xref: /openbsd/sys/dev/ic/rt2560.c (revision cecf84d4)
1 /*	$OpenBSD: rt2560.c,v 1.71 2015/03/14 03:38:47 jsg Exp $  */
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2560 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #if NBPFILTER > 0
43 #include <net/bpf.h>
44 #endif
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/if_ether.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_amrr.h>
55 #include <net80211/ieee80211_radiotap.h>
56 
57 #include <dev/ic/rt2560reg.h>
58 #include <dev/ic/rt2560var.h>
59 
60 #ifdef RAL_DEBUG
61 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
62 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
63 int rt2560_debug = 1;
64 #else
65 #define DPRINTF(x)
66 #define DPRINTFN(n, x)
67 #endif
68 
69 int		rt2560_alloc_tx_ring(struct rt2560_softc *,
70 		    struct rt2560_tx_ring *, int);
71 void		rt2560_reset_tx_ring(struct rt2560_softc *,
72 		    struct rt2560_tx_ring *);
73 void		rt2560_free_tx_ring(struct rt2560_softc *,
74 		    struct rt2560_tx_ring *);
75 int		rt2560_alloc_rx_ring(struct rt2560_softc *,
76 		    struct rt2560_rx_ring *, int);
77 void		rt2560_reset_rx_ring(struct rt2560_softc *,
78 		    struct rt2560_rx_ring *);
79 void		rt2560_free_rx_ring(struct rt2560_softc *,
80 		    struct rt2560_rx_ring *);
81 struct		ieee80211_node *rt2560_node_alloc(struct ieee80211com *);
82 int		rt2560_media_change(struct ifnet *);
83 void		rt2560_next_scan(void *);
84 void		rt2560_iter_func(void *, struct ieee80211_node *);
85 void		rt2560_amrr_timeout(void *);
86 void		rt2560_newassoc(struct ieee80211com *, struct ieee80211_node *,
87 		    int);
88 int		rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
89 		    int);
90 uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
91 void		rt2560_encryption_intr(struct rt2560_softc *);
92 void		rt2560_tx_intr(struct rt2560_softc *);
93 void		rt2560_prio_intr(struct rt2560_softc *);
94 void		rt2560_decryption_intr(struct rt2560_softc *);
95 void		rt2560_rx_intr(struct rt2560_softc *);
96 #ifndef IEEE80211_STA_ONLY
97 void		rt2560_beacon_expire(struct rt2560_softc *);
98 #endif
99 void		rt2560_wakeup_expire(struct rt2560_softc *);
100 #if NBPFILTER > 0
101 uint8_t		rt2560_rxrate(const struct rt2560_rx_desc *);
102 #endif
103 int		rt2560_ack_rate(struct ieee80211com *, int);
104 uint16_t	rt2560_txtime(int, int, uint32_t);
105 uint8_t		rt2560_plcp_signal(int);
106 void		rt2560_setup_tx_desc(struct rt2560_softc *,
107 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
108 		    bus_addr_t);
109 #ifndef IEEE80211_STA_ONLY
110 int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
111 		    struct ieee80211_node *);
112 #endif
113 int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
114 		    struct ieee80211_node *);
115 int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 		    struct ieee80211_node *);
117 void		rt2560_start(struct ifnet *);
118 void		rt2560_watchdog(struct ifnet *);
119 int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
120 void		rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
121 uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
122 void		rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
123 void		rt2560_set_chan(struct rt2560_softc *,
124 		    struct ieee80211_channel *);
125 void		rt2560_disable_rf_tune(struct rt2560_softc *);
126 void		rt2560_enable_tsf_sync(struct rt2560_softc *);
127 void		rt2560_update_plcp(struct rt2560_softc *);
128 void		rt2560_updateslot(struct ieee80211com *);
129 void		rt2560_set_slottime(struct rt2560_softc *);
130 void		rt2560_set_basicrates(struct rt2560_softc *);
131 void		rt2560_update_led(struct rt2560_softc *, int, int);
132 void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 void		rt2560_update_promisc(struct rt2560_softc *);
136 void		rt2560_set_txantenna(struct rt2560_softc *, int);
137 void		rt2560_set_rxantenna(struct rt2560_softc *, int);
138 const char	*rt2560_get_rf(int);
139 void		rt2560_read_eeprom(struct rt2560_softc *);
140 int		rt2560_bbp_init(struct rt2560_softc *);
141 int		rt2560_init(struct ifnet *);
142 void		rt2560_stop(struct ifnet *, int);
143 
144 static const struct {
145 	uint32_t	reg;
146 	uint32_t	val;
147 } rt2560_def_mac[] = {
148 	RT2560_DEF_MAC
149 };
150 
151 static const struct {
152 	uint8_t	reg;
153 	uint8_t	val;
154 } rt2560_def_bbp[] = {
155 	RT2560_DEF_BBP
156 };
157 
158 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
159 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
160 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
161 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
162 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
163 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
164 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
165 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
166 
167 int
168 rt2560_attach(void *xsc, int id)
169 {
170 	struct rt2560_softc *sc = xsc;
171 	struct ieee80211com *ic = &sc->sc_ic;
172 	struct ifnet *ifp = &ic->ic_if;
173 	int error, i;
174 
175 	sc->amrr.amrr_min_success_threshold =  1;
176 	sc->amrr.amrr_max_success_threshold = 15;
177 	timeout_set(&sc->amrr_to, rt2560_amrr_timeout, sc);
178 	timeout_set(&sc->scan_to, rt2560_next_scan, sc);
179 
180 	/* retrieve RT2560 rev. no */
181 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
182 
183 	/* retrieve MAC address */
184 	rt2560_get_macaddr(sc, ic->ic_myaddr);
185 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
186 
187 	/* retrieve RF rev. no and various other things from EEPROM */
188 	rt2560_read_eeprom(sc);
189 
190 	printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname,
191 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
192 
193 	/*
194 	 * Allocate Tx and Rx rings.
195 	 */
196 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
197 	if (error != 0) {
198 		printf("%s: could not allocate Tx ring\n",
199 		    sc->sc_dev.dv_xname);
200 		goto fail1;
201 	}
202 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
203 	if (error != 0) {
204 		printf("%s: could not allocate ATIM ring\n",
205 		    sc->sc_dev.dv_xname);
206 		goto fail2;
207 	}
208 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
209 	if (error != 0) {
210 		printf("%s: could not allocate Prio ring\n",
211 		    sc->sc_dev.dv_xname);
212 		goto fail3;
213 	}
214 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
215 	if (error != 0) {
216 		printf("%s: could not allocate Beacon ring\n",
217 		    sc->sc_dev.dv_xname);
218 		goto fail4;
219 	}
220 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
221 	if (error != 0) {
222 		printf("%s: could not allocate Rx ring\n",
223 		    sc->sc_dev.dv_xname);
224 		goto fail5;
225 	}
226 
227 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
228 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
229 	ic->ic_state = IEEE80211_S_INIT;
230 
231 	/* set device capabilities */
232 	ic->ic_caps =
233 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
234 #ifndef IEEE80211_STA_ONLY
235 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
236 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
237 #endif
238 	    IEEE80211_C_TXPMGT |	/* tx power management */
239 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
240 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
241 	    IEEE80211_C_WEP |		/* s/w WEP */
242 	    IEEE80211_C_RSN;		/* WPA/RSN */
243 
244 	/* set supported .11b and .11g rates */
245 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
246 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
247 
248 	/* set supported .11b and .11g channels (1 through 14) */
249 	for (i = 1; i <= 14; i++) {
250 		ic->ic_channels[i].ic_freq =
251 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
252 		ic->ic_channels[i].ic_flags =
253 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
254 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
255 	}
256 
257 	ifp->if_softc = sc;
258 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
259 	ifp->if_ioctl = rt2560_ioctl;
260 	ifp->if_start = rt2560_start;
261 	ifp->if_watchdog = rt2560_watchdog;
262 	IFQ_SET_READY(&ifp->if_snd);
263 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
264 
265 	if_attach(ifp);
266 	ieee80211_ifattach(ifp);
267 	ic->ic_node_alloc = rt2560_node_alloc;
268 	ic->ic_newassoc = rt2560_newassoc;
269 	ic->ic_updateslot = rt2560_updateslot;
270 
271 	/* override state transition machine */
272 	sc->sc_newstate = ic->ic_newstate;
273 	ic->ic_newstate = rt2560_newstate;
274 	ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status);
275 
276 #if NBPFILTER > 0
277 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
278 	    sizeof (struct ieee80211_frame) + 64);
279 
280 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
281 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
282 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
283 
284 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
285 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
286 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
287 #endif
288 	return 0;
289 
290 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
291 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
292 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
293 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
294 fail1:	return ENXIO;
295 }
296 
297 int
298 rt2560_detach(void *xsc)
299 {
300 	struct rt2560_softc *sc = xsc;
301 	struct ifnet *ifp = &sc->sc_ic.ic_if;
302 
303 	timeout_del(&sc->scan_to);
304 	timeout_del(&sc->amrr_to);
305 
306 	ieee80211_ifdetach(ifp);	/* free all nodes */
307 	if_detach(ifp);
308 
309 	rt2560_free_tx_ring(sc, &sc->txq);
310 	rt2560_free_tx_ring(sc, &sc->atimq);
311 	rt2560_free_tx_ring(sc, &sc->prioq);
312 	rt2560_free_tx_ring(sc, &sc->bcnq);
313 	rt2560_free_rx_ring(sc, &sc->rxq);
314 
315 	return 0;
316 }
317 
318 void
319 rt2560_suspend(void *xsc)
320 {
321 	struct rt2560_softc *sc = xsc;
322 	struct ifnet *ifp = &sc->sc_ic.ic_if;
323 
324 	if (ifp->if_flags & IFF_RUNNING)
325 		rt2560_stop(ifp, 1);
326 }
327 
328 void
329 rt2560_wakeup(void *xsc)
330 {
331 	struct rt2560_softc *sc = xsc;
332 	struct ifnet *ifp = &sc->sc_ic.ic_if;
333 
334 	if (ifp->if_flags & IFF_UP)
335 		rt2560_init(ifp);
336 }
337 
338 int
339 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
340     int count)
341 {
342 	int i, nsegs, error;
343 
344 	ring->count = count;
345 	ring->queued = 0;
346 	ring->cur = ring->next = 0;
347 	ring->cur_encrypt = ring->next_encrypt = 0;
348 
349 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
350 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
351 	if (error != 0) {
352 		printf("%s: could not create desc DMA map\n",
353 		    sc->sc_dev.dv_xname);
354 		goto fail;
355 	}
356 
357 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
358 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
359 	if (error != 0) {
360 		printf("%s: could not allocate DMA memory\n",
361 		    sc->sc_dev.dv_xname);
362 		goto fail;
363 	}
364 
365 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
366 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
367 	    BUS_DMA_NOWAIT);
368 	if (error != 0) {
369 		printf("%s: can't map desc DMA memory\n",
370 		    sc->sc_dev.dv_xname);
371 		goto fail;
372 	}
373 
374 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
375 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
376 	if (error != 0) {
377 		printf("%s: could not load desc DMA map\n",
378 		    sc->sc_dev.dv_xname);
379 		goto fail;
380 	}
381 
382 	ring->physaddr = ring->map->dm_segs->ds_addr;
383 
384 	ring->data = mallocarray(count, sizeof (struct rt2560_tx_data),
385 	    M_DEVBUF, M_NOWAIT | M_ZERO);
386 	if (ring->data == NULL) {
387 		printf("%s: could not allocate soft data\n",
388 		    sc->sc_dev.dv_xname);
389 		error = ENOMEM;
390 		goto fail;
391 	}
392 
393 	for (i = 0; i < count; i++) {
394 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
395 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
396 		    &ring->data[i].map);
397 		if (error != 0) {
398 			printf("%s: could not create DMA map\n",
399 			    sc->sc_dev.dv_xname);
400 			goto fail;
401 		}
402 	}
403 
404 	return 0;
405 
406 fail:	rt2560_free_tx_ring(sc, ring);
407 	return error;
408 }
409 
410 void
411 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
412 {
413 	int i;
414 
415 	for (i = 0; i < ring->count; i++) {
416 		struct rt2560_tx_desc *desc = &ring->desc[i];
417 		struct rt2560_tx_data *data = &ring->data[i];
418 
419 		if (data->m != NULL) {
420 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
421 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
422 			bus_dmamap_unload(sc->sc_dmat, data->map);
423 			m_freem(data->m);
424 			data->m = NULL;
425 		}
426 
427 		/*
428 		 * The node has already been freed at that point so don't call
429 		 * ieee80211_release_node() here.
