1 /* $OpenBSD: sbdsp.c,v 1.29 2009/07/31 22:53:04 sthen Exp $ */ 2 3 /* 4 * Copyright (c) 1991-1993 Regents of the University of California. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the Computer Systems 18 * Engineering Group at Lawrence Berkeley Laboratory. 19 * 4. Neither the name of the University nor of the Laboratory may be used 20 * to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 /* 38 * SoundBlaster Pro code provided by John Kohl, based on lots of 39 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 41 * <sachs@meibm15.cen.uiuc.edu>. 42 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 43 * with information from SB "Hardware Programming Guide" and the 44 * Linux drivers. 45 */ 46 47 #include "midi.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/errno.h> 52 #include <sys/ioctl.h> 53 #include <sys/syslog.h> 54 #include <sys/device.h> 55 #include <sys/proc.h> 56 #include <sys/buf.h> 57 58 #include <machine/cpu.h> 59 #include <machine/intr.h> 60 #include <machine/bus.h> 61 62 #include <sys/audioio.h> 63 #include <dev/audio_if.h> 64 #include <dev/midi_if.h> 65 #include <dev/mulaw.h> 66 #include <dev/auconv.h> 67 68 #include <dev/isa/isavar.h> 69 #include <dev/isa/isadmavar.h> 70 71 #include <dev/isa/sbreg.h> 72 #include <dev/isa/sbdspvar.h> 73 74 75 #ifdef AUDIO_DEBUG 76 #define DPRINTF(x) if (sbdspdebug) printf x 77 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 78 int sbdspdebug = 0; 79 #else 80 #define DPRINTF(x) 81 #define DPRINTFN(n,x) 82 #endif 83 84 #ifndef SBDSP_NPOLL 85 #define SBDSP_NPOLL 3000 86 #endif 87 88 struct { 89 int wdsp; 90 int rdsp; 91 int wmidi; 92 } sberr; 93 94 /* 95 * Time constant routines follow. See SBK, section 12. 96 * Although they don't come out and say it (in the docs), 97 * the card clearly uses a 1MHz countdown timer, as the 98 * low-speed formula (p. 12-4) is: 99 * tc = 256 - 10^6 / sr 100 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 101 * and a 256MHz clock is used: 102 * tc = 65536 - 256 * 10^ 6 / sr 103 * Since we can only use the upper byte of the HS TC, the two formulae 104 * are equivalent. (Why didn't they say so?) E.g., 105 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 106 * 107 * The crossover point (from low- to high-speed modes) is different 108 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 109 * 110 * SBPRO SB20 111 * ----- -------- 112 * input ls min 4 KHz 4 KHz 113 * input ls max 23 KHz 13 KHz 114 * input hs max 44.1 KHz 15 KHz 115 * output ls min 4 KHz 4 KHz 116 * output ls max 23 KHz 23 KHz 117 * output hs max 44.1 KHz 44.1 KHz 118 */ 119 /* XXX Should we round the tc? 120 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 121 */ 122 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 123 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 124 125 struct sbmode { 126 short model; 127 u_char channels; 128 u_char precision; 129 u_short lowrate, highrate; 130 u_char cmd; 131 u_char cmdchan; 132 }; 133 static struct sbmode sbpmodes[] = { 134 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA }, 135 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 136 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 137 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 138 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 139 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 140 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT }, 141 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 142 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO }, 143 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO }, 144 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO }, 145 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO }, 146 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO }, 147 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO }, 148 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 149 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 150 #define PLAY16 15 /* must be the index of the next entry in the table */ 151 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 152 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 153 { -1 } 154 }; 155 static struct sbmode sbrmodes[] = { 156 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA }, 157 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 158 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 159 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT }, 160 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 161 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 162 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 163 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 164 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 165 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 166 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO }, 167 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO }, 168 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO }, 169 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 170 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 171 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 172 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 173 { -1 } 174 }; 175 176 void sbversion(struct sbdsp_softc *); 177 void sbdsp_jazz16_probe(struct sbdsp_softc *); 178 void sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port); 179 void sbdsp_to(void *); 180 void sbdsp_pause(struct sbdsp_softc *); 181 int sbdsp_set_timeconst(struct sbdsp_softc *, int); 182 int sbdsp16_set_rate(struct sbdsp_softc *, int, int); 183 int sbdsp_set_in_ports(struct sbdsp_softc *, int); 184 void sbdsp_set_ifilter(void *, int); 185 int sbdsp_get_ifilter(void *); 186 187 int sbdsp_block_output(void *); 188 int sbdsp_block_input(void *); 189 static int sbdsp_adjust(int, int); 190 191 int sbdsp_midi_intr(void *); 192 193 #ifdef AUDIO_DEBUG 194 void sb_printsc(struct sbdsp_softc *); 195 196 void 197 sb_printsc(sc) 198 struct sbdsp_softc *sc; 199 { 200 int i; 201 202 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n", 203 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 204 sc->sc_drq8, sc->sc_drq16, 205 sc->sc_iobase, sc->sc_irq); 206 printf("irate %d itc %x orate %d otc %x\n", 207 sc->sc_i.rate, sc->sc_i.tc, 208 sc->sc_o.rate, sc->sc_o.tc); 209 printf("spkron %u nintr %lu\n", 210 sc->spkr_state, sc->sc_interrupts); 211 printf("intr8 %p arg8 %p\n", 212 sc->sc_intr8, sc->sc_arg16); 213 printf("intr16 %p arg16 %p\n", 214 sc->sc_intr8, sc->sc_arg16); 215 printf("gain:"); 216 for (i = 0; i < SB_NDEVS; i++) 217 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 218 printf("\n"); 219 } 220 #endif /* AUDIO_DEBUG */ 221 222 /* 223 * Probe / attach routines. 224 */ 225 226 /* 227 * Probe for the soundblaster hardware. 228 */ 229 int 230 sbdsp_probe(sc) 231 struct sbdsp_softc *sc; 232 { 233 234 if (sbdsp_reset(sc) < 0) { 235 DPRINTF(("sbdsp: couldn't reset card\n")); 236 return 0; 237 } 238 /* if flags set, go and probe the jazz16 stuff */ 239 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 240 sbdsp_jazz16_probe(sc); 241 else 242 sbversion(sc); 243 if (sc->sc_model == SB_UNK) { 244 /* Unknown SB model found. */ 245 DPRINTF(("sbdsp: unknown SB model found\n")); 246 return 0; 247 } 248 return 1; 249 } 250 251 /* 252 * Try add-on stuff for Jazz16. 253 */ 254 void 255 sbdsp_jazz16_probe(sc) 256 struct sbdsp_softc *sc; 257 { 258 static u_char jazz16_irq_conf[16] = { 259 -1, -1, 0x02, 0x03, 260 -1, 0x01, -1, 0x04, 261 -1, 0x02, 0x05, -1, 262 -1, -1, -1, 0x06}; 263 static u_char jazz16_drq_conf[8] = { 264 -1, 0x01, -1, 0x02, 265 -1, 0x03, -1, 0x04}; 266 267 bus_space_tag_t iot = sc->sc_iot; 268 bus_space_handle_t ioh; 269 270 sbversion(sc); 271 272 DPRINTF(("jazz16 probe\n")); 273 274 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 275 DPRINTF(("bus map failed\n")); 276 return; 277 } 278 279 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 280 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 281 DPRINTF(("drq/irq check failed\n")); 282 goto done; /* give up, we can't do it. */ 283 } 284 285 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 286 delay(10000); /* delay 10 ms */ 287 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 288 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 289 290 if (sbdsp_reset(sc) < 0) { 291 DPRINTF(("sbdsp_reset check failed\n")); 292 goto done; /* XXX? what else could we do? */ 293 } 294 295 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 296 DPRINTF(("read16 setup failed\n")); 297 goto done; 298 } 299 300 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 301 DPRINTF(("read16 failed\n")); 302 goto done; 303 } 304 305 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 306 sc->sc_drq16 = sc->sc_drq8; 307 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 308 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 309 jazz16_drq_conf[sc->sc_drq8]) || 310 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 311 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 312 } else { 313 DPRINTF(("jazz16 detected!\n")); 314 sc->sc_model = SB_JAZZ; 315 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 316 } 317 318 done: 319 bus_space_unmap(iot, ioh, 1); 320 } 321 322 /* 323 * Attach hardware to driver, attach hardware driver to audio 324 * pseudo-device driver . 325 */ 326 void 327 sbdsp_attach(sc) 328 struct sbdsp_softc *sc; 329 { 330 struct audio_params pparams, rparams; 331 int i; 332 u_int v; 333 334 /* 335 * Create our DMA maps. 336 */ 337 if (sc->sc_drq8 != -1) { 338 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8, 339 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 340 printf("%s: can't create map for drq %d\n", 341 sc->sc_dev.dv_xname, sc->sc_drq8); 342 return; 343 } 344 } 345 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 346 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16, 347 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 348 printf("%s: can't create map for drq %d\n", 349 sc->sc_dev.dv_xname, sc->sc_drq16); 350 return; 351 } 352 } 353 354 pparams = audio_default; 355 rparams = audio_default; 356 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 357 358 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 359 360 if (sc->sc_mixer_model != SBM_NONE) { 361 /* Reset the mixer.