TX_VALID)) 935 break; 936 937 rn = (struct rt2560_node *)data->ni; 938 939 switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) { 940 case RT2560_TX_SUCCESS: 941 DPRINTFN(10, ("data frame sent successfully\n")); 942 rn->amn.amn_txcnt++; 943 break; 944 945 case RT2560_TX_SUCCESS_RETRY: 946 DPRINTFN(9, ("data frame sent after %u retries\n", 947 (letoh32(desc->flags) >> 5) & 0x7)); 948 rn->amn.amn_txcnt++; 949 rn->amn.amn_retrycnt++; 950 break; 951 952 case RT2560_TX_FAIL_RETRY: 953 DPRINTFN(9, ("sending data frame failed (too much " 954 "retries)\n")); 955 rn->amn.amn_txcnt++; 956 rn->amn.amn_retrycnt++; 957 ifp->if_oerrors++; 958 break; 959 960 case RT2560_TX_FAIL_INVALID: 961 case RT2560_TX_FAIL_OTHER: 962 default: 963 DPRINTF(("%s: sending data frame failed 0x%08x\n", 964 sc->sc_dev.dv_xname, letoh32(desc->flags))); 965 ifp->if_oerrors++; 966 break; 967 } 968 969 /* descriptor is no longer valid */ 970 desc->flags &= ~htole32(RT2560_TX_VALID); 971 972 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 973 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 974 BUS_DMASYNC_PREWRITE); 975 976 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 977 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 978 bus_dmamap_unload(sc->sc_dmat, data->map); 979 m_freem(data->m); 980 data->m = NULL; 981 ieee80211_release_node(ic, data->ni); 982 data->ni = NULL; 983 984 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 985 986 sc->txq.queued--; 987 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 988 } 989 990 if (sc->txq.queued == 0 && sc->prioq.queued == 0) 991 sc->sc_tx_timer = 0; 992 if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) { 993 sc->sc_flags &= ~RT2560_DATA_OACTIVE; 994 if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE))) 995 ifq_clr_oactive(&ifp->if_snd); 996 rt2560_start(ifp); 997 } 998 } 999 1000 void 1001 rt2560_prio_intr(struct rt2560_softc *sc) 1002 { 1003 struct ieee80211com *ic = &sc->sc_ic; 1004 struct ifnet *ifp = &ic->ic_if; 1005 1006 for (;;) { 1007 struct rt2560_tx_desc *desc = &sc->prioq.desc[sc->prioq.next]; 1008 struct rt2560_tx_data *data = &sc->prioq.data[sc->prioq.next]; 1009 1010 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, 1011 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 1012 BUS_DMASYNC_POSTREAD); 1013 1014 if ((letoh32(desc->flags) & RT2560_TX_BUSY) || 1015 !(letoh32(desc->flags) & RT2560_TX_VALID)) 1016 break; 1017 1018 switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) { 1019 case RT2560_TX_SUCCESS: 1020 DPRINTFN(10, ("mgt frame sent successfully\n")); 1021 break; 1022 1023 case RT2560_TX_SUCCESS_RETRY: 1024 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1025 (letoh32(desc->flags) >> 5) & 0x7)); 1026 break; 1027 1028 case RT2560_TX_FAIL_RETRY: 1029 DPRINTFN(9, ("sending mgt frame failed (too much " 1030 "retries)\n")); 1031 break; 1032 1033 case RT2560_TX_FAIL_INVALID: 1034 case RT2560_TX_FAIL_OTHER: 1035 default: 1036 DPRINTF(("%s: sending mgt frame failed 0x%08x\n", 1037 sc->sc_dev.dv_xname, letoh32(desc->flags))); 1038 break; 1039 } 1040 1041 /* descriptor is no longer valid */ 1042 desc->flags &= ~htole32(RT2560_TX_VALID); 1043 1044 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, 1045 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 1046 BUS_DMASYNC_PREWRITE); 1047 1048 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1049 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1050 bus_dmamap_unload(sc->sc_dmat, data->map); 1051 m_freem(data->m); 1052 data->m = NULL; 1053 ieee80211_release_node(ic, data->ni); 1054 data->ni = NULL; 1055 1056 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1057 1058 sc->prioq.queued--; 1059 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1060 } 1061 1062 if (sc->txq.queued == 0 && sc->prioq.queued == 0) 1063 sc->sc_tx_timer = 0; 1064 if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) { 1065 sc->sc_flags &= ~RT2560_PRIO_OACTIVE; 1066 if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE))) 1067 ifq_clr_oactive(&ifp->if_snd); 1068 rt2560_start(ifp); 1069 } 1070 } 1071 1072 /* 1073 * Some frames were processed by the hardware cipher engine and are ready for 1074 * transmission to the IEEE802.11 layer. 1075 */ 1076 void 1077 rt2560_decryption_intr(struct rt2560_softc *sc) 1078 { 1079 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 1080 struct ieee80211com *ic = &sc->sc_ic; 1081 struct ifnet *ifp = &ic->ic_if; 1082 struct ieee80211_frame *wh; 1083 struct ieee80211_rxinfo rxi; 1084 struct ieee80211_node *ni; 1085 struct mbuf *mnew, *m; 1086 int hw, error; 1087 1088 /* retrieve last decriptor index processed by cipher engine */ 1089 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) / 1090 RT2560_RX_DESC_SIZE; 1091 1092 for (; sc->rxq.cur_decrypt != hw;) { 1093 struct rt2560_rx_desc *desc = 1094 &sc->rxq.desc[sc->rxq.cur_decrypt]; 1095 struct rt2560_rx_data *data = 1096 &sc->rxq.data[sc->rxq.cur_decrypt]; 1097 1098 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1099 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE, 1100 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); 1101 1102 if (letoh32(desc->flags) & 1103 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY)) 1104 break; 1105 1106 if (data->drop) { 1107 ifp->if_ierrors++; 1108 goto skip; 1109 } 1110 1111 if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1112 (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) { 1113 ifp->if_ierrors++; 1114 goto skip; 1115 } 1116 1117 /* 1118 * Try to allocate a new mbuf for this ring element and load it 1119 * before processing the current mbuf. If the ring element 1120 * cannot be loaded, drop the received packet and reuse the old 1121 * mbuf. In the unlikely case that the old mbuf can't be 1122 * reloaded either, explicitly panic. 1123 */ 1124 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1125 if (mnew == NULL) { 1126 ifp->if_ierrors++; 1127 goto skip; 1128 } 1129 MCLGET(mnew, M_DONTWAIT); 1130 if (!