430 		 */
431 		data->ni = NULL;
432 
433 		desc->flags = 0;
434 	}
435 
436 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
437 	    BUS_DMASYNC_PREWRITE);
438 
439 	ring->queued = 0;
440 	ring->cur = ring->next = 0;
441 	ring->cur_encrypt = ring->next_encrypt = 0;
442 }
443 
444 void
445 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
446 {
447 	int i;
448 
449 	if (ring->desc != NULL) {
450 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
451 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
452 		bus_dmamap_unload(sc->sc_dmat, ring->map);
453 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
454 		    ring->count * RT2560_TX_DESC_SIZE);
455 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
456 	}
457 
458 	if (ring->data != NULL) {
459 		for (i = 0; i < ring->count; i++) {
460 			struct rt2560_tx_data *data = &ring->data[i];
461 
462 			if (data->m != NULL) {
463 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
464 				    data->map->dm_mapsize,
465 				    BUS_DMASYNC_POSTWRITE);
466 				bus_dmamap_unload(sc->sc_dmat, data->map);
467 				m_freem(data->m);
468 			}
469 
470 			/*
471 			 * The node has already been freed at that point so
472 			 * don't call ieee80211_release_node() here.
473 			 */
474 			data->ni = NULL;
475 
476 			if (data->map != NULL)
477 				bus_dmamap_destroy(sc->sc_dmat, data->map);
478 		}
479 		free(ring->data, M_DEVBUF, 0);
480 	}
481 }
482 
483 int
484 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
485     int count)
486 {
487 	int i, nsegs, error;
488 
489 	ring->count = count;
490 	ring->cur = ring->next = 0;
491 	ring->cur_decrypt = 0;
492 
493 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
494 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
495 	if (error != 0) {
496 		printf("%s: could not create desc DMA map\n",
497 		    sc->sc_dev.dv_xname);
498 		goto fail;
499 	}
500 
501 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
502 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
503 	if (error != 0) {
504 		printf("%s: could not allocate DMA memory\n",
505 		    sc->sc_dev.dv_xname);
506 		goto fail;
507 	}
508 
509 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
510 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
511 	    BUS_DMA_NOWAIT);
512 	if (error != 0) {
513 		printf("%s: can't map desc DMA memory\n",
514 		    sc->sc_dev.dv_xname);
515 		goto fail;
516 	}
517 
518 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
519 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
520 	if (error != 0) {
521 		printf("%s: could not load desc DMA map\n",
522 		    sc->sc_dev.dv_xname);
523 		goto fail;
524 	}
525 
526 	ring->physaddr = ring->map->dm_segs->ds_addr;
527 
528 	ring->data = mallocarray(count, sizeof (struct rt2560_rx_data),
529 	    M_DEVBUF, M_NOWAIT | M_ZERO);
530 	if (ring->data == NULL) {
531 		printf("%s: could not allocate soft data\n",
532 		    sc->sc_dev.dv_xname);
533 		error = ENOMEM;
534 		goto fail;
535 	}
536 
537 	/*
538 	 * Pre-allocate Rx buffers and populate Rx ring.
539 	 */
540 	for (i = 0; i < count; i++) {
541 		struct rt2560_rx_desc *desc = &sc->rxq.desc[i];
542 		struct rt2560_rx_data *data = &sc->rxq.data[i];
543 
544 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
545 		    0, BUS_DMA_NOWAIT, &data->map);
546 		if (error != 0) {
547 			printf("%s: could not create DMA map\n",
548 			    sc->sc_dev.dv_xname);
549 			goto fail;
550 		}
551 
552 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
553 		if (data->m == NULL) {
554 			printf("%s: could not allocate rx mbuf\n",
555 			    sc->sc_dev.dv_xname);
556 			error = ENOMEM;
557 			goto fail;
558 		}
559 		MCLGET(data->m, M_DONTWAIT);
560 		if (!(data->m->m_flags & M_EXT)) {
561 			printf("%s: could not allocate rx mbuf cluster\n",
562 			    sc->sc_dev.dv_xname);
563 			error = ENOMEM;
564 			goto fail;
565 		}
566 
567 		error = bus_dmamap_load(sc->sc_dmat, data->map,
568 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
569 		if (error != 0) {
570 			printf("%s: could not load rx buf DMA map",
571 			    sc->sc_dev.dv_xname);
572 			goto fail;
573 		}
574 
575 		desc->flags = htole32(RT2560_RX_BUSY);
576 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
577 	}
578 
579 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
580 	    BUS_DMASYNC_PREWRITE);
581 
582 	return 0;
583 
584 fail:	rt2560_free_rx_ring(sc, ring);
585 	return error;
586 }
587 
588 void
589 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
590 {
591 	int i;
592 
593 	for (i = 0; i < ring->count; i++) {
594 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
595 		ring->data[i].drop = 0;
596 	}
597 
598 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
599 	    BUS_DMASYNC_PREWRITE);
600 
601 	ring->cur = ring->next = 0;
602 	ring->cur_decrypt = 0;
603 }
604 
605 void
606 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
607 {
608 	int i;
609 
610 	if (ring->desc != NULL) {
611 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
612 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
613 		bus_dmamap_unload(sc->sc_dmat, ring->map);
614 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
615 		    ring->count * RT2560_RX_DESC_SIZE);
616 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
617 	}
618 
619 	if (ring->data != NULL) {
620 		for (i = 0; i < ring->count; i++) {
621 			struct rt2560_rx_data *data = &ring->data[i];
622 
623 			if (data->m != NULL) {
624 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
625 				    data->map->dm_mapsize,
626 				    BUS_DMASYNC_POSTREAD);
627 				bus_dmamap_unload(sc->sc_dmat, data->map);
628 				m_freem(data->m);
629 			}
630 
631 			if (data->map != NULL)
632 				bus_dmamap_destroy(sc->sc_dmat, data->map);
633 		}
634 		free(ring->data, M_DEVBUF, 0);
635 	}
636 }
637 
638 struct ieee80211_node *
639 rt2560_node_alloc(struct ieee80211com *ic)
640 {
641 	return malloc(sizeof (struct rt2560_node), M_DEVBUF,
642 	    M_NOWAIT | M_ZERO);
643 }
644 
645 int
646 rt2560_media_change(struct ifnet *ifp)
647 {
648 	int error;
649 
650 	error = ieee80211_media_change(ifp);
651 	if (error != ENETRESET)
652 		return error;
653 
654 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
655 		rt2560_init(ifp);
656 
657 	return 0;
658 }
659 
660 /*
661  * This function is called periodically (every 200ms) during scanning to
662  * switch from one channel to another.
663  */
664 void
665 rt2560_next_scan(void *arg)
666 {
667 	struct rt2560_softc *sc = arg;
668 	struct ieee80211com *ic = &sc->sc_ic;
669 	struct ifnet *ifp = &ic->ic_if;
670 	int s;
671 
672 	s = splnet();
673 	if (ic->ic_state == IEEE80211_S_SCAN)
674 		ieee80211_next_scan(ifp);
675 	splx(s);
676 }
677 
678 /*
679  * This function is called for each neighbor node.
