xref: /openbsd/sys/dev/ic/rt2661.c (revision 3cab2bb3)
1 /*	$OpenBSD: rt2661.c,v 1.98 2020/07/20 07:45:44 stsp Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/queue.h>
38 #include <sys/endian.h>
39 
40 #include <machine/bus.h>
41 #include <machine/intr.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/if_ether.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_amrr.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_node.h>
57 
58 #include <dev/ic/rt2661var.h>
59 #include <dev/ic/rt2661reg.h>
60 
61 #include <dev/pci/pcidevs.h>
62 
63 #ifdef RAL_DEBUG
64 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
65 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
66 int rt2661_debug = 1;
67 #else
68 #define DPRINTF(x)
69 #define DPRINTFN(n, x)
70 #endif
71 
72 void		rt2661_attachhook(struct device *);
73 int		rt2661_alloc_tx_ring(struct rt2661_softc *,
74 		    struct rt2661_tx_ring *, int);
75 void		rt2661_reset_tx_ring(struct rt2661_softc *,
76 		    struct rt2661_tx_ring *);
77 void		rt2661_free_tx_ring(struct rt2661_softc *,
78 		    struct rt2661_tx_ring *);
79 int		rt2661_alloc_rx_ring(struct rt2661_softc *,
80 		    struct rt2661_rx_ring *, int);
81 void		rt2661_reset_rx_ring(struct rt2661_softc *,
82 		    struct rt2661_rx_ring *);
83 void		rt2661_free_rx_ring(struct rt2661_softc *,
84 		    struct rt2661_rx_ring *);
85 struct		ieee80211_node *rt2661_node_alloc(struct ieee80211com *);
86 void		rt2661_node_free(struct ieee80211com *,
87 		    struct ieee80211_node *);
88 int		rt2661_media_change(struct ifnet *);
89 void		rt2661_next_scan(void *);
90 void		rt2661_iter_func(void *, struct ieee80211_node *);
91 void		rt2661_updatestats(void *);
92 void		rt2661_newassoc(struct ieee80211com *, struct ieee80211_node *,
93 		    int);
94 int		rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
95 		    int);
96 uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
97 void		rt2661_tx_intr(struct rt2661_softc *);
98 void		rt2661_tx_dma_intr(struct rt2661_softc *,
99 		    struct rt2661_tx_ring *);
100 void		rt2661_rx_intr(struct rt2661_softc *);
101 #ifndef IEEE80211_STA_ONLY
102 void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
103 #endif
104 void		rt2661_mcu_wakeup(struct rt2661_softc *);
105 void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
106 int		rt2661_intr(void *);
107 #if NBPFILTER > 0
108 uint8_t		rt2661_rxrate(const struct rt2661_rx_desc *);
109 #endif
110 int		rt2661_ack_rate(struct ieee80211com *, int);
111 uint16_t	rt2661_txtime(int, int, uint32_t);
112 uint8_t		rt2661_plcp_signal(int);
113 void		rt2661_setup_tx_desc(struct rt2661_softc *,
114 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
115 		    const bus_dma_segment_t *, int, int, u_int8_t);
116 int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
117 		    struct ieee80211_node *);
118 int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
119 		    struct ieee80211_node *, int);
120 void		rt2661_start(struct ifnet *);
121 void		rt2661_watchdog(struct ifnet *);
122 int		rt2661_ioctl(struct ifnet *, u_long, caddr_t);
123 void		rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
124 uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
125 void		rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
126 int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
127 void		rt2661_select_antenna(struct rt2661_softc *);
128 void		rt2661_enable_mrr(struct rt2661_softc *);
129 void		rt2661_set_txpreamble(struct rt2661_softc *);
130 void		rt2661_set_basicrates(struct rt2661_softc *);
131 void		rt2661_select_band(struct rt2661_softc *,
132 		    struct ieee80211_channel *);
133 void		rt2661_set_chan(struct rt2661_softc *,
134 		    struct ieee80211_channel *);
135 void		rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
136 void		rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
137 void		rt2661_update_promisc(struct rt2661_softc *);
138 void		rt2661_updateslot(struct ieee80211com *);
139 void		rt2661_set_slottime(struct rt2661_softc *);
140 const char	*rt2661_get_rf(int);
141 void		rt2661_read_eeprom(struct rt2661_softc *);
142 int		rt2661_bbp_init(struct rt2661_softc *);
143 int		rt2661_init(struct ifnet *);
144 void		rt2661_stop(struct ifnet *, int);
145 int		rt2661_load_microcode(struct rt2661_softc *);
146 void		rt2661_rx_tune(struct rt2661_softc *);
147 #ifdef notyet
148 void		rt2661_radar_start(struct rt2661_softc *);
149 int		rt2661_radar_stop(struct rt2661_softc *);
150 #endif
151 #ifndef IEEE80211_STA_ONLY
152 int		rt2661_prepare_beacon(struct rt2661_softc *);
153 #endif
154 void		rt2661_enable_tsf_sync(struct rt2661_softc *);
155 int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
156 struct		rt2661_amrr_node *rt2661_amrr_node_alloc(struct ieee80211com *,
157 		    struct rt2661_node *);
158 void 		rt2661_amrr_node_free(struct rt2661_softc *,
159 		    struct rt2661_amrr_node *);
160 void		rt2661_amrr_node_free_all(struct rt2661_softc *);
161 void		rt2661_amrr_node_free_unused(struct rt2661_softc *);
162 struct 		rt2661_amrr_node *rt2661_amrr_node_find(struct rt2661_softc *,
163 		    u_int8_t);
164 
165 static const struct {
166 	uint32_t	reg;
167 	uint32_t	val;
168 } rt2661_def_mac[] = {
169 	RT2661_DEF_MAC
170 };
171 
172 static const struct {
173 	uint8_t	reg;
174 	uint8_t	val;
175 } rt2661_def_bbp[] = {
176 	RT2661_DEF_BBP
177 };
178 
179 static const struct rfprog {
180 	uint8_t		chan;
181 	uint32_t	r1, r2, r3, r4;
182 }  rt2661_rf5225_1[] = {
183 	RT2661_RF5225_1
184 }, rt2661_rf5225_2[] = {
185 	RT2661_RF5225_2
186 };
187 
188 int
189 rt2661_attach(void *xsc, int id)
190 {
191 	struct rt2661_softc *sc = xsc;
192 	struct ieee80211com *ic = &sc->sc_ic;
193 	uint32_t val;
194 	int error, ac, ntries;
195 
196 	sc->sc_id = id;
197 
198 	sc->amrr.amrr_min_success_threshold =  1;
199 	sc->amrr.amrr_max_success_threshold = 15;
200 	timeout_set(&sc->amrr_to, rt2661_updatestats, sc);
201 	timeout_set(&sc->scan_to, rt2661_next_scan, sc);
202 
203 	TAILQ_INIT(&sc->amn);
204 
205 	/* wait for NIC to initialize */
206 	for (ntries = 0; ntries < 1000; ntries++) {
207 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
208 			break;
209 		DELAY(1000);
210 	}
211 	if (ntries == 1000) {
212 		printf("%s: timeout waiting for NIC to initialize\n",
213 		    sc->sc_dev.dv_xname);
214 		return EIO;
215 	}
216 
217 	/* retrieve RF rev. no and various other things from EEPROM */
218 	rt2661_read_eeprom(sc);
219 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
220 
221 	printf("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
222 	    rt2661_get_rf(sc->rf_rev));
223 
224 	/*
225 	 * Allocate Tx and Rx rings.
226 	 */
227 	for (ac = 0; ac < 4; ac++) {
228 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
229 		    RT2661_TX_RING_COUNT);
230 		if (error != 0) {
231 			printf("%s: could not allocate Tx ring %d\n",
232 			    sc->sc_dev.dv_xname, ac);
233 			goto fail1;
234 		}
235 	}
236 
237 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
238 	if (error != 0) {
239 		printf("%s: could not allocate Mgt ring\n",
240 		    sc->sc_dev.dv_xname);
241 		goto fail1;
242 	}
243 
244 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
245 	if (error != 0) {
246 		printf("%s: could not allocate Rx ring\n",
247 		    sc->sc_dev.dv_xname);
248 		goto fail2;
249 	}
250 
251 	config_mountroot(xsc, rt2661_attachhook);
252 
253 	return 0;
254 
255 fail2:	rt2661_free_tx_ring(sc, &sc->mgtq);
256 fail1:	while (--ac >= 0)
257 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
258 	return ENXIO;
259 }
260 
261 void
262 rt2661_attachhook(struct device *self)
263 {
264 	struct rt2661_softc *sc = (struct rt2661_softc *)self;
265 	struct ieee80211com *ic = &sc->sc_ic;
266 	struct ifnet *ifp = &ic->ic_if;
267 	const char *name = NULL;
268 	int i, error;
269 
270 	switch (sc->sc_id) {
271 	case PCI_PRODUCT_RALINK_RT2561:
272 		name = "ral-rt2561";
273 		break;
274 	case PCI_PRODUCT_RALINK_RT2561S:
275 		name = "ral-rt2561s";
276 		break;
277 	case PCI_PRODUCT_RALINK_RT2661:
278 		name = "ral-rt2661";
279 		break;
280 	}
281 	if ((error = loadfirmware(name, &sc->ucode, &sc->ucsize)) != 0) {
282 		printf("%s: error %d, could not read firmware %s\n",
283 		    sc->sc_dev.dv_xname, error, name);
284 		return;
285 	}
286 
287 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
288 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
289 	ic->ic_state = IEEE80211_S_INIT;
290 
291 	/* set device capabilities */
292 	ic->ic_caps =
293 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
294 #ifndef IEEE80211_STA_ONLY
295 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
296 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
297 #endif
298 	    IEEE80211_C_TXPMGT |	/* tx power management */
299 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
300 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
301 	    IEEE80211_C_WEP |		/* s/w WEP */
302 	    IEEE80211_C_RSN;		/* WPA/RSN */
303 
304 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
305 		/* set supported .11a rates */
306 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
307 		    ieee80211_std_rateset_11a;
308 
309 		/* set supported .11a channels */
310 		for (i = 36; i <= 64; i += 4) {
311 			ic->ic_channels[i].ic_freq =
312 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
313 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
314 		}
315 		for (i = 100; i <= 140; i += 4) {
316 			ic->ic_channels[i].ic_freq =
317 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
318 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
319 		}
320 		for (i = 149; i <= 165; i += 4) {
321 			ic->ic_channels[i].ic_freq =
322 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
323 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
324 		}
325 	}
326 
327 	/* set supported .11b and .11g rates */
328 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
329 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
330 
331 	/* set supported .11b and .11g channels (1 through 14) */
332 	for (i = 1; i <= 14; i++) {
333 		ic->ic_channels[i].ic_freq =
334 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
335 		ic->ic_channels[i].ic_flags =
336 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
337 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
338 	}
339 
340 	ifp->if_softc = sc;
341 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
342 	ifp->if_ioctl = rt2661_ioctl;
343 	ifp->if_start = rt2661_start;
344 	ifp->if_watchdog = rt2661_watchdog;
345 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
346 
347 	if_attach(ifp);
348 	ieee80211_ifattach(ifp);
349 	ic->ic_node_alloc = rt2661_node_alloc;
350 	sc->sc_node_free = ic->ic_node_free;
351 	ic->ic_node_free = rt2661_node_free;
352 	ic->ic_newassoc = rt2661_newassoc;
353 	ic->ic_updateslot = rt2661_updateslot;
354 
355 	/* override state transition machine */
356 	sc->sc_newstate = ic->ic_newstate;
357 	ic->ic_newstate = rt2661_newstate;
358 	ieee80211_media_init(ifp, rt2661_media_change, ieee80211_media_status);
359 
360 #if NBPFILTER > 0
361 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
362 	    sizeof (struct ieee80211_frame) + 64);
363 
364 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
365 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
366 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
367 
368 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
369 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
370 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
371 #endif
372 }
373 
374 int
375 rt2661_detach(void *xsc)
376 {
377 	struct rt2661_softc *sc = xsc;
378 	struct ifnet *ifp = &sc->sc_ic.ic_if;
379 	int ac;
380 
381 	timeout_del(&sc->scan_to);
382 	timeout_del(&sc->amrr_to);
383 
384 	ieee80211_ifdetach(ifp);	/* free all nodes */
385 	rt2661_amrr_node_free_all(sc);
386 	if_detach(ifp);
387 
388 	for (ac = 0; ac < 4; ac++)
389 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
390 	rt2661_free_tx_ring(sc, &sc->mgtq);