(mnew->m_flags & M_EXT)) { 1131 m_freem(mnew); 1132 ifp->if_ierrors++; 1133 goto skip; 1134 } 1135 1136 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1137 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1138 bus_dmamap_unload(sc->sc_dmat, data->map); 1139 1140 error = bus_dmamap_load(sc->sc_dmat, data->map, 1141 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); 1142 if (error != 0) { 1143 m_freem(mnew); 1144 1145 /* try to reload the old mbuf */ 1146 error = bus_dmamap_load(sc->sc_dmat, data->map, 1147 mtod(data->m, void *), MCLBYTES, NULL, 1148 BUS_DMA_NOWAIT); 1149 if (error != 0) { 1150 /* very unlikely that it will fail... */ 1151 panic("%s: could not load old rx mbuf", 1152 sc->sc_dev.dv_xname); 1153 } 1154 /* physical address may have changed */ 1155 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1156 ifp->if_ierrors++; 1157 goto skip; 1158 } 1159 1160 /* 1161 * New mbuf successfully loaded, update Rx ring and continue 1162 * processing. 1163 */ 1164 m = data->m; 1165 data->m = mnew; 1166 desc->physaddr = htole32(data->map->dm_segs->ds_addr); 1167 1168 /* finalize mbuf */ 1169 m->m_pkthdr.len = m->m_len = 1170 (letoh32(desc->flags) >> 16) & 0xfff; 1171 1172 #if NBPFILTER > 0 1173 if (sc->sc_drvbpf != NULL) { 1174 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1175 uint32_t tsf_lo, tsf_hi; 1176 1177 /* get timestamp (low and high 32 bits) */ 1178 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1179 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1180 1181 tap->wr_tsf = 1182 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1183 tap->wr_flags = 0; 1184 tap->wr_rate = rt2560_rxrate(desc); 1185 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); 1186 tap->wr_chan_flags = 1187 htole16(ic->ic_ibss_chan->ic_flags); 1188 tap->wr_antenna = sc->rx_ant; 1189 tap->wr_antsignal = desc->rssi; 1190 1191 bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, 1192 BPF_DIRECTION_IN); 1193 } 1194 #endif 1195 wh = mtod(m, struct ieee80211_frame *); 1196 ni = ieee80211_find_rxnode(ic, wh); 1197 1198 /* send the frame to the 802.11 layer */ 1199 rxi.rxi_flags = 0; 1200 rxi.rxi_rssi = desc->rssi; 1201 rxi.rxi_tstamp = 0; /* unused */ 1202 ieee80211_inputm(ifp, m, ni, &rxi, &ml); 1203 1204 /* node is no longer needed */ 1205 ieee80211_release_node(ic, ni); 1206 1207 skip: desc->flags = htole32(RT2560_RX_BUSY); 1208 1209 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1210 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE, 1211 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 1212 1213 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1214 1215 sc->rxq.cur_decrypt = 1216 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1217 } 1218 if_input(ifp, &ml); 1219 } 1220 1221 /* 1222 * Some frames were received. Pass them to the hardware cipher engine before 1223 * sending them to the 802.11 layer. 1224 */ 1225 void 1226 rt2560_rx_intr(struct rt2560_softc *sc) 1227 { 1228 for (;;) { 1229 struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur]; 1230 struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1231 1232 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1233 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE, 1234 BUS_DMASYNC_POSTREAD); 1235 1236 if (letoh32(desc->flags) & 1237 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY)) 1238 break; 1239 1240 data->drop = 0; 1241 1242 if (letoh32(desc->flags) & 1243 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) { 1244 /* 1245 * This should not happen since we did not request 1246 * to receive those frames when we filled RXCSR0. 1247 */ 1248 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1249 letoh32(desc->flags))); 1250 data->drop = 1; 1251 } 1252 1253 if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1254 DPRINTFN(5, ("bad length\n")); 1255 data->drop = 1; 1256 } 1257 1258 /* mark the frame for decryption */ 1259 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1260 1261 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 1262 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE, 1263 BUS_DMASYNC_PREWRITE); 1264 1265 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1266 1267 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1268 } 1269 1270 /* kick decrypt */ 1271 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1272 } 1273 1274 #ifndef IEEE80211_STA_ONLY 1275 /* 1276 * This function is called in HostAP or IBSS modes when it's time to send a 1277 * new beacon (every ni_intval milliseconds). 1278 */ 1279 void 1280 rt2560_beacon_expire(struct rt2560_softc *sc) 1281 { 1282 struct ieee80211com *ic = &sc->sc_ic; 1283 struct rt2560_tx_data *data; 1284 1285 if (ic->ic_opmode != IEEE80211_M_IBSS && 1286 ic->ic_opmode != IEEE80211_M_HOSTAP) 1287 return; 1288 1289 data = &sc->bcnq.data[sc->bcnq.next]; 1290 1291 if (sc->sc_flags & RT2560_UPDATE_SLOT) { 1292 sc->sc_flags &= ~RT2560_UPDATE_SLOT; 1293 sc->sc_flags |= RT2560_SET_SLOTTIME; 1294 } else if (sc->sc_flags & RT2560_SET_SLOTTIME) { 1295 sc->sc_flags &= ~RT2560_SET_SLOTTIME; 1296 rt2560_set_slottime(sc); 1297 } 1298 1299 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1300 /* update ERP Information Element */ 1301 *sc->erp = ic->ic_bss->ni_erp; 1302 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1303 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1304 } 1305 1306 #if defined(RT2560_DEBUG) && NBPFILTER > 0 1307 if (ic->ic_rawbpf != NULL) 1308 bpf_mtap(ic->ic_rawbpf, data->m, BPF_DIRECTION_OUT); 1309 #endif 1310 1311 DPRINTFN(15, ("beacon expired\n")); 1312 } 1313 #endif 1314 1315 void 1316 rt2560_wakeup_expire(struct rt2560_softc *sc) 1317 { 1318 DPRINTFN(15, ("wakeup expired\n")); 1319 } 1320 1321 int 1322 rt2560_intr(void *arg) 1323 { 1324 struct rt2560_softc *sc = arg; 1325 struct ifnet *ifp = &sc->sc_ic.ic_if; 1326 uint32_t r; 1327 1328 r = RAL_READ(sc, RT2560_CSR7); 1329 if (__predict_false(r == 0xffffffff)) 1330 return 0; /* device likely went away */ 1331 if (r == 0) 1332 return 0; /* not for us */ 1333 1334 /* disable interrupts */ 1335 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1336 1337 /* acknowledge interrupts */ 1338 RAL_WRITE(sc, RT2560_CSR7, r); 1339 1340 /* don't re-enable interrupts if we're shutting down */ 1341 if (!