680  */
681 void
682 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
683 {
684 	struct rt2560_softc *sc = arg;
685 	struct rt2560_node *rn = (struct rt2560_node *)ni;
686 
687 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
688 }
689 
690 void
691 rt2560_amrr_timeout(void *arg)
692 {
693 	struct rt2560_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 	int s;
696 
697 	s = splnet();
698 	if (ic->ic_opmode == IEEE80211_M_STA)
699 		rt2560_iter_func(sc, ic->ic_bss);
700 #ifndef IEEE80211_STA_ONLY
701 	else
702 		ieee80211_iterate_nodes(ic, rt2560_iter_func, sc);
703 #endif
704 	splx(s);
705 
706 	timeout_add_msec(&sc->amrr_to, 500);
707 }
708 
709 void
710 rt2560_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
711 {
712 	struct rt2560_softc *sc = ic->ic_softc;
713 	int i;
714 
715 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2560_node *)ni)->amn);
716 
717 	/* set rate to some reasonable initial value */
718 	for (i = ni->ni_rates.rs_nrates - 1;
719 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
720 	     i--);
721 	ni->ni_txrate = i;
722 }
723 
724 int
725 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
726 {
727 	struct rt2560_softc *sc = ic->ic_if.if_softc;
728 	enum ieee80211_state ostate;
729 	struct ieee80211_node *ni;
730 	int error = 0;
731 
732 	ostate = ic->ic_state;
733 	timeout_del(&sc->scan_to);
734 	timeout_del(&sc->amrr_to);
735 
736 	switch (nstate) {
737 	case IEEE80211_S_INIT:
738 		if (ostate == IEEE80211_S_RUN) {
739 			/* abort TSF synchronization */
740 			RAL_WRITE(sc, RT2560_CSR14, 0);
741 
742 			/* turn association led off */
743 			rt2560_update_led(sc, 0, 0);
744 		}
745 		break;
746 
747 	case IEEE80211_S_SCAN:
748 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
749 		timeout_add_msec(&sc->scan_to, 200);
750 		break;
751 
752 	case IEEE80211_S_AUTH:
753 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
754 		break;
755 
756 	case IEEE80211_S_ASSOC:
757 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
758 		break;
759 
760 	case IEEE80211_S_RUN:
761 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
762 
763 		ni = ic->ic_bss;
764 
765 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
766 			rt2560_update_plcp(sc);
767 			rt2560_set_slottime(sc);
768 			rt2560_set_basicrates(sc);
769 			rt2560_set_bssid(sc, ni->ni_bssid);
770 		}
771 
772 #ifndef IEEE80211_STA_ONLY
773 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
774 		    ic->ic_opmode == IEEE80211_M_IBSS) {
775 			struct mbuf *m = ieee80211_beacon_alloc(ic, ni);
776 			if (m == NULL) {
777 				printf("%s: could not allocate beacon\n",
778 				    sc->sc_dev.dv_xname);
779 				error = ENOBUFS;
780 				break;
781 			}
782 
783 			error = rt2560_tx_bcn(sc, m, ni);
784 			if (error != 0)
785 				break;
786 		}
787 #endif
788 
789 		/* turn assocation led on */
790 		rt2560_update_led(sc, 1, 0);
791 
792 		if (ic->ic_opmode == IEEE80211_M_STA) {
793 			/* fake a join to init the tx rate */
794 			rt2560_newassoc(ic, ni, 1);
795 		}
796 
797 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
798 			/* start automatic rate control timer */
799 			if (ic->ic_fixed_rate == -1)
800 				timeout_add_msec(&sc->amrr_to, 500);
801 
802 			rt2560_enable_tsf_sync(sc);
803 		}
804 		break;
805 	}
806 
807 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
808 }
809 
810 /*
811  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
812  * 93C66).
813  */
814 uint16_t
815 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
816 {
817 	uint32_t tmp;
818 	uint16_t val;
819 	int n;
820 
821 	/* clock C once before the first command */
822 	RT2560_EEPROM_CTL(sc, 0);
823 
824 	RT2560_EEPROM_CTL(sc, RT2560_S);
825 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
826 	RT2560_EEPROM_CTL(sc, RT2560_S);
827 
828 	/* write start bit (1) */
829 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
830 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
831 
832 	/* write READ opcode (10) */
833 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
834 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
835 	RT2560_EEPROM_CTL(sc, RT2560_S);
836 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
837 
838 	/* write address (A5-A0 or A7-A0) */
839 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
840 	for (; n >= 0; n--) {
841 		RT2560_EEPROM_CTL(sc, RT2560_S |
842 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
843 		RT2560_EEPROM_CTL(sc, RT2560_S |
844 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
845 	}
846 
847 	RT2560_EEPROM_CTL(sc, RT2560_S);
848 
849 	/* read data Q15-Q0 */
850 	val = 0;
851 	for (n = 15; n >= 0; n--) {
852 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
853 		tmp = RAL_READ(sc, RT2560_CSR21);
854 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
855 		RT2560_EEPROM_CTL(sc, RT2560_S);
856 	}
857 
858 	RT2560_EEPROM_CTL(sc, 0);
859 
860 	/* clear Chip Select and clock C */
861 	RT2560_EEPROM_CTL(sc, RT2560_S);
862 	RT2560_EEPROM_CTL(sc, 0);
863 	RT2560_EEPROM_CTL(sc, RT2560_C);
864 
865 	return val;
866 }
867 
868 /*
869  * Some frames were processed by the hardware cipher engine and are ready for
870  * transmission.
871  */
872 void
873 rt2560_encryption_intr(struct rt2560_softc *sc)
874 {
875 	int hw;
876 
877 	/* retrieve last descriptor index processed by cipher engine */
878 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
879 	    RT2560_TX_DESC_SIZE;
880 
881 	for (; sc->txq.next_encrypt != hw;) {
882 		struct rt2560_tx_desc *desc =
883 		    &sc->txq.desc[sc->txq.next_encrypt];
884 
885 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
886 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
887 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
888 
889 		if (letoh32(desc->flags) &
890 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
891 			break;
892 
893 		/* for TKIP, swap eiv field to fix a bug in ASIC */
894 		if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) ==
895 		    RT2560_TX_CIPHER_TKIP)
896 			desc->eiv = swap32(desc->eiv);
897 
898 		/* mark the frame ready for transmission */
899 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
900 
901 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
902 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
903 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
904 
905 		DPRINTFN(15, ("encryption done idx=%u\n",
906 		    sc->txq.next_encrypt));
907 
908 		sc->txq.next_encrypt =
909 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
910 	}
911 
912 	/* kick Tx */
913 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
914 }
915 
916 void
917 rt2560_tx_intr(struct rt2560_softc *sc)
918 {
919 	struct ieee80211com *ic = &sc->sc_ic;
920 	struct ifnet *ifp = &ic->ic_if;
921 
922 	for (;;) {
923 		struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next];
924 		struct rt2560_tx_data *data = &sc->txq.data[sc->txq.next];
925 		struct rt2560_node *rn;
926 
927 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
928 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
929 		    BUS_DMASYNC_POSTREAD);
930 
931 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
932 		    (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
933 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
934 			break;
935 
936 		rn = (struct rt2560_node *)data->ni;
937 
938 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
939 		case RT2560_TX_SUCCESS:
940 			DPRINTFN(10, ("data frame sent successfully\n"));
941 			rn->amn.amn_txcnt++;
942 			ifp->if_opackets++;
943 			break;
944 
945 		case RT2560_TX_SUCCESS_RETRY:
946 			DPRINTFN(9, ("data frame sent after %u retries\n",
947 			    (letoh32(desc->flags) >> 5) & 0x7));
948 			rn->amn.amn_txcnt++;
949 			rn->amn.amn_retrycnt++;
950 			ifp->if_opackets++;
951 			break;
952 
953 		case RT2560_TX_FAIL_RETRY:
954 			DPRINTFN(9, ("sending data frame failed (too much "
955 			    "retries)\n"));
956 			rn->amn.amn_txcnt++;
957 			rn->amn.amn_retrycnt++;
958 			ifp->if_oerrors++;
959 			break;
960 
961 		case RT2560_TX_FAIL_INVALID:
962 		case RT2560_TX_FAIL_OTHER:
963 		default:
964 			printf("%s: sending data frame failed 0x%08x\n",
965 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
966 			ifp->if_oerrors++;
967 		}
968 
969 		/* descriptor is no longer valid */
970 		desc->flags &= ~htole32(RT2560_TX_VALID);
971 
972 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
973 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
974 		    BUS_DMASYNC_PREWRITE);
975 
976 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
977 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
978 		bus_dmamap_unload(sc->sc_dmat, data->map);
979 		m_freem(data->m);
980 		data->m = NULL;
981 		ieee80211_release_node(ic, data->ni);
982 		data->ni = NULL;
983 
984 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
985 
986 		sc->txq.queued--;
987 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
988 	}
989 
990 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
991 		sc->sc_tx_timer = 0;
992 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
993 		sc->sc_flags &= ~RT2560_DATA_OACTIVE;
994 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
995 			ifp->if_flags &= ~IFF_OACTIVE;
996 		rt2560_start(ifp);
997 	}
998 }
999 
1000 void
1001 rt2560_prio_intr(struct rt2560_softc *sc)
1002 {
1003 	struct ieee80211com *ic = &sc->sc_ic;
1004 	struct ifnet *ifp = &ic->ic_if;
1005 
1006 	for (;;) {
1007 		struct rt2560_tx_desc *desc = &sc->prioq.desc[sc->prioq.next];
1008 		struct rt2560_tx_data *data = &sc->prioq.data[sc->prioq.next];
1009 
1010 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1011 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1012 		    BUS_DMASYNC_POSTREAD);
1013 
1014 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1015 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1016 			break;
1017 
1018 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1019 		case RT2560_TX_SUCCESS:
1020 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1021 			break;
1022 
1023 		case RT2560_TX_SUCCESS_RETRY:
1024 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1025 			    (letoh32(desc->flags) >> 5) & 0x7));
1026 			break;
1027 
1028 		case RT2560_TX_FAIL_RETRY:
1029 			DPRINTFN(9, ("sending mgt frame failed (too much "
1030 			    "retries)\n"));
1031 			break;
1032 
1033 		case RT2560_TX_FAIL_INVALID:
1034 		case RT2560_TX_FAIL_OTHER:
1035 		default:
1036 			printf("%s: sending mgt frame failed 0x%08x\n",
1037 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1038 		}
1039 
1040 		/* descriptor is no longer valid */
1041 		desc->flags &= ~htole32(RT2560_TX_VALID);
1042 
1043 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1044 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1045 		    BUS_DMASYNC_PREWRITE);
1046 
1047 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1048 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1049 		bus_dmamap_unload(sc->sc_dmat, data->map);
1050 		m_freem(data->m);
1051 		data->m = NULL;
1052 		ieee80211_release_node(ic, data->ni);
1053 		data->ni = NULL;
1054 
1055 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1056 
1057 		sc->prioq.queued--;
1058 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1059 	}
1060 
1061 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
1062 		sc->sc_tx_timer = 0;
1063 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
1064 		sc->sc_flags &= ~RT2560_PRIO_OACTIVE;
1065 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
1066 			ifp->if_flags &= ~IFF_OACTIVE;
1067 		rt2560_start(ifp);
1068 	}
1069 }
1070 
1071 /*
1072  * Some frames were processed by the hardware cipher engine and are ready for
1073  * transmission to the IEEE802.11 layer.
