xref: /openbsd/sys/dev/ic/rt2560.c (revision 264ca280)
1 /*	$OpenBSD: rt2560.c,v 1.80 2016/04/13 10:49:26 mpi Exp $  */
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2560 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #if NBPFILTER > 0
43 #include <net/bpf.h>
44 #endif
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/if_ether.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 
56 #include <dev/ic/rt2560reg.h>
57 #include <dev/ic/rt2560var.h>
58 
59 #ifdef RAL_DEBUG
60 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
61 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
62 int rt2560_debug = 1;
63 #else
64 #define DPRINTF(x)
65 #define DPRINTFN(n, x)
66 #endif
67 
68 int		rt2560_alloc_tx_ring(struct rt2560_softc *,
69 		    struct rt2560_tx_ring *, int);
70 void		rt2560_reset_tx_ring(struct rt2560_softc *,
71 		    struct rt2560_tx_ring *);
72 void		rt2560_free_tx_ring(struct rt2560_softc *,
73 		    struct rt2560_tx_ring *);
74 int		rt2560_alloc_rx_ring(struct rt2560_softc *,
75 		    struct rt2560_rx_ring *, int);
76 void		rt2560_reset_rx_ring(struct rt2560_softc *,
77 		    struct rt2560_rx_ring *);
78 void		rt2560_free_rx_ring(struct rt2560_softc *,
79 		    struct rt2560_rx_ring *);
80 struct		ieee80211_node *rt2560_node_alloc(struct ieee80211com *);
81 int		rt2560_media_change(struct ifnet *);
82 void		rt2560_next_scan(void *);
83 void		rt2560_iter_func(void *, struct ieee80211_node *);
84 void		rt2560_amrr_timeout(void *);
85 void		rt2560_newassoc(struct ieee80211com *, struct ieee80211_node *,
86 		    int);
87 int		rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
88 		    int);
89 uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
90 void		rt2560_encryption_intr(struct rt2560_softc *);
91 void		rt2560_tx_intr(struct rt2560_softc *);
92 void		rt2560_prio_intr(struct rt2560_softc *);
93 void		rt2560_decryption_intr(struct rt2560_softc *);
94 void		rt2560_rx_intr(struct rt2560_softc *);
95 #ifndef IEEE80211_STA_ONLY
96 void		rt2560_beacon_expire(struct rt2560_softc *);
97 #endif
98 void		rt2560_wakeup_expire(struct rt2560_softc *);
99 #if NBPFILTER > 0
100 uint8_t		rt2560_rxrate(const struct rt2560_rx_desc *);
101 #endif
102 int		rt2560_ack_rate(struct ieee80211com *, int);
103 uint16_t	rt2560_txtime(int, int, uint32_t);
104 uint8_t		rt2560_plcp_signal(int);
105 void		rt2560_setup_tx_desc(struct rt2560_softc *,
106 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
107 		    bus_addr_t);
108 #ifndef IEEE80211_STA_ONLY
109 int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 		    struct ieee80211_node *);
111 #endif
112 int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
113 		    struct ieee80211_node *);
114 int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
115 		    struct ieee80211_node *);
116 void		rt2560_start(struct ifnet *);
117 void		rt2560_watchdog(struct ifnet *);
118 int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
119 void		rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
120 uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
121 void		rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
122 void		rt2560_set_chan(struct rt2560_softc *,
123 		    struct ieee80211_channel *);
124 void		rt2560_disable_rf_tune(struct rt2560_softc *);
125 void		rt2560_enable_tsf_sync(struct rt2560_softc *);
126 void		rt2560_update_plcp(struct rt2560_softc *);
127 void		rt2560_updateslot(struct ieee80211com *);
128 void		rt2560_set_slottime(struct rt2560_softc *);
129 void		rt2560_set_basicrates(struct rt2560_softc *);
130 void		rt2560_update_led(struct rt2560_softc *, int, int);
131 void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
132 void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
133 void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
134 void		rt2560_update_promisc(struct rt2560_softc *);
135 void		rt2560_set_txantenna(struct rt2560_softc *, int);
136 void		rt2560_set_rxantenna(struct rt2560_softc *, int);
137 const char	*rt2560_get_rf(int);
138 void		rt2560_read_eeprom(struct rt2560_softc *);
139 int		rt2560_bbp_init(struct rt2560_softc *);
140 int		rt2560_init(struct ifnet *);
141 void		rt2560_stop(struct ifnet *, int);
142 
143 static const struct {
144 	uint32_t	reg;
145 	uint32_t	val;
146 } rt2560_def_mac[] = {
147 	RT2560_DEF_MAC
148 };
149 
150 static const struct {
151 	uint8_t	reg;
152 	uint8_t	val;
153 } rt2560_def_bbp[] = {
154 	RT2560_DEF_BBP
155 };
156 
157 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
158 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
159 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
160 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
161 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
162 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
163 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
164 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
165 
166 int
167 rt2560_attach(void *xsc, int id)
168 {
169 	struct rt2560_softc *sc = xsc;
170 	struct ieee80211com *ic = &sc->sc_ic;
171 	struct ifnet *ifp = &ic->ic_if;
172 	int error, i;
173 
174 	sc->amrr.amrr_min_success_threshold =  1;
175 	sc->amrr.amrr_max_success_threshold = 15;
176 	timeout_set(&sc->amrr_to, rt2560_amrr_timeout, sc);
177 	timeout_set(&sc->scan_to, rt2560_next_scan, sc);
178 
179 	/* retrieve RT2560 rev. no */
180 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
181 
182 	/* retrieve MAC address */
183 	rt2560_get_macaddr(sc, ic->ic_myaddr);
184 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
185 
186 	/* retrieve RF rev. no and various other things from EEPROM */
187 	rt2560_read_eeprom(sc);
188 
189 	printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname,
190 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
191 
192 	/*
193 	 * Allocate Tx and Rx rings.
194 	 */
195 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
196 	if (error != 0) {
197 		printf("%s: could not allocate Tx ring\n",
198 		    sc->sc_dev.dv_xname);
199 		goto fail1;
200 	}
201 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
202 	if (error != 0) {
203 		printf("%s: could not allocate ATIM ring\n",
204 		    sc->sc_dev.dv_xname);
205 		goto fail2;
206 	}
207 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
208 	if (error != 0) {
209 		printf("%s: could not allocate Prio ring\n",
210 		    sc->sc_dev.dv_xname);
211 		goto fail3;
212 	}
213 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
214 	if (error != 0) {
215 		printf("%s: could not allocate Beacon ring\n",
216 		    sc->sc_dev.dv_xname);
217 		goto fail4;
218 	}
219 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
220 	if (error != 0) {
221 		printf("%s: could not allocate Rx ring\n",
222 		    sc->sc_dev.dv_xname);
223 		goto fail5;
224 	}
225 
226 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
227 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
228 	ic->ic_state = IEEE80211_S_INIT;
229 
230 	/* set device capabilities */
231 	ic->ic_caps =
232 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
233 #ifndef IEEE80211_STA_ONLY
234 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
235 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
236 #endif
237 	    IEEE80211_C_TXPMGT |	/* tx power management */
238 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
239 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
240 	    IEEE80211_C_WEP |		/* s/w WEP */
241 	    IEEE80211_C_RSN;		/* WPA/RSN */
242 
243 	/* set supported .11b and .11g rates */
244 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
245 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
246 
247 	/* set supported .11b and .11g channels (1 through 14) */
248 	for (i = 1; i <= 14; i++) {
249 		ic->ic_channels[i].ic_freq =
250 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
251 		ic->ic_channels[i].ic_flags =
252 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
253 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
254 	}
255 
256 	ifp->if_softc = sc;
257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
258 	ifp->if_ioctl = rt2560_ioctl;
259 	ifp->if_start = rt2560_start;
260 	ifp->if_watchdog = rt2560_watchdog;
261 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
262 
263 	if_attach(ifp);
264 	ieee80211_ifattach(ifp);
265 	ic->ic_node_alloc = rt2560_node_alloc;
266 	ic->ic_newassoc = rt2560_newassoc;
267 	ic->ic_updateslot = rt2560_updateslot;
268 
269 	/* override state transition machine */
270 	sc->sc_newstate = ic->ic_newstate;
271 	ic->ic_newstate = rt2560_newstate;
272 	ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status);
273 
274 #if NBPFILTER > 0
275 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
276 	    sizeof (struct ieee80211_frame) + 64);
277 
278 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
279 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
280 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
281 
282 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
283 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
284 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
285 #endif
286 	return 0;
287 
288 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
289 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
290 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
291 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
292 fail1:	return ENXIO;
293 }
294 
295 int
296 rt2560_detach(void *xsc)
297 {
298 	struct rt2560_softc *sc = xsc;
299 	struct ifnet *ifp = &sc->sc_ic.ic_if;
300 
301 	timeout_del(&sc->scan_to);
302 	timeout_del(&sc->amrr_to);
303 
304 	ieee80211_ifdetach(ifp);	/* free all nodes */
305 	if_detach(ifp);
306 
307 	rt2560_free_tx_ring(sc, &sc->txq);
308 	rt2560_free_tx_ring(sc, &sc->atimq);
309 	rt2560_free_tx_ring(sc, &sc->prioq);
310 	rt2560_free_tx_ring(sc, &sc->bcnq);
311 	rt2560_free_rx_ring(sc, &sc->rxq);
312 
313 	return 0;
314 }
315 
316 void
317 rt2560_suspend(void *xsc)
318 {
319 	struct rt2560_softc *sc = xsc;
320 	struct ifnet *ifp = &sc->sc_ic.ic_if;
321 
322 	if (ifp->if_flags & IFF_RUNNING)
323 		rt2560_stop(ifp, 1);
324 }
325 
326 void
327 rt2560_wakeup(void *xsc)
328 {
329 	struct rt2560_softc *sc = xsc;
330 	struct ifnet *ifp = &sc->sc_ic.ic_if;
331 
332 	if (ifp->if_flags & IFF_UP)
333 		rt2560_init(ifp);
334 }
335 
336 int
337 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
338     int count)
339 {
340 	int i, nsegs, error;
341 
342 	ring->count = count;
343 	ring->queued = 0;
344 	ring->cur = ring->next = 0;
345 	ring->cur_encrypt = ring->next_encrypt = 0;
346 
347 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
348 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
349 	if (error != 0) {
350 		printf("%s: could not create desc DMA map\n",
351 		    sc->sc_dev.dv_xname);
352 		goto fail;
353 	}
354 
355 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
356 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
357 	if (error != 0) {
358 		printf("%s: could not allocate DMA memory\n",
359 		    sc->sc_dev.dv_xname);
360 		goto fail;
361 	}
362 
363 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
364 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
365 	    BUS_DMA_NOWAIT);
366 	if (error != 0) {
367 		printf("%s: can't map desc DMA memory\n",
368 		    sc->sc_dev.dv_xname);
369 		goto fail;
370 	}
371 
372 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
373 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
374 	if (error != 0) {
375 		printf("%s: could not load desc DMA map\n",
376 		    sc->sc_dev.dv_xname);
377 		goto fail;
378 	}
379 
380 	ring->physaddr = ring->map->dm_segs->ds_addr;
381 
382 	ring->data = mallocarray(count, sizeof (struct rt2560_tx_data),
383 	    M_DEVBUF, M_NOWAIT | M_ZERO);
384 	if (ring->data == NULL) {
385 		printf("%s: could not allocate soft data\n",
386 		    sc->sc_dev.dv_xname);
387 		error = ENOMEM;
388 		goto fail;
389 	}
390 
391 	for (i = 0; i < count; i++) {
392 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
393 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
394 		    &ring->data[i].map);
395 		if (error != 0) {
396 			printf("%s: could not create DMA map\n",
397 			    sc->sc_dev.dv_xname);
398 			goto fail;
399 		}
400 	}
401 
402 	return 0;
403 
404 fail:	rt2560_free_tx_ring(sc, ring);
405 	return error;
406 }
407 
408 void
409 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
410 {
411 	int i;
412 
413 	for (i = 0; i < ring->count; i++) {
414 		struct rt2560_tx_desc *desc = &ring->desc[i];
415 		struct rt2560_tx_data *data = &ring->data[i];
416 
417 		if (data->m != NULL) {
418 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
419 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
420 			bus_dmamap_unload(sc->sc_dmat, data->map);
421 			m_freem(data->m);
422 			data->m = NULL;
423 		}
424 
425 		/*
426 		 * The node has already been freed at that point so don't call
427 		 * ieee80211_release_node() here.