391 	rt2661_free_rx_ring(sc, &sc->rxq);
392 
393 	if (sc->ucode != NULL)
394 		free(sc->ucode, M_DEVBUF, sc->ucsize);
395 
396 	return 0;
397 }
398 
399 void
400 rt2661_suspend(void *xsc)
401 {
402 	struct rt2661_softc *sc = xsc;
403 	struct ifnet *ifp = &sc->sc_ic.ic_if;
404 
405 	if (ifp->if_flags & IFF_RUNNING) {
406 		rt2661_stop(ifp, 1);
407 		sc->sc_flags &= ~RT2661_FWLOADED;
408 	}
409 }
410 
411 void
412 rt2661_wakeup(void *xsc)
413 {
414 	struct rt2661_softc *sc = xsc;
415 	struct ifnet *ifp = &sc->sc_ic.ic_if;
416 
417 	if (ifp->if_flags & IFF_UP)
418 		rt2661_init(ifp);
419 }
420 
421 int
422 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
423     int count)
424 {
425 	int i, nsegs, error;
426 
427 	ring->count = count;
428 	ring->queued = 0;
429 	ring->cur = ring->next = ring->stat = 0;
430 
431 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
432 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
433 	if (error != 0) {
434 		printf("%s: could not create desc DMA map\n",
435 		    sc->sc_dev.dv_xname);
436 		goto fail;
437 	}
438 
439 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
440 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
441 	if (error != 0) {
442 		printf("%s: could not allocate DMA memory\n",
443 		    sc->sc_dev.dv_xname);
444 		goto fail;
445 	}
446 
447 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
448 	    count * RT2661_TX_DESC_SIZE, (caddr_t *)&ring->desc,
449 	    BUS_DMA_NOWAIT);
450 	if (error != 0) {
451 		printf("%s: can't map desc DMA memory\n",
452 		    sc->sc_dev.dv_xname);
453 		goto fail;
454 	}
455 
456 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
457 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
458 	if (error != 0) {
459 		printf("%s: could not load desc DMA map\n",
460 		    sc->sc_dev.dv_xname);
461 		goto fail;
462 	}
463 
464 	ring->physaddr = ring->map->dm_segs->ds_addr;
465 
466 	ring->data = mallocarray(count, sizeof (struct rt2661_tx_data),
467 	    M_DEVBUF, M_NOWAIT | M_ZERO);
468 	if (ring->data == NULL) {
469 		printf("%s: could not allocate soft data\n",
470 		    sc->sc_dev.dv_xname);
471 		error = ENOMEM;
472 		goto fail;
473 	}
474 
475 	for (i = 0; i < count; i++) {
476 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
478 		    &ring->data[i].map);
479 		if (error != 0) {
480 			printf("%s: could not create DMA map\n",
481 			    sc->sc_dev.dv_xname);
482 			goto fail;
483 		}
484 	}
485 
486 	return 0;
487 
488 fail:	rt2661_free_tx_ring(sc, ring);
489 	return error;
490 }
491 
492 void
493 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
494 {
495 	int i;
496 
497 	for (i = 0; i < ring->count; i++) {
498 		struct rt2661_tx_desc *desc = &ring->desc[i];
499 		struct rt2661_tx_data *data = &ring->data[i];
500 
501 		if (data->m != NULL) {
502 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
503 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
504 			bus_dmamap_unload(sc->sc_dmat, data->map);
505 			m_freem(data->m);
506 			data->m = NULL;
507 		}
508 
509 		/*
510 		 * The node has already been freed at that point so don't call
511 		 * ieee80211_release_node() here.
512 		 */
513 		data->ni = NULL;
514 
515 		desc->flags = 0;
516 	}
517 
518 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
519 	    BUS_DMASYNC_PREWRITE);
520 
521 	ring->queued = 0;
522 	ring->cur = ring->next = ring->stat = 0;
523 }
524 
525 void
526 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
527 {
528 	int i;
529 
530 	if (ring->desc != NULL) {
531 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
532 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
533 		bus_dmamap_unload(sc->sc_dmat, ring->map);
534 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
535 		    ring->count * RT2661_TX_DESC_SIZE);
536 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
537 	}
538 
539 	if (ring->data != NULL) {
540 		for (i = 0; i < ring->count; i++) {
541 			struct rt2661_tx_data *data = &ring->data[i];
542 
543 			if (data->m != NULL) {
544 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
545 				    data->map->dm_mapsize,
546 				    BUS_DMASYNC_POSTWRITE);
547 				bus_dmamap_unload(sc->sc_dmat, data->map);
548 				m_freem(data->m);
549 			}
550 			/*
551 			 * The node has already been freed at that point so
552 			 * don't call ieee80211_release_node() here.
553 			 */
554 			data->ni = NULL;
555 
556 			if (data->map != NULL)
557 				bus_dmamap_destroy(sc->sc_dmat, data->map);
558 		}
559 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
560 	}
561 }
562 
563 int
564 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
565     int count)
566 {
567 	int i, nsegs, error;
568 
569 	ring->count = count;
570 	ring->cur = ring->next = 0;
571 
572 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
573 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
574 	if (error != 0) {
575 		printf("%s: could not create desc DMA map\n",
576 		    sc->sc_dev.dv_xname);
577 		goto fail;
578 	}
579 
580 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
581 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
582 	if (error != 0) {
583 		printf("%s: could not allocate DMA memory\n",
584 		    sc->sc_dev.dv_xname);
585 		goto fail;
586 	}
587 
588 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
589 	    count * RT2661_RX_DESC_SIZE, (caddr_t *)&ring->desc,
590 	    BUS_DMA_NOWAIT);
591 	if (error != 0) {
592 		printf("%s: can't map desc DMA memory\n",
593 		    sc->sc_dev.dv_xname);
594 		goto fail;
595 	}
596 
597 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
598 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
599 	if (error != 0) {
600 		printf("%s: could not load desc DMA map\n",
601 		    sc->sc_dev.dv_xname);
602 		goto fail;
603 	}
604 
605 	ring->physaddr = ring->map->dm_segs->ds_addr;
606 
607 	ring->data = mallocarray(count, sizeof (struct rt2661_rx_data),
608 	    M_DEVBUF, M_NOWAIT | M_ZERO);
609 	if (ring->data == NULL) {
610 		printf("%s: could not allocate soft data\n",
611 		    sc->sc_dev.dv_xname);
612 		error = ENOMEM;
613 		goto fail;
614 	}
615 
616 	/*
617 	 * Pre-allocate Rx buffers and populate Rx ring.
618 	 */
619 	for (i = 0; i < count; i++) {
620 		struct rt2661_rx_desc *desc = &sc->rxq.desc[i];
621 		struct rt2661_rx_data *data = &sc->rxq.data[i];
622 
623 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
624 		    0, BUS_DMA_NOWAIT, &data->map);
625 		if (error != 0) {
626 			printf("%s: could not create DMA map\n",
627 			    sc->sc_dev.dv_xname);
628 			goto fail;
629 		}
630 
631 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 		if (data->m == NULL) {
633 			printf("%s: could not allocate rx mbuf\n",
634 			    sc->sc_dev.dv_xname);
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 		MCLGET(data->m, M_DONTWAIT);
639 		if (!(data->m->m_flags & M_EXT)) {
640 			printf("%s: could not allocate rx mbuf cluster\n",
641 			    sc->sc_dev.dv_xname);
642 			error = ENOMEM;
643 			goto fail;
644 		}
645 
646 		error = bus_dmamap_load(sc->sc_dmat, data->map,
647 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
648 		if (error != 0) {
649 			printf("%s: could not load rx buf DMA map",
650 			    sc->sc_dev.dv_xname);
651 			goto fail;
652 		}
653 
654 		desc->flags = htole32(RT2661_RX_BUSY);
655 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
656 	}
657 
658 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
659 	    BUS_DMASYNC_PREWRITE);
660 
661 	return 0;
662 
663 fail:	rt2661_free_rx_ring(sc, ring);
664 	return error;
665 }
666 
667 void
668 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
669 {
670 	int i;
671 
672 	for (i = 0; i < ring->count; i++)
673 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
674 
675 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
676 	    BUS_DMASYNC_PREWRITE);
677 
678 	ring->cur = ring->next = 0;
679 }
680 
681 void
682 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
683 {
684 	int i;
685 
686 	if (ring->desc != NULL) {
687 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
688 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
689 		bus_dmamap_unload(sc->sc_dmat, ring->map);
690 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
691 		    ring->count * RT2661_RX_DESC_SIZE);
692 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
693 	}
694 
695 	if (ring->data != NULL) {
696 		for (i = 0; i < ring->count; i++) {
697 			struct rt2661_rx_data *data = &ring->data[i];
698 
699 			if (data->m != NULL) {
700 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
701 				    data->map->dm_mapsize,
702 				    BUS_DMASYNC_POSTREAD);
703 				bus_dmamap_unload(sc->sc_dmat, data->map);
704 				m_freem(data->m);
705 			}
706 
707 			if (data->map != NULL)
708 				bus_dmamap_destroy(sc->sc_dmat, data->map);
709 		}
710 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
711 	}
712 }
713 
714 struct rt2661_amrr_node *
715 rt2661_amrr_node_alloc(struct ieee80211com *ic, struct rt2661_node *rn)
716 {
717 	struct rt2661_softc *sc = ic->ic_softc;
718 	struct rt2661_amrr_node *amn;
719 	int s;
720 
721 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
722 		rt2661_amrr_node_free_unused(sc);
723 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
724 		return NULL;
725 
726 	amn = malloc(sizeof (struct rt2661_amrr_node), M_DEVBUF,
727 	    M_NOWAIT | M_ZERO);
728 
729 	if (amn) {
730 		s = splnet();
731 		amn->id = sc->amn_count++;
732 		amn->rn = rn;
733 		TAILQ_INSERT_TAIL(&sc->amn, amn, entry);
734 		splx(s);
735 	}
736 
737 	return amn;
738 }
739 
740 void
741 rt2661_amrr_node_free(struct rt2661_softc *sc, struct rt2661_amrr_node *amn)
742 {
743 	int s;
744 
745 	s = splnet();
746 	if (amn->rn)
747 		amn->rn->amn = NULL;
748 	TAILQ_REMOVE(&sc->amn, amn, entry);
749 	sc->amn_count--;
750 	splx(s);
751 	free(amn, M_DEVBUF, sizeof *amn);
752 }
753 
754 void
755 rt2661_amrr_node_free_all(struct rt2661_softc *sc)
756 {
757 	struct rt2661_amrr_node *amn, *a;
758 	int s;
759 
760 	s = splnet();
761 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a)
762 		rt2661_amrr_node_free(sc, amn);
763 	splx(s);
764 }
765 
766 void
767 rt2661_amrr_node_free_unused(struct rt2661_softc *sc)
768 {
769 	struct rt2661_amrr_node *amn, *a;
770 	int s;
771 
772 	s = splnet();
773 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
774 		if (amn->rn == NULL)
775 			rt2661_amrr_node_free(sc, amn);
776 	}
777 	splx(s);
778 }
779 
780 struct rt2661_amrr_node *
781 rt2661_amrr_node_find(struct rt2661_softc *sc, u_int8_t id)
782 {
783 	struct rt2661_amrr_node *amn, *a, *ret = NULL;
784 	int s;
785 
786 	if (id == RT2661_AMRR_INVALID_ID)
787 		return NULL;
788 
789 	s = splnet();
790 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
791 		/* If the corresponding node was freed, free the amrr node. */
792 		if (amn->rn == NULL)
793 			rt2661_amrr_node_free(sc, amn);
794 		else if (amn->id == id)
795 			ret = amn;
796 	}
797 	splx(s);
798 
799 	return ret;
800 }
801 
802 struct ieee80211_node *
803 rt2661_node_alloc(struct ieee80211com *ic)
804 {
805 	struct rt2661_node *rn;
806 
807 	rn = malloc(sizeof (struct rt2661_node), M_DEVBUF,
808 	    M_NOWAIT | M_ZERO);
809 	if (rn == NULL)
810 		return NULL;
811 
812 	rn->amn = rt2661_amrr_node_alloc(ic, rn);
813 	return (struct ieee80211_node *)rn;
814 }
815 
816 void
817 rt2661_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
818 {
819 	struct rt2661_softc *sc = ic->ic_softc;
820 	struct rt2661_node *rn = (struct rt2661_node *)ni;
821 
822 	if (rn->amn)
823 		rn->amn->rn = NULL;
824 	sc->sc_node_free(ic, ni);
825 }
826 
827 int
828 rt2661_media_change(struct ifnet *ifp)
829 {
830 	int error;
831 
832 	error = ieee80211_media_change(ifp);
833 	if (error != ENETRESET)
834 		return error;
835 
836 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
837 		rt2661_init(ifp);
838 
839 	return 0;
840 }
841 
842 /*
843  * This function is called periodically (every 200ms) during scanning to
844  * switch from one channel to another.