1074  */
1075 void
1076 rt2560_decryption_intr(struct rt2560_softc *sc)
1077 {
1078 	struct ieee80211com *ic = &sc->sc_ic;
1079 	struct ifnet *ifp = &ic->ic_if;
1080 	struct ieee80211_frame *wh;
1081 	struct ieee80211_rxinfo rxi;
1082 	struct ieee80211_node *ni;
1083 	struct mbuf *mnew, *m;
1084 	int hw, error;
1085 
1086 	/* retrieve last decriptor index processed by cipher engine */
1087 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1088 	    RT2560_RX_DESC_SIZE;
1089 
1090 	for (; sc->rxq.cur_decrypt != hw;) {
1091 		struct rt2560_rx_desc *desc =
1092 		    &sc->rxq.desc[sc->rxq.cur_decrypt];
1093 		struct rt2560_rx_data *data =
1094 		    &sc->rxq.data[sc->rxq.cur_decrypt];
1095 
1096 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1097 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1098 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1099 
1100 		if (letoh32(desc->flags) &
1101 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1102 			break;
1103 
1104 		if (data->drop) {
1105 			ifp->if_ierrors++;
1106 			goto skip;
1107 		}
1108 
1109 		if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1110 		    (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) {
1111 			ifp->if_ierrors++;
1112 			goto skip;
1113 		}
1114 
1115 		/*
1116 		 * Try to allocate a new mbuf for this ring element and load it
1117 		 * before processing the current mbuf.  If the ring element
1118 		 * cannot be loaded, drop the received packet and reuse the old
1119 		 * mbuf.  In the unlikely case that the old mbuf can't be
1120 		 * reloaded either, explicitly panic.
1121 		 */
1122 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1123 		if (mnew == NULL) {
1124 			ifp->if_ierrors++;
1125 			goto skip;
1126 		}
1127 		MCLGET(mnew, M_DONTWAIT);
1128 		if (!(mnew->m_flags & M_EXT)) {
1129 			m_freem(mnew);
1130 			ifp->if_ierrors++;
1131 			goto skip;
1132 		}
1133 
1134 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1135 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1136 		bus_dmamap_unload(sc->sc_dmat, data->map);
1137 
1138 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1139 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1140 		if (error != 0) {
1141 			m_freem(mnew);
1142 
1143 			/* try to reload the old mbuf */
1144 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1145 			    mtod(data->m, void *), MCLBYTES, NULL,
1146 			    BUS_DMA_NOWAIT);
1147 			if (error != 0) {
1148 				/* very unlikely that it will fail... */
1149 				panic("%s: could not load old rx mbuf",
1150 				    sc->sc_dev.dv_xname);
1151 			}
1152 			/* physical address may have changed */
1153 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1154 			ifp->if_ierrors++;
1155 			goto skip;
1156 		}
1157 
1158 		/*
1159 		 * New mbuf successfully loaded, update Rx ring and continue
1160 		 * processing.
1161 		 */
1162 		m = data->m;
1163 		data->m = mnew;
1164 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1165 
1166 		/* finalize mbuf */
1167 		m->m_pkthdr.len = m->m_len =
1168 		    (letoh32(desc->flags) >> 16) & 0xfff;
1169 
1170 #if NBPFILTER > 0
1171 		if (sc->sc_drvbpf != NULL) {
1172 			struct mbuf mb;
1173 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1174 			uint32_t tsf_lo, tsf_hi;
1175 
1176 			/* get timestamp (low and high 32 bits) */
1177 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1178 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1179 
1180 			tap->wr_tsf =
1181 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1182 			tap->wr_flags = 0;
1183 			tap->wr_rate = rt2560_rxrate(desc);
1184 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1185 			tap->wr_chan_flags =
1186 			    htole16(ic->ic_ibss_chan->ic_flags);
1187 			tap->wr_antenna = sc->rx_ant;
1188 			tap->wr_antsignal = desc->rssi;
1189 
1190 			mb.m_data = (caddr_t)tap;
1191 			mb.m_len = sc->sc_txtap_len;
1192 			mb.m_next = m;
1193 			mb.m_nextpkt = NULL;
1194 			mb.m_type = 0;
1195 			mb.m_flags = 0;
1196 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1197 		}
1198 #endif
1199 		wh = mtod(m, struct ieee80211_frame *);
1200 		ni = ieee80211_find_rxnode(ic, wh);
1201 
1202 		/* send the frame to the 802.11 layer */
1203 		rxi.rxi_flags = 0;
1204 		rxi.rxi_rssi = desc->rssi;
1205 		rxi.rxi_tstamp = 0;	/* unused */
1206 		ieee80211_input(ifp, m, ni, &rxi);
1207 
1208 		/* node is no longer needed */
1209 		ieee80211_release_node(ic, ni);
1210 
1211 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1212 
1213 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1214 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1215 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1216 
1217 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1218 
1219 		sc->rxq.cur_decrypt =
1220 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1221 	}
1222 }
1223 
1224 /*
1225  * Some frames were received. Pass them to the hardware cipher engine before
1226  * sending them to the 802.11 layer.
1227  */
1228 void
1229 rt2560_rx_intr(struct rt2560_softc *sc)
1230 {
1231 	for (;;) {
1232 		struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1233 		struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1234 
1235 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1236 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1237 		    BUS_DMASYNC_POSTREAD);
1238 
1239 		if (letoh32(desc->flags) &
1240 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1241 			break;
1242 
1243 		data->drop = 0;
1244 
1245 		if (letoh32(desc->flags) &
1246 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1247 			/*
1248 			 * This should not happen since we did not request
1249 			 * to receive those frames when we filled RXCSR0.
1250 			 */
1251 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1252 			    letoh32(desc->flags)));
1253 			data->drop = 1;
1254 		}
1255 
1256 		if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1257 			DPRINTFN(5, ("bad length\n"));
1258 			data->drop = 1;
1259 		}
1260 
1261 		/* mark the frame for decryption */
1262 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1263 
1264 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1265 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1266 		    BUS_DMASYNC_PREWRITE);
1267 
1268 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1269 
1270 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1271 	}
1272 
1273 	/* kick decrypt */
1274 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1275 }
1276 
1277 #ifndef IEEE80211_STA_ONLY
1278 /*
1279  * This function is called in HostAP or IBSS modes when it's time to send a
1280  * new beacon (every ni_intval milliseconds).
1281  */
1282 void
1283 rt2560_beacon_expire(struct rt2560_softc *sc)
1284 {
1285 	struct ieee80211com *ic = &sc->sc_ic;
1286 	struct rt2560_tx_data *data;
1287 
1288 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1289 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1290 		return;
1291 
1292 	data = &sc->bcnq.data[sc->bcnq.next];
1293 
1294 	if (sc->sc_flags & RT2560_UPDATE_SLOT) {
1295 		sc->sc_flags &= ~RT2560_UPDATE_SLOT;
1296 		sc->sc_flags |= RT2560_SET_SLOTTIME;
1297 	} else if (sc->sc_flags & RT2560_SET_SLOTTIME) {
1298 		sc->sc_flags &= ~RT2560_SET_SLOTTIME;
1299 		rt2560_set_slottime(sc);
1300 	}
1301 
1302 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1303 		/* update ERP Information Element */
1304 		*sc->erp = ic->ic_bss->ni_erp;
1305 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1306 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1307 	}
1308 
1309 #if defined(RT2560_DEBUG) && NBPFILTER > 0
1310 	if (ic->ic_rawbpf != NULL)
1311 		bpf_mtap(ic->ic_rawbpf, data->m, BPF_DIRECTION_OUT);
1312 #endif
1313 
1314 	DPRINTFN(15, ("beacon expired\n"));
1315 }
1316 #endif
1317 
1318 void
1319 rt2560_wakeup_expire(struct rt2560_softc *sc)
1320 {
1321 	DPRINTFN(15, ("wakeup expired\n"));
1322 }
1323 
1324 int
1325 rt2560_intr(void *arg)
1326 {
1327 	struct rt2560_softc *sc = arg;
1328 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1329 	uint32_t r;
1330 
1331 	r = RAL_READ(sc, RT2560_CSR7);
1332 	if (__predict_false(r == 0xffffffff))
1333 		return 0;	/* device likely went away */
1334 	if (r == 0)
1335 		return 0;	/* not for us */
1336 
1337 	/* disable interrupts */
1338 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1339 
1340 	/* acknowledge interrupts */
1341 	RAL_WRITE(sc, RT2560_CSR7, r);
1342 
1343 	/* don't re-enable interrupts if we're shutting down */
1344 	if (!(ifp->if_flags & IFF_RUNNING))
1345 		return 0;
1346 
1347 #ifndef IEEE80211_STA_ONLY
1348 	if (r & RT2560_BEACON_EXPIRE)
1349 		rt2560_beacon_expire(sc);
1350 #endif
1351 
1352 	if (r & RT2560_WAKEUP_EXPIRE)
1353 		rt2560_wakeup_expire(sc);
1354 
1355 	if (r & RT2560_ENCRYPTION_DONE)
1356 		rt2560_encryption_intr(sc);
1357 
1358 	if (r & RT2560_TX_DONE)
1359 		rt2560_tx_intr(sc);
1360 
1361 	if (r & RT2560_PRIO_DONE)
1362 		rt2560_prio_intr(sc);
1363 
1364 	if (r & RT2560_DECRYPTION_DONE)
1365 		rt2560_decryption_intr(sc);
1366 
1367 	if (r & RT2560_RX_DONE)
1368 		rt2560_rx_intr(sc);
1369 
1370 	/* re-enable interrupts */
1371 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1372 
1373 	return 1;
1374 }
1375 
1376 /* quickly determine if a given rate is CCK or OFDM */
1377 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1378 
1379 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1380 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1381 
1382 #define RAL_SIFS		10	/* us */
1383 
1384 #define RT2560_RXTX_TURNAROUND	10	/* us */
1385 
1386 /*
1387  * This function is only used by the Rx radiotap code. It returns the rate at
1388  * which a given frame was received.