(ifp->if_flags & IFF_RUNNING)) 1342 return 0; 1343 1344 #ifndef IEEE80211_STA_ONLY 1345 if (r & RT2560_BEACON_EXPIRE) 1346 rt2560_beacon_expire(sc); 1347 #endif 1348 1349 if (r & RT2560_WAKEUP_EXPIRE) 1350 rt2560_wakeup_expire(sc); 1351 1352 if (r & RT2560_ENCRYPTION_DONE) 1353 rt2560_encryption_intr(sc); 1354 1355 if (r & RT2560_TX_DONE) 1356 rt2560_tx_intr(sc); 1357 1358 if (r & RT2560_PRIO_DONE) 1359 rt2560_prio_intr(sc); 1360 1361 if (r & RT2560_DECRYPTION_DONE) 1362 rt2560_decryption_intr(sc); 1363 1364 if (r & RT2560_RX_DONE) 1365 rt2560_rx_intr(sc); 1366 1367 /* re-enable interrupts */ 1368 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1369 1370 return 1; 1371 } 1372 1373 /* quickly determine if a given rate is CCK or OFDM */ 1374 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1375 1376 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1377 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1378 1379 #define RAL_SIFS 10 /* us */ 1380 1381 #define RT2560_RXTX_TURNAROUND 10 /* us */ 1382 1383 /* 1384 * This function is only used by the Rx radiotap code. It returns the rate at 1385 * which a given frame was received. 1386 */ 1387 #if NBPFILTER > 0 1388 uint8_t 1389 rt2560_rxrate(const struct rt2560_rx_desc *desc) 1390 { 1391 if (letoh32(desc->flags) & RT2560_RX_OFDM) { 1392 /* reverse function of rt2560_plcp_signal */ 1393 switch (desc->rate) { 1394 case 0xb: return 12; 1395 case 0xf: return 18; 1396 case 0xa: return 24; 1397 case 0xe: return 36; 1398 case 0x9: return 48; 1399 case 0xd: return 72; 1400 case 0x8: return 96; 1401 case 0xc: return 108; 1402 } 1403 } else { 1404 if (desc->rate == 10) 1405 return 2; 1406 if (desc->rate == 20) 1407 return 4; 1408 if (desc->rate == 55) 1409 return 11; 1410 if (desc->rate == 110) 1411 return 22; 1412 } 1413 return 2; /* should not get there */ 1414 } 1415 #endif 1416 1417 /* 1418 * Return the expected ack rate for a frame transmitted at rate `rate'. 1419 */ 1420 int 1421 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1422 { 1423 switch (rate) { 1424 /* CCK rates */ 1425 case 2: 1426 return 2; 1427 case 4: 1428 case 11: 1429 case 22: 1430 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1431 1432 /* OFDM rates */ 1433 case 12: 1434 case 18: 1435 return 12; 1436 case 24: 1437 case 36: 1438 return 24; 1439 case 48: 1440 case 72: 1441 case 96: 1442 case 108: 1443 return 48; 1444 } 1445 1446 /* default to 1Mbps */ 1447 return 2; 1448 } 1449 1450 /* 1451 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1452 * The function automatically determines the operating mode depending on the 1453 * given rate. `flags' indicates whether short preamble is in use or not. 1454 */ 1455 uint16_t 1456 rt2560_txtime(int len, int rate, uint32_t flags) 1457 { 1458 uint16_t txtime; 1459 1460 if (RAL_RATE_IS_OFDM(rate)) { 1461 /* IEEE Std 802.11g-2003, pp. 44 */ 1462 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1463 txtime = 16 + 4 + 4 * txtime + 6; 1464 } else { 1465 /* IEEE Std 802.11b-1999, pp. 28 */ 1466 txtime = (16 * len + rate - 1) / rate; 1467 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1468 txtime += 72 + 24; 1469 else 1470 txtime += 144 + 48; 1471 } 1472 return txtime; 1473 } 1474 1475 uint8_t 1476 rt2560_plcp_signal(int rate) 1477 { 1478 switch (rate) { 1479 /* CCK rates (returned values are device-dependent) */ 1480 case 2: return 0x0; 1481 case 4: return 0x1; 1482 case 11: return 0x2; 1483 case 22: return 0x3; 1484 1485 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1486 case 12: return 0xb; 1487 case 18: return 0xf; 1488 case 24: return 0xa; 1489 case 36: return 0xe; 1490 case 48: return 0x9; 1491 case 72: return 0xd; 1492 case 96: return 0x8; 1493 case 108: return 0xc; 1494 1495 /* unsupported rates (should not get there) */ 1496 default: return 0xff; 1497 } 1498 } 1499 1500 void 1501 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1502 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1503 { 1504 struct ieee80211com *ic = &sc->sc_ic; 1505 uint16_t plcp_length; 1506 int remainder; 1507 1508 desc->flags = htole32(flags); 1509 desc->flags |= htole32(len << 16); 1510 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : 1511 htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1512 1513 desc->physaddr = htole32(physaddr); 1514 desc->wme = htole16( 1515 RT2560_AIFSN(2) | 1516 RT2560_LOGCWMIN(3) | 1517 RT2560_LOGCWMAX(8)); 1518 1519 /* setup PLCP fields */ 1520 desc->plcp_signal = rt2560_plcp_signal(rate); 1521 desc->plcp_service = 4; 1522 1523 len += IEEE80211_CRC_LEN; 1524 if (RAL_RATE_IS_OFDM(rate)) { 1525 desc->flags |= htole32(RT2560_TX_OFDM); 1526 1527 plcp_length = len & 0xfff; 1528 desc->plcp_length_hi = plcp_length >> 6; 1529 desc->plcp_length_lo = plcp_length & 0x3f; 1530 } else { 1531 plcp_length = (16 * len + rate - 1) / rate; 1532 if (rate == 22) { 1533 remainder = (16 * len) % 22; 1534 if (remainder != 0 && remainder < 7) 1535 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1536 } 1537 desc->plcp_length_hi = plcp_length >> 8; 1538 desc->plcp_length_lo = plcp_length & 0xff; 1539 1540 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1541 desc->plcp_signal |= 0x08; 1542 } 1543 } 1544 1545 #ifndef IEEE80211_STA_ONLY 1546 int 1547 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1548 struct ieee80211_node *ni) 1549 { 1550 struct ieee80211com *ic = &sc->sc_ic; 1551 struct rt2560_tx_desc *desc; 1552 struct rt2560_tx_data *data; 1553 int rate = 2, error; 1554 1555 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1556 data = &sc->bcnq.data[sc->bcnq.cur]; 1557 1558 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1559 BUS_DMA_NOWAIT); 1560 if (error != 0) { 1561 printf("%s: can't map mbuf (error %d)\n", 1562 sc->sc_dev.dv_xname, error); 1563 m_freem(m0); 1564 return error; 1565 } 1566 1567 data->m = m0; 1568 data->ni = ni; 1569 1570 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1571 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, 1572 data->map->dm_segs->ds_addr); 1573 1574 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1575 BUS_DMASYNC_PREWRITE); 1576 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map, 1577 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 1578 BUS_DMASYNC_PREWRITE); 1579 1580 /* 1581 * Store pointer to ERP Information Element so that we can update it 1582 * dynamically when the slot time changes. 1583 * XXX: this is ugly since it depends on how net80211 builds beacon 1584 * frames but ieee80211_beacon_alloc() don't store offsets for us. 1585 */ 1586 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1587 sc->erp = 1588 mtod(m0, uint8_t *) + 1589 sizeof (struct ieee80211_frame) + 1590 8 + 2 + 2 + 1591 ((ic->ic_userflags & IEEE80211_F_HIDENWID) ? 