845  */
846 void
847 rt2661_next_scan(void *arg)
848 {
849 	struct rt2661_softc *sc = arg;
850 	struct ieee80211com *ic = &sc->sc_ic;
851 	struct ifnet *ifp = &ic->ic_if;
852 	int s;
853 
854 	s = splnet();
855 	if (ic->ic_state == IEEE80211_S_SCAN)
856 		ieee80211_next_scan(ifp);
857 	splx(s);
858 }
859 
860 /*
861  * This function is called for each neighbor node.
862  */
863 void
864 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
865 {
866 	struct rt2661_softc *sc = arg;
867 	struct rt2661_node *rn = (struct rt2661_node *)ni;
868 
869 	if (rn->amn)
870 		ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn->amn);
871 }
872 
873 /*
874  * This function is called periodically (every 500ms) in RUN state to update
875  * various settings like rate control statistics or Rx sensitivity.
876  */
877 void
878 rt2661_updatestats(void *arg)
879 {
880 	struct rt2661_softc *sc = arg;
881 	struct ieee80211com *ic = &sc->sc_ic;
882 	int s;
883 
884 	s = splnet();
885 	if (ic->ic_opmode == IEEE80211_M_STA)
886 		rt2661_iter_func(sc, ic->ic_bss);
887 	else
888 		ieee80211_iterate_nodes(ic, rt2661_iter_func, arg);
889 
890 	/* update rx sensitivity and free unused amrr nodes every 1 sec */
891 	if (++sc->ncalls & 1) {
892 		rt2661_rx_tune(sc);
893 		rt2661_amrr_node_free_unused(sc);
894 	}
895 	splx(s);
896 
897 	timeout_add_msec(&sc->amrr_to, 500);
898 }
899 
900 void
901 rt2661_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
902 {
903 	struct rt2661_softc *sc = ic->ic_softc;
904 	struct rt2661_node *rn = (struct rt2661_node *)ni;
905 	int i;
906 
907 	if (rn->amn)
908 		ieee80211_amrr_node_init(&sc->amrr, &rn->amn->amn);
909 
910 	/* set rate to some reasonable initial value */
911 	for (i = ni->ni_rates.rs_nrates - 1;
912 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
913 	     i--);
914 	ni->ni_txrate = i;
915 }
916 
917 int
918 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
919 {
920 	struct rt2661_softc *sc = ic->ic_if.if_softc;
921 	enum ieee80211_state ostate;
922 	struct ieee80211_node *ni;
923 	uint32_t tmp;
924 
925 	ostate = ic->ic_state;
926 	timeout_del(&sc->scan_to);
927 	timeout_del(&sc->amrr_to);
928 
929 	switch (nstate) {
930 	case IEEE80211_S_INIT:
931 		if (ostate == IEEE80211_S_RUN) {
932 			/* abort TSF synchronization */
933 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
934 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
935 		}
936 		break;
937 
938 	case IEEE80211_S_SCAN:
939 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
940 		timeout_add_msec(&sc->scan_to, 200);
941 		break;
942 
943 	case IEEE80211_S_AUTH:
944 	case IEEE80211_S_ASSOC:
945 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
946 		break;
947 
948 	case IEEE80211_S_RUN:
949 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
950 
951 		ni = ic->ic_bss;
952 
953 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
954 			rt2661_set_slottime(sc);
955 			rt2661_enable_mrr(sc);
956 			rt2661_set_txpreamble(sc);
957 			rt2661_set_basicrates(sc);
958 			rt2661_set_bssid(sc, ni->ni_bssid);
959 		}
960 
961 #ifndef IEEE80211_STA_ONLY
962 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
963 		    ic->ic_opmode == IEEE80211_M_IBSS)
964 			rt2661_prepare_beacon(sc);
965 #endif
966 
967 		if (ic->ic_opmode == IEEE80211_M_STA) {
968 			/* fake a join to init the tx rate */
969 			rt2661_newassoc(ic, ni, 1);
970 		}
971 
972 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
973 			sc->ncalls = 0;
974 			sc->avg_rssi = -95;	/* reset EMA */
975 			timeout_add_msec(&sc->amrr_to, 500);
976 			rt2661_enable_tsf_sync(sc);
977 		}
978 		break;
979 	}
980 
981 	return sc->sc_newstate(ic, nstate, arg);
982 }
983 
984 /*
985  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
986  * 93C66).
987  */
988 uint16_t
989 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
990 {
991 	uint32_t tmp;
992 	uint16_t val;
993 	int n;
994 
995 	/* clock C once before the first command */
996 	RT2661_EEPROM_CTL(sc, 0);
997 
998 	RT2661_EEPROM_CTL(sc, RT2661_S);
999 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1000 	RT2661_EEPROM_CTL(sc, RT2661_S);
1001 
1002 	/* write start bit (1) */
1003 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1004 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1005 
1006 	/* write READ opcode (10) */
1007 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1008 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1009 	RT2661_EEPROM_CTL(sc, RT2661_S);
1010 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1011 
1012 	/* write address (A5-A0 or A7-A0) */
1013 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1014 	for (; n >= 0; n--) {
1015 		RT2661_EEPROM_CTL(sc, RT2661_S |
1016 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1017 		RT2661_EEPROM_CTL(sc, RT2661_S |
1018 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1019 	}
1020 
1021 	RT2661_EEPROM_CTL(sc, RT2661_S);
1022 
1023 	/* read data Q15-Q0 */
1024 	val = 0;
1025 	for (n = 15; n >= 0; n--) {
1026 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1027 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1028 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1029 		RT2661_EEPROM_CTL(sc, RT2661_S);
1030 	}
1031 
1032 	RT2661_EEPROM_CTL(sc, 0);
1033 
1034 	/* clear Chip Select and clock C */
1035 	RT2661_EEPROM_CTL(sc, RT2661_S);
1036 	RT2661_EEPROM_CTL(sc, 0);
1037 	RT2661_EEPROM_CTL(sc, RT2661_C);
1038 
1039 	return val;
1040 }
1041 
1042 /* The TX interrupt handler accumulates statistics based on whether frames
1043  * were sent successfully by the ASIC. */
1044 void
1045 rt2661_tx_intr(struct rt2661_softc *sc)
1046 {
1047 	struct ieee80211com *ic = &sc->sc_ic;
1048 	struct ifnet *ifp = &ic->ic_if;
1049 	struct rt2661_amrr_node *amn;
1050 	int retrycnt;
1051 	u_int8_t amrr_id;
1052 
1053 	for (;;) {
1054 		const uint32_t val = RAL_READ(sc, RT2661_STA_CSR4);
1055 		if (!(val & RT2661_TX_STAT_VALID))
1056 			break;
1057 
1058 		/* retrieve rate control algorithm context */
1059 		amrr_id = RT2661_TX_PRIV_DATA(val);
1060 		amn = rt2661_amrr_node_find(sc, amrr_id);
1061 
1062 		switch (RT2661_TX_RESULT(val)) {
1063 		case RT2661_TX_SUCCESS:
1064 			retrycnt = RT2661_TX_RETRYCNT(val);
1065 
1066 			DPRINTFN(10, ("data frame sent successfully after "
1067 			    "%d retries\n", retrycnt));
1068 			if (amn) {
1069 				amn->amn.amn_txcnt++;
1070 				if (retrycnt > 0)
1071 					amn->amn.amn_retrycnt++;
1072 			}
1073 			break;
1074 
1075 		case RT2661_TX_RETRY_FAIL:
1076 			DPRINTFN(9, ("sending data frame failed (too much "
1077 			    "retries)\n"));
1078 			if (amn) {
1079 				amn->amn.amn_txcnt++;
1080 				amn->amn.amn_retrycnt++;
1081 			}
1082 			ifp->if_oerrors++;
1083 			break;
1084 
1085 		default:
1086 			/* other failure */
1087 			printf("%s: sending data frame failed 0x%08x\n",
1088 			    sc->sc_dev.dv_xname, val);
1089 			ifp->if_oerrors++;
1090 		}
1091 
1092 		DPRINTFN(15, ("tx done amrr_id=%hhu amn=0x%x\n", amrr_id, amn));
1093 	}
1094 }
1095 
1096 /* The TX DMA interrupt handler processes frames which have been offloaded
1097  * to the ASIC for transmission. We can free all resources corresponding
1098  * to the frame here. */
1099 void
1100 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1101 {
1102 	struct ieee80211com *ic = &sc->sc_ic;
1103 	struct ifnet *ifp = &ic->ic_if;
1104 
1105 	for (;;) {
1106 		struct rt2661_tx_desc *desc = &txq->desc[txq->next];
1107 		struct rt2661_tx_data *data = &txq->data[txq->next];
1108 
1109 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1110 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1111 		    BUS_DMASYNC_POSTREAD);
1112 
1113 		if ((letoh32(desc->flags) & RT2661_TX_BUSY) ||
1114 		    !(letoh32(desc->flags) & RT2661_TX_VALID))
1115 			break;
1116 
1117 		/* descriptor is no longer valid */
1118 		desc->flags &= ~htole32(RT2661_TX_VALID);
1119 
1120 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1121 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1122 		    BUS_DMASYNC_PREWRITE);
1123 
1124 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1125 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1126 		bus_dmamap_unload(sc->sc_dmat, data->map);
1127 		m_freem(data->m);
1128 		data->m = NULL;
1129 		ieee80211_release_node(ic, data->ni);
1130 		data->ni = NULL;
1131 
1132 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1133 
1134 		txq->queued--;
1135 		if (++txq->next >= txq->count)	/* faster than % count */
1136 			txq->next = 0;
1137 	}
1138 
1139 	if (sc->mgtq.queued == 0 && sc->txq[0].queued == 0)
1140 		sc->sc_tx_timer = 0;
1141 	if (sc->mgtq.queued < RT2661_MGT_RING_COUNT &&
1142 	    sc->txq[0].queued < RT2661_TX_RING_COUNT - 1) {
1143 		if (sc->mgtq.queued < RT2661_MGT_RING_COUNT)
1144 			sc->sc_flags &= ~RT2661_MGT_OACTIVE;
1145 		if (sc->txq[0].queued < RT2661_TX_RING_COUNT - 1)
1146 			sc->sc_flags &= ~RT2661_DATA_OACTIVE;
1147 		if (!(sc->sc_flags & (RT2661_MGT_OACTIVE|RT2661_DATA_OACTIVE)))
1148 			ifq_clr_oactive(&ifp->if_snd);
1149 		rt2661_start(ifp);
1150 	}
1151 }
1152 
1153 void
1154 rt2661_rx_intr(struct rt2661_softc *sc)
1155 {
1156 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1157 	struct ieee80211com *ic = &sc->sc_ic;
1158 	struct ifnet *ifp = &ic->ic_if;
1159 	struct ieee80211_frame *wh;
1160 	struct ieee80211_rxinfo rxi;
1161 	struct ieee80211_node *ni;
1162 	struct mbuf *mnew, *m;
1163 	int error, rssi;
1164 
1165 	for (;;) {
1166 		struct rt2661_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1167 		struct rt2661_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1168 
1169 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1170 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1171 		    BUS_DMASYNC_POSTREAD);
1172 
1173 		if (letoh32(desc->flags) & RT2661_RX_BUSY)
1174 			break;
1175 
1176 		if ((letoh32(desc->flags) & RT2661_RX_PHY_ERROR) ||
1177 		    (letoh32(desc->flags) & RT2661_RX_CRC_ERROR)) {
1178 			/*
1179 			 * This should not happen since we did not request
1180 			 * to receive those frames when we filled TXRX_CSR0.