428 		 */
429 		data->ni = NULL;
430 
431 		desc->flags = 0;
432 	}
433 
434 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
435 	    BUS_DMASYNC_PREWRITE);
436 
437 	ring->queued = 0;
438 	ring->cur = ring->next = 0;
439 	ring->cur_encrypt = ring->next_encrypt = 0;
440 }
441 
442 void
443 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
444 {
445 	int i;
446 
447 	if (ring->desc != NULL) {
448 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
449 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
450 		bus_dmamap_unload(sc->sc_dmat, ring->map);
451 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
452 		    ring->count * RT2560_TX_DESC_SIZE);
453 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
454 	}
455 
456 	if (ring->data != NULL) {
457 		for (i = 0; i < ring->count; i++) {
458 			struct rt2560_tx_data *data = &ring->data[i];
459 
460 			if (data->m != NULL) {
461 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
462 				    data->map->dm_mapsize,
463 				    BUS_DMASYNC_POSTWRITE);
464 				bus_dmamap_unload(sc->sc_dmat, data->map);
465 				m_freem(data->m);
466 			}
467 
468 			/*
469 			 * The node has already been freed at that point so
470 			 * don't call ieee80211_release_node() here.
471 			 */
472 			data->ni = NULL;
473 
474 			if (data->map != NULL)
475 				bus_dmamap_destroy(sc->sc_dmat, data->map);
476 		}
477 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
478 	}
479 }
480 
481 int
482 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
483     int count)
484 {
485 	int i, nsegs, error;
486 
487 	ring->count = count;
488 	ring->cur = ring->next = 0;
489 	ring->cur_decrypt = 0;
490 
491 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
492 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
493 	if (error != 0) {
494 		printf("%s: could not create desc DMA map\n",
495 		    sc->sc_dev.dv_xname);
496 		goto fail;
497 	}
498 
499 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
500 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
501 	if (error != 0) {
502 		printf("%s: could not allocate DMA memory\n",
503 		    sc->sc_dev.dv_xname);
504 		goto fail;
505 	}
506 
507 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
508 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
509 	    BUS_DMA_NOWAIT);
510 	if (error != 0) {
511 		printf("%s: can't map desc DMA memory\n",
512 		    sc->sc_dev.dv_xname);
513 		goto fail;
514 	}
515 
516 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
517 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
518 	if (error != 0) {
519 		printf("%s: could not load desc DMA map\n",
520 		    sc->sc_dev.dv_xname);
521 		goto fail;
522 	}
523 
524 	ring->physaddr = ring->map->dm_segs->ds_addr;
525 
526 	ring->data = mallocarray(count, sizeof (struct rt2560_rx_data),
527 	    M_DEVBUF, M_NOWAIT | M_ZERO);
528 	if (ring->data == NULL) {
529 		printf("%s: could not allocate soft data\n",
530 		    sc->sc_dev.dv_xname);
531 		error = ENOMEM;
532 		goto fail;
533 	}
534 
535 	/*
536 	 * Pre-allocate Rx buffers and populate Rx ring.
537 	 */
538 	for (i = 0; i < count; i++) {
539 		struct rt2560_rx_desc *desc = &sc->rxq.desc[i];
540 		struct rt2560_rx_data *data = &sc->rxq.data[i];
541 
542 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
543 		    0, BUS_DMA_NOWAIT, &data->map);
544 		if (error != 0) {
545 			printf("%s: could not create DMA map\n",
546 			    sc->sc_dev.dv_xname);
547 			goto fail;
548 		}
549 
550 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
551 		if (data->m == NULL) {
552 			printf("%s: could not allocate rx mbuf\n",
553 			    sc->sc_dev.dv_xname);
554 			error = ENOMEM;
555 			goto fail;
556 		}
557 		MCLGET(data->m, M_DONTWAIT);
558 		if (!(data->m->m_flags & M_EXT)) {
559 			printf("%s: could not allocate rx mbuf cluster\n",
560 			    sc->sc_dev.dv_xname);
561 			error = ENOMEM;
562 			goto fail;
563 		}
564 
565 		error = bus_dmamap_load(sc->sc_dmat, data->map,
566 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
567 		if (error != 0) {
568 			printf("%s: could not load rx buf DMA map",
569 			    sc->sc_dev.dv_xname);
570 			goto fail;
571 		}
572 
573 		desc->flags = htole32(RT2560_RX_BUSY);
574 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
575 	}
576 
577 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
578 	    BUS_DMASYNC_PREWRITE);
579 
580 	return 0;
581 
582 fail:	rt2560_free_rx_ring(sc, ring);
583 	return error;
584 }
585 
586 void
587 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
588 {
589 	int i;
590 
591 	for (i = 0; i < ring->count; i++) {
592 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
593 		ring->data[i].drop = 0;
594 	}
595 
596 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
597 	    BUS_DMASYNC_PREWRITE);
598 
599 	ring->cur = ring->next = 0;
600 	ring->cur_decrypt = 0;
601 }
602 
603 void
604 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
605 {
606 	int i;
607 
608 	if (ring->desc != NULL) {
609 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
610 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
611 		bus_dmamap_unload(sc->sc_dmat, ring->map);
612 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
613 		    ring->count * RT2560_RX_DESC_SIZE);
614 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
615 	}
616 
617 	if (ring->data != NULL) {
618 		for (i = 0; i < ring->count; i++) {
619 			struct rt2560_rx_data *data = &ring->data[i];
620 
621 			if (data->m != NULL) {
622 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
623 				    data->map->dm_mapsize,
624 				    BUS_DMASYNC_POSTREAD);
625 				bus_dmamap_unload(sc->sc_dmat, data->map);
626 				m_freem(data->m);
627 			}
628 
629 			if (data->map != NULL)
630 				bus_dmamap_destroy(sc->sc_dmat, data->map);
631 		}
632 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
633 	}
634 }
635 
636 struct ieee80211_node *
637 rt2560_node_alloc(struct ieee80211com *ic)
638 {
639 	return malloc(sizeof (struct rt2560_node), M_DEVBUF,
640 	    M_NOWAIT | M_ZERO);
641 }
642 
643 int
644 rt2560_media_change(struct ifnet *ifp)
645 {
646 	int error;
647 
648 	error = ieee80211_media_change(ifp);
649 	if (error != ENETRESET)
650 		return error;
651 
652 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
653 		rt2560_init(ifp);
654 
655 	return 0;
656 }
657 
658 /*
659  * This function is called periodically (every 200ms) during scanning to
660  * switch from one channel to another.
661  */
662 void
663 rt2560_next_scan(void *arg)
664 {
665 	struct rt2560_softc *sc = arg;
666 	struct ieee80211com *ic = &sc->sc_ic;
667 	struct ifnet *ifp = &ic->ic_if;
668 	int s;
669 
670 	s = splnet();
671 	if (ic->ic_state == IEEE80211_S_SCAN)
672 		ieee80211_next_scan(ifp);
673 	splx(s);
674 }
675 
676 /*
677  * This function is called for each neighbor node.