1592 1 : 2 + ni->ni_esslen) + 1593 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) + 1594 2 + 1 + 1595 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) + 1596 2; 1597 } 1598 1599 return 0; 1600 } 1601 #endif 1602 1603 int 1604 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1605 struct ieee80211_node *ni) 1606 { 1607 struct ieee80211com *ic = &sc->sc_ic; 1608 struct rt2560_tx_desc *desc; 1609 struct rt2560_tx_data *data; 1610 struct ieee80211_frame *wh; 1611 uint16_t dur; 1612 uint32_t flags = 0; 1613 int rate = 2, error; 1614 1615 desc = &sc->prioq.desc[sc->prioq.cur]; 1616 data = &sc->prioq.data[sc->prioq.cur]; 1617 1618 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1619 BUS_DMA_NOWAIT); 1620 if (error != 0) { 1621 printf("%s: can't map mbuf (error %d)\n", 1622 sc->sc_dev.dv_xname, error); 1623 m_freem(m0); 1624 return error; 1625 } 1626 1627 #if NBPFILTER > 0 1628 if (sc->sc_drvbpf != NULL) { 1629 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1630 1631 tap->wt_flags = 0; 1632 tap->wt_rate = rate; 1633 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); 1634 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); 1635 tap->wt_antenna = sc->tx_ant; 1636 1637 bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, 1638 BPF_DIRECTION_OUT); 1639 } 1640 #endif 1641 1642 data->m = m0; 1643 data->ni = ni; 1644 1645 wh = mtod(m0, struct ieee80211_frame *); 1646 1647 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1648 flags |= RT2560_TX_NEED_ACK; 1649 1650 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1651 RAL_SIFS; 1652 *(uint16_t *)wh->i_dur = htole16(dur); 1653 1654 #ifndef IEEE80211_STA_ONLY 1655 /* tell hardware to set timestamp for probe responses */ 1656 if ((wh->i_fc[0] & 1657 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1658 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1659 flags |= RT2560_TX_TIMESTAMP; 1660 #endif 1661 } 1662 1663 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, 1664 data->map->dm_segs->ds_addr); 1665 1666 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1667 BUS_DMASYNC_PREWRITE); 1668 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, 1669 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 1670 BUS_DMASYNC_PREWRITE); 1671 1672 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1673 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1674 1675 /* kick prio */ 1676 sc->prioq.queued++; 1677 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1678 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1679 1680 return 0; 1681 } 1682 1683 int 1684 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1685 struct ieee80211_node *ni) 1686 { 1687 struct ieee80211com *ic = &sc->sc_ic; 1688 struct rt2560_tx_ring *txq = &sc->txq; 1689 struct rt2560_tx_desc *desc; 1690 struct rt2560_tx_data *data; 1691 struct ieee80211_frame *wh; 1692 struct ieee80211_key *k; 1693 struct mbuf *m1; 1694 uint16_t dur; 1695 uint32_t flags = 0; 1696 int pktlen, rate, needcts = 0, needrts = 0, error; 1697 1698 wh = mtod(m0, struct ieee80211_frame *); 1699 1700 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1701 k = ieee80211_get_txkey(ic, wh, ni); 1702 1703 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1704 return ENOBUFS; 1705 1706 /* packet header may have moved, reset our local pointer */ 1707 wh = mtod(m0, struct ieee80211_frame *); 1708 } 1709 1710 /* compute actual packet length (including CRC and crypto overhead) */ 1711 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1712 1713 /* pickup a rate */ 1714 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1715 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1716 IEEE80211_FC0_TYPE_MGT)) { 1717 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1718 rate = ni->ni_rates.rs_rates[0]; 1719 } else if (ic->ic_fixed_rate != -1) { 1720 rate = ic->ic_sup_rates[ic->ic_curmode]. 1721 rs_rates[ic->ic_fixed_rate]; 1722 } else 1723 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1724 if (rate == 0) 1725 rate = 2; /* XXX should not happen */ 1726 rate &= IEEE80211_RATE_VAL; 1727 1728 /* 1729 * Packet Bursting: backoff after ppb=8 frames to give other STAs a 1730 * chance to contend for the wireless medium. 1731 */ 1732 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7)) 1733 flags |= RT2560_TX_IFS_SIFS; 1734 1735 /* check if RTS/CTS or CTS-to-self protection must be used */ 1736 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1737 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1738 if (pktlen > ic->ic_rtsthreshold) { 1739 needrts = 1; /* RTS/CTS based on frame length */ 1740 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1741 RAL_RATE_IS_OFDM(rate)) { 1742 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1743 needcts = 1; /* CTS-to-self */ 1744 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1745 needrts = 1; /* RTS/CTS */ 1746 } 1747 } 1748 if (needrts || needcts) { 1749 struct mbuf *mprot; 1750 int protrate, ackrate; 1751 1752 protrate = 2; /* XXX */ 1753 ackrate = rt2560_ack_rate(ic, rate); 1754 1755 dur = rt2560_txtime(pktlen, rate, ic->ic_flags) + 1756 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1757 2 * RAL_SIFS; 1758 if (needrts) { 1759 dur += rt2560_txtime(RAL_CTS_SIZE, rt2560_ack_rate(ic, 1760 protrate), ic->ic_flags) + RAL_SIFS; 1761 mprot = ieee80211_get_rts(ic, wh, dur); 1762 } else { 1763 mprot = ieee80211_get_cts_to_self(ic, dur); 1764 } 1765 if (mprot == NULL) { 1766 printf("%s: could not allocate protection frame\n", 1767 sc->sc_dev.dv_xname); 1768 m_freem(m0); 1769 return ENOBUFS; 1770 } 1771 1772 desc = &txq->desc[txq->cur_encrypt]; 1773 data = &txq->data[txq->cur_encrypt]; 1774 1775 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot, 1776 BUS_DMA_NOWAIT); 1777 if (error != 0) { 1778 printf("%s: can't map mbuf (error %d)\n", 1779 sc->sc_dev.dv_xname, error); 1780 m_freem(mprot); 1781 m_freem(m0); 1782 return error; 1783 } 1784 1785 data->m = mprot; 1786 /* avoid multiple free() of the same node for each fragment */ 1787 data->ni = ieee80211_ref_node(ni); 1788 1789 /* XXX may want to pass the protection frame to BPF */ 1790 1791 rt2560_setup_tx_desc(sc, desc, 1792 (needrts ? RT2560_TX_NEED_ACK : 0) | RT2560_TX_MORE_FRAG, 1793 mprot->m_pkthdr.len, protrate, 1, 1794 data->map->dm_segs->ds_addr); 1795 1796 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1797 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1798 bus_dmamap_sync(sc->sc_dmat, txq->map, 1799 txq->cur_encrypt * RT2560_TX_DESC_SIZE, 1800 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); 1801 1802 txq->queued++; 1803 if (++txq->cur_encrypt >= txq->count) 1804 txq->cur_encrypt = 0; 1805 1806 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1807 } 1808 1809 data = &txq->data[txq->cur_encrypt]; 1810 desc = &txq->desc[txq->cur_encrypt]; 1811 1812 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1813 BUS_DMA_NOWAIT); 1814 if (error != 0 && error != EFBIG) { 1815 printf("%s: can't map mbuf (error %d)\n", 1816 sc->sc_dev.dv_xname, error); 1817 m_freem(m0); 1818 return error; 1819 } 1820 if (error != 0) { 1821 /* too many fragments, linearize */ 1822 MGETHDR(m1, M_DONTWAIT, MT_DATA); 1823 if (m1 == NULL) { 1824 m_freem(m0); 1825 return ENOBUFS; 1826 } 1827 if (m0->m_pkthdr.len > MHLEN) { 1828 MCLGET(m1, M_DONTWAIT); 1829 if (!