1181 			 */
1182 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1183 			    letoh32(desc->flags)));
1184 			ifp->if_ierrors++;
1185 			goto skip;
1186 		}
1187 
1188 		if ((letoh32(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1189 			ifp->if_ierrors++;
1190 			goto skip;
1191 		}
1192 
1193 		/*
1194 		 * Try to allocate a new mbuf for this ring element and load it
1195 		 * before processing the current mbuf. If the ring element
1196 		 * cannot be loaded, drop the received packet and reuse the old
1197 		 * mbuf. In the unlikely case that the old mbuf can't be
1198 		 * reloaded either, explicitly panic.
1199 		 */
1200 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1201 		if (mnew == NULL) {
1202 			ifp->if_ierrors++;
1203 			goto skip;
1204 		}
1205 		MCLGET(mnew, M_DONTWAIT);
1206 		if (!(mnew->m_flags & M_EXT)) {
1207 			m_freem(mnew);
1208 			ifp->if_ierrors++;
1209 			goto skip;
1210 		}
1211 
1212 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1213 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1214 		bus_dmamap_unload(sc->sc_dmat, data->map);
1215 
1216 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1217 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1218 		if (error != 0) {
1219 			m_freem(mnew);
1220 
1221 			/* try to reload the old mbuf */
1222 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1223 			    mtod(data->m, void *), MCLBYTES, NULL,
1224 			    BUS_DMA_NOWAIT);
1225 			if (error != 0) {
1226 				/* very unlikely that it will fail... */
1227 				panic("%s: could not load old rx mbuf",
1228 				    sc->sc_dev.dv_xname);
1229 			}
1230 			/* physical address may have changed */
1231 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1232 			ifp->if_ierrors++;
1233 			goto skip;
1234 		}
1235 
1236 		/*
1237 	 	 * New mbuf successfully loaded, update Rx ring and continue
1238 		 * processing.
1239 		 */
1240 		m = data->m;
1241 		data->m = mnew;
1242 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1243 
1244 		/* finalize mbuf */
1245 		m->m_pkthdr.len = m->m_len =
1246 		    (letoh32(desc->flags) >> 16) & 0xfff;
1247 
1248 #if NBPFILTER > 0
1249 		if (sc->sc_drvbpf != NULL) {
1250 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1251 			uint32_t tsf_lo, tsf_hi;
1252 
1253 			/* get timestamp (low and high 32 bits) */
1254 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1255 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1256 
1257 			tap->wr_tsf =
1258 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1259 			tap->wr_flags = 0;
1260 			tap->wr_rate = rt2661_rxrate(desc);
1261 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1262 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1263 			tap->wr_antsignal = desc->rssi;
1264 
1265 			bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
1266 			    BPF_DIRECTION_IN);
1267 		}
1268 #endif
1269 
1270 		wh = mtod(m, struct ieee80211_frame *);
1271 		ni = ieee80211_find_rxnode(ic, wh);
1272 
1273 		/* send the frame to the 802.11 layer */
1274 		rxi.rxi_flags = 0;
1275 		rxi.rxi_rssi = desc->rssi;
1276 		rxi.rxi_tstamp = 0;	/* unused */
1277 		ieee80211_inputm(ifp, m, ni, &rxi, &ml);
1278 
1279 		/*-
1280 		 * Keep track of the average RSSI using an Exponential Moving
1281 		 * Average (EMA) of 8 Wilder's days:
1282 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1283 		 */
1284 		rssi = rt2661_get_rssi(sc, desc->rssi);
1285 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1286 
1287 		/* node is no longer needed */
1288 		ieee80211_release_node(ic, ni);
1289 
1290 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1291 
1292 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1293 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1294 		    BUS_DMASYNC_PREWRITE);
1295 
1296 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1297 
1298 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1299 	}
1300 	if_input(ifp, &ml);
1301 }
1302 
1303 #ifndef IEEE80211_STA_ONLY
1304 /*
1305  * This function is called in HostAP or IBSS modes when it's time to send a
1306  * new beacon (every ni_intval milliseconds).
1307  */
1308 void
1309 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1310 {
1311 	struct ieee80211com *ic = &sc->sc_ic;
1312 
1313 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1314 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1315 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1316 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1317 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1318 		rt2661_set_slottime(sc);
1319 	}
1320 
1321 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1322 		/* update ERP Information Element */
1323 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1324 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1325 	}
1326 
1327 	DPRINTFN(15, ("beacon expired\n"));
1328 }
1329 #endif
1330 
1331 void
1332 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1333 {
1334 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1335 
1336 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1337 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1338 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1339 
1340 	/* send wakeup command to MCU */
1341 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1342 }
1343 
1344 void
1345 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1346 {
1347 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1348 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1349 }
1350 
1351 int
1352 rt2661_intr(void *arg)
1353 {
1354 	struct rt2661_softc *sc = arg;
1355 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1356 	uint32_t r1, r2;
1357 
1358 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1359 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1360 	if (__predict_false(r1 == 0xffffffff && r2 == 0xffffffff))
1361 		return 0;	/* device likely went away */
1362 	if (r1 == 0 && r2 == 0)
1363 		return 0;	/* not for us */
1364 
1365 	/* disable MAC and MCU interrupts */
1366 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1367 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1368 
1369 	/* acknowledge interrupts */
1370 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1371 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1372 
1373 	/* don't re-enable interrupts if we're shutting down */
1374 	if (!(ifp->if_flags & IFF_RUNNING))
1375 		return 0;
1376 
1377 	if (r1 & RT2661_MGT_DONE)
1378 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1379 
1380 	if (r1 & RT2661_RX_DONE)
1381 		rt2661_rx_intr(sc);
1382 
1383 	if (r1 & RT2661_TX0_DMA_DONE)
1384 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1385 
1386 	if (r1 & RT2661_TX1_DMA_DONE)
1387 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1388 
1389 	if (r1 & RT2661_TX2_DMA_DONE)
1390 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1391 
1392 	if (r1 & RT2661_TX3_DMA_DONE)
1393 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1394 
1395 	if (r1 & RT2661_TX_DONE)
1396 		rt2661_tx_intr(sc);
1397 
1398 	if (r2 & RT2661_MCU_CMD_DONE)
1399 		rt2661_mcu_cmd_intr(sc);
1400 
1401 #ifndef IEEE80211_STA_ONLY
1402 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1403 		rt2661_mcu_beacon_expire(sc);
1404 #endif
1405 
1406 	if (r2 & RT2661_MCU_WAKEUP)
1407 		rt2661_mcu_wakeup(sc);
1408 
1409 	/* re-enable MAC and MCU interrupts */
1410 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1411 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1412 
1413 	return 1;
1414 }
1415 
1416 /* quickly determine if a given rate is CCK or OFDM */
1417 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1418 
1419 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1420 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1421 
1422 /*
1423  * This function is only used by the Rx radiotap code. It returns the rate at
1424  * which a given frame was received.
1425  */
1426 #if NBPFILTER > 0
1427 uint8_t
1428 rt2661_rxrate(const struct rt2661_rx_desc *desc)
1429 {
1430 	if (letoh32(desc->flags) & RT2661_RX_OFDM) {
1431 		/* reverse function of rt2661_plcp_signal */
1432 		switch (desc->rate & 0xf) {
1433 		case 0xb:	return 12;
1434 		case 0xf:	return 18;
1435 		case 0xa:	return 24;
1436 		case 0xe:	return 36;
1437 		case 0x9:	return 48;
1438 		case 0xd:	return 72;
1439 		case 0x8:	return 96;
1440 		case 0xc:	return 108;
1441 		}
1442 	} else {
1443 		if (desc->rate == 10)
1444 			return 2;
1445 		if (desc->rate == 20)
1446 			return 4;
1447 		if (desc->rate == 55)
1448 			return 11;
1449 		if (desc->rate == 110)
1450 			return 22;
1451 	}
1452 	return 2;	/* should not get there */
1453 }
1454 #endif
1455 
1456 /*
1457  * Return the expected ack rate for a frame transmitted at rate `rate'.