678  */
679 void
680 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
681 {
682 	struct rt2560_softc *sc = arg;
683 	struct rt2560_node *rn = (struct rt2560_node *)ni;
684 
685 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
686 }
687 
688 void
689 rt2560_amrr_timeout(void *arg)
690 {
691 	struct rt2560_softc *sc = arg;
692 	struct ieee80211com *ic = &sc->sc_ic;
693 	int s;
694 
695 	s = splnet();
696 	if (ic->ic_opmode == IEEE80211_M_STA)
697 		rt2560_iter_func(sc, ic->ic_bss);
698 #ifndef IEEE80211_STA_ONLY
699 	else
700 		ieee80211_iterate_nodes(ic, rt2560_iter_func, sc);
701 #endif
702 	splx(s);
703 
704 	timeout_add_msec(&sc->amrr_to, 500);
705 }
706 
707 void
708 rt2560_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
709 {
710 	struct rt2560_softc *sc = ic->ic_softc;
711 	int i;
712 
713 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2560_node *)ni)->amn);
714 
715 	/* set rate to some reasonable initial value */
716 	for (i = ni->ni_rates.rs_nrates - 1;
717 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
718 	     i--);
719 	ni->ni_txrate = i;
720 }
721 
722 int
723 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
724 {
725 	struct rt2560_softc *sc = ic->ic_if.if_softc;
726 	enum ieee80211_state ostate;
727 	struct ieee80211_node *ni;
728 	int error = 0;
729 
730 	ostate = ic->ic_state;
731 	timeout_del(&sc->scan_to);
732 	timeout_del(&sc->amrr_to);
733 
734 	switch (nstate) {
735 	case IEEE80211_S_INIT:
736 		if (ostate == IEEE80211_S_RUN) {
737 			/* abort TSF synchronization */
738 			RAL_WRITE(sc, RT2560_CSR14, 0);
739 
740 			/* turn association led off */
741 			rt2560_update_led(sc, 0, 0);
742 		}
743 		break;
744 
745 	case IEEE80211_S_SCAN:
746 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
747 		timeout_add_msec(&sc->scan_to, 200);
748 		break;
749 
750 	case IEEE80211_S_AUTH:
751 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
752 		break;
753 
754 	case IEEE80211_S_ASSOC:
755 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
756 		break;
757 
758 	case IEEE80211_S_RUN:
759 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
760 
761 		ni = ic->ic_bss;
762 
763 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
764 			rt2560_update_plcp(sc);
765 			rt2560_set_slottime(sc);
766 			rt2560_set_basicrates(sc);
767 			rt2560_set_bssid(sc, ni->ni_bssid);
768 		}
769 
770 #ifndef IEEE80211_STA_ONLY
771 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
772 		    ic->ic_opmode == IEEE80211_M_IBSS) {
773 			struct mbuf *m = ieee80211_beacon_alloc(ic, ni);
774 			if (m == NULL) {
775 				printf("%s: could not allocate beacon\n",
776 				    sc->sc_dev.dv_xname);
777 				error = ENOBUFS;
778 				break;
779 			}
780 
781 			error = rt2560_tx_bcn(sc, m, ni);
782 			if (error != 0)
783 				break;
784 		}
785 #endif
786 
787 		/* turn assocation led on */
788 		rt2560_update_led(sc, 1, 0);
789 
790 		if (ic->ic_opmode == IEEE80211_M_STA) {
791 			/* fake a join to init the tx rate */
792 			rt2560_newassoc(ic, ni, 1);
793 		}
794 
795 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
796 			/* start automatic rate control timer */
797 			if (ic->ic_fixed_rate == -1)
798 				timeout_add_msec(&sc->amrr_to, 500);
799 
800 			rt2560_enable_tsf_sync(sc);
801 		}
802 		break;
803 	}
804 
805 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
806 }
807 
808 /*
809  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
810  * 93C66).
811  */
812 uint16_t
813 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
814 {
815 	uint32_t tmp;
816 	uint16_t val;
817 	int n;
818 
819 	/* clock C once before the first command */
820 	RT2560_EEPROM_CTL(sc, 0);
821 
822 	RT2560_EEPROM_CTL(sc, RT2560_S);
823 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
824 	RT2560_EEPROM_CTL(sc, RT2560_S);
825 
826 	/* write start bit (1) */
827 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
828 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
829 
830 	/* write READ opcode (10) */
831 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
832 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
833 	RT2560_EEPROM_CTL(sc, RT2560_S);
834 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
835 
836 	/* write address (A5-A0 or A7-A0) */
837 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
838 	for (; n >= 0; n--) {
839 		RT2560_EEPROM_CTL(sc, RT2560_S |
840 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
841 		RT2560_EEPROM_CTL(sc, RT2560_S |
842 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
843 	}
844 
845 	RT2560_EEPROM_CTL(sc, RT2560_S);
846 
847 	/* read data Q15-Q0 */
848 	val = 0;
849 	for (n = 15; n >= 0; n--) {
850 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
851 		tmp = RAL_READ(sc, RT2560_CSR21);
852 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
853 		RT2560_EEPROM_CTL(sc, RT2560_S);
854 	}
855 
856 	RT2560_EEPROM_CTL(sc, 0);
857 
858 	/* clear Chip Select and clock C */
859 	RT2560_EEPROM_CTL(sc, RT2560_S);
860 	RT2560_EEPROM_CTL(sc, 0);
861 	RT2560_EEPROM_CTL(sc, RT2560_C);
862 
863 	return val;
864 }
865 
866 /*
867  * Some frames were processed by the hardware cipher engine and are ready for
868  * transmission.
869  */
870 void
871 rt2560_encryption_intr(struct rt2560_softc *sc)
872 {
873 	int hw;
874 
875 	/* retrieve last descriptor index processed by cipher engine */
876 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
877 	    RT2560_TX_DESC_SIZE;
878 
879 	for (; sc->txq.next_encrypt != hw;) {
880 		struct rt2560_tx_desc *desc =
881 		    &sc->txq.desc[sc->txq.next_encrypt];
882 
883 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
884 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
885 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
886 
887 		if (letoh32(desc->flags) &
888 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
889 			break;
890 
891 		/* for TKIP, swap eiv field to fix a bug in ASIC */
892 		if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) ==
893 		    RT2560_TX_CIPHER_TKIP)
894 			desc->eiv = swap32(desc->eiv);
895 
896 		/* mark the frame ready for transmission */
897 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
898 
899 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
900 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
901 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
902 
903 		DPRINTFN(15, ("encryption done idx=%u\n",
904 		    sc->txq.next_encrypt));
905 
906 		sc->txq.next_encrypt =
907 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
908 	}
909 
910 	/* kick Tx */
911 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
912 }
913 
914 void
915 rt2560_tx_intr(struct rt2560_softc *sc)
916 {
917 	struct ieee80211com *ic = &sc->sc_ic;
918 	struct ifnet *ifp = &ic->ic_if;
919 
920 	for (;;) {
921 		struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next];
922 		struct rt2560_tx_data *data = &sc->txq.data[sc->txq.next];
923 		struct rt2560_node *rn;
924 
925 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
926 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
927 		    BUS_DMASYNC_POSTREAD);
928 
929 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
930 		    (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
931 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
932 			break;
933 
934 		rn = (struct rt2560_node *)data->ni;
935 
936 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
937 		case RT2560_TX_SUCCESS:
938 			DPRINTFN(10, ("data frame sent successfully\n"));
939 			rn->amn.amn_txcnt++;
940 			ifp->if_opackets++;
941 			break;
942 
943 		case RT2560_TX_SUCCESS_RETRY:
944 			DPRINTFN(9, ("data frame sent after %u retries\n",
945 			    (letoh32(desc->flags) >> 5) & 0x7));
946 			rn->amn.amn_txcnt++;
947 			rn->amn.amn_retrycnt++;
948 			ifp->if_opackets++;
949 			break;
950 
951 		case RT2560_TX_FAIL_RETRY:
952 			DPRINTFN(9, ("sending data frame failed (too much "
953 			    "retries)\n"));
954 			rn->amn.amn_txcnt++;
955 			rn->amn.amn_retrycnt++;
956 			ifp->if_oerrors++;
957 			break;
958 
959 		case RT2560_TX_FAIL_INVALID:
960 		case RT2560_TX_FAIL_OTHER:
961 		default:
962 			printf("%s: sending data frame failed 0x%08x\n",
963 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
964 			ifp->if_oerrors++;
965 		}
966 
967 		/* descriptor is no longer valid */
968 		desc->flags &= ~htole32(RT2560_TX_VALID);
969 
970 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
971 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
972 		    BUS_DMASYNC_PREWRITE);
973 
974 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
975 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
976 		bus_dmamap_unload(sc->sc_dmat, data->map);
977 		m_freem(data->m);
978 		data->m = NULL;
979 		ieee80211_release_node(ic, data->ni);
980 		data->ni = NULL;
981 
982 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
983 
984 		sc->txq.queued--;
985 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
986 	}
987 
988 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
989 		sc->sc_tx_timer = 0;
990 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
991 		sc->sc_flags &= ~RT2560_DATA_OACTIVE;
992 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
993 			ifq_clr_oactive(&ifp->if_snd);
994 		rt2560_start(ifp);
995 	}
996 }
997 
998 void
999 rt2560_prio_intr(struct rt2560_softc *sc)
1000 {
1001 	struct ieee80211com *ic = &sc->sc_ic;
1002 	struct ifnet *ifp = &ic->ic_if;
1003 
1004 	for (;;) {
1005 		struct rt2560_tx_desc *desc = &sc->prioq.desc[sc->prioq.next];
1006 		struct rt2560_tx_data *data = &sc->prioq.data[sc->prioq.next];
1007 
1008 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1009 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1010 		    BUS_DMASYNC_POSTREAD);
1011 
1012 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1013 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1014 			break;
1015 
1016 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1017 		case RT2560_TX_SUCCESS:
1018 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1019 			break;
1020 
1021 		case RT2560_TX_SUCCESS_RETRY:
1022 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1023 			    (letoh32(desc->flags) >> 5) & 0x7));
1024 			break;
1025 
1026 		case RT2560_TX_FAIL_RETRY:
1027 			DPRINTFN(9, ("sending mgt frame failed (too much "
1028 			    "retries)\n"));
1029 			break;
1030 
1031 		case RT2560_TX_FAIL_INVALID:
1032 		case RT2560_TX_FAIL_OTHER:
1033 		default:
1034 			printf("%s: sending mgt frame failed 0x%08x\n",
1035 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1036 		}
1037 
1038 		/* descriptor is no longer valid */
1039 		desc->flags &= ~htole32(RT2560_TX_VALID);
1040 
1041 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1042 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1043 		    BUS_DMASYNC_PREWRITE);
1044 
1045 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1046 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1047 		bus_dmamap_unload(sc->sc_dmat, data->map);
1048 		m_freem(data->m);
1049 		data->m = NULL;
1050 		ieee80211_release_node(ic, data->ni);
1051 		data->ni = NULL;
1052 
1053 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1054 
1055 		sc->prioq.queued--;
1056 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1057 	}
1058 
1059 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
1060 		sc->sc_tx_timer = 0;
1061 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
1062 		sc->sc_flags &= ~RT2560_PRIO_OACTIVE;
1063 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
1064 			ifq_clr_oactive(&ifp->if_snd);
1065 		rt2560_start(ifp);
1066 	}
1067 }
1068 
1069 /*
1070  * Some frames were processed by the hardware cipher engine and are ready for
1071  * transmission to the IEEE802.11 layer.