1389  */
1390 #if NBPFILTER > 0
1391 uint8_t
1392 rt2560_rxrate(const struct rt2560_rx_desc *desc)
1393 {
1394 	if (letoh32(desc->flags) & RT2560_RX_OFDM) {
1395 		/* reverse function of rt2560_plcp_signal */
1396 		switch (desc->rate) {
1397 		case 0xb:	return 12;
1398 		case 0xf:	return 18;
1399 		case 0xa:	return 24;
1400 		case 0xe:	return 36;
1401 		case 0x9:	return 48;
1402 		case 0xd:	return 72;
1403 		case 0x8:	return 96;
1404 		case 0xc:	return 108;
1405 		}
1406 	} else {
1407 		if (desc->rate == 10)
1408 			return 2;
1409 		if (desc->rate == 20)
1410 			return 4;
1411 		if (desc->rate == 55)
1412 			return 11;
1413 		if (desc->rate == 110)
1414 			return 22;
1415 	}
1416 	return 2;	/* should not get there */
1417 }
1418 #endif
1419 
1420 /*
1421  * Return the expected ack rate for a frame transmitted at rate `rate'.
1422  */
1423 int
1424 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1425 {
1426 	switch (rate) {
1427 	/* CCK rates */
1428 	case 2:
1429 		return 2;
1430 	case 4:
1431 	case 11:
1432 	case 22:
1433 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1434 
1435 	/* OFDM rates */
1436 	case 12:
1437 	case 18:
1438 		return 12;
1439 	case 24:
1440 	case 36:
1441 		return 24;
1442 	case 48:
1443 	case 72:
1444 	case 96:
1445 	case 108:
1446 		return 48;
1447 	}
1448 
1449 	/* default to 1Mbps */
1450 	return 2;
1451 }
1452 
1453 /*
1454  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1455  * The function automatically determines the operating mode depending on the
1456  * given rate. `flags' indicates whether short preamble is in use or not.
1457  */
1458 uint16_t
1459 rt2560_txtime(int len, int rate, uint32_t flags)
1460 {
1461 	uint16_t txtime;
1462 
1463 	if (RAL_RATE_IS_OFDM(rate)) {
1464 		/* IEEE Std 802.11g-2003, pp. 44 */
1465 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1466 		txtime = 16 + 4 + 4 * txtime + 6;
1467 	} else {
1468 		/* IEEE Std 802.11b-1999, pp. 28 */
1469 		txtime = (16 * len + rate - 1) / rate;
1470 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1471 			txtime +=  72 + 24;
1472 		else
1473 			txtime += 144 + 48;
1474 	}
1475 	return txtime;
1476 }
1477 
1478 uint8_t
1479 rt2560_plcp_signal(int rate)
1480 {
1481 	switch (rate) {
1482 	/* CCK rates (returned values are device-dependent) */
1483 	case 2:		return 0x0;
1484 	case 4:		return 0x1;
1485 	case 11:	return 0x2;
1486 	case 22:	return 0x3;
1487 
1488 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1489 	case 12:	return 0xb;
1490 	case 18:	return 0xf;
1491 	case 24:	return 0xa;
1492 	case 36:	return 0xe;
1493 	case 48:	return 0x9;
1494 	case 72:	return 0xd;
1495 	case 96:	return 0x8;
1496 	case 108:	return 0xc;
1497 
1498 	/* unsupported rates (should not get there) */
1499 	default:	return 0xff;
1500 	}
1501 }
1502 
1503 void
1504 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1505     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1506 {
1507 	struct ieee80211com *ic = &sc->sc_ic;
1508 	uint16_t plcp_length;
1509 	int remainder;
1510 
1511 	desc->flags = htole32(flags);
1512 	desc->flags |= htole32(len << 16);
1513 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1514 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1515 
1516 	desc->physaddr = htole32(physaddr);
1517 	desc->wme = htole16(
1518 	    RT2560_AIFSN(2) |
1519 	    RT2560_LOGCWMIN(3) |
1520 	    RT2560_LOGCWMAX(8));
1521 
1522 	/* setup PLCP fields */
1523 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1524 	desc->plcp_service = 4;
1525 
1526 	len += IEEE80211_CRC_LEN;
1527 	if (RAL_RATE_IS_OFDM(rate)) {
1528 		desc->flags |= htole32(RT2560_TX_OFDM);
1529 
1530 		plcp_length = len & 0xfff;
1531 		desc->plcp_length_hi = plcp_length >> 6;
1532 		desc->plcp_length_lo = plcp_length & 0x3f;
1533 	} else {
1534 		plcp_length = (16 * len + rate - 1) / rate;
1535 		if (rate == 22) {
1536 			remainder = (16 * len) % 22;
1537 			if (remainder != 0 && remainder < 7)
1538 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1539 		}
1540 		desc->plcp_length_hi = plcp_length >> 8;
1541 		desc->plcp_length_lo = plcp_length & 0xff;
1542 
1543 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1544 			desc->plcp_signal |= 0x08;
1545 	}
1546 }
1547 
1548 #ifndef IEEE80211_STA_ONLY
1549 int
1550 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1551     struct ieee80211_node *ni)
1552 {
1553 	struct ieee80211com *ic = &sc->sc_ic;
1554 	struct rt2560_tx_desc *desc;
1555 	struct rt2560_tx_data *data;
1556 	int rate = 2, error;
1557 
1558 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1559 	data = &sc->bcnq.data[sc->bcnq.cur];
1560 
1561 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1562 	    BUS_DMA_NOWAIT);
1563 	if (error != 0) {
1564 		printf("%s: can't map mbuf (error %d)\n",
1565 		    sc->sc_dev.dv_xname, error);
1566 		m_freem(m0);
1567 		return error;
1568 	}
1569 
1570 	data->m = m0;
1571 	data->ni = ni;
1572 
1573 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1574 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1575 	    data->map->dm_segs->ds_addr);
1576 
1577 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1578 	    BUS_DMASYNC_PREWRITE);
1579 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1580 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1581 	    BUS_DMASYNC_PREWRITE);
1582 
1583 	/*
1584 	 * Store pointer to ERP Information Element so that we can update it
1585 	 * dynamically when the slot time changes.
1586 	 * XXX: this is ugly since it depends on how net80211 builds beacon
1587 	 * frames but ieee80211_beacon_alloc() don't store offsets for us.
1588 	 */
1589 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1590 		sc->erp =
1591 		    mtod(m0, uint8_t *) +
1592 		    sizeof (struct ieee80211_frame) +
1593 		    8 + 2 + 2 +
1594 		    ((ic->ic_flags & IEEE80211_F_HIDENWID) ?
1595 			1 : 2 + ni->ni_esslen) +
1596 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
1597 		    2 + 1 +
1598 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
1599 		    2;
1600 	}
1601 
1602 	return 0;
1603 }
1604 #endif
1605 
1606 int
1607 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1608     struct ieee80211_node *ni)
1609 {
1610 	struct ieee80211com *ic = &sc->sc_ic;
1611 	struct rt2560_tx_desc *desc;
1612 	struct rt2560_tx_data *data;
1613 	struct ieee80211_frame *wh;
1614 	uint16_t dur;
1615 	uint32_t flags = 0;
1616 	int rate = 2, error;
1617 
1618 	desc = &sc->prioq.desc[sc->prioq.cur];
1619 	data = &sc->prioq.data[sc->prioq.cur];
1620 
1621 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1622 	    BUS_DMA_NOWAIT);
1623 	if (error != 0) {
1624 		printf("%s: can't map mbuf (error %d)\n",
1625 		    sc->sc_dev.dv_xname, error);
1626 		m_freem(m0);
1627 		return error;
1628 	}
1629 
1630 #if NBPFILTER > 0
1631 	if (sc->sc_drvbpf != NULL) {
1632 		struct mbuf mb;
1633 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1634 
1635 		tap->wt_flags = 0;
1636 		tap->wt_rate = rate;
1637 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1638 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1639 		tap->wt_antenna = sc->tx_ant;
1640 
1641 		mb.m_data = (caddr_t)tap;
1642 		mb.m_len = sc->sc_txtap_len;
1643 		mb.m_next = m0;
1644 		mb.m_nextpkt = NULL;
1645 		mb.m_type = 0;
1646 		mb.m_flags = 0;
1647 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1648 	}
1649 #endif
1650 
1651 	data->m = m0;
1652 	data->ni = ni;
1653 
1654 	wh = mtod(m0, struct ieee80211_frame *);
1655 
1656 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1657 		flags |= RT2560_TX_NEED_ACK;
1658 
1659 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1660 		    RAL_SIFS;
1661 		*(uint16_t *)wh->i_dur = htole16(dur);
1662 
1663 #ifndef IEEE80211_STA_ONLY
1664 		/* tell hardware to set timestamp for probe responses */
1665 		if ((wh->i_fc[0] &
1666 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1667 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1668 			flags |= RT2560_TX_TIMESTAMP;
1669 #endif
1670 	}
1671 
1672 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1673 	    data->map->dm_segs->ds_addr);
1674 
1675 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1676 	    BUS_DMASYNC_PREWRITE);
1677 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1678 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1679 	    BUS_DMASYNC_PREWRITE);
1680 
1681 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1682 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1683 
1684 	/* kick prio */
1685 	sc->prioq.queued++;
1686 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1687 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1688 
1689 	return 0;
1690 }
1691 
1692 int
1693 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1694     struct ieee80211_node *ni)
1695 {
1696 	struct ieee80211com *ic = &sc->sc_ic;
1697 	struct rt2560_tx_ring *txq = &sc->txq;
1698 	struct rt2560_tx_desc *desc;
1699 	struct rt2560_tx_data *data;
1700 	struct ieee80211_frame *wh;
1701 	struct ieee80211_key *k;
1702 	struct mbuf *m1;
1703 	uint16_t dur;
1704 	uint32_t flags = 0;
1705 	int pktlen, rate, needcts = 0, needrts = 0, error;
1706 
1707 	wh = mtod(m0, struct ieee80211_frame *);
1708 
1709 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1710 		k = ieee80211_get_txkey(ic, wh, ni);
1711 
1712 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1713 			return ENOBUFS;
1714 
1715 		/* packet header may have moved, reset our local pointer */
1716 		wh = mtod(m0, struct ieee80211_frame *);
1717 	}
1718 
1719 	/* compute actual packet length (including CRC and crypto overhead) */
1720 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1721 
1722 	/* pickup a rate */
1723 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1724 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1725 	     IEEE80211_FC0_TYPE_MGT)) {
1726 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1727 		rate = ni->ni_rates.rs_rates[0];
1728 	} else if (ic->ic_fixed_rate != -1) {
1729 		rate = ic->ic_sup_rates[ic->ic_curmode].