1458  */
1459 int
1460 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1461 {
1462 	switch (rate) {
1463 	/* CCK rates */
1464 	case 2:
1465 		return 2;
1466 	case 4:
1467 	case 11:
1468 	case 22:
1469 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1470 
1471 	/* OFDM rates */
1472 	case 12:
1473 	case 18:
1474 		return 12;
1475 	case 24:
1476 	case 36:
1477 		return 24;
1478 	case 48:
1479 	case 72:
1480 	case 96:
1481 	case 108:
1482 		return 48;
1483 	}
1484 
1485 	/* default to 1Mbps */
1486 	return 2;
1487 }
1488 
1489 /*
1490  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1491  * The function automatically determines the operating mode depending on the
1492  * given rate. `flags' indicates whether short preamble is in use or not.
1493  */
1494 uint16_t
1495 rt2661_txtime(int len, int rate, uint32_t flags)
1496 {
1497 	uint16_t txtime;
1498 
1499 	if (RAL_RATE_IS_OFDM(rate)) {
1500 		/* IEEE Std 802.11g-2003, pp. 44 */
1501 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1502 		txtime = 16 + 4 + 4 * txtime + 6;
1503 	} else {
1504 		/* IEEE Std 802.11b-1999, pp. 28 */
1505 		txtime = (16 * len + rate - 1) / rate;
1506 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1507 			txtime +=  72 + 24;
1508 		else
1509 			txtime += 144 + 48;
1510 	}
1511 	return txtime;
1512 }
1513 
1514 uint8_t
1515 rt2661_plcp_signal(int rate)
1516 {
1517 	switch (rate) {
1518 	/* CCK rates (returned values are device-dependent) */
1519 	case 2:		return 0x0;
1520 	case 4:		return 0x1;
1521 	case 11:	return 0x2;
1522 	case 22:	return 0x3;
1523 
1524 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1525 	case 12:	return 0xb;
1526 	case 18:	return 0xf;
1527 	case 24:	return 0xa;
1528 	case 36:	return 0xe;
1529 	case 48:	return 0x9;
1530 	case 72:	return 0xd;
1531 	case 96:	return 0x8;
1532 	case 108:	return 0xc;
1533 
1534 	/* unsupported rates (should not get there) */
1535 	default:	return 0xff;
1536 	}
1537 }
1538 
1539 void
1540 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1541     uint32_t flags, uint16_t xflags, int len, int rate,
1542     const bus_dma_segment_t *segs, int nsegs, int ac, u_int8_t amrr_id)
1543 {
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	uint16_t plcp_length;
1546 	int i, remainder;
1547 
1548 	desc->flags = htole32(flags);
1549 	desc->flags |= htole32(len << 16);
1550 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1551 
1552 	desc->xflags = htole16(xflags);
1553 	desc->xflags |= htole16(nsegs << 13);
1554 
1555 	desc->wme = htole16(
1556 	    RT2661_QID(ac) |
1557 	    RT2661_AIFSN(2) |
1558 	    RT2661_LOGCWMIN(4) |
1559 	    RT2661_LOGCWMAX(10));
1560 
1561 	/*
1562 	 * Remember the ID of the AMRR node to update when Tx completes.
1563 	 * This field is driver private data only. It will be made available
1564 	 * by the NIC in STA_CSR4 on Tx interrupts.
1565 	 */
1566 	desc->priv_data = amrr_id;
1567 
1568 	/* setup PLCP fields */
1569 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1570 	desc->plcp_service = 4;
1571 
1572 	len += IEEE80211_CRC_LEN;
1573 	if (RAL_RATE_IS_OFDM(rate)) {
1574 		desc->flags |= htole32(RT2661_TX_OFDM);
1575 
1576 		plcp_length = len & 0xfff;
1577 		desc->plcp_length_hi = plcp_length >> 6;
1578 		desc->plcp_length_lo = plcp_length & 0x3f;
1579 	} else {
1580 		plcp_length = (16 * len + rate - 1) / rate;
1581 		if (rate == 22) {
1582 			remainder = (16 * len) % 22;
1583 			if (remainder != 0 && remainder < 7)
1584 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1585 		}
1586 		desc->plcp_length_hi = plcp_length >> 8;
1587 		desc->plcp_length_lo = plcp_length & 0xff;
1588 
1589 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1590 			desc->plcp_signal |= 0x08;
1591 	}
1592 
1593 	/* RT2x61 supports scatter with up to 5 segments */
1594 	for (i = 0; i < nsegs; i++) {
1595 		desc->addr[i] = htole32(segs[i].ds_addr);
1596 		desc->len [i] = htole16(segs[i].ds_len);
1597 	}
1598 }
1599 
1600 int
1601 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1602     struct ieee80211_node *ni)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 	struct rt2661_tx_desc *desc;
1606 	struct rt2661_tx_data *data;
1607 	struct ieee80211_frame *wh;
1608 	uint16_t dur;
1609 	uint32_t flags = 0;
1610 	int rate, error;
1611 
1612 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1613 	data = &sc->mgtq.data[sc->mgtq.cur];
1614 
1615 	/* send mgt frames at the lowest available rate */
1616 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1617 
1618 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1619 	    BUS_DMA_NOWAIT);
1620 	if (error != 0) {
1621 		printf("%s: can't map mbuf (error %d)\n",
1622 		    sc->sc_dev.dv_xname, error);
1623 		m_freem(m0);
1624 		return error;
1625 	}
1626 
1627 #if NBPFILTER > 0
1628 	if (sc->sc_drvbpf != NULL) {
1629 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1630 
1631 		tap->wt_flags = 0;
1632 		tap->wt_rate = rate;
1633 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1634 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1635 
1636 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0,
1637 		    BPF_DIRECTION_OUT);
1638 	}
1639 #endif
1640 
1641 	data->m = m0;
1642 	data->ni = ni;
1643 
1644 	wh = mtod(m0, struct ieee80211_frame *);
1645 
1646 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1647 		flags |= RT2661_TX_NEED_ACK;
1648 
1649 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1650 		    sc->sifs;
1651 		*(uint16_t *)wh->i_dur = htole16(dur);
1652 
1653 #ifndef IEEE80211_STA_ONLY
1654 		/* tell hardware to set timestamp in probe responses */
1655 		if ((wh->i_fc[0] &
1656 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1657 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1658 			flags |= RT2661_TX_TIMESTAMP;
1659 #endif
1660 	}
1661 
1662 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1663 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1664 	    RT2661_QID_MGT, RT2661_AMRR_INVALID_ID);
1665 
1666 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1667 	    BUS_DMASYNC_PREWRITE);
1668 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1669 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1670 	    BUS_DMASYNC_PREWRITE);
1671 
1672 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1673 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1674 
1675 	/* kick mgt */
1676 	sc->mgtq.queued++;
1677 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1678 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1679 
1680 	return 0;
1681 }
1682 
1683 int
1684 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1685     struct ieee80211_node *ni, int ac)
1686 {
1687 	struct ieee80211com *ic = &sc->sc_ic;
1688 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1689 	struct rt2661_node *rn;
1690 	struct rt2661_tx_desc *desc;
1691 	struct rt2661_tx_data *data;
1692 	struct ieee80211_frame *wh;
1693 	struct ieee80211_key *k;
1694 	struct mbuf *m1;
1695 	uint16_t dur;
1696 	uint32_t flags = 0;
1697 	int pktlen, rate, needcts = 0, needrts = 0, error;
1698 
1699 	rn = ((ni == ic->ic_bss) ? NULL : (struct rt2661_node *)ni);
1700 	wh = mtod(m0, struct ieee80211_frame *);
1701 
1702 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1703 		k = ieee80211_get_txkey(ic, wh, ni);
1704 
1705 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1706 			return ENOBUFS;
1707 
1708 		/* packet header may have moved, reset our local pointer */
1709 		wh = mtod(m0, struct ieee80211_frame *);
1710 	}
1711 
1712 	/* compute actual packet length (including CRC and crypto overhead) */
1713 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1714 
1715 	/* pickup a rate */
1716 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1717 		/* multicast frames are sent at the lowest avail. rate */
1718 		rate = ni->ni_rates.rs_rates[0];
1719 	} else if (ic->ic_fixed_rate != -1) {
1720 		rate = ic->ic_sup_rates[ic->ic_curmode].
1721 		    rs_rates[ic->ic_fixed_rate];
1722 	} else
1723 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1724 	if (rate == 0)
1725 		rate = 2;	/* XXX should not happen */
1726 	rate &= IEEE80211_RATE_VAL;
1727 
1728 	/*
1729 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1730 	 * chance to contend for the wireless medium.
1731 	 */
1732 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1733 		flags |= RT2661_TX_IFS_SIFS;
1734 
1735 	/* check if RTS/CTS or CTS-to-self protection must be used */
1736 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1737 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1738 		if (pktlen > ic->ic_rtsthreshold) {
1739 			needrts = 1;	/* RTS/CTS based on frame length */
1740 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1741 		    RAL_RATE_IS_OFDM(rate)) {
1742 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1743 				needcts = 1;	/* CTS-to-self */
1744 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1745 				needrts = 1;	/* RTS/CTS */
1746 		}
1747 	}
1748 	if (needrts || needcts) {
1749 		struct mbuf *mprot;
1750 		int protrate, ackrate;
1751 
1752 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1753 		ackrate  = rt2661_ack_rate(ic, rate);
1754 
1755 		dur = rt2661_txtime(pktlen, rate, ic->ic_flags) +
1756 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1757 		      2 * sc->sifs;
1758 		if (needrts) {
1759 			dur += rt2661_txtime(RAL_CTS_SIZE, rt2661_ack_rate(ic,
1760 			    protrate), ic->ic_flags) + sc->sifs;
1761 			mprot = ieee80211_get_rts(ic, wh, dur);
1762 		} else {
1763 			mprot = ieee80211_get_cts_to_self(ic, dur);
1764 		}
1765 		if (mprot == NULL) {
1766 			printf("%s: could not allocate protection frame\n",
1767 			    sc->sc_dev.dv_xname);
1768 			m_freem(m0);
1769 			return ENOBUFS;
1770 		}
1771 
1772 		desc = &txq->desc[txq->cur];
1773 		data = &txq->data[txq->cur];
1774 
1775 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1776 		    BUS_DMA_NOWAIT);
1777 		if (error != 0) {
1778 			printf("%s: can't map mbuf (error %d)\n",
1779 			    sc->sc_dev.dv_xname, error);
1780 			m_freem(mprot);
1781 			m_freem(m0);
1782 			return error;
1783 		}
1784 
1785 		data->m = mprot;
1786 		/* avoid multiple free() of the same node for each fragment */
1787 		data->ni = ieee80211_ref_node(ni);
1788 
1789 		/* XXX may want to pass the protection frame to BPF */
1790 
1791 		rt2661_setup_tx_desc(sc, desc,
1792 		    (needrts ? RT2661_TX_NEED_ACK : 0) | RT2661_TX_MORE_FRAG,
1793 		    0, mprot->m_pkthdr.len, protrate, data->map->dm_segs,
1794 		    data->map->dm_nsegs, ac,
1795 	    	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1796 
1797 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1798 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1799 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1800 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1801 		    BUS_DMASYNC_PREWRITE);
1802 
1803 		txq->queued++;
1804 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1805 
1806 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1807 	}
1808 
1809 	data = &txq->data[txq->cur];
1810 	desc = &txq->desc[txq->cur];
1811 
1812 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1813 	    BUS_DMA_NOWAIT);
1814 	if (error != 0 && error != EFBIG) {
1815 		printf("%s: can't map mbuf (error %d)\n",
1816 		    sc->sc_dev.dv_xname, error);
1817 		m_freem(m0);
1818 		return error;
1819 	}
1820 	if (error != 0) {
1821 		/* too many fragments, linearize */
1822 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1823 		if (m1 == NULL) {
1824 			m_freem(m0);
1825 			return ENOBUFS;
1826 		}
1827 		if (m0->m_pkthdr.len > MHLEN) {
1828 			MCLGET(m1, M_DONTWAIT);
1829 			if (!(m1->m_flags & M_EXT)) {
1830 				m_freem(m0);
1831 				m_freem(m1);
1832 				return ENOBUFS;
1833 			}
1834 		}
1835 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1836 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1837 		m_freem(m0);
1838 		m0 = m1;
1839 
1840 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1841 		    BUS_DMA_NOWAIT);
1842 		if (error != 0) {
1843 			printf("%s: can't map mbuf (error %d)\n",
1844 			    sc->sc_dev.dv_xname, error);
1845 			m_freem(m0);
1846 			return error;
1847 		}
1848 
1849 		/* packet header have moved, reset our local pointer */
1850 		wh = mtod(m0, struct ieee80211_frame *);
1851 	}
1852 
1853 #if NBPFILTER > 0
1854 	if (sc->sc_drvbpf != NULL) {
1855 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1856 
1857 		tap->wt_flags = 0;
1858 		tap->wt_rate = rate;
1859 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1860 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1861 
1862 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0,
1863 		    BPF_DIRECTION_OUT);
1864 	}
1865 #endif
1866 
1867 	data->m = m0;
1868 	data->ni = ni;
1869 
1870 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1871 		flags |= RT2661_TX_NEED_ACK;
1872 
1873 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1874 		    ic->ic_flags) + sc->sifs;
1875 		*(uint16_t *)wh->i_dur = htole16(dur);
1876 	}
1877 
1878 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1879 	    data->map->dm_segs, data->map->dm_nsegs, ac,
1880 	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1881 
1882 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1883 	    BUS_DMASYNC_PREWRITE);
1884 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1885 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1886 
1887 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1888 	    m0->m_pkthdr.len, txq->cur, rate));
1889 
1890 	/* kick Tx */
1891 	txq->queued++;
1892 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1893 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1894 
1895 	return 0;
1896 }
1897 
1898 void
1899 rt2661_start(struct ifnet *ifp)
1900 {
1901 	struct rt2661_softc *sc = ifp->if_softc;
1902 	struct ieee80211com *ic = &sc->sc_ic;
1903 	struct mbuf *m0;
1904 	struct ieee80211_node *ni;
1905 
1906 	/*
1907 	 * net80211 may still try to send management frames even if the
1908 	 * IFF_RUNNING flag is not set...