(m1->m_flags & M_EXT)) { 1830 m_freem(m0); 1831 m_freem(m1); 1832 return ENOBUFS; 1833 } 1834 } 1835 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t)); 1836 m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len; 1837 m_freem(m0); 1838 m0 = m1; 1839 1840 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1841 BUS_DMA_NOWAIT); 1842 if (error != 0) { 1843 printf("%s: can't map mbuf (error %d)\n", 1844 sc->sc_dev.dv_xname, error); 1845 m_freem(m0); 1846 return error; 1847 } 1848 1849 /* packet header have moved, reset our local pointer */ 1850 wh = mtod(m0, struct ieee80211_frame *); 1851 } 1852 1853 #if NBPFILTER > 0 1854 if (sc->sc_drvbpf != NULL) { 1855 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1856 1857 tap->wt_flags = 0; 1858 tap->wt_rate = rate; 1859 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); 1860 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); 1861 tap->wt_antenna = sc->tx_ant; 1862 1863 bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, 1864 BPF_DIRECTION_OUT); 1865 } 1866 #endif 1867 1868 data->m = m0; 1869 data->ni = ni; 1870 1871 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1872 flags |= RT2560_TX_NEED_ACK; 1873 1874 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1875 ic->ic_flags) + RAL_SIFS; 1876 *(uint16_t *)wh->i_dur = htole16(dur); 1877 } 1878 1879 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, 1880 data->map->dm_segs->ds_addr); 1881 1882 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1883 BUS_DMASYNC_PREWRITE); 1884 bus_dmamap_sync(sc->sc_dmat, txq->map, 1885 txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, 1886 BUS_DMASYNC_PREWRITE); 1887 1888 DPRINTFN(10, ("sending frame len=%u idx=%u rate=%u\n", 1889 m0->m_pkthdr.len, txq->cur_encrypt, rate)); 1890 1891 /* kick encrypt */ 1892 txq->queued++; 1893 if (++txq->cur_encrypt >= txq->count) 1894 txq->cur_encrypt = 0; 1895 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 1896 1897 return 0; 1898 } 1899 1900 void 1901 rt2560_start(struct ifnet *ifp) 1902 { 1903 struct rt2560_softc *sc = ifp->if_softc; 1904 struct ieee80211com *ic = &sc->sc_ic; 1905 struct mbuf *m0; 1906 struct ieee80211_node *ni; 1907 1908 /* 1909 * net80211 may still try to send management frames even if the 1910 * IFF_RUNNING flag is not set... 1911 */ 1912 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1913 return; 1914 1915 for (;;) { 1916 if (mq_len(&ic->ic_mgtq) > 0) { 1917 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 1918 ifq_set_oactive(&ifp->if_snd); 1919 sc->sc_flags |= RT2560_PRIO_OACTIVE; 1920 break; 1921 } 1922 1923 m0 = mq_dequeue(&ic->ic_mgtq); 1924 if (m0 == NULL) 1925 continue; 1926 ni = m0->m_pkthdr.ph_cookie; 1927 #if NBPFILTER > 0 1928 if (ic->ic_rawbpf != NULL) 1929 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1930 #endif 1931 if (rt2560_tx_mgt(sc, m0, ni) != 0) 1932 break; 1933 1934 } else { 1935 /* Because RTS/CTS requires an extra frame we need 1936 * space for 2 frames on the regular Tx queue. */ 1937 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 1938 ifq_set_oactive(&ifp->if_snd); 1939 sc->sc_flags |= RT2560_DATA_OACTIVE; 1940 break; 1941 } 1942 1943 if (ic->ic_state != IEEE80211_S_RUN) 1944 break; 1945 1946 m0 = ifq_dequeue(&ifp->if_snd); 1947 if (m0 == NULL) 1948 break; 1949 #if NBPFILTER > 0 1950 if (ifp->if_bpf != NULL) 1951 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1952 #endif 1953 m0 = ieee80211_encap(ifp, m0, &ni); 1954 if (m0 == NULL) 1955 continue; 1956 #if NBPFILTER > 0 1957 if (ic->ic_rawbpf != NULL) 1958 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1959 #endif 1960 if (rt2560_tx_data(sc, m0, ni) != 0) { 1961 if (ni != NULL) 1962 ieee80211_release_node(ic, ni); 1963 ifp->if_oerrors++; 1964 break; 1965 } 1966 } 1967 1968 sc->sc_tx_timer = 5; 1969 ifp->if_timer = 1; 1970 } 1971 } 1972 1973 void 1974 rt2560_watchdog(struct ifnet *ifp) 1975 { 1976 struct rt2560_softc *sc = ifp->if_softc; 1977 1978 ifp->if_timer = 0; 1979 1980 if (sc->sc_tx_timer > 0) { 1981 if (--sc->sc_tx_timer == 0) { 1982 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1983 rt2560_init(ifp); 1984 ifp->if_oerrors++; 1985 return; 1986 } 1987 ifp->if_timer = 1; 1988 } 1989 1990 ieee80211_watchdog(ifp); 1991 } 1992 1993 int 1994 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1995 { 1996 struct rt2560_softc *sc = ifp->if_softc; 1997 struct ieee80211com *ic = &sc->sc_ic; 1998 int s, error = 0; 1999 2000 s = splnet(); 2001 2002 switch (cmd) { 2003 case SIOCSIFADDR: 2004 ifp->if_flags |= IFF_UP; 2005 /* FALLTHROUGH */ 2006 case SIOCSIFFLAGS: 2007 if (ifp->if_flags & IFF_UP) { 2008 if (ifp->if_flags & IFF_RUNNING) 2009 rt2560_update_promisc(sc); 2010 else 2011 rt2560_init(ifp); 2012 } else { 2013 if (ifp->if_flags & IFF_RUNNING) 2014 rt2560_stop(ifp, 1); 2015 } 2016 break; 2017 2018 case SIOCS80211CHANNEL: 2019 /* 2020 * This allows for fast channel switching in monitor mode 2021 * (used by kismet). In IBSS mode, we must explicitly reset 2022 * the interface to generate a new beacon frame. 