1730 		    rs_rates[ic->ic_fixed_rate];
1731 	} else
1732 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1733 	if (rate == 0)
1734 		rate = 2;	/* XXX should not happen */
1735 	rate &= IEEE80211_RATE_VAL;
1736 
1737 	/*
1738 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1739 	 * chance to contend for the wireless medium.
1740 	 */
1741 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1742 		flags |= RT2560_TX_IFS_SIFS;
1743 
1744 	/* check if RTS/CTS or CTS-to-self protection must be used */
1745 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1746 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1747 		if (pktlen > ic->ic_rtsthreshold) {
1748 			needrts = 1;	/* RTS/CTS based on frame length */
1749 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1750 		    RAL_RATE_IS_OFDM(rate)) {
1751 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1752 				needcts = 1;	/* CTS-to-self */
1753 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1754 				needrts = 1;	/* RTS/CTS */
1755 		}
1756 	}
1757 	if (needrts || needcts) {
1758 		struct mbuf *mprot;
1759 		int protrate, ackrate;
1760 
1761 		protrate = 2;	/* XXX */
1762 		ackrate  = rt2560_ack_rate(ic, rate);
1763 
1764 		dur = rt2560_txtime(pktlen, rate, ic->ic_flags) +
1765 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1766 		      2 * RAL_SIFS;
1767 		if (needrts) {
1768 			dur += rt2560_txtime(RAL_CTS_SIZE, rt2560_ack_rate(ic,
1769 			    protrate), ic->ic_flags) + RAL_SIFS;
1770 			mprot = ieee80211_get_rts(ic, wh, dur);
1771 		} else {
1772 			mprot = ieee80211_get_cts_to_self(ic, dur);
1773 		}
1774 		if (mprot == NULL) {
1775 			printf("%s: could not allocate protection frame\n",
1776 			    sc->sc_dev.dv_xname);
1777 			m_freem(m0);
1778 			return ENOBUFS;
1779 		}
1780 
1781 		desc = &txq->desc[txq->cur_encrypt];
1782 		data = &txq->data[txq->cur_encrypt];
1783 
1784 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1785 		    BUS_DMA_NOWAIT);
1786 		if (error != 0) {
1787 			printf("%s: can't map mbuf (error %d)\n",
1788 			    sc->sc_dev.dv_xname, error);
1789 			m_freem(mprot);
1790 			m_freem(m0);
1791 			return error;
1792 		}
1793 
1794 		data->m = mprot;
1795 		/* avoid multiple free() of the same node for each fragment */
1796 		data->ni = ieee80211_ref_node(ni);
1797 
1798 		/* XXX may want to pass the protection frame to BPF */
1799 
1800 		rt2560_setup_tx_desc(sc, desc,
1801 		    (needrts ? RT2560_TX_NEED_ACK : 0) | RT2560_TX_MORE_FRAG,
1802 		    mprot->m_pkthdr.len, protrate, 1,
1803 		    data->map->dm_segs->ds_addr);
1804 
1805 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1806 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1807 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1808 		    txq->cur_encrypt * RT2560_TX_DESC_SIZE,
1809 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1810 
1811 		txq->queued++;
1812 		if (++txq->cur_encrypt >= txq->count)
1813 			txq->cur_encrypt = 0;
1814 
1815 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1816 	}
1817 
1818 	data = &txq->data[txq->cur_encrypt];
1819 	desc = &txq->desc[txq->cur_encrypt];
1820 
1821 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1822 	    BUS_DMA_NOWAIT);
1823 	if (error != 0 && error != EFBIG) {
1824 		printf("%s: can't map mbuf (error %d)\n",
1825 		    sc->sc_dev.dv_xname, error);
1826 		m_freem(m0);
1827 		return error;
1828 	}
1829 	if (error != 0) {
1830 		/* too many fragments, linearize */
1831 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1832 		if (m1 == NULL) {
1833 			m_freem(m0);
1834 			return ENOBUFS;
1835 		}
1836 		if (m0->m_pkthdr.len > MHLEN) {
1837 			MCLGET(m1, M_DONTWAIT);
1838 			if (!(m1->m_flags & M_EXT)) {
1839 				m_freem(m0);
1840 				m_freem(m1);
1841 				return ENOBUFS;
1842 			}
1843 		}
1844 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1845 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1846 		m_freem(m0);
1847 		m0 = m1;
1848 
1849 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1850 		    BUS_DMA_NOWAIT);
1851 		if (error != 0) {
1852 			printf("%s: can't map mbuf (error %d)\n",
1853 			    sc->sc_dev.dv_xname, error);
1854 			m_freem(m0);
1855 			return error;
1856 		}
1857 
1858 		/* packet header have moved, reset our local pointer */
1859 		wh = mtod(m0, struct ieee80211_frame *);
1860 	}
1861 
1862 #if NBPFILTER > 0
1863 	if (sc->sc_drvbpf != NULL) {
1864 		struct mbuf mb;
1865 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1866 
1867 		tap->wt_flags = 0;
1868 		tap->wt_rate = rate;
1869 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1870 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1871 		tap->wt_antenna = sc->tx_ant;
1872 
1873 		mb.m_data = (caddr_t)tap;
1874 		mb.m_len = sc->sc_txtap_len;
1875 		mb.m_next = m0;
1876 		mb.m_nextpkt = NULL;
1877 		mb.m_type = 0;
1878 		mb.m_flags = 0;
1879 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1880 	}
1881 #endif
1882 
1883 	data->m = m0;
1884 	data->ni = ni;
1885 
1886 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1887 		flags |= RT2560_TX_NEED_ACK;
1888 
1889 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1890 		    ic->ic_flags) + RAL_SIFS;
1891 		*(uint16_t *)wh->i_dur = htole16(dur);
1892 	}
1893 
1894 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1895 	    data->map->dm_segs->ds_addr);
1896 
1897 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1898 	    BUS_DMASYNC_PREWRITE);
1899 	bus_dmamap_sync(sc->sc_dmat, txq->map,
1900 	    txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1901 	    BUS_DMASYNC_PREWRITE);
1902 
1903 	DPRINTFN(10, ("sending frame len=%u idx=%u rate=%u\n",
1904 	    m0->m_pkthdr.len, txq->cur_encrypt, rate));
1905 
1906 	/* kick encrypt */
1907 	txq->queued++;
1908 	if (++txq->cur_encrypt >= txq->count)
1909 		txq->cur_encrypt = 0;
1910 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1911 
1912 	return 0;
1913 }
1914 
1915 void
1916 rt2560_start(struct ifnet *ifp)
1917 {
1918 	struct rt2560_softc *sc = ifp->if_softc;
1919 	struct ieee80211com *ic = &sc->sc_ic;
1920 	struct mbuf *m0;
1921 	struct ieee80211_node *ni;
1922 
1923 	/*
1924 	 * net80211 may still try to send management frames even if the
1925 	 * IFF_RUNNING flag is not set...
1926 	 */
1927 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1928 		return;
1929 
1930 	for (;;) {
1931 		IF_POLL(&ic->ic_mgtq, m0);
1932 		if (m0 != NULL) {
1933 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1934 				ifp->if_flags |= IFF_OACTIVE;
1935 				sc->sc_flags |= RT2560_PRIO_OACTIVE;
1936 				break;
1937 			}
1938 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1939 
1940 			ni = m0->m_pkthdr.ph_cookie;
1941 #if NBPFILTER > 0
1942 			if (ic->ic_rawbpf != NULL)
1943 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1944 #endif
1945 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
1946 				break;
1947 
1948 		} else {
1949 			if (ic->ic_state != IEEE80211_S_RUN)
1950 				break;
1951 			IFQ_POLL(&ifp->if_snd, m0);
1952 			if (m0 == NULL)
1953 				break;
1954 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1955 				ifp->if_flags |= IFF_OACTIVE;
1956 				sc->sc_flags |= RT2560_DATA_OACTIVE;
1957 				break;
1958 			}
1959 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1960 #if NBPFILTER > 0
1961 			if (ifp->if_bpf != NULL)
1962 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1963 #endif
1964 			m0 = ieee80211_encap(ifp, m0, &ni);
1965 			if (m0 == NULL)
1966 				continue;
1967 #if NBPFILTER > 0
1968 			if (ic->ic_rawbpf != NULL)
1969 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1970 #endif
1971 			if (rt2560_tx_data(sc, m0, ni) != 0) {
1972 				if (ni != NULL)
1973 					ieee80211_release_node(ic, ni);
1974 				ifp->if_oerrors++;
1975 				break;
1976 			}
1977 		}
1978 
1979 		sc->sc_tx_timer = 5;
1980 		ifp->if_timer = 1;
1981 	}
1982 }
1983 
1984 void
1985 rt2560_watchdog(struct ifnet *ifp)
1986 {
1987 	struct rt2560_softc *sc = ifp->if_softc;
1988 
1989 	ifp->if_timer = 0;
1990 
1991 	if (sc->sc_tx_timer > 0) {
1992 		if (--sc->sc_tx_timer == 0) {
1993 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1994 			rt2560_init(ifp);
1995 			ifp->if_oerrors++;
1996 			return;
1997 		}
1998 		ifp->if_timer = 1;
1999 	}
2000 
2001 	ieee80211_watchdog(ifp);
2002 }
2003 
2004 int
2005 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2006 {
2007 	struct rt2560_softc *sc = ifp->if_softc;
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 	struct ifaddr *ifa;
2010 	struct ifreq *ifr;
2011 	int s, error = 0;
2012 
2013 	s = splnet();
2014 
2015 	switch (cmd) {
2016 	case SIOCSIFADDR:
2017 		ifa = (struct ifaddr *)data;
2018 		ifp->if_flags |= IFF_UP;
2019 		if (ifa->ifa_addr->sa_family == AF_INET)
2020 			arp_ifinit(&ic->ic_ac, ifa);
2021 		/* FALLTHROUGH */
2022 	case SIOCSIFFLAGS:
2023 		if (ifp->if_flags & IFF_UP) {
2024 			if (ifp->if_flags & IFF_RUNNING)
2025 				rt2560_update_promisc(sc);
2026 			else
2027 				rt2560_init(ifp);
2028 		} else {
2029 			if (ifp->if_flags & IFF_RUNNING)
2030 				rt2560_stop(ifp, 1);
2031 		}
2032 		break;
2033 
2034 	case SIOCADDMULTI:
2035 	case SIOCDELMULTI:
2036 		ifr = (struct ifreq *)data;
2037 		error = (cmd == SIOCADDMULTI) ?