1909 	 */
1910 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1911 		return;
1912 
1913 	for (;;) {
1914 		if (mq_len(&ic->ic_mgtq) > 0) {
1915 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1916 				ifq_set_oactive(&ifp->if_snd);
1917 				break;
1918 			}
1919 
1920 			m0 = mq_dequeue(&ic->ic_mgtq);
1921 			if (m0 == NULL)
1922 				continue;
1923 			ni = m0->m_pkthdr.ph_cookie;
1924 #if NBPFILTER > 0
1925 			if (ic->ic_rawbpf != NULL)
1926 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1927 #endif
1928 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1929 				break;
1930 
1931 		} else {
1932 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1933 				ifq_set_oactive(&ifp->if_snd);
1934 				break;
1935 			}
1936 
1937 			if (ic->ic_state != IEEE80211_S_RUN)
1938 				break;
1939 
1940 			m0 = ifq_dequeue(&ifp->if_snd);
1941 			if (m0 == NULL)
1942 				break;
1943 #if NBPFILTER > 0
1944 			if (ifp->if_bpf != NULL)
1945 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1946 #endif
1947 			m0 = ieee80211_encap(ifp, m0, &ni);
1948 			if (m0 == NULL)
1949 				continue;
1950 #if NBPFILTER > 0
1951 			if (ic->ic_rawbpf != NULL)
1952 				bpf_mtap(ic->ic_rawbpf, m0,
1953 				    BPF_DIRECTION_OUT);
1954 #endif
1955 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1956 				if (ni != NULL)
1957 					ieee80211_release_node(ic, ni);
1958 				ifp->if_oerrors++;
1959 				break;
1960 			}
1961 		}
1962 
1963 		sc->sc_tx_timer = 5;
1964 		ifp->if_timer = 1;
1965 	}
1966 }
1967 
1968 void
1969 rt2661_watchdog(struct ifnet *ifp)
1970 {
1971 	struct rt2661_softc *sc = ifp->if_softc;
1972 
1973 	ifp->if_timer = 0;
1974 
1975 	if (sc->sc_tx_timer > 0) {
1976 		if (--sc->sc_tx_timer == 0) {
1977 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1978 			rt2661_init(ifp);
1979 			ifp->if_oerrors++;
1980 			return;
1981 		}
1982 		ifp->if_timer = 1;
1983 	}
1984 
1985 	ieee80211_watchdog(ifp);
1986 }
1987 
1988 int
1989 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1990 {
1991 	struct rt2661_softc *sc = ifp->if_softc;
1992 	struct ieee80211com *ic = &sc->sc_ic;
1993 	int s, error = 0;
1994 
1995 	s = splnet();
1996 
1997 	switch (cmd) {
1998 	case SIOCSIFADDR:
1999 		ifp->if_flags |= IFF_UP;
2000 		/* FALLTHROUGH */
2001 	case SIOCSIFFLAGS:
2002 		if (ifp->if_flags & IFF_UP) {
2003 			if (ifp->if_flags & IFF_RUNNING)
2004 				rt2661_update_promisc(sc);
2005 			else
2006 				rt2661_init(ifp);
2007 		} else {
2008 			if (ifp->if_flags & IFF_RUNNING)
2009 				rt2661_stop(ifp, 1);
2010 		}
2011 		break;
2012 
2013 	case SIOCS80211CHANNEL:
2014 		/*
2015 		 * This allows for fast channel switching in monitor mode
2016 		 * (used by kismet). In IBSS mode, we must explicitly reset
2017 		 * the interface to generate a new beacon frame.
2018 		 */
2019 		error = ieee80211_ioctl(ifp, cmd, data);
2020 		if (error == ENETRESET &&
2021 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2022 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2023 			    (IFF_UP | IFF_RUNNING))
2024 				rt2661_set_chan(sc, ic->ic_ibss_chan);
2025 			error = 0;
2026 		}
2027 		break;
2028 
2029 	default:
2030 		error = ieee80211_ioctl(ifp, cmd, data);
2031 	}
2032 
2033 	if (error == ENETRESET) {
2034 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2035 		    (IFF_UP | IFF_RUNNING))
2036 			rt2661_init(ifp);
2037 		error = 0;
2038 	}
2039 
2040 	splx(s);
2041 
2042 	return error;
2043 }
2044 
2045 void
2046 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2047 {
2048 	uint32_t tmp;
2049 	int ntries;
2050 
2051 	for (ntries = 0; ntries < 100; ntries++) {
2052 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2053 			break;
2054 		DELAY(1);
2055 	}
2056 	if (ntries == 100) {
2057 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2058 		return;
2059 	}
2060 
2061 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2062 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2063 
2064 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2065 }
2066 
2067 uint8_t
2068 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2069 {
2070 	uint32_t val;
2071 	int ntries;
2072 
2073 	for (ntries = 0; ntries < 100; ntries++) {
2074 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2075 			break;
2076 		DELAY(1);
2077 	}
2078 	if (ntries == 100) {
2079 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2080 		return 0;
2081 	}
2082 
2083 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2084 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2085 
2086 	for (ntries = 0; ntries < 100; ntries++) {
2087 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2088 		if (!(val & RT2661_BBP_BUSY))
2089 			return val & 0xff;
2090 		DELAY(1);
2091 	}
2092 
2093 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2094 	return 0;
2095 }
2096 
2097 void
2098 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2099 {
2100 	uint32_t tmp;
2101 	int ntries;
2102 
2103 	for (ntries = 0; ntries < 100; ntries++) {
2104 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2105 			break;
2106 		DELAY(1);
2107 	}
2108 	if (ntries == 100) {
2109 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2110 		return;
2111 	}
2112 
2113 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2114 	    (reg & 3);
2115 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2116 
2117 	/* remember last written value in sc */
2118 	sc->rf_regs[reg] = val;
2119 
2120 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2121 }
2122 
2123 int
2124 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2125 {
2126 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2127 		return EIO;	/* there is already a command pending */
2128 
2129 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2130 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2131 
2132 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2133 
2134 	return 0;
2135 }
2136 
2137 void
2138 rt2661_select_antenna(struct rt2661_softc *sc)
2139 {
2140 	uint8_t bbp4, bbp77;
2141 	uint32_t tmp;
2142 
2143 	bbp4  = rt2661_bbp_read(sc,  4);
2144 	bbp77 = rt2661_bbp_read(sc, 77);
2145 
2146 	/* TBD */
2147 
2148 	/* make sure Rx is disabled before switching antenna */
2149 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2150 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2151 
2152 	rt2661_bbp_write(sc,  4, bbp4);
2153 	rt2661_bbp_write(sc, 77, bbp77);
2154 
2155 	/* restore Rx filter */
2156 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2157 }
2158 
2159 /*
2160  * Enable multi-rate retries for frames sent at OFDM rates.
2161  * In 802.11b/g mode, allow fallback to CCK rates.
2162  */
2163 void
2164 rt2661_enable_mrr(struct rt2661_softc *sc)
2165 {
2166 	struct ieee80211com *ic = &sc->sc_ic;
2167 	uint32_t tmp;
2168 
2169 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2170 
2171 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2172 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2173 		tmp |= RT2661_MRR_CCK_FALLBACK;
2174 	tmp |= RT2661_MRR_ENABLED;
2175 
2176 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2177 }
2178 
2179 void
2180 rt2661_set_txpreamble(struct rt2661_softc *sc)
2181 {
2182 	uint32_t tmp;
2183 
2184 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2185 
2186 	tmp &= ~RT2661_SHORT_PREAMBLE;
2187 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2188 		tmp |= RT2661_SHORT_PREAMBLE;
2189 
2190 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2191 }
2192 
2193 void
2194 rt2661_set_basicrates(struct rt2661_softc *sc)
2195 {
2196 	struct ieee80211com *ic = &sc->sc_ic;
2197 
2198 	/* update basic rate set */
2199 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2200 		/* 11b basic rates: 1, 2Mbps */
2201 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x3);
2202 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
2203 		/* 11a basic rates: 6, 12, 24Mbps */
2204 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x150);
2205 	} else {
2206 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2207 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0xf);
2208 	}
2209 }
2210 
2211 /*
2212  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2213  * driver.