1072  */
1073 void
1074 rt2560_decryption_intr(struct rt2560_softc *sc)
1075 {
1076 	struct ieee80211com *ic = &sc->sc_ic;
1077 	struct ifnet *ifp = &ic->ic_if;
1078 	struct ieee80211_frame *wh;
1079 	struct ieee80211_rxinfo rxi;
1080 	struct ieee80211_node *ni;
1081 	struct mbuf *mnew, *m;
1082 	int hw, error;
1083 
1084 	/* retrieve last decriptor index processed by cipher engine */
1085 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1086 	    RT2560_RX_DESC_SIZE;
1087 
1088 	for (; sc->rxq.cur_decrypt != hw;) {
1089 		struct rt2560_rx_desc *desc =
1090 		    &sc->rxq.desc[sc->rxq.cur_decrypt];
1091 		struct rt2560_rx_data *data =
1092 		    &sc->rxq.data[sc->rxq.cur_decrypt];
1093 
1094 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1095 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1096 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1097 
1098 		if (letoh32(desc->flags) &
1099 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1100 			break;
1101 
1102 		if (data->drop) {
1103 			ifp->if_ierrors++;
1104 			goto skip;
1105 		}
1106 
1107 		if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1108 		    (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) {
1109 			ifp->if_ierrors++;
1110 			goto skip;
1111 		}
1112 
1113 		/*
1114 		 * Try to allocate a new mbuf for this ring element and load it
1115 		 * before processing the current mbuf.  If the ring element
1116 		 * cannot be loaded, drop the received packet and reuse the old
1117 		 * mbuf.  In the unlikely case that the old mbuf can't be
1118 		 * reloaded either, explicitly panic.
1119 		 */
1120 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1121 		if (mnew == NULL) {
1122 			ifp->if_ierrors++;
1123 			goto skip;
1124 		}
1125 		MCLGET(mnew, M_DONTWAIT);
1126 		if (!(mnew->m_flags & M_EXT)) {
1127 			m_freem(mnew);
1128 			ifp->if_ierrors++;
1129 			goto skip;
1130 		}
1131 
1132 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1133 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1134 		bus_dmamap_unload(sc->sc_dmat, data->map);
1135 
1136 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1137 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1138 		if (error != 0) {
1139 			m_freem(mnew);
1140 
1141 			/* try to reload the old mbuf */
1142 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1143 			    mtod(data->m, void *), MCLBYTES, NULL,
1144 			    BUS_DMA_NOWAIT);
1145 			if (error != 0) {
1146 				/* very unlikely that it will fail... */
1147 				panic("%s: could not load old rx mbuf",
1148 				    sc->sc_dev.dv_xname);
1149 			}
1150 			/* physical address may have changed */
1151 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1152 			ifp->if_ierrors++;
1153 			goto skip;
1154 		}
1155 
1156 		/*
1157 		 * New mbuf successfully loaded, update Rx ring and continue
1158 		 * processing.
1159 		 */
1160 		m = data->m;
1161 		data->m = mnew;
1162 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1163 
1164 		/* finalize mbuf */
1165 		m->m_pkthdr.len = m->m_len =
1166 		    (letoh32(desc->flags) >> 16) & 0xfff;
1167 
1168 #if NBPFILTER > 0
1169 		if (sc->sc_drvbpf != NULL) {
1170 			struct mbuf mb;
1171 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1172 			uint32_t tsf_lo, tsf_hi;
1173 
1174 			/* get timestamp (low and high 32 bits) */
1175 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1176 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1177 
1178 			tap->wr_tsf =
1179 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1180 			tap->wr_flags = 0;
1181 			tap->wr_rate = rt2560_rxrate(desc);
1182 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1183 			tap->wr_chan_flags =
1184 			    htole16(ic->ic_ibss_chan->ic_flags);
1185 			tap->wr_antenna = sc->rx_ant;
1186 			tap->wr_antsignal = desc->rssi;
1187 
1188 			mb.m_data = (caddr_t)tap;
1189 			mb.m_len = sc->sc_txtap_len;
1190 			mb.m_next = m;
1191 			mb.m_nextpkt = NULL;
1192 			mb.m_type = 0;
1193 			mb.m_flags = 0;
1194 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1195 		}
1196 #endif
1197 		wh = mtod(m, struct ieee80211_frame *);
1198 		ni = ieee80211_find_rxnode(ic, wh);
1199 
1200 		/* send the frame to the 802.11 layer */
1201 		rxi.rxi_flags = 0;
1202 		rxi.rxi_rssi = desc->rssi;
1203 		rxi.rxi_tstamp = 0;	/* unused */
1204 		ieee80211_input(ifp, m, ni, &rxi);
1205 
1206 		/* node is no longer needed */
1207 		ieee80211_release_node(ic, ni);
1208 
1209 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1210 
1211 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1212 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1213 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1214 
1215 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1216 
1217 		sc->rxq.cur_decrypt =
1218 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1219 	}
1220 }
1221 
1222 /*
1223  * Some frames were received. Pass them to the hardware cipher engine before
1224  * sending them to the 802.11 layer.
1225  */
1226 void
1227 rt2560_rx_intr(struct rt2560_softc *sc)
1228 {
1229 	for (;;) {
1230 		struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1231 		struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1232 
1233 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1234 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1235 		    BUS_DMASYNC_POSTREAD);
1236 
1237 		if (letoh32(desc->flags) &
1238 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1239 			break;
1240 
1241 		data->drop = 0;
1242 
1243 		if (letoh32(desc->flags) &
1244 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1245 			/*
1246 			 * This should not happen since we did not request
1247 			 * to receive those frames when we filled RXCSR0.
1248 			 */
1249 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1250 			    letoh32(desc->flags)));
1251 			data->drop = 1;
1252 		}
1253 
1254 		if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1255 			DPRINTFN(5, ("bad length\n"));
1256 			data->drop = 1;
1257 		}
1258 
1259 		/* mark the frame for decryption */
1260 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1261 
1262 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1263 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1264 		    BUS_DMASYNC_PREWRITE);
1265 
1266 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1267 
1268 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1269 	}
1270 
1271 	/* kick decrypt */
1272 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1273 }
1274 
1275 #ifndef IEEE80211_STA_ONLY
1276 /*
1277  * This function is called in HostAP or IBSS modes when it's time to send a
1278  * new beacon (every ni_intval milliseconds).
1279  */
1280 void
1281 rt2560_beacon_expire(struct rt2560_softc *sc)
1282 {
1283 	struct ieee80211com *ic = &sc->sc_ic;
1284 	struct rt2560_tx_data *data;
1285 
1286 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1287 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1288 		return;
1289 
1290 	data = &sc->bcnq.data[sc->bcnq.next];
1291 
1292 	if (sc->sc_flags & RT2560_UPDATE_SLOT) {
1293 		sc->sc_flags &= ~RT2560_UPDATE_SLOT;
1294 		sc->sc_flags |= RT2560_SET_SLOTTIME;
1295 	} else if (sc->sc_flags & RT2560_SET_SLOTTIME) {
1296 		sc->sc_flags &= ~RT2560_SET_SLOTTIME;
1297 		rt2560_set_slottime(sc);
1298 	}
1299 
1300 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1301 		/* update ERP Information Element */
1302 		*sc->erp = ic->ic_bss->ni_erp;
1303 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1304 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1305 	}
1306 
1307 #if defined(RT2560_DEBUG) && NBPFILTER > 0
1308 	if (ic->ic_rawbpf != NULL)
1309 		bpf_mtap(ic->ic_rawbpf, data->m, BPF_DIRECTION_OUT);
1310 #endif
1311 
1312 	DPRINTFN(15, ("beacon expired\n"));
1313 }
1314 #endif
1315 
1316 void
1317 rt2560_wakeup_expire(struct rt2560_softc *sc)
1318 {
1319 	DPRINTFN(15, ("wakeup expired\n"));
1320 }
1321 
1322 int
1323 rt2560_intr(void *arg)
1324 {
1325 	struct rt2560_softc *sc = arg;
1326 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1327 	uint32_t r;
1328 
1329 	r = RAL_READ(sc, RT2560_CSR7);
1330 	if (__predict_false(r == 0xffffffff))
1331 		return 0;	/* device likely went away */
1332 	if (r == 0)
1333 		return 0;	/* not for us */
1334 
1335 	/* disable interrupts */
1336 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1337 
1338 	/* acknowledge interrupts */
1339 	RAL_WRITE(sc, RT2560_CSR7, r);
1340 
1341 	/* don't re-enable interrupts if we're shutting down */
1342 	if (!(ifp->if_flags & IFF_RUNNING))
1343 		return 0;
1344 
1345 #ifndef IEEE80211_STA_ONLY
1346 	if (r & RT2560_BEACON_EXPIRE)
1347 		rt2560_beacon_expire(sc);
1348 #endif
1349 
1350 	if (r & RT2560_WAKEUP_EXPIRE)
1351 		rt2560_wakeup_expire(sc);
1352 
1353 	if (r & RT2560_ENCRYPTION_DONE)
1354 		rt2560_encryption_intr(sc);
1355 
1356 	if (r & RT2560_TX_DONE)
1357 		rt2560_tx_intr(sc);
1358 
1359 	if (r & RT2560_PRIO_DONE)
1360 		rt2560_prio_intr(sc);
1361 
1362 	if (r & RT2560_DECRYPTION_DONE)
1363 		rt2560_decryption_intr(sc);
1364 
1365 	if (r & RT2560_RX_DONE)
1366 		rt2560_rx_intr(sc);
1367 
1368 	/* re-enable interrupts */
1369 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1370 
1371 	return 1;
1372 }
1373 
1374 /* quickly determine if a given rate is CCK or OFDM */
1375 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1376 
1377 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1378 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1379 
1380 #define RAL_SIFS		10	/* us */
1381 
1382 #define RT2560_RXTX_TURNAROUND	10	/* us */
1383 
1384 /*
1385  * This function is only used by the Rx radiotap code. It returns the rate at
1386  * which a given frame was received.