2038 		    ether_addmulti(ifr, &ic->ic_ac) :
2039 		    ether_delmulti(ifr, &ic->ic_ac);
2040 
2041 		if (error == ENETRESET)
2042 			error = 0;
2043 		break;
2044 
2045 	case SIOCS80211CHANNEL:
2046 		/*
2047 		 * This allows for fast channel switching in monitor mode
2048 		 * (used by kismet). In IBSS mode, we must explicitly reset
2049 		 * the interface to generate a new beacon frame.
2050 		 */
2051 		error = ieee80211_ioctl(ifp, cmd, data);
2052 		if (error == ENETRESET &&
2053 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2054 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2055 			    (IFF_UP | IFF_RUNNING))
2056 				rt2560_set_chan(sc, ic->ic_ibss_chan);
2057 			error = 0;
2058 		}
2059 		break;
2060 
2061 	default:
2062 		error = ieee80211_ioctl(ifp, cmd, data);
2063 	}
2064 
2065 	if (error == ENETRESET) {
2066 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2067 		    (IFF_UP | IFF_RUNNING))
2068 			rt2560_init(ifp);
2069 		error = 0;
2070 	}
2071 
2072 	splx(s);
2073 
2074 	return error;
2075 }
2076 
2077 void
2078 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2079 {
2080 	uint32_t tmp;
2081 	int ntries;
2082 
2083 	for (ntries = 0; ntries < 100; ntries++) {
2084 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2085 			break;
2086 		DELAY(1);
2087 	}
2088 	if (ntries == 100) {
2089 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2090 		return;
2091 	}
2092 
2093 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2094 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2095 
2096 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2097 }
2098 
2099 uint8_t
2100 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2101 {
2102 	uint32_t val;
2103 	int ntries;
2104 
2105 	for (ntries = 0; ntries < 100; ntries++) {
2106 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2107 			break;
2108 		DELAY(1);
2109 	}
2110 	if (ntries == 100) {
2111 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2112 		return 0;
2113 	}
2114 
2115 	val = RT2560_BBP_BUSY | reg << 8;
2116 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2117 
2118 	for (ntries = 0; ntries < 100; ntries++) {
2119 		val = RAL_READ(sc, RT2560_BBPCSR);
2120 		if (!(val & RT2560_BBP_BUSY))
2121 			return val & 0xff;
2122 		DELAY(1);
2123 	}
2124 
2125 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2126 	return 0;
2127 }
2128 
2129 void
2130 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2131 {
2132 	uint32_t tmp;
2133 	int ntries;
2134 
2135 	for (ntries = 0; ntries < 100; ntries++) {
2136 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2137 			break;
2138 		DELAY(1);
2139 	}
2140 	if (ntries == 100) {
2141 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2142 		return;
2143 	}
2144 
2145 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2146 	    (reg & 0x3);
2147 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2148 
2149 	/* remember last written value in sc */
2150 	sc->rf_regs[reg] = val;
2151 
2152 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2153 }
2154 
2155 void
2156 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2157 {
2158 	struct ieee80211com *ic = &sc->sc_ic;
2159 	uint8_t power, tmp;
2160 	u_int chan;
2161 
2162 	chan = ieee80211_chan2ieee(ic, c);
2163 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2164 		return;
2165 
2166 	power = min(sc->txpow[chan - 1], 31);
2167 
2168 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2169 
2170 	switch (sc->rf_rev) {
2171 	case RT2560_RF_2522:
2172 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2173 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2174 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2175 		break;
2176 
2177 	case RT2560_RF_2523:
2178 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2179 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2180 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2181 		rt2560_rf_write(sc, RT2560_RF4,
2182 		    (chan == 14) ? 0x00280 : 0x00286);
2183 		break;
2184 
2185 	case RT2560_RF_2524:
2186 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2187 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2188 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2189 		rt2560_rf_write(sc, RT2560_RF4,
2190 		    (chan == 14) ? 0x00280 : 0x00286);
2191 		break;
2192 
2193 	case RT2560_RF_2525:
2194 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2195 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2196 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2197 		rt2560_rf_write(sc, RT2560_RF4,
2198 		    (chan == 14) ? 0x00280 : 0x00286);
2199 
2200 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2201 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2202 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2203 		rt2560_rf_write(sc, RT2560_RF4,
2204 		    (chan == 14) ? 0x00280 : 0x00286);
2205 		break;
2206 
2207 	case RT2560_RF_2525E:
2208 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2209 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2210 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2211 		rt2560_rf_write(sc, RT2560_RF4,
2212 		    (chan == 14) ? 0x00286 : 0x00282);
2213 		break;
2214 
2215 	case RT2560_RF_2526:
2216 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2217 		rt2560_rf_write(sc, RT2560_RF4,
2218 		   (chan & 1) ? 0x00386 : 0x00381);
2219 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2220 
2221 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2222 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2223 		rt2560_rf_write(sc, RT2560_RF4,
2224 		    (chan & 1) ? 0x00386 : 0x00381);
2225 		break;
2226 	}
2227 
2228 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2229 	    ic->ic_state != IEEE80211_S_SCAN) {
2230 		/* set Japan filter bit for channel 14 */
2231 		tmp = rt2560_bbp_read(sc, 70);
2232 
2233 		tmp &= ~RT2560_JAPAN_FILTER;
2234 		if (chan == 14)
2235 			tmp |= RT2560_JAPAN_FILTER;
2236 
2237 		rt2560_bbp_write(sc, 70, tmp);
2238 
2239 		DELAY(1000); /* RF needs a 1ms delay here */
2240 		rt2560_disable_rf_tune(sc);
2241 
2242 		/* clear CRC errors */
2243 		RAL_READ(sc, RT2560_CNT0);
2244 	}
2245 }
2246 
2247 /*
2248  * Disable RF auto-tuning.
2249  */
2250 void
2251 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2252 {
2253 	uint32_t tmp;
2254 
2255 	if (sc->rf_rev != RT2560_RF_2523) {
2256 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2257 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2258 	}
2259 
2260 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2261 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2262 
2263 	DPRINTFN(2, ("disabling RF autotune\n"));
2264 }
2265 
2266 /*
2267  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2268  * synchronization.
2269  */
2270 void
2271 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2272 {
2273 	struct ieee80211com *ic = &sc->sc_ic;
2274 	uint16_t logcwmin, preload;
2275 	uint32_t tmp;
2276 
2277 	/* first, disable TSF synchronization */
2278 	RAL_WRITE(sc, RT2560_CSR14, 0);
2279 
2280 	tmp = 16 * ic->ic_bss->ni_intval;
2281 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2282 
2283 	RAL_WRITE(sc, RT2560_CSR13, 0);
2284 
2285 	logcwmin = 5;
2286 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2287 	tmp = logcwmin << 16 | preload;
2288 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2289 
2290 	/* finally, enable TSF synchronization */
2291 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2292 	if (ic->ic_opmode == IEEE80211_M_STA)
2293 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2294 #ifndef IEEE80211_STA_ONLY
2295 	else
2296 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2297 		       RT2560_ENABLE_BEACON_GENERATOR;
2298 #endif
2299 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2300 
2301 	DPRINTF(("enabling TSF synchronization\n"));
2302 }
2303 
2304 void
2305 rt2560_update_plcp(struct rt2560_softc *sc)
2306 {
2307 	struct ieee80211com *ic = &sc->sc_ic;
2308 
2309 	/* no short preamble for 1Mbps */
2310 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2311 
2312 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2313 		/* values taken from the reference driver */
2314 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2315 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2316 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2317 	} else {
2318 		/* same values as above or'ed 0x8 */
2319 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2320 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2321 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2322 	}
2323 
2324 	DPRINTF(("updating PLCP for %s preamble\n",
2325 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2326 }
2327 
2328 void
2329 rt2560_updateslot(struct ieee80211com *ic)
2330 {
2331 	struct rt2560_softc *sc = ic->ic_if.if_softc;
2332 
2333 #ifndef IEEE80211_STA_ONLY
2334 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2335 		/*
2336 		 * In HostAP mode, we defer setting of new slot time until
2337 		 * updated ERP Information Element has propagated to all
2338 		 * associated STAs.