2214  */
2215 void
2216 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2217 {
2218 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2219 	uint32_t tmp;
2220 
2221 	/* update all BBP registers that depend on the band */
2222 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2223 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2224 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2225 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2226 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2227 	}
2228 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2229 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2230 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2231 	}
2232 
2233 	sc->bbp17 = bbp17;
2234 	rt2661_bbp_write(sc,  17, bbp17);
2235 	rt2661_bbp_write(sc,  96, bbp96);
2236 	rt2661_bbp_write(sc, 104, bbp104);
2237 
2238 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2239 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2240 		rt2661_bbp_write(sc, 75, 0x80);
2241 		rt2661_bbp_write(sc, 86, 0x80);
2242 		rt2661_bbp_write(sc, 88, 0x80);
2243 	}
2244 
2245 	rt2661_bbp_write(sc, 35, bbp35);
2246 	rt2661_bbp_write(sc, 97, bbp97);
2247 	rt2661_bbp_write(sc, 98, bbp98);
2248 
2249 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2250 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2251 	if (IEEE80211_IS_CHAN_2GHZ(c))
2252 		tmp |= RT2661_PA_PE_2GHZ;
2253 	else
2254 		tmp |= RT2661_PA_PE_5GHZ;
2255 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2256 
2257 	/* 802.11a uses a 16 microseconds short interframe space */
2258 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2259 }
2260 
2261 void
2262 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2263 {
2264 	struct ieee80211com *ic = &sc->sc_ic;
2265 	const struct rfprog *rfprog;
2266 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2267 	int8_t power;
2268 	u_int i, chan;
2269 
2270 	chan = ieee80211_chan2ieee(ic, c);
2271 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2272 		return;
2273 
2274 	/* select the appropriate RF settings based on what EEPROM says */
2275 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2276 
2277 	/* find the settings for this channel (we know it exists) */
2278 	for (i = 0; rfprog[i].chan != chan; i++);
2279 
2280 	power = sc->txpow[i];
2281 	if (power < 0) {
2282 		bbp94 += power;
2283 		power = 0;
2284 	} else if (power > 31) {
2285 		bbp94 += power - 31;
2286 		power = 31;
2287 	}
2288 
2289 	/*
2290 	 * If we are switching from the 2GHz band to the 5GHz band or
2291 	 * vice-versa, BBP registers need to be reprogrammed.
2292 	 */
2293 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2294 		rt2661_select_band(sc, c);
2295 		rt2661_select_antenna(sc);
2296 	}
2297 	sc->sc_curchan = c;
2298 
2299 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2300 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2301 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2302 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2303 
2304 	DELAY(200);
2305 
2306 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2307 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2308 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2309 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2310 
2311 	DELAY(200);
2312 
2313 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2314 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2315 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2316 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2317 
2318 	/* enable smart mode for MIMO-capable RFs */
2319 	bbp3 = rt2661_bbp_read(sc, 3);
2320 
2321 	bbp3 &= ~RT2661_SMART_MODE;
2322 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2323 		bbp3 |= RT2661_SMART_MODE;
2324 
2325 	rt2661_bbp_write(sc, 3, bbp3);
2326 
2327 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2328 		rt2661_bbp_write(sc, 94, bbp94);
2329 
2330 	/* 5GHz radio needs a 1ms delay here */
2331 	if (IEEE80211_IS_CHAN_5GHZ(c))
2332 		DELAY(1000);
2333 }
2334 
2335 void
2336 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2337 {
2338 	uint32_t tmp;
2339 
2340 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2341 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2342 
2343 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2344 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2345 }
2346 
2347 void
2348 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2349 {
2350 	uint32_t tmp;
2351 
2352 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2353 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2354 
2355 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2356 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2357 }
2358 
2359 void
2360 rt2661_update_promisc(struct rt2661_softc *sc)
2361 {
2362 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2363 	uint32_t tmp;
2364 
2365 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2366 
2367 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2368 	if (!(ifp->if_flags & IFF_PROMISC))
2369 		tmp |= RT2661_DROP_NOT_TO_ME;
2370 
2371 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2372 
2373 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2374 	    "entering" : "leaving"));
2375 }
2376 
2377 void
2378 rt2661_updateslot(struct ieee80211com *ic)
2379 {
2380 	struct rt2661_softc *sc = ic->ic_if.if_softc;
2381 
2382 #ifndef IEEE80211_STA_ONLY
2383 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2384 		/*
2385 		 * In HostAP mode, we defer setting of new slot time until
2386 		 * updated ERP Information Element has propagated to all
2387 		 * associated STAs.
2388 		 */
2389 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2390 	} else
2391 #endif
2392 		rt2661_set_slottime(sc);
2393 }
2394 
2395 void
2396 rt2661_set_slottime(struct rt2661_softc *sc)
2397 {
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 	uint8_t slottime;
2400 	uint32_t tmp;
2401 
2402 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
2403 	    IEEE80211_DUR_DS_SHSLOT: IEEE80211_DUR_DS_SLOT;
2404 
2405 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2406 	tmp = (tmp & ~0xff) | slottime;
2407 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2408 
2409 	DPRINTF(("setting slot time to %uus\n", slottime));
2410 }
2411 
2412 const char *
2413 rt2661_get_rf(int rev)
2414 {
2415 	switch (rev) {
2416 	case RT2661_RF_5225:	return "RT5225";
2417 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2418 	case RT2661_RF_2527:	return "RT2527";
2419 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2420 	default:		return "unknown";
2421 	}
2422 }
2423 
2424 void
2425 rt2661_read_eeprom(struct rt2661_softc *sc)
2426 {
2427 	struct ieee80211com *ic = &sc->sc_ic;
2428 	uint16_t val;
2429 	int i;
2430 
2431 	/* read MAC address */
2432 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2433 	ic->ic_myaddr[0] = val & 0xff;
2434 	ic->ic_myaddr[1] = val >> 8;
2435 
2436 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2437 	ic->ic_myaddr[2] = val & 0xff;
2438 	ic->ic_myaddr[3] = val >> 8;
2439 
2440 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2441 	ic->ic_myaddr[4] = val & 0xff;
2442 	ic->ic_myaddr[5] = val >> 8;
2443 
2444 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2445 	/* XXX: test if different from 0xffff? */
2446 	sc->rf_rev   = (val >> 11) & 0x1f;
2447 	sc->hw_radio = (val >> 10) & 0x1;
2448 	sc->rx_ant   = (val >> 4)  & 0x3;
2449 	sc->tx_ant   = (val >> 2)  & 0x3;
2450 	sc->nb_ant   = val & 0x3;
2451 
2452 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2453 
2454 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2455 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2456 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2457 
2458 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2459 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2460 
2461 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2462 	if ((val & 0xff) != 0xff)
2463 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2464 
2465 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2466 	if ((val & 0xff) != 0xff)
2467 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2468 
2469 	/* adjust RSSI correction for external low-noise amplifier */
2470 	if (sc->ext_2ghz_lna)
2471 		sc->rssi_2ghz_corr -= 14;
2472 	if (sc->ext_5ghz_lna)
2473 		sc->rssi_5ghz_corr -= 14;
2474 
2475 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2476 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2477 
2478 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2479 	if ((val >> 8) != 0xff)
2480 		sc->rfprog = (val >> 8) & 0x3;
2481 	if ((val & 0xff) != 0xff)
2482 		sc->rffreq = val & 0xff;
2483 
2484 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2485 
2486 	/* read Tx power for all a/b/g channels */
2487 	for (i = 0; i < 19; i++) {
2488 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2489 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2490 		DPRINTF(("Channel=%d Tx power=%d\n",
2491 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2492 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2493 		DPRINTF(("Channel=%d Tx power=%d\n",
2494 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2495 	}
2496 
2497 	/* read vendor-specific BBP values */
2498 	for (i = 0; i < 16; i++) {
2499 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2500 		if (val == 0 || val == 0xffff)
2501 			continue;	/* skip invalid entries */
2502 		sc->bbp_prom[i].reg = val >> 8;
2503 		sc->bbp_prom[i].val = val & 0xff;
2504 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2505 		    sc->bbp_prom[i].val));
2506 	}
2507 }
2508 
2509 int
2510 rt2661_bbp_init(struct rt2661_softc *sc)
2511 {
2512 	int i, ntries;
2513 
2514 	/* wait for BBP to be ready */
2515 	for (ntries = 0; ntries < 100; ntries++) {
2516 		const uint8_t val = rt2661_bbp_read(sc, 0);
2517 		if (val != 0 && val != 0xff)
2518 			break;
2519 		DELAY(100);
2520 	}
2521 	if (ntries == 100) {
2522 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2523 		return EIO;
2524 	}
2525 
2526 	/* initialize BBP registers to default values */
2527 	for (i = 0; i < nitems(rt2661_def_bbp); i++) {
2528 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2529 		    rt2661_def_bbp[i].val);
2530 	}
2531 
2532 	/* write vendor-specific BBP values (from EEPROM) */
2533 	for (i = 0; i < 16; i++) {
2534 		if (sc->bbp_prom[i].reg == 0)
2535 			continue;
2536 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 int
2543 rt2661_init(struct ifnet *ifp)
2544 {
2545 	struct rt2661_softc *sc = ifp->if_softc;
2546 	struct ieee80211com *ic = &sc->sc_ic;
2547 	uint32_t tmp, sta[3];
2548 	int i, ntries;
2549 
2550 	/* for CardBus, power on the socket */
2551 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2552 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2553 			printf("%s: could not enable device\n",
2554 			    sc->sc_dev.dv_xname);
2555 			return EIO;
2556 		}
2557 		sc->sc_flags |= RT2661_ENABLED;
2558 	}
2559 
2560 	rt2661_stop(ifp, 0);
2561 
2562 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2563 		if (rt2661_load_microcode(sc) != 0) {
2564 			printf("%s: could not load 8051 microcode\n",
2565 			    sc->sc_dev.dv_xname);
2566 			rt2661_stop(ifp, 1);
2567 			return EIO;
2568 		}
2569 		sc->sc_flags |= RT2661_FWLOADED;
2570 	}
2571 
2572 	/* initialize Tx rings */
2573 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2574 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2575 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2576 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2577 
2578 	/* initialize Mgt ring */
2579 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2580 
2581 	/* initialize Rx ring */
2582 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2583 
2584 	/* initialize Tx rings sizes */
2585 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2586 	    RT2661_TX_RING_COUNT << 24 |
2587 	    RT2661_TX_RING_COUNT << 16 |
2588 	    RT2661_TX_RING_COUNT <<  8 |
2589 	    RT2661_TX_RING_COUNT);
2590 
2591 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2592 	    RT2661_TX_DESC_WSIZE << 16 |
2593 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2594 	    RT2661_MGT_RING_COUNT);
2595 
2596 	/* initialize Rx rings */
2597 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2598 	    RT2661_RX_DESC_BACK  << 16 |
2599 	    RT2661_RX_DESC_WSIZE <<  8 |
2600 	    RT2661_RX_RING_COUNT);
2601 
2602 	/* XXX: some magic here */
2603 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2604 
2605 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2606 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2607 