2023 */ 2024 error = ieee80211_ioctl(ifp, cmd, data); 2025 if (error == ENETRESET && 2026 ic->ic_opmode == IEEE80211_M_MONITOR) { 2027 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2028 (IFF_UP | IFF_RUNNING)) 2029 rt2560_set_chan(sc, ic->ic_ibss_chan); 2030 error = 0; 2031 } 2032 break; 2033 2034 default: 2035 error = ieee80211_ioctl(ifp, cmd, data); 2036 } 2037 2038 if (error == ENETRESET) { 2039 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2040 (IFF_UP | IFF_RUNNING)) 2041 rt2560_init(ifp); 2042 error = 0; 2043 } 2044 2045 splx(s); 2046 2047 return error; 2048 } 2049 2050 void 2051 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2052 { 2053 uint32_t tmp; 2054 int ntries; 2055 2056 for (ntries = 0; ntries < 100; ntries++) { 2057 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2058 break; 2059 DELAY(1); 2060 } 2061 if (ntries == 100) { 2062 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 2063 return; 2064 } 2065 2066 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2067 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2068 2069 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2070 } 2071 2072 uint8_t 2073 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2074 { 2075 uint32_t val; 2076 int ntries; 2077 2078 for (ntries = 0; ntries < 100; ntries++) { 2079 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2080 break; 2081 DELAY(1); 2082 } 2083 if (ntries == 100) { 2084 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname); 2085 return 0; 2086 } 2087 2088 val = RT2560_BBP_BUSY | reg << 8; 2089 RAL_WRITE(sc, RT2560_BBPCSR, val); 2090 2091 for (ntries = 0; ntries < 100; ntries++) { 2092 val = RAL_READ(sc, RT2560_BBPCSR); 2093 if (!(val & RT2560_BBP_BUSY)) 2094 return val & 0xff; 2095 DELAY(1); 2096 } 2097 2098 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname); 2099 return 0; 2100 } 2101 2102 void 2103 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2104 { 2105 uint32_t tmp; 2106 int ntries; 2107 2108 for (ntries = 0; ntries < 100; ntries++) { 2109 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2110 break; 2111 DELAY(1); 2112 } 2113 if (ntries == 100) { 2114 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 2115 return; 2116 } 2117 2118 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2119 (reg & 0x3); 2120 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2121 2122 /* remember last written value in sc */ 2123 sc->rf_regs[reg] = val; 2124 2125 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2126 } 2127 2128 void 2129 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2130 { 2131 struct ieee80211com *ic = &sc->sc_ic; 2132 uint8_t power, tmp; 2133 u_int chan; 2134 2135 chan = ieee80211_chan2ieee(ic, c); 2136 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2137 return; 2138 2139 power = min(sc->txpow[chan - 1], 31); 2140 2141 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2142 2143 switch (sc->rf_rev) { 2144 case RT2560_RF_2522: 2145 rt2560_rf_write(sc, RT2560_RF1, 0x00814); 2146 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]); 2147 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040); 2148 break; 2149 2150 case RT2560_RF_2523: 2151 rt2560_rf_write(sc, RT2560_RF1, 0x08804); 2152 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]); 2153 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044); 2154 rt2560_rf_write(sc, RT2560_RF4, 2155 (chan == 14) ? 0x00280 : 0x00286); 2156 break; 2157 2158 case RT2560_RF_2524: 2159 rt2560_rf_write(sc, RT2560_RF1, 0x0c808); 2160 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]); 2161 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040); 2162 rt2560_rf_write(sc, RT2560_RF4, 2163 (chan == 14) ? 0x00280 : 0x00286); 2164 break; 2165 2166 case RT2560_RF_2525: 2167 rt2560_rf_write(sc, RT2560_RF1, 0x08808); 2168 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2169 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); 2170 rt2560_rf_write(sc, RT2560_RF4, 2171 (chan == 14) ? 0x00280 : 0x00286); 2172 2173 rt2560_rf_write(sc, RT2560_RF1, 0x08808); 2174 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]); 2175 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); 2176 rt2560_rf_write(sc, RT2560_RF4, 2177 (chan == 14) ? 0x00280 : 0x00286); 2178 break; 2179 2180 case RT2560_RF_2525E: 2181 rt2560_rf_write(sc, RT2560_RF1, 0x08808); 2182 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]); 2183 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); 2184 rt2560_rf_write(sc, RT2560_RF4, 2185 (chan == 14) ? 0x00286 : 0x00282); 2186 break; 2187 2188 case RT2560_RF_2526: 2189 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2190 rt2560_rf_write(sc, RT2560_RF4, 2191 (chan & 1) ? 0x00386 : 0x00381); 2192 rt2560_rf_write(sc, RT2560_RF1, 0x08804); 2193 2194 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]); 2195 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); 2196 rt2560_rf_write(sc, RT2560_RF4, 2197 (chan & 1) ? 0x00386 : 0x00381); 2198 break; 2199 } 2200 2201 if (ic->ic_opmode != IEEE80211_M_MONITOR && 2202 ic->ic_state != IEEE80211_S_SCAN) { 2203 /* set Japan filter bit for channel 14 */ 2204 tmp = rt2560_bbp_read(sc, 70); 2205 2206 tmp &= ~RT2560_JAPAN_FILTER; 2207 if (chan == 14) 2208 tmp |= RT2560_JAPAN_FILTER; 2209 2210 rt2560_bbp_write(sc, 70, tmp); 2211 2212 DELAY(1000); /* RF needs a 1ms delay here */ 2213 rt2560_disable_rf_tune(sc); 2214 2215 /* clear CRC errors */ 2216 RAL_READ(sc, RT2560_CNT0); 2217 } 2218 } 2219 2220 /* 2221 * Disable RF auto-tuning. 2222 */ 2223 void 2224 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2225 { 2226 uint32_t tmp; 2227 2228 if (sc->rf_rev != RT2560_RF_2523) { 2229 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE; 2230 rt2560_rf_write(sc, RT2560_RF1, tmp); 2231 } 2232 2233 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE; 2234 rt2560_rf_write(sc, RT2560_RF3, tmp); 2235 2236 DPRINTFN(2, ("disabling RF autotune\n")); 2237 } 2238 2239 /* 2240 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2241 * synchronization. 2242 */ 2243 void 2244 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2245 { 2246 struct ieee80211com *ic = &sc->sc_ic; 2247 uint16_t logcwmin, preload; 2248 uint32_t tmp; 2249 2250 /* first, disable TSF synchronization */ 2251 RAL_WRITE(sc, RT2560_CSR14, 0); 2252 2253 tmp = 16 * ic->ic_bss->ni_intval; 2254 RAL_WRITE(sc, RT2560_CSR12, tmp); 2255 2256 RAL_WRITE(sc, RT2560_CSR13, 0); 2257 2258 logcwmin = 5; 2259 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2260 tmp = logcwmin << 16 | preload; 2261 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2262 2263 /* finally, enable TSF synchronization */ 2264 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2265 if (ic->ic_opmode == IEEE80211_M_STA) 2266 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2267 #ifndef IEEE80211_STA_ONLY 2268 else 2269 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2270 RT2560_ENABLE_BEACON_GENERATOR; 2271 #endif 2272 RAL_WRITE(sc, RT2560_CSR14, tmp); 2273 2274 DPRINTF(("enabling TSF synchronization\n")); 