1387  */
1388 #if NBPFILTER > 0
1389 uint8_t
1390 rt2560_rxrate(const struct rt2560_rx_desc *desc)
1391 {
1392 	if (letoh32(desc->flags) & RT2560_RX_OFDM) {
1393 		/* reverse function of rt2560_plcp_signal */
1394 		switch (desc->rate) {
1395 		case 0xb:	return 12;
1396 		case 0xf:	return 18;
1397 		case 0xa:	return 24;
1398 		case 0xe:	return 36;
1399 		case 0x9:	return 48;
1400 		case 0xd:	return 72;
1401 		case 0x8:	return 96;
1402 		case 0xc:	return 108;
1403 		}
1404 	} else {
1405 		if (desc->rate == 10)
1406 			return 2;
1407 		if (desc->rate == 20)
1408 			return 4;
1409 		if (desc->rate == 55)
1410 			return 11;
1411 		if (desc->rate == 110)
1412 			return 22;
1413 	}
1414 	return 2;	/* should not get there */
1415 }
1416 #endif
1417 
1418 /*
1419  * Return the expected ack rate for a frame transmitted at rate `rate'.
1420  */
1421 int
1422 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1423 {
1424 	switch (rate) {
1425 	/* CCK rates */
1426 	case 2:
1427 		return 2;
1428 	case 4:
1429 	case 11:
1430 	case 22:
1431 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1432 
1433 	/* OFDM rates */
1434 	case 12:
1435 	case 18:
1436 		return 12;
1437 	case 24:
1438 	case 36:
1439 		return 24;
1440 	case 48:
1441 	case 72:
1442 	case 96:
1443 	case 108:
1444 		return 48;
1445 	}
1446 
1447 	/* default to 1Mbps */
1448 	return 2;
1449 }
1450 
1451 /*
1452  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1453  * The function automatically determines the operating mode depending on the
1454  * given rate. `flags' indicates whether short preamble is in use or not.
1455  */
1456 uint16_t
1457 rt2560_txtime(int len, int rate, uint32_t flags)
1458 {
1459 	uint16_t txtime;
1460 
1461 	if (RAL_RATE_IS_OFDM(rate)) {
1462 		/* IEEE Std 802.11g-2003, pp. 44 */
1463 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1464 		txtime = 16 + 4 + 4 * txtime + 6;
1465 	} else {
1466 		/* IEEE Std 802.11b-1999, pp. 28 */
1467 		txtime = (16 * len + rate - 1) / rate;
1468 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1469 			txtime +=  72 + 24;
1470 		else
1471 			txtime += 144 + 48;
1472 	}
1473 	return txtime;
1474 }
1475 
1476 uint8_t
1477 rt2560_plcp_signal(int rate)
1478 {
1479 	switch (rate) {
1480 	/* CCK rates (returned values are device-dependent) */
1481 	case 2:		return 0x0;
1482 	case 4:		return 0x1;
1483 	case 11:	return 0x2;
1484 	case 22:	return 0x3;
1485 
1486 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1487 	case 12:	return 0xb;
1488 	case 18:	return 0xf;
1489 	case 24:	return 0xa;
1490 	case 36:	return 0xe;
1491 	case 48:	return 0x9;
1492 	case 72:	return 0xd;
1493 	case 96:	return 0x8;
1494 	case 108:	return 0xc;
1495 
1496 	/* unsupported rates (should not get there) */
1497 	default:	return 0xff;
1498 	}
1499 }
1500 
1501 void
1502 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1503     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1504 {
1505 	struct ieee80211com *ic = &sc->sc_ic;
1506 	uint16_t plcp_length;
1507 	int remainder;
1508 
1509 	desc->flags = htole32(flags);
1510 	desc->flags |= htole32(len << 16);
1511 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1512 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1513 
1514 	desc->physaddr = htole32(physaddr);
1515 	desc->wme = htole16(
1516 	    RT2560_AIFSN(2) |
1517 	    RT2560_LOGCWMIN(3) |
1518 	    RT2560_LOGCWMAX(8));
1519 
1520 	/* setup PLCP fields */
1521 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1522 	desc->plcp_service = 4;
1523 
1524 	len += IEEE80211_CRC_LEN;
1525 	if (RAL_RATE_IS_OFDM(rate)) {
1526 		desc->flags |= htole32(RT2560_TX_OFDM);
1527 
1528 		plcp_length = len & 0xfff;
1529 		desc->plcp_length_hi = plcp_length >> 6;
1530 		desc->plcp_length_lo = plcp_length & 0x3f;
1531 	} else {
1532 		plcp_length = (16 * len + rate - 1) / rate;
1533 		if (rate == 22) {
1534 			remainder = (16 * len) % 22;
1535 			if (remainder != 0 && remainder < 7)
1536 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1537 		}
1538 		desc->plcp_length_hi = plcp_length >> 8;
1539 		desc->plcp_length_lo = plcp_length & 0xff;
1540 
1541 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1542 			desc->plcp_signal |= 0x08;
1543 	}
1544 }
1545 
1546 #ifndef IEEE80211_STA_ONLY
1547 int
1548 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1549     struct ieee80211_node *ni)
1550 {
1551 	struct ieee80211com *ic = &sc->sc_ic;
1552 	struct rt2560_tx_desc *desc;
1553 	struct rt2560_tx_data *data;
1554 	int rate = 2, error;
1555 
1556 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1557 	data = &sc->bcnq.data[sc->bcnq.cur];
1558 
1559 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1560 	    BUS_DMA_NOWAIT);
1561 	if (error != 0) {
1562 		printf("%s: can't map mbuf (error %d)\n",
1563 		    sc->sc_dev.dv_xname, error);
1564 		m_freem(m0);
1565 		return error;
1566 	}
1567 
1568 	data->m = m0;
1569 	data->ni = ni;
1570 
1571 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1572 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1573 	    data->map->dm_segs->ds_addr);
1574 
1575 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1576 	    BUS_DMASYNC_PREWRITE);
1577 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1578 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1579 	    BUS_DMASYNC_PREWRITE);
1580 
1581 	/*
1582 	 * Store pointer to ERP Information Element so that we can update it
1583 	 * dynamically when the slot time changes.
1584 	 * XXX: this is ugly since it depends on how net80211 builds beacon
1585 	 * frames but ieee80211_beacon_alloc() don't store offsets for us.
1586 	 */
1587 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1588 		sc->erp =
1589 		    mtod(m0, uint8_t *) +
1590 		    sizeof (struct ieee80211_frame) +
1591 		    8 + 2 + 2 +
1592 		    ((ic->ic_flags & IEEE80211_F_HIDENWID) ?
1593 			1 : 2 + ni->ni_esslen) +
1594 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
1595 		    2 + 1 +
1596 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
1597 		    2;
1598 	}
1599 
1600 	return 0;
1601 }
1602 #endif
1603 
1604 int
1605 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1606     struct ieee80211_node *ni)
1607 {
1608 	struct ieee80211com *ic = &sc->sc_ic;
1609 	struct rt2560_tx_desc *desc;
1610 	struct rt2560_tx_data *data;
1611 	struct ieee80211_frame *wh;
1612 	uint16_t dur;
1613 	uint32_t flags = 0;
1614 	int rate = 2, error;
1615 
1616 	desc = &sc->prioq.desc[sc->prioq.cur];
1617 	data = &sc->prioq.data[sc->prioq.cur];
1618 
1619 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1620 	    BUS_DMA_NOWAIT);
1621 	if (error != 0) {
1622 		printf("%s: can't map mbuf (error %d)\n",
1623 		    sc->sc_dev.dv_xname, error);
1624 		m_freem(m0);
1625 		return error;
1626 	}
1627 
1628 #if NBPFILTER > 0
1629 	if (sc->sc_drvbpf != NULL) {
1630 		struct mbuf mb;
1631 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1632 
1633 		tap->wt_flags = 0;
1634 		tap->wt_rate = rate;
1635 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1636 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1637 		tap->wt_antenna = sc->tx_ant;
1638 
1639 		mb.m_data = (caddr_t)tap;
1640 		mb.m_len = sc->sc_txtap_len;
1641 		mb.m_next = m0;
1642 		mb.m_nextpkt = NULL;
1643 		mb.m_type = 0;
1644 		mb.m_flags = 0;
1645 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1646 	}
1647 #endif
1648 
1649 	data->m = m0;
1650 	data->ni = ni;
1651 
1652 	wh = mtod(m0, struct ieee80211_frame *);
1653 
1654 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1655 		flags |= RT2560_TX_NEED_ACK;
1656 
1657 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1658 		    RAL_SIFS;
1659 		*(uint16_t *)wh->i_dur = htole16(dur);
1660 
1661 #ifndef IEEE80211_STA_ONLY
1662 		/* tell hardware to set timestamp for probe responses */
1663 		if ((wh->i_fc[0] &
1664 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1665 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1666 			flags |= RT2560_TX_TIMESTAMP;
1667 #endif
1668 	}
1669 
1670 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1671 	    data->map->dm_segs->ds_addr);
1672 
1673 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1674 	    BUS_DMASYNC_PREWRITE);
1675 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1676 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1677 	    BUS_DMASYNC_PREWRITE);
1678 
1679 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1680 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1681 
1682 	/* kick prio */
1683 	sc->prioq.queued++;
1684 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1685 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1686 
1687 	return 0;
1688 }
1689 
1690 int
1691 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1692     struct ieee80211_node *ni)
1693 {
1694 	struct ieee80211com *ic = &sc->sc_ic;
1695 	struct rt2560_tx_ring *txq = &sc->txq;
1696 	struct rt2560_tx_desc *desc;
1697 	struct rt2560_tx_data *data;
1698 	struct ieee80211_frame *wh;
1699 	struct ieee80211_key *k;
1700 	struct mbuf *m1;
1701 	uint16_t dur;
1702 	uint32_t flags = 0;
1703 	int pktlen, rate, needcts = 0, needrts = 0, error;
1704 
1705 	wh = mtod(m0, struct ieee80211_frame *);
1706 
1707 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1708 		k = ieee80211_get_txkey(ic, wh, ni);
1709 
1710 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1711 			return ENOBUFS;
1712 
1713 		/* packet header may have moved, reset our local pointer */
1714 		wh = mtod(m0, struct ieee80211_frame *);
1715 	}
1716 
1717 	/* compute actual packet length (including CRC and crypto overhead) */
1718 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1719 
1720 	/* pickup a rate */
1721 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1722 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1723 	     IEEE80211_FC0_TYPE_MGT)) {
1724 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1725 		rate = ni->ni_rates.rs_rates[0];
1726 	} else if (ic->ic_fixed_rate != -1) {
1727 		rate = ic->ic_sup_rates[ic->ic_curmode].