2608 	/* load base address of Rx ring */
2609 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2610 
2611 	/* initialize MAC registers to default values */
2612 	for (i = 0; i < nitems(rt2661_def_mac); i++)
2613 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2614 
2615 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2616 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2617 
2618 	/* set host ready */
2619 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2620 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2621 
2622 	/* wait for BBP/RF to wakeup */
2623 	for (ntries = 0; ntries < 1000; ntries++) {
2624 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2625 			break;
2626 		DELAY(1000);
2627 	}
2628 	if (ntries == 1000) {
2629 		printf("timeout waiting for BBP/RF to wakeup\n");
2630 		rt2661_stop(ifp, 1);
2631 		return EIO;
2632 	}
2633 
2634 	if (rt2661_bbp_init(sc) != 0) {
2635 		rt2661_stop(ifp, 1);
2636 		return EIO;
2637 	}
2638 
2639 	/* select default channel */
2640 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2641 	rt2661_select_band(sc, sc->sc_curchan);
2642 	rt2661_select_antenna(sc);
2643 	rt2661_set_chan(sc, sc->sc_curchan);
2644 
2645 	/* update Rx filter */
2646 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2647 
2648 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2649 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2650 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2651 		       RT2661_DROP_ACKCTS;
2652 #ifndef IEEE80211_STA_ONLY
2653 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2654 #endif
2655 			tmp |= RT2661_DROP_TODS;
2656 		if (!(ifp->if_flags & IFF_PROMISC))
2657 			tmp |= RT2661_DROP_NOT_TO_ME;
2658 	}
2659 
2660 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2661 
2662 	/* clear STA registers */
2663 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, nitems(sta));
2664 
2665 	/* initialize ASIC */
2666 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2667 
2668 	/* clear any pending interrupt */
2669 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2670 
2671 	/* enable interrupts */
2672 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2673 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2674 
2675 	/* kick Rx */
2676 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2677 
2678 	ifp->if_flags |= IFF_RUNNING;
2679 	ifq_clr_oactive(&ifp->if_snd);
2680 
2681 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2682 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2683 	else
2684 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2685 
2686 	return 0;
2687 }
2688 
2689 void
2690 rt2661_stop(struct ifnet *ifp, int disable)
2691 {
2692 	struct rt2661_softc *sc = ifp->if_softc;
2693 	struct ieee80211com *ic = &sc->sc_ic;
2694 	uint32_t tmp;
2695 	int ac;
2696 
2697 	sc->sc_tx_timer = 0;
2698 	ifp->if_timer = 0;
2699 	ifp->if_flags &= ~IFF_RUNNING;
2700 	ifq_clr_oactive(&ifp->if_snd);
2701 
2702 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2703 	rt2661_amrr_node_free_all(sc);
2704 
2705 	/* abort Tx (for all 5 Tx rings) */
2706 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2707 
2708 	/* disable Rx (value remains after reset!) */
2709 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2710 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2711 
2712 	/* reset ASIC */
2713 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2714 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2715 
2716 	/* disable interrupts */
2717 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2718 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2719 
2720 	/* clear any pending interrupt */
2721 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2722 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2723 
2724 	/* reset Tx and Rx rings */
2725 	for (ac = 0; ac < 4; ac++)
2726 		rt2661_reset_tx_ring(sc, &sc->txq[ac]);
2727 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2728 	rt2661_reset_rx_ring(sc, &sc->rxq);
2729 
2730 	/* for CardBus, power down the socket */
2731 	if (disable && sc->sc_disable != NULL) {
2732 		if (sc->sc_flags & RT2661_ENABLED) {
2733 			(*sc->sc_disable)(sc);
2734 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2735 		}
2736 	}
2737 }
2738 
2739 int
2740 rt2661_load_microcode(struct rt2661_softc *sc)
2741 {
2742 	int ntries;
2743 
2744 	/* reset 8051 */
2745 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2746 
2747 	/* cancel any pending Host to MCU command */
2748 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2749 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2750 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2751 
2752 	/* write 8051's microcode */
2753 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2754 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, sc->ucode, sc->ucsize);
2755 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2756 
2757 	/* kick 8051's ass */
2758 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2759 
2760 	/* wait for 8051 to initialize */
2761 	for (ntries = 0; ntries < 500; ntries++) {
2762 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2763 			break;
2764 		DELAY(100);
2765 	}
2766 	if (ntries == 500) {
2767 		printf("%s: timeout waiting for MCU to initialize\n",
2768 		    sc->sc_dev.dv_xname);
2769 		return EIO;
2770 	}
2771 	return 0;
2772 }
2773 
2774 /*
2775  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2776  * false CCA count.  This function is called periodically (every seconds) when
2777  * in the RUN state.  Values taken from the reference driver.
2778  */
2779 void
2780 rt2661_rx_tune(struct rt2661_softc *sc)
2781 {
2782 	uint8_t bbp17;
2783 	uint16_t cca;
2784 	int lo, hi, dbm;
2785 
2786 	/*
2787 	 * Tuning range depends on operating band and on the presence of an
2788 	 * external low-noise amplifier.
2789 	 */
2790 	lo = 0x20;
2791 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2792 		lo += 0x08;
2793 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2794 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2795 		lo += 0x10;
2796 	hi = lo + 0x20;
2797 
2798 	dbm = sc->avg_rssi;
2799 	/* retrieve false CCA count since last call (clear on read) */
2800 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2801 
2802 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2803 
2804 	if (dbm < -74) {
2805 		/* very bad RSSI, tune using false CCA count */
2806 		bbp17 = sc->bbp17; /* current value */
2807 
2808 		hi -= 2 * (-74 - dbm);
2809 		if (hi < lo)
2810 			hi = lo;
2811 
2812 		if (bbp17 > hi)
2813 			bbp17 = hi;
2814 		else if (cca > 512)
2815 			bbp17 = min(bbp17 + 1, hi);
2816 		else if (cca < 100)
2817 			bbp17 = max(bbp17 - 1, lo);
2818 
2819 	} else if (dbm < -66) {
2820 		bbp17 = lo + 0x08;
2821 	} else if (dbm < -58) {
2822 		bbp17 = lo + 0x10;
2823 	} else if (dbm < -35) {
2824 		bbp17 = hi;
2825 	} else {	/* very good RSSI >= -35dBm */
2826 		bbp17 = 0x60;	/* very low sensitivity */
2827 	}
2828 
2829 	if (bbp17 != sc->bbp17) {
2830 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2831 		rt2661_bbp_write(sc, 17, bbp17);
2832 		sc->bbp17 = bbp17;
2833 	}
2834 }
2835 
2836 #ifdef notyet
2837 /*
2838  * Enter/Leave radar detection mode.
2839  * This is for 802.11h additional regulatory domains.
2840  */
2841 void
2842 rt2661_radar_start(struct rt2661_softc *sc)
2843 {
2844 	uint32_t tmp;
2845 
2846 	/* disable Rx */
2847 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2848 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2849 
2850 	rt2661_bbp_write(sc, 82, 0x20);
2851 	rt2661_bbp_write(sc, 83, 0x00);
2852 	rt2661_bbp_write(sc, 84, 0x40);
2853 
2854 	/* save current BBP registers values */
2855 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2856 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2857 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2858 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2859 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2860 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2861 
2862 	rt2661_bbp_write(sc, 18, 0xff);
2863 	rt2661_bbp_write(sc, 21, 0x3f);
2864 	rt2661_bbp_write(sc, 22, 0x3f);
2865 	rt2661_bbp_write(sc, 16, 0xbd);
2866 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2867 	rt2661_bbp_write(sc, 64, 0x21);
2868 
2869 	/* restore Rx filter */
2870 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2871 }
2872 
2873 int
2874 rt2661_radar_stop(struct rt2661_softc *sc)
2875 {
2876 	uint8_t bbp66;
2877 
2878 	/* read radar detection result */
2879 	bbp66 = rt2661_bbp_read(sc, 66);
2880 
2881 	/* restore BBP registers values */
2882 	rt2661_bbp_write(sc, 16, sc->bbp16);
2883 	rt2661_bbp_write(sc, 17, sc->bbp17);
2884 	rt2661_bbp_write(sc, 18, sc->bbp18);
2885 	rt2661_bbp_write(sc, 21, sc->bbp21);
2886 	rt2661_bbp_write(sc, 22, sc->bbp22);
2887 	rt2661_bbp_write(sc, 64, sc->bbp64);
2888 
2889 	return bbp66 == 1;
2890 }
2891 #endif
2892 
2893 #ifndef IEEE80211_STA_ONLY
2894 int
2895 rt2661_prepare_beacon(struct rt2661_softc *sc)
2896 {
2897 	struct ieee80211com *ic = &sc->sc_ic;
2898 	struct ieee80211_node *ni = ic->ic_bss;
2899 	struct rt2661_tx_desc desc;
2900 	struct mbuf *m0;
2901 	int rate;
2902 
2903 	m0 = ieee80211_beacon_alloc(ic, ni);
2904 	if (m0 == NULL) {
2905 		printf("%s: could not allocate beacon frame\n",
2906 		    sc->sc_dev.dv_xname);
2907 		return ENOBUFS;
2908 	}
2909 
2910 	/* send beacons at the lowest available rate */
2911 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2912 
2913 	memset(&desc, 0, sizeof(desc));
2914 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2915 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT,
2916 	    RT2661_AMRR_INVALID_ID);
2917 
2918 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2919 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2920 
2921 	/* copy beacon header and payload into NIC memory */
2922 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2923 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2924 
2925 	m_freem(m0);
2926 
2927 	/*
2928 	 * Store offset of ERP Information Element so that we can update it
2929 	 * dynamically when the slot time changes.
2930 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2931 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2932 	 */
2933 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2934 		sc->erp_csr =
2935 		    RT2661_HW_BEACON_BASE0 + 24 +
2936 		    sizeof (struct ieee80211_frame) +
2937 		    8 + 2 + 2 +
2938 		    ((ic->ic_userflags & IEEE80211_F_HIDENWID) ?
2939 			1 : 2 + ni->ni_esslen) +
2940 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2941 		    2 + 1 +
2942 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2943 		    2;
2944 	}
2945 
2946 	return 0;
2947 }
2948 #endif
2949 
2950 /*
2951  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2952  * and HostAP operating modes.
2953  */
2954 void
2955 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2956 {
2957 	struct ieee80211com *ic = &sc->sc_ic;
2958 	uint32_t tmp;
2959 
2960 #ifndef IEEE80211_STA_ONLY
2961 	if (ic->ic_opmode != IEEE80211_M_STA) {
2962 		/*
2963 		 * Change default 16ms TBTT adjustment to 8ms.
2964 		 * Must be done before enabling beacon generation.
2965 		 */
2966 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2967 	}
2968 #endif
2969 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2970 
2971 	/* set beacon interval (in 1/16ms unit) */
2972 	tmp |= ic->ic_bss->ni_intval * 16;
2973 
2974 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2975 	if (ic->ic_opmode == IEEE80211_M_STA)
2976 		tmp |= RT2661_TSF_MODE(1);
2977 #ifndef IEEE80211_STA_ONLY
2978 	else
2979 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2980 #endif
2981 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2982 }
2983 
2984 /*
2985  * Retrieve the "Received Signal Strength Indicator" from the raw values
2986  * contained in Rx descriptors.  The computation depends on which band the
2987  * frame was received.  Correction values taken from the reference driver.
2988  */
2989 int
2990 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
2991 {
2992 	int lna, agc, rssi;
2993 
2994 	lna = (raw >> 5) & 0x3;
2995 	agc = raw & 0x1f;
2996 
2997 	rssi = 2 * agc;
2998 
2999 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3000 		rssi += sc->rssi_2ghz_corr;
3001 
3002 		if (lna == 1)
3003 			rssi -= 64;
3004 		else if (lna == 2)
3005 			rssi -= 74;
3006 		else if (lna == 3)
3007 			rssi -= 90;
3008 	} else {
3009 		rssi += sc->rssi_5ghz_corr;
3010 
3011 		if (lna == 1)
3012 			rssi -= 64;
3013 		else if (lna == 2)
3014 			rssi -= 86;
3015 		else if (lna == 3)
3016 			rssi -= 100;
3017 	}
3018 	return rssi;
3019 }
3020