2339 		 */
2340 		sc->sc_flags |= RT2560_UPDATE_SLOT;
2341 	} else
2342 #endif
2343 		rt2560_set_slottime(sc);
2344 }
2345 
2346 /*
2347  * IEEE 802.11a (and possibly 802.11g) use short slot time. Refer to
2348  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2349  */
2350 void
2351 rt2560_set_slottime(struct rt2560_softc *sc)
2352 {
2353 	struct ieee80211com *ic = &sc->sc_ic;
2354 	uint8_t slottime;
2355 	uint16_t sifs, pifs, difs, eifs;
2356 	uint32_t tmp;
2357 
2358 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2359 
2360 	/* define the MAC slot boundaries */
2361 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2362 	pifs = sifs + slottime;
2363 	difs = sifs + 2 * slottime;
2364 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2365 
2366 	tmp = RAL_READ(sc, RT2560_CSR11);
2367 	tmp = (tmp & ~0x1f00) | slottime << 8;
2368 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2369 
2370 	tmp = pifs << 16 | sifs;
2371 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2372 
2373 	tmp = eifs << 16 | difs;
2374 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2375 
2376 	DPRINTF(("setting slottime to %uus\n", slottime));
2377 }
2378 
2379 void
2380 rt2560_set_basicrates(struct rt2560_softc *sc)
2381 {
2382 	struct ieee80211com *ic = &sc->sc_ic;
2383 
2384 	/* update basic rate set */
2385 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2386 		/* 11b basic rates: 1, 2Mbps */
2387 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2388 	} else {
2389 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2390 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0xf);
2391 	}
2392 }
2393 
2394 void
2395 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2396 {
2397 	uint32_t tmp;
2398 
2399 	/* set ON period to 70ms and OFF period to 30ms */
2400 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2401 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2402 }
2403 
2404 void
2405 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2406 {
2407 	uint32_t tmp;
2408 
2409 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2410 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2411 
2412 	tmp = bssid[4] | bssid[5] << 8;
2413 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2414 
2415 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2416 }
2417 
2418 void
2419 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2420 {
2421 	uint32_t tmp;
2422 
2423 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2424 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2425 
2426 	tmp = addr[4] | addr[5] << 8;
2427 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2428 
2429 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2430 }
2431 
2432 void
2433 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2434 {
2435 	uint32_t tmp;
2436 
2437 	tmp = RAL_READ(sc, RT2560_CSR3);
2438 	addr[0] = tmp & 0xff;
2439 	addr[1] = (tmp >>  8) & 0xff;
2440 	addr[2] = (tmp >> 16) & 0xff;
2441 	addr[3] = (tmp >> 24);
2442 
2443 	tmp = RAL_READ(sc, RT2560_CSR4);
2444 	addr[4] = tmp & 0xff;
2445 	addr[5] = (tmp >> 8) & 0xff;
2446 }
2447 
2448 void
2449 rt2560_update_promisc(struct rt2560_softc *sc)
2450 {
2451 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2452 	uint32_t tmp;
2453 
2454 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2455 
2456 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2457 	if (!(ifp->if_flags & IFF_PROMISC))
2458 		tmp |= RT2560_DROP_NOT_TO_ME;
2459 
2460 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2461 
2462 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2463 	    "entering" : "leaving"));
2464 }
2465 
2466 void
2467 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2468 {
2469 	uint32_t tmp;
2470 	uint8_t tx;
2471 
2472 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2473 	if (antenna == 1)
2474 		tx |= RT2560_BBP_ANTA;
2475 	else if (antenna == 2)
2476 		tx |= RT2560_BBP_ANTB;
2477 	else
2478 		tx |= RT2560_BBP_DIVERSITY;
2479 
2480 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2481 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2482 	    sc->rf_rev == RT2560_RF_5222)
2483 		tx |= RT2560_BBP_FLIPIQ;
2484 
2485 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2486 
2487 	/* update values for CCK and OFDM in BBPCSR1 */
2488 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2489 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2490 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2491 }
2492 
2493 void
2494 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2495 {
2496 	uint8_t rx;
2497 
2498 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2499 	if (antenna == 1)
2500 		rx |= RT2560_BBP_ANTA;
2501 	else if (antenna == 2)
2502 		rx |= RT2560_BBP_ANTB;
2503 	else
2504 		rx |= RT2560_BBP_DIVERSITY;
2505 
2506 	/* need to force no I/Q flip for RF 2525e and 2526 */
2507 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2508 		rx &= ~RT2560_BBP_FLIPIQ;
2509 
2510 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2511 }
2512 
2513 const char *
2514 rt2560_get_rf(int rev)
2515 {
2516 	switch (rev) {
2517 	case RT2560_RF_2522:	return "RT2522";
2518 	case RT2560_RF_2523:	return "RT2523";
2519 	case RT2560_RF_2524:	return "RT2524";
2520 	case RT2560_RF_2525:	return "RT2525";
2521 	case RT2560_RF_2525E:	return "RT2525e";
2522 	case RT2560_RF_2526:	return "RT2526";
2523 	case RT2560_RF_5222:	return "RT5222";
2524 	default:		return "unknown";
2525 	}
2526 }
2527 
2528 void
2529 rt2560_read_eeprom(struct rt2560_softc *sc)
2530 {
2531 	uint16_t val;
2532 	int i;
2533 
2534 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2535 	sc->rf_rev =   (val >> 11) & 0x1f;
2536 	sc->hw_radio = (val >> 10) & 0x1;
2537 	sc->led_mode = (val >> 6)  & 0x7;
2538 	sc->rx_ant =   (val >> 4)  & 0x3;
2539 	sc->tx_ant =   (val >> 2)  & 0x3;
2540 	sc->nb_ant =   val & 0x3;
2541 
2542 	/* read default values for BBP registers */
2543 	for (i = 0; i < 16; i++) {
2544 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2545 		sc->bbp_prom[i].reg = val >> 8;
2546 		sc->bbp_prom[i].val = val & 0xff;
2547 	}
2548 
2549 	/* read Tx power for all b/g channels */
2550 	for (i = 0; i < 14 / 2; i++) {
2551 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2552 		sc->txpow[i * 2] = val >> 8;
2553 		sc->txpow[i * 2 + 1] = val & 0xff;
2554 	}
2555 }
2556 
2557 int
2558 rt2560_bbp_init(struct rt2560_softc *sc)
2559 {
2560 	int i, ntries;
2561 
2562 	/* wait for BBP to be ready */
2563 	for (ntries = 0; ntries < 100; ntries++) {
2564 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2565 			break;
2566 		DELAY(1);
2567 	}
2568 	if (ntries == 100) {
2569 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2570 		return EIO;
2571 	}
2572 
2573 	/* initialize BBP registers to default values */
2574 	for (i = 0; i < nitems(rt2560_def_bbp); i++) {
2575 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2576 		    rt2560_def_bbp[i].val);
2577 	}
2578 #if 0
2579 	/* initialize BBP registers to values stored in EEPROM */
2580 	for (i = 0; i < 16; i++) {
2581 		if (sc->bbp_prom[i].reg == 0xff)
2582 			continue;
2583 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2584 	}
2585 #endif
2586 
2587 	return 0;
2588 }
2589 
2590 int
2591 rt2560_init(struct ifnet *ifp)
2592 {
2593 	struct rt2560_softc *sc = ifp->if_softc;
2594 	struct ieee80211com *ic = &sc->sc_ic;
2595 	uint32_t tmp;
2596 	int i;
2597 
2598 	/* for CardBus, power on the socket */
2599 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2600 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2601 			printf("%s: could not enable device\n",
2602 			    sc->sc_dev.dv_xname);
2603 			return EIO;
2604 		}
2605 		sc->sc_flags |= RT2560_ENABLED;
2606 	}
2607 
2608 	rt2560_stop(ifp, 0);
2609 
2610 	/* setup tx rings */
2611 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2612 	      RT2560_ATIM_RING_COUNT << 16 |
2613 	      RT2560_TX_RING_COUNT   <<  8 |
2614 	      RT2560_TX_DESC_SIZE;
2615 
2616 	/* rings _must_ be initialized in this _exact_ order! */
2617 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2618 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2619 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2620 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2621 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2622 
2623 	/* setup rx ring */
2624 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2625 
2626 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2627 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2628 
2629 	/* initialize MAC registers to default values */
2630 	for (i = 0; i < nitems(rt2560_def_mac); i++)
2631 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2632 
2633 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2634 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2635 
2636 	/* set basic rate set (will be updated later) */
2637 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2638 
2639 	rt2560_set_slottime(sc);
2640 	rt2560_update_plcp(sc);
2641 	rt2560_update_led(sc, 0, 0);
2642 
2643 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2644 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2645 
2646 	if (rt2560_bbp_init(sc) != 0) {
2647 		rt2560_stop(ifp, 1);
2648 		return EIO;
2649 	}
2650 
2651 	rt2560_set_txantenna(sc, 1);
2652 	rt2560_set_rxantenna(sc, 1);
2653 
2654 	/* set default BSS channel */
2655 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2656 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2657 
2658 	/* kick Rx */
2659 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2660 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2661 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2662 #ifndef IEEE80211_STA_ONLY
2663 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2664 #endif
2665 			tmp |= RT2560_DROP_TODS;
2666 		if (!(ifp->if_flags & IFF_PROMISC))
2667 			tmp |= RT2560_DROP_NOT_TO_ME;
2668 	}
2669 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2670 
2671 	/* clear old FCS and Rx FIFO errors */
2672 	RAL_READ(sc, RT2560_CNT0);
2673 	RAL_READ(sc, RT2560_CNT4);
2674 
2675 	/* clear any pending interrupts */
2676 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2677 
2678 	/* enable interrupts */
2679 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2680 
2681 	ifp->if_flags &= ~IFF_OACTIVE;
2682 	ifp->if_flags |= IFF_RUNNING;
2683 
2684 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2685 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2686 	else
2687 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2688 
2689 	return 0;
2690 }
2691 
2692 void
2693 rt2560_stop(struct ifnet *ifp, int disable)
2694 {
2695 	struct rt2560_softc *sc = ifp->if_softc;
2696 	struct ieee80211com *ic = &sc->sc_ic;
2697 
2698 	sc->sc_tx_timer = 0;
2699 	sc->sc_flags &= ~(RT2560_PRIO_OACTIVE|RT2560_DATA_OACTIVE);
2700 	ifp->if_timer = 0;
2701 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2702 
2703 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2704 
2705 	/* abort Tx */
2706 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2707 
2708 	/* disable Rx */
2709 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2710 
2711 	/* reset ASIC (and thus, BBP) */
2712 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2713 	RAL_WRITE(sc, RT2560_CSR1, 0);
2714 
2715 	/* disable interrupts */
2716 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2717 
2718 	/* clear any pending interrupt */
2719 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2720 
2721 	/* reset Tx and Rx rings */
2722 	rt2560_reset_tx_ring(sc, &sc->txq);
2723 	rt2560_reset_tx_ring(sc, &sc->atimq);
2724 	rt2560_reset_tx_ring(sc, &sc->prioq);
2725 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2726 	rt2560_reset_rx_ring(sc, &sc->rxq);
2727 
2728 	/* for CardBus, power down the socket */
2729 	if (disable && sc->sc_disable != NULL) {
2730 		if (sc->sc_flags & RT2560_ENABLED) {
2731 			(*sc->sc_disable)(sc);
2732 			sc->sc_flags &= ~RT2560_ENABLED;
2733 		}
2734 	}
2735 }
2736 
2737 struct cfdriver ral_cd = {
2738 	NULL, "ral", DV_IFNET
2739 };
2740