1728 		    rs_rates[ic->ic_fixed_rate];
1729 	} else
1730 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1731 	if (rate == 0)
1732 		rate = 2;	/* XXX should not happen */
1733 	rate &= IEEE80211_RATE_VAL;
1734 
1735 	/*
1736 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1737 	 * chance to contend for the wireless medium.
1738 	 */
1739 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1740 		flags |= RT2560_TX_IFS_SIFS;
1741 
1742 	/* check if RTS/CTS or CTS-to-self protection must be used */
1743 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1744 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1745 		if (pktlen > ic->ic_rtsthreshold) {
1746 			needrts = 1;	/* RTS/CTS based on frame length */
1747 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1748 		    RAL_RATE_IS_OFDM(rate)) {
1749 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1750 				needcts = 1;	/* CTS-to-self */
1751 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1752 				needrts = 1;	/* RTS/CTS */
1753 		}
1754 	}
1755 	if (needrts || needcts) {
1756 		struct mbuf *mprot;
1757 		int protrate, ackrate;
1758 
1759 		protrate = 2;	/* XXX */
1760 		ackrate  = rt2560_ack_rate(ic, rate);
1761 
1762 		dur = rt2560_txtime(pktlen, rate, ic->ic_flags) +
1763 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1764 		      2 * RAL_SIFS;
1765 		if (needrts) {
1766 			dur += rt2560_txtime(RAL_CTS_SIZE, rt2560_ack_rate(ic,
1767 			    protrate), ic->ic_flags) + RAL_SIFS;
1768 			mprot = ieee80211_get_rts(ic, wh, dur);
1769 		} else {
1770 			mprot = ieee80211_get_cts_to_self(ic, dur);
1771 		}
1772 		if (mprot == NULL) {
1773 			printf("%s: could not allocate protection frame\n",
1774 			    sc->sc_dev.dv_xname);
1775 			m_freem(m0);
1776 			return ENOBUFS;
1777 		}
1778 
1779 		desc = &txq->desc[txq->cur_encrypt];
1780 		data = &txq->data[txq->cur_encrypt];
1781 
1782 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1783 		    BUS_DMA_NOWAIT);
1784 		if (error != 0) {
1785 			printf("%s: can't map mbuf (error %d)\n",
1786 			    sc->sc_dev.dv_xname, error);
1787 			m_freem(mprot);
1788 			m_freem(m0);
1789 			return error;
1790 		}
1791 
1792 		data->m = mprot;
1793 		/* avoid multiple free() of the same node for each fragment */
1794 		data->ni = ieee80211_ref_node(ni);
1795 
1796 		/* XXX may want to pass the protection frame to BPF */
1797 
1798 		rt2560_setup_tx_desc(sc, desc,
1799 		    (needrts ? RT2560_TX_NEED_ACK : 0) | RT2560_TX_MORE_FRAG,
1800 		    mprot->m_pkthdr.len, protrate, 1,
1801 		    data->map->dm_segs->ds_addr);
1802 
1803 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1804 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1805 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1806 		    txq->cur_encrypt * RT2560_TX_DESC_SIZE,
1807 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1808 
1809 		txq->queued++;
1810 		if (++txq->cur_encrypt >= txq->count)
1811 			txq->cur_encrypt = 0;
1812 
1813 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1814 	}
1815 
1816 	data = &txq->data[txq->cur_encrypt];
1817 	desc = &txq->desc[txq->cur_encrypt];
1818 
1819 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1820 	    BUS_DMA_NOWAIT);
1821 	if (error != 0 && error != EFBIG) {
1822 		printf("%s: can't map mbuf (error %d)\n",
1823 		    sc->sc_dev.dv_xname, error);
1824 		m_freem(m0);
1825 		return error;
1826 	}
1827 	if (error != 0) {
1828 		/* too many fragments, linearize */
1829 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1830 		if (m1 == NULL) {
1831 			m_freem(m0);
1832 			return ENOBUFS;
1833 		}
1834 		if (m0->m_pkthdr.len > MHLEN) {
1835 			MCLGET(m1, M_DONTWAIT);
1836 			if (!(m1->m_flags & M_EXT)) {
1837 				m_freem(m0);
1838 				m_freem(m1);
1839 				return ENOBUFS;
1840 			}
1841 		}
1842 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1843 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1844 		m_freem(m0);
1845 		m0 = m1;
1846 
1847 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1848 		    BUS_DMA_NOWAIT);
1849 		if (error != 0) {
1850 			printf("%s: can't map mbuf (error %d)\n",
1851 			    sc->sc_dev.dv_xname, error);
1852 			m_freem(m0);
1853 			return error;
1854 		}
1855 
1856 		/* packet header have moved, reset our local pointer */
1857 		wh = mtod(m0, struct ieee80211_frame *);
1858 	}
1859 
1860 #if NBPFILTER > 0
1861 	if (sc->sc_drvbpf != NULL) {
1862 		struct mbuf mb;
1863 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1864 
1865 		tap->wt_flags = 0;
1866 		tap->wt_rate = rate;
1867 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1868 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1869 		tap->wt_antenna = sc->tx_ant;
1870 
1871 		mb.m_data = (caddr_t)tap;
1872 		mb.m_len = sc->sc_txtap_len;
1873 		mb.m_next = m0;
1874 		mb.m_nextpkt = NULL;
1875 		mb.m_type = 0;
1876 		mb.m_flags = 0;
1877 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1878 	}
1879 #endif
1880 
1881 	data->m = m0;
1882 	data->ni = ni;
1883 
1884 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1885 		flags |= RT2560_TX_NEED_ACK;
1886 
1887 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1888 		    ic->ic_flags) + RAL_SIFS;
1889 		*(uint16_t *)wh->i_dur = htole16(dur);
1890 	}
1891 
1892 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1893 	    data->map->dm_segs->ds_addr);
1894 
1895 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1896 	    BUS_DMASYNC_PREWRITE);
1897 	bus_dmamap_sync(sc->sc_dmat, txq->map,
1898 	    txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1899 	    BUS_DMASYNC_PREWRITE);
1900 
1901 	DPRINTFN(10, ("sending frame len=%u idx=%u rate=%u\n",
1902 	    m0->m_pkthdr.len, txq->cur_encrypt, rate));
1903 
1904 	/* kick encrypt */
1905 	txq->queued++;
1906 	if (++txq->cur_encrypt >= txq->count)
1907 		txq->cur_encrypt = 0;
1908 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1909 
1910 	return 0;
1911 }
1912 
1913 void
1914 rt2560_start(struct ifnet *ifp)
1915 {
1916 	struct rt2560_softc *sc = ifp->if_softc;
1917 	struct ieee80211com *ic = &sc->sc_ic;
1918 	struct mbuf *m0;
1919 	struct ieee80211_node *ni;
1920 
1921 	/*
1922 	 * net80211 may still try to send management frames even if the
1923 	 * IFF_RUNNING flag is not set...
1924 	 */
1925 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1926 		return;
1927 
1928 	for (;;) {
1929 		if (mq_len(&ic->ic_mgtq) > 0) {
1930 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1931 				ifq_set_oactive(&ifp->if_snd);
1932 				sc->sc_flags |= RT2560_PRIO_OACTIVE;
1933 				break;
1934 			}
1935 
1936 			m0 = mq_dequeue(&ic->ic_mgtq);
1937 			if (m0 == NULL)
1938 				continue;
1939 			ni = m0->m_pkthdr.ph_cookie;
1940 #if NBPFILTER > 0
1941 			if (ic->ic_rawbpf != NULL)
1942 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1943 #endif
1944 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
1945 				break;
1946 
1947 		} else {
1948 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1949 				ifq_set_oactive(&ifp->if_snd);
1950 				sc->sc_flags |= RT2560_DATA_OACTIVE;
1951 				break;
1952 			}
1953 
1954 			if (ic->ic_state != IEEE80211_S_RUN)
1955 				break;
1956 
1957 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1958 			if (m0 == NULL)
1959 				break;
1960 #if NBPFILTER > 0
1961 			if (ifp->if_bpf != NULL)
1962 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1963 #endif
1964 			m0 = ieee80211_encap(ifp, m0, &ni);
1965 			if (m0 == NULL)
1966 				continue;
1967 #if NBPFILTER > 0
1968 			if (ic->ic_rawbpf != NULL)
1969 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1970 #endif
1971 			if (rt2560_tx_data(sc, m0, ni) != 0) {
1972 				if (ni != NULL)
1973 					ieee80211_release_node(ic, ni);
1974 				ifp->if_oerrors++;
1975 				break;
1976 			}
1977 		}
1978 
1979 		sc->sc_tx_timer = 5;
1980 		ifp->if_timer = 1;
1981 	}
1982 }
1983 
1984 void
1985 rt2560_watchdog(struct ifnet *ifp)
1986 {
1987 	struct rt2560_softc *sc = ifp->if_softc;
1988 
1989 	ifp->if_timer = 0;
1990 
1991 	if (sc->sc_tx_timer > 0) {
1992 		if (--sc->sc_tx_timer == 0) {
1993 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1994 			rt2560_init(ifp);
1995 			ifp->if_oerrors++;
1996 			return;
1997 		}
1998 		ifp->if_timer = 1;
1999 	}
2000 
2001 	ieee80211_watchdog(ifp);
2002 }
2003 
2004 int
2005 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2006 {
2007 	struct rt2560_softc *sc = ifp->if_softc;
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 	struct ifreq *ifr;
2010 	int s, error = 0;
2011 
2012 	s = splnet();
2013 
2014 	switch (cmd) {
2015 	case SIOCSIFADDR:
2016 		ifp->if_flags |= IFF_UP;
2017 		/* FALLTHROUGH */
2018 	case SIOCSIFFLAGS:
2019 		if (ifp->if_flags & IFF_UP) {
2020 			if (ifp->if_flags & IFF_RUNNING)
2021 				rt2560_update_promisc(sc);
2022 			else
2023 				rt2560_init(ifp);
2024 		} else {
2025 			if (ifp->if_flags & IFF_RUNNING)
2026 				rt2560_stop(ifp, 1);
2027 		}
2028 		break;
2029 
2030 	case SIOCADDMULTI:
2031 	case SIOCDELMULTI:
2032 		ifr = (struct ifreq *)data;
2033 		error = (cmd == SIOCADDMULTI) ?