2275 } 2276 2277 void 2278 rt2560_update_plcp(struct rt2560_softc *sc) 2279 { 2280 struct ieee80211com *ic = &sc->sc_ic; 2281 2282 /* no short preamble for 1Mbps */ 2283 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2284 2285 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2286 /* values taken from the reference driver */ 2287 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2288 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2289 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2290 } else { 2291 /* same values as above or'ed 0x8 */ 2292 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2293 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2294 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2295 } 2296 2297 DPRINTF(("updating PLCP for %s preamble\n", 2298 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2299 } 2300 2301 void 2302 rt2560_updateslot(struct ieee80211com *ic) 2303 { 2304 struct rt2560_softc *sc = ic->ic_if.if_softc; 2305 2306 #ifndef IEEE80211_STA_ONLY 2307 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2308 /* 2309 * In HostAP mode, we defer setting of new slot time until 2310 * updated ERP Information Element has propagated to all 2311 * associated STAs. 2312 */ 2313 sc->sc_flags |= RT2560_UPDATE_SLOT; 2314 } else 2315 #endif 2316 rt2560_set_slottime(sc); 2317 } 2318 2319 /* 2320 * IEEE 802.11a (and possibly 802.11g) use short slot time. Refer to 2321 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2322 */ 2323 void 2324 rt2560_set_slottime(struct rt2560_softc *sc) 2325 { 2326 struct ieee80211com *ic = &sc->sc_ic; 2327 uint8_t slottime; 2328 uint16_t sifs, pifs, difs, eifs; 2329 uint32_t tmp; 2330 2331 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 2332 IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT; 2333 2334 /* define the MAC slot boundaries */ 2335 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND; 2336 pifs = sifs + slottime; 2337 difs = sifs + 2 * slottime; 2338 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2339 2340 tmp = RAL_READ(sc, RT2560_CSR11); 2341 tmp = (tmp & ~0x1f00) | slottime << 8; 2342 RAL_WRITE(sc, RT2560_CSR11, tmp); 2343 2344 tmp = pifs << 16 | sifs; 2345 RAL_WRITE(sc, RT2560_CSR18, tmp); 2346 2347 tmp = eifs << 16 | difs; 2348 RAL_WRITE(sc, RT2560_CSR19, tmp); 2349 2350 DPRINTF(("setting slottime to %uus\n", slottime)); 2351 } 2352 2353 void 2354 rt2560_set_basicrates(struct rt2560_softc *sc) 2355 { 2356 struct ieee80211com *ic = &sc->sc_ic; 2357 2358 /* update basic rate set */ 2359 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2360 /* 11b basic rates: 1, 2Mbps */ 2361 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2362 } else { 2363 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2364 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0xf); 2365 } 2366 } 2367 2368 void 2369 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2370 { 2371 uint32_t tmp; 2372 2373 /* set ON period to 70ms and OFF period to 30ms */ 2374 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2375 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2376 } 2377 2378 void 2379 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid) 2380 { 2381 uint32_t tmp; 2382 2383 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2384 RAL_WRITE(sc, RT2560_CSR5, tmp); 2385 2386 tmp = bssid[4] | bssid[5] << 8; 2387 RAL_WRITE(sc, RT2560_CSR6, tmp); 2388 2389 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 2390 } 2391 2392 void 2393 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2394 { 2395 uint32_t tmp; 2396 2397 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2398 RAL_WRITE(sc, RT2560_CSR3, tmp); 2399 2400 tmp = addr[4] | addr[5] << 8; 2401 RAL_WRITE(sc, RT2560_CSR4, tmp); 2402 2403 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 2404 } 2405 2406 void 2407 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2408 { 2409 uint32_t tmp; 2410 2411 tmp = RAL_READ(sc, RT2560_CSR3); 2412 addr[0] = tmp & 0xff; 2413 addr[1] = (tmp >> 8) & 0xff; 2414 addr[2] = (tmp >> 16) & 0xff; 2415 addr[3] = (tmp >> 24); 2416 2417 tmp = RAL_READ(sc, RT2560_CSR4); 2418 addr[4] = tmp & 0xff; 2419 addr[5] = (tmp >> 8) & 0xff; 2420 } 2421 2422 void 2423 rt2560_update_promisc(struct rt2560_softc *sc) 2424 { 2425 struct ifnet *ifp = &sc->sc_ic.ic_if; 2426 uint32_t tmp; 2427 2428 tmp = RAL_READ(sc, RT2560_RXCSR0); 2429 2430 tmp &= ~RT2560_DROP_NOT_TO_ME; 2431 if (!(ifp->if_flags & IFF_PROMISC)) 2432 tmp |= RT2560_DROP_NOT_TO_ME; 2433 2434 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2435 2436 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2437 "entering" : "leaving")); 2438 } 2439 2440 void 2441 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2442 { 2443 uint32_t tmp; 2444 uint8_t tx; 2445 2446 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2447 if (antenna == 1) 2448 tx |= RT2560_BBP_ANTA; 2449 else if (antenna == 2) 2450 tx |= RT2560_BBP_ANTB; 2451 else 2452 tx |= RT2560_BBP_DIVERSITY; 2453 2454 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2455 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2456 sc->rf_rev == RT2560_RF_5222) 2457 tx |= RT2560_BBP_FLIPIQ; 2458 2459 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2460 2461 /* update values for CCK and OFDM in BBPCSR1 */ 2462 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2463 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2464 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2465 } 2466 2467 void 2468 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2469 { 2470 uint8_t rx; 2471 2472 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2473 if (antenna == 1) 2474 rx |= RT2560_BBP_ANTA; 2475 else if (antenna == 2) 2476 rx |= RT2560_BBP_ANTB; 2477 else 2478 rx |= RT2560_BBP_DIVERSITY; 2479 2480 /* need to force no I/Q flip for RF 2525e and 2526 */ 2481 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2482 rx &= ~RT2560_BBP_FLIPIQ; 2483 2484 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2485 } 2486 2487 const char * 2488 rt2560_get_rf(int rev) 2489 { 2490 switch (rev) { 2491 case RT2560_RF_2522: return "RT2522"; 2492 case RT2560_RF_2523: return "RT2523"; 2493 case RT2560_RF_2524: return "RT2524"; 2494 case RT2560_RF_2525: return "RT2525"; 2495 case RT2560_RF_2525E: return "RT2525e"; 2496 case RT2560_RF_2526: return "RT2526"; 2497 case RT2560_RF_5222: return "RT5222"; 2498 default: return "unknown"; 2499 } 2500 } 2501 2502 void 2503 rt2560_read_eeprom(struct rt2560_softc *sc) 2504 { 2505 uint16_t val; 2506 int i; 2507 2508 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2509 sc->rf_rev = (val >> 11) & 0x1f; 2510 sc->hw_radio = (val >> 10) & 0x1; 2511 sc->led_mode = (val >> 6) & 0x7; 2512 sc->rx_ant = (val >> 4) & 0x3; 2513 sc->tx_ant = (val >> 2) & 0x3; 2514 sc->nb_ant = val & 0x3; 2515 2516 /* read default values for BBP registers */ 2517 for (i = 0; i < 16; i++) { 2518 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2519 sc->bbp_prom[i].reg = val >> 8; 2520 sc->bbp_prom[i].val = val & 0xff; 2521 } 2522 2523 /* read Tx power for all b/g channels */ 2524 for (i = 0; i < 14 / 2; i++) { 2525 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2526 sc->txpow[i * 2] = val >> 8; 2527 sc->txpow[i * 2 + 1] = val & 0xff; 2528 } 2529 } 2530 2531 int 2532 rt2560_bbp_init(struct rt2560_softc *sc) 2533 { 2534 int i, ntries; 2535 2536 /* wait for BBP to be ready */ 2537 for (ntries = 0; ntries < 100; ntries++) { 2538 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2539 break; 2540 DELAY(1); 2541 } 2542 if (ntries == 100) { 2543 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); 2544 return EIO; 2545 } 2546 2547 /* initialize BBP registers to default values */ 2548 for (i = 0; i < nitems(rt2560_def_bbp); i++) { 2549 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2550 rt2560_def_bbp[i].val); 2551 } 2552 #if 0 2553 /* initialize BBP registers to values stored in EEPROM */ 2554 for (i = 0; i < 16; i++) { 2555 if (sc->bbp_prom[i].reg == 0xff) 2556 continue; 2557 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2558 } 2559 #endif 2560 2561 return 0; 2562 } 2563 2564 int 2565 rt2560_init(struct ifnet *ifp) 2566 { 2567 struct rt2560_softc *sc = ifp->if_softc; 2568 struct ieee80211com *ic = &sc->sc_ic; 2569 uint32_t tmp; 2570 int i; 2571 2572 /* for CardBus, power on the socket */ 2573 if (!(sc->sc_flags & RT2560_ENABLED)) { 2574 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 2575 printf("%s: could not enable device\n", 2576 sc->sc_dev.dv_xname); 2577 return EIO; 2578 } 2579 sc->sc_flags |= RT2560_ENABLED; 2580 } 2581 2582 rt2560_stop(ifp, 0); 2583 2584 /* setup tx rings */ 2585 tmp = RT2560_PRIO_RING_COUNT << 24 | 2586 RT2560_ATIM_RING_COUNT << 16 | 2587 RT2560_TX_RING_COUNT << 8 | 2588 RT2560_TX_DESC_SIZE; 2589 2590 /* rings _must_ be initialized in this _exact_ order! */ 2591 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2592 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2593 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2594 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2595 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2596 2597 /* setup rx ring */ 2598 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2599 2600 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2601 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2602 2603 /* initialize MAC registers to default values */ 2604 for (i = 0; i < nitems(rt2560_def_mac); i++) 2605 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2606 2607 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2608 rt2560_set_macaddr(sc, ic->ic_myaddr); 2609 2610 /* set basic rate set (will be updated later) */ 2611 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2612 2613 rt2560_set_slottime(sc); 2614 rt2560_update_plcp(sc); 2615 rt2560_update_led(sc, 0, 0); 2616 2617 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2618 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2619 2620 if (rt2560_bbp_init(sc) != 0) { 2621 rt2560_stop(ifp, 1); 2622 return EIO; 2623 } 2624 2625 rt2560_set_txantenna(sc, 1); 2626 rt2560_set_rxantenna(sc, 1); 2627 2628 /* set default BSS channel */ 2629 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2630 rt2560_set_chan(sc, ic->ic_bss->ni_chan); 2631 2632 /* kick Rx */ 2633 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2634 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2635 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2636 #ifndef IEEE80211_STA_ONLY 2637 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2638 #endif 2639 tmp |= RT2560_DROP_TODS; 2640 if (!(ifp->if_flags & IFF_PROMISC)) 2641 tmp |= RT2560_DROP_NOT_TO_ME; 2642 } 2643 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2644 2645 /* clear old FCS and Rx FIFO errors */ 2646 RAL_READ(sc, RT2560_CNT0); 2647 RAL_READ(sc, RT2560_CNT4); 2648 2649 /* clear any pending interrupts */ 2650 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2651 2652 /* enable interrupts */ 2653 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2654 2655 ifp->if_flags |= IFF_RUNNING; 2656 ifq_clr_oactive(&ifp->if_snd); 2657 2658 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2659 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2660 else 2661 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2662 2663 return 0; 2664 } 2665 2666 void 2667 rt2560_stop(struct ifnet *ifp, int disable) 2668 { 2669 struct rt2560_softc *sc = ifp->if_softc; 2670 struct ieee80211com *ic = &sc->sc_ic; 2671 2672 sc->sc_tx_timer = 0; 2673 sc->sc_flags &= ~(RT2560_PRIO_OACTIVE|RT2560_DATA_OACTIVE); 2674 ifp->if_timer = 0; 2675 ifp->if_flags &= ~IFF_RUNNING; 2676 ifq_clr_oactive(&ifp->if_snd); 2677 2678 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2679 2680 /* abort Tx */ 2681 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2682 2683 /* disable Rx */ 2684 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2685 2686 /* reset ASIC (and thus, BBP) */ 2687 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2688 RAL_WRITE(sc, RT2560_CSR1, 0); 2689 2690 /* disable interrupts */ 2691 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2692 2693 /* clear any pending interrupt */ 2694 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2695 2696 /* reset Tx and Rx rings */ 2697 rt2560_reset_tx_ring(sc, &sc->txq); 2698 rt2560_reset_tx_ring(sc, &sc->atimq); 2699 rt2560_reset_tx_ring(sc, &sc->prioq); 2700 rt2560_reset_tx_ring(sc, &sc->bcnq); 2701 rt2560_reset_rx_ring(sc, &sc->rxq); 2702 2703 /* for CardBus, power down the socket */ 2704 if (disable && sc->sc_disable != NULL) { 2705 if (sc->sc_flags & RT2560_ENABLED) { 2706 (*sc->sc_disable)(sc); 2707 sc->sc_flags &= ~RT2560_ENABLED; 2708 } 2709 } 2710 } 2711 2712 struct cfdriver ral_cd = { 2713 NULL, "ral", DV_IFNET 2714 }; 2715