2034 		    ether_addmulti(ifr, &ic->ic_ac) :
2035 		    ether_delmulti(ifr, &ic->ic_ac);
2036 
2037 		if (error == ENETRESET)
2038 			error = 0;
2039 		break;
2040 
2041 	case SIOCS80211CHANNEL:
2042 		/*
2043 		 * This allows for fast channel switching in monitor mode
2044 		 * (used by kismet). In IBSS mode, we must explicitly reset
2045 		 * the interface to generate a new beacon frame.
2046 		 */
2047 		error = ieee80211_ioctl(ifp, cmd, data);
2048 		if (error == ENETRESET &&
2049 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2050 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2051 			    (IFF_UP | IFF_RUNNING))
2052 				rt2560_set_chan(sc, ic->ic_ibss_chan);
2053 			error = 0;
2054 		}
2055 		break;
2056 
2057 	default:
2058 		error = ieee80211_ioctl(ifp, cmd, data);
2059 	}
2060 
2061 	if (error == ENETRESET) {
2062 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2063 		    (IFF_UP | IFF_RUNNING))
2064 			rt2560_init(ifp);
2065 		error = 0;
2066 	}
2067 
2068 	splx(s);
2069 
2070 	return error;
2071 }
2072 
2073 void
2074 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2075 {
2076 	uint32_t tmp;
2077 	int ntries;
2078 
2079 	for (ntries = 0; ntries < 100; ntries++) {
2080 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2081 			break;
2082 		DELAY(1);
2083 	}
2084 	if (ntries == 100) {
2085 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2086 		return;
2087 	}
2088 
2089 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2090 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2091 
2092 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2093 }
2094 
2095 uint8_t
2096 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2097 {
2098 	uint32_t val;
2099 	int ntries;
2100 
2101 	for (ntries = 0; ntries < 100; ntries++) {
2102 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2103 			break;
2104 		DELAY(1);
2105 	}
2106 	if (ntries == 100) {
2107 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2108 		return 0;
2109 	}
2110 
2111 	val = RT2560_BBP_BUSY | reg << 8;
2112 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2113 
2114 	for (ntries = 0; ntries < 100; ntries++) {
2115 		val = RAL_READ(sc, RT2560_BBPCSR);
2116 		if (!(val & RT2560_BBP_BUSY))
2117 			return val & 0xff;
2118 		DELAY(1);
2119 	}
2120 
2121 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2122 	return 0;
2123 }
2124 
2125 void
2126 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2127 {
2128 	uint32_t tmp;
2129 	int ntries;
2130 
2131 	for (ntries = 0; ntries < 100; ntries++) {
2132 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2133 			break;
2134 		DELAY(1);
2135 	}
2136 	if (ntries == 100) {
2137 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2138 		return;
2139 	}
2140 
2141 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2142 	    (reg & 0x3);
2143 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2144 
2145 	/* remember last written value in sc */
2146 	sc->rf_regs[reg] = val;
2147 
2148 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2149 }
2150 
2151 void
2152 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2153 {
2154 	struct ieee80211com *ic = &sc->sc_ic;
2155 	uint8_t power, tmp;
2156 	u_int chan;
2157 
2158 	chan = ieee80211_chan2ieee(ic, c);
2159 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2160 		return;
2161 
2162 	power = min(sc->txpow[chan - 1], 31);
2163 
2164 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2165 
2166 	switch (sc->rf_rev) {
2167 	case RT2560_RF_2522:
2168 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2169 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2170 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2171 		break;
2172 
2173 	case RT2560_RF_2523:
2174 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2175 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2176 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2177 		rt2560_rf_write(sc, RT2560_RF4,
2178 		    (chan == 14) ? 0x00280 : 0x00286);
2179 		break;
2180 
2181 	case RT2560_RF_2524:
2182 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2183 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2184 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2185 		rt2560_rf_write(sc, RT2560_RF4,
2186 		    (chan == 14) ? 0x00280 : 0x00286);
2187 		break;
2188 
2189 	case RT2560_RF_2525:
2190 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2191 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2192 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2193 		rt2560_rf_write(sc, RT2560_RF4,
2194 		    (chan == 14) ? 0x00280 : 0x00286);
2195 
2196 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2197 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2198 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2199 		rt2560_rf_write(sc, RT2560_RF4,
2200 		    (chan == 14) ? 0x00280 : 0x00286);
2201 		break;
2202 
2203 	case RT2560_RF_2525E:
2204 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2205 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2206 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2207 		rt2560_rf_write(sc, RT2560_RF4,
2208 		    (chan == 14) ? 0x00286 : 0x00282);
2209 		break;
2210 
2211 	case RT2560_RF_2526:
2212 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2213 		rt2560_rf_write(sc, RT2560_RF4,
2214 		   (chan & 1) ? 0x00386 : 0x00381);
2215 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2216 
2217 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2218 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2219 		rt2560_rf_write(sc, RT2560_RF4,
2220 		    (chan & 1) ? 0x00386 : 0x00381);
2221 		break;
2222 	}
2223 
2224 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2225 	    ic->ic_state != IEEE80211_S_SCAN) {
2226 		/* set Japan filter bit for channel 14 */
2227 		tmp = rt2560_bbp_read(sc, 70);
2228 
2229 		tmp &= ~RT2560_JAPAN_FILTER;
2230 		if (chan == 14)
2231 			tmp |= RT2560_JAPAN_FILTER;
2232 
2233 		rt2560_bbp_write(sc, 70, tmp);
2234 
2235 		DELAY(1000); /* RF needs a 1ms delay here */
2236 		rt2560_disable_rf_tune(sc);
2237 
2238 		/* clear CRC errors */
2239 		RAL_READ(sc, RT2560_CNT0);
2240 	}
2241 }
2242 
2243 /*
2244  * Disable RF auto-tuning.
2245  */
2246 void
2247 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2248 {
2249 	uint32_t tmp;
2250 
2251 	if (sc->rf_rev != RT2560_RF_2523) {
2252 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2253 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2254 	}
2255 
2256 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2257 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2258 
2259 	DPRINTFN(2, ("disabling RF autotune\n"));
2260 }
2261 
2262 /*
2263  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2264  * synchronization.
2265  */
2266 void
2267 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2268 {
2269 	struct ieee80211com *ic = &sc->sc_ic;
2270 	uint16_t logcwmin, preload;
2271 	uint32_t tmp;
2272 
2273 	/* first, disable TSF synchronization */
2274 	RAL_WRITE(sc, RT2560_CSR14, 0);
2275 
2276 	tmp = 16 * ic->ic_bss->ni_intval;
2277 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2278 
2279 	RAL_WRITE(sc, RT2560_CSR13, 0);
2280 
2281 	logcwmin = 5;
2282 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2283 	tmp = logcwmin << 16 | preload;
2284 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2285 
2286 	/* finally, enable TSF synchronization */
2287 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2288 	if (ic->ic_opmode == IEEE80211_M_STA)
2289 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2290 #ifndef IEEE80211_STA_ONLY
2291 	else
2292 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2293 		       RT2560_ENABLE_BEACON_GENERATOR;
2294 #endif
2295 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2296 
2297 	DPRINTF(("enabling TSF synchronization\n"));
2298 }
2299 
2300 void
2301 rt2560_update_plcp(struct rt2560_softc *sc)
2302 {
2303 	struct ieee80211com *ic = &sc->sc_ic;
2304 
2305 	/* no short preamble for 1Mbps */
2306 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2307 
2308 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2309 		/* values taken from the reference driver */
2310 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2311 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2312 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2313 	} else {
2314 		/* same values as above or'ed 0x8 */
2315 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2316 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2317 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2318 	}
2319 
2320 	DPRINTF(("updating PLCP for %s preamble\n",
2321 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2322 }
2323 
2324 void
2325 rt2560_updateslot(struct ieee80211com *ic)
2326 {
2327 	struct rt2560_softc *sc = ic->ic_if.if_softc;
2328 
2329 #ifndef IEEE80211_STA_ONLY
2330 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2331 		/*
2332 		 * In HostAP mode, we defer setting of new slot time until
2333 		 * updated ERP Information Element has propagated to all
2334 		 * associated STAs.
2335 		 */
2336 		sc->sc_flags |= RT2560_UPDATE_SLOT;
2337 	} else
2338 #endif
2339 		rt2560_set_slottime(sc);
2340 }
2341 
2342 /*
2343  * IEEE 802.11a (and possibly 802.11g) use short slot time. Refer to
2344  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2345  */
2346 void
2347 rt2560_set_slottime(struct rt2560_softc *sc)
2348 {
2349 	struct ieee80211com *ic = &sc->sc_ic;
2350 	uint8_t slottime;
2351 	uint16_t sifs, pifs, difs, eifs;
2352 	uint32_t tmp;
2353 
2354 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2355 
2356 	/* define the MAC slot boundaries */
2357 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2358 	pifs = sifs + slottime;
2359 	difs = sifs + 2 * slottime;
2360 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2361 
2362 	tmp = RAL_READ(sc, RT2560_CSR11);
2363 	tmp = (tmp & ~0x1f00) | slottime << 8;
2364 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2365 
2366 	tmp = pifs << 16 | sifs;
2367 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2368 
2369 	tmp = eifs << 16 | difs;
2370 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2371 
2372 	DPRINTF(("setting slottime to %uus\n", slottime));
2373 }
2374 
2375 void
2376 rt2560_set_basicrates(struct rt2560_softc *sc)
2377 {
2378 	struct ieee80211com *ic = &sc->sc_ic;
2379 
2380 	/* update basic rate set */
2381 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2382 		/* 11b basic rates: 1, 2Mbps */
2383 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2384 	} else {
2385 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2386 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0xf);
2387 	}
2388 }
2389 
2390 void
2391 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2392 {
2393 	uint32_t tmp;
2394 
2395 	/* set ON period to 70ms and OFF period to 30ms */
2396 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2397 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2398 }
2399 
2400 void
2401 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2402 {
2403 	uint32_t tmp;
2404 
2405 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2406 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2407 
2408 	tmp = bssid[4] | bssid[5] << 8;
2409 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2410 
2411 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2412 }
2413 
2414 void
2415 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2416 {
2417 	uint32_t tmp;
2418 
2419 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2420 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2421 
2422 	tmp = addr[4] | addr[5] << 8;
2423 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2424 
2425 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2426 }
2427 
2428 void
2429 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2430 {
2431 	uint32_t tmp;
2432 
2433 	tmp = RAL_READ(sc, RT2560_CSR3);
2434 	addr[0] = tmp & 0xff;
2435 	addr[1] = (tmp >>  8) & 0xff;
2436 	addr[2] = (tmp >> 16) & 0xff;
2437 	addr[3] = (tmp >> 24);
2438 
2439 	tmp = RAL_READ(sc, RT2560_CSR4);
2440 	addr[4] = tmp & 0xff;
2441 	addr[5] = (tmp >> 8) & 0xff;
2442 }
2443 
2444 void
2445 rt2560_update_promisc(struct rt2560_softc *sc)
2446 {
2447 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2448 	uint32_t tmp;
2449 
2450 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2451 
2452 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2453 	if (!(ifp->if_flags & IFF_PROMISC))
2454 		tmp |= RT2560_DROP_NOT_TO_ME;
2455 
2456 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2457 
2458 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2459 	    "entering" : "leaving"));
2460 }
2461 
2462 void
2463 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2464 {
2465 	uint32_t tmp;
2466 	uint8_t tx;
2467 
2468 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2469 	if (antenna == 1)
2470 		tx |= RT2560_BBP_ANTA;
2471 	else if (antenna == 2)
2472 		tx |= RT2560_BBP_ANTB;
2473 	else
2474 		tx |= RT2560_BBP_DIVERSITY;
2475 
2476 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2477 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2478 	    sc->rf_rev == RT2560_RF_5222)
2479 		tx |= RT2560_BBP_FLIPIQ;
2480 
2481 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2482 
2483 	/* update values for CCK and OFDM in BBPCSR1 */
2484 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2485 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2486 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2487 }
2488 
2489 void
2490 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2491 {
2492 	uint8_t rx;
2493 
2494 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2495 	if (antenna == 1)
2496 		rx |= RT2560_BBP_ANTA;
2497 	else if (antenna == 2)
2498 		rx |= RT2560_BBP_ANTB;
2499 	else
2500 		rx |= RT2560_BBP_DIVERSITY;
2501 
2502 	/* need to force no I/Q flip for RF 2525e and 2526 */
2503 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2504 		rx &= ~RT2560_BBP_FLIPIQ;
2505 
2506 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2507 }
2508 
2509 const char *
2510 rt2560_get_rf(int rev)
2511 {
2512 	switch (rev) {
2513 	case RT2560_RF_2522:	return "RT2522";
2514 	case RT2560_RF_2523:	return "RT2523";
2515 	case RT2560_RF_2524:	return "RT2524";
2516 	case RT2560_RF_2525:	return "RT2525";
2517 	case RT2560_RF_2525E:	return "RT2525e";
2518 	case RT2560_RF_2526:	return "RT2526";
2519 	case RT2560_RF_5222:	return "RT5222";
2520 	default:		return "unknown";
2521 	}
2522 }
2523 
2524 void
2525 rt2560_read_eeprom(struct rt2560_softc *sc)
2526 {
2527 	uint16_t val;
2528 	int i;
2529 
2530 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2531 	sc->rf_rev =   (val >> 11) & 0x1f;
2532 	sc->hw_radio = (val >> 10) & 0x1;
2533 	sc->led_mode = (val >> 6)  & 0x7;
2534 	sc->rx_ant =   (val >> 4)  & 0x3;
2535 	sc->tx_ant =   (val >> 2)  & 0x3;
2536 	sc->nb_ant =   val & 0x3;
2537 
2538 	/* read default values for BBP registers */
2539 	for (i = 0; i < 16; i++) {
2540 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2541 		sc->bbp_prom[i].reg = val >> 8;
2542 		sc->bbp_prom[i].val = val & 0xff;
2543 	}
2544 
2545 	/* read Tx power for all b/g channels */
2546 	for (i = 0; i < 14 / 2; i++) {
2547 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2548 		sc->txpow[i * 2] = val >> 8;
2549 		sc->txpow[i * 2 + 1] = val & 0xff;
2550 	}
2551 }
2552 
2553 int
2554 rt2560_bbp_init(struct rt2560_softc *sc)
2555 {
2556 	int i, ntries;
2557 
2558 	/* wait for BBP to be ready */
2559 	for (ntries = 0; ntries < 100; ntries++) {
2560 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2561 			break;
2562 		DELAY(1);
2563 	}
2564 	if (ntries == 100) {
2565 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2566 		return EIO;
2567 	}
2568 
2569 	/* initialize BBP registers to default values */
2570 	for (i = 0; i < nitems(rt2560_def_bbp); i++) {
2571 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2572 		    rt2560_def_bbp[i].val);
2573 	}
2574 #if 0
2575 	/* initialize BBP registers to values stored in EEPROM */
2576 	for (i = 0; i < 16; i++) {
2577 		if (sc->bbp_prom[i].reg == 0xff)
2578 			continue;
2579 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2580 	}
2581 #endif
2582 
2583 	return 0;
2584 }
2585 
2586 int
2587 rt2560_init(struct ifnet *ifp)
2588 {
2589 	struct rt2560_softc *sc = ifp->if_softc;
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 	uint32_t tmp;
2592 	int i;
2593 
2594 	/* for CardBus, power on the socket */
2595 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2596 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2597 			printf("%s: could not enable device\n",
2598 			    sc->sc_dev.dv_xname);
2599 			return EIO;
2600 		}
2601 		sc->sc_flags |= RT2560_ENABLED;
2602 	}
2603 
2604 	rt2560_stop(ifp, 0);
2605 
2606 	/* setup tx rings */
2607 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2608 	      RT2560_ATIM_RING_COUNT << 16 |
2609 	      RT2560_TX_RING_COUNT   <<  8 |
2610 	      RT2560_TX_DESC_SIZE;
2611 
2612 	/* rings _must_ be initialized in this _exact_ order! */
2613 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2614 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2615 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2616 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2617 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2618 
2619 	/* setup rx ring */
2620 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2621 
2622 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2623 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2624 
2625 	/* initialize MAC registers to default values */
2626 	for (i = 0; i < nitems(rt2560_def_mac); i++)
2627 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2628 
2629 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2630 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2631 
2632 	/* set basic rate set (will be updated later) */
2633 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2634 
2635 	rt2560_set_slottime(sc);
2636 	rt2560_update_plcp(sc);
2637 	rt2560_update_led(sc, 0, 0);
2638 
2639 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2640 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2641 
2642 	if (rt2560_bbp_init(sc) != 0) {
2643 		rt2560_stop(ifp, 1);
2644 		return EIO;
2645 	}
2646 
2647 	rt2560_set_txantenna(sc, 1);
2648 	rt2560_set_rxantenna(sc, 1);
2649 
2650 	/* set default BSS channel */
2651 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2652 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2653 
2654 	/* kick Rx */
2655 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2656 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2657 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2658 #ifndef IEEE80211_STA_ONLY
2659 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2660 #endif
2661 			tmp |= RT2560_DROP_TODS;
2662 		if (!(ifp->if_flags & IFF_PROMISC))
2663 			tmp |= RT2560_DROP_NOT_TO_ME;
2664 	}
2665 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2666 
2667 	/* clear old FCS and Rx FIFO errors */
2668 	RAL_READ(sc, RT2560_CNT0);
2669 	RAL_READ(sc, RT2560_CNT4);
2670 
2671 	/* clear any pending interrupts */
2672 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2673 
2674 	/* enable interrupts */
2675 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2676 
2677 	ifp->if_flags |= IFF_RUNNING;
2678 	ifq_clr_oactive(&ifp->if_snd);
2679 
2680 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2681 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2682 	else
2683 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2684 
2685 	return 0;
2686 }
2687 
2688 void
2689 rt2560_stop(struct ifnet *ifp, int disable)
2690 {
2691 	struct rt2560_softc *sc = ifp->if_softc;
2692 	struct ieee80211com *ic = &sc->sc_ic;
2693 
2694 	sc->sc_tx_timer = 0;
2695 	sc->sc_flags &= ~(RT2560_PRIO_OACTIVE|RT2560_DATA_OACTIVE);
2696 	ifp->if_timer = 0;
2697 	ifp->if_flags &= ~IFF_RUNNING;
2698 	ifq_clr_oactive(&ifp->if_snd);
2699 
2700 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2701 
2702 	/* abort Tx */
2703 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2704 
2705 	/* disable Rx */
2706 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2707 
2708 	/* reset ASIC (and thus, BBP) */
2709 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2710 	RAL_WRITE(sc, RT2560_CSR1, 0);
2711 
2712 	/* disable interrupts */
2713 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2714 
2715 	/* clear any pending interrupt */
2716 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2717 
2718 	/* reset Tx and Rx rings */
2719 	rt2560_reset_tx_ring(sc, &sc->txq);
2720 	rt2560_reset_tx_ring(sc, &sc->atimq);
2721 	rt2560_reset_tx_ring(sc, &sc->prioq);
2722 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2723 	rt2560_reset_rx_ring(sc, &sc->rxq);
2724 
2725 	/* for CardBus, power down the socket */
2726 	if (disable && sc->sc_disable != NULL) {
2727 		if (sc->sc_flags & RT2560_ENABLED) {
2728 			(*sc->sc_disable)(sc);
2729 			sc->sc_flags &= ~RT2560_ENABLED;
2730 		}
2731 	}
2732 }
2733 
2734 struct cfdriver ral_cd = {
2735 	NULL, "ral", DV_IFNET
2736 };
2737