*/ 362 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 363 /* And set our own default values */ 364 for (i = 0; i < SB_NDEVS; i++) { 365 switch(i) { 366 case SB_MIC_VOL: 367 case SB_LINE_IN_VOL: 368 v = 0; 369 break; 370 case SB_BASS: 371 case SB_TREBLE: 372 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2); 373 break; 374 case SB_CD_IN_MUTE: 375 case SB_MIC_IN_MUTE: 376 case SB_LINE_IN_MUTE: 377 case SB_MIDI_IN_MUTE: 378 case SB_CD_SWAP: 379 case SB_MIC_SWAP: 380 case SB_LINE_SWAP: 381 case SB_MIDI_SWAP: 382 case SB_CD_OUT_MUTE: 383 case SB_MIC_OUT_MUTE: 384 case SB_LINE_OUT_MUTE: 385 v = 0; 386 break; 387 default: 388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 389 break; 390 } 391 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 392 sbdsp_set_mixer_gain(sc, i); 393 } 394 sc->in_filter = 0; /* no filters turned on, please */ 395 } 396 397 printf(": dsp v%d.%02d%s\n", 398 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 399 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 400 401 timeout_set(&sc->sc_tmo, sbdsp_to, sbdsp_to); 402 sc->sc_fullduplex = ISSB16CLASS(sc) && 403 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 404 sc->sc_drq8 != sc->sc_drq16; 405 } 406 407 void 408 sbdsp_mix_write(sc, mixerport, val) 409 struct sbdsp_softc *sc; 410 int mixerport; 411 int val; 412 { 413 bus_space_tag_t iot = sc->sc_iot; 414 bus_space_handle_t ioh = sc->sc_ioh; 415 int s; 416 417 s = splaudio(); 418 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 419 delay(20); 420 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 421 delay(30); 422 splx(s); 423 } 424 425 int 426 sbdsp_mix_read(sc, mixerport) 427 struct sbdsp_softc *sc; 428 int mixerport; 429 { 430 bus_space_tag_t iot = sc->sc_iot; 431 bus_space_handle_t ioh = sc->sc_ioh; 432 int val; 433 int s; 434 435 s = splaudio(); 436 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 437 delay(20); 438 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 439 delay(30); 440 splx(s); 441 return val; 442 } 443 444 /* 445 * Various routines to interface to higher level audio driver 446 */ 447 448 int 449 sbdsp_query_encoding(addr, fp) 450 void *addr; 451 struct audio_encoding *fp; 452 { 453 struct sbdsp_softc *sc = addr; 454 int emul; 455 456 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 457 458 switch (fp->index) { 459 case 0: 460 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 461 fp->encoding = AUDIO_ENCODING_ULINEAR; 462 fp->precision = 8; 463 fp->flags = 0; 464 return 0; 465 case 1: 466 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 467 fp->encoding = AUDIO_ENCODING_ULAW; 468 fp->precision = 8; 469 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 470 return 0; 471 case 2: 472 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 473 fp->encoding = AUDIO_ENCODING_ALAW; 474 fp->precision = 8; 475 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 476 return 0; 477 case 3: 478 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 479 fp->encoding = AUDIO_ENCODING_SLINEAR; 480 fp->precision = 8; 481 fp->flags = emul; 482 return 0; 483 } 484 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 485 return EINVAL; 486 487 switch(fp->index) { 488 case 4: 489 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 490 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 491 fp->precision = 16; 492 fp->flags = 0; 493 return 0; 494 case 5: 495 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 496 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 497 fp->precision = 16; 498 fp->flags = emul; 499 return 0; 500 case 6: 501 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 502 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 503 fp->precision = 16; 504 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 505 return 0; 506 case 7: 507 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 508 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 509 fp->precision = 16; 510 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 511 return 0; 512 default: 513 return EINVAL; 514 } 515 return 0; 516 } 517 518 int 519 sbdsp_set_params(addr, setmode, usemode, play, rec) 520 void *addr; 521 int setmode, usemode; 522 struct audio_params *play, *rec; 523 { 524 struct sbdsp_softc *sc = addr; 525 struct sbmode *m; 526 u_int rate, tc, bmode; 527 void (*swcode)(void *, u_char *buf, int cnt); 528 int factor; 529 int model; 530 int chan; 531 struct audio_params *p; 532 int mode; 533 534 if (sc->sc_open == SB_OPEN_MIDI) 535 return EBUSY; 536 537 model = sc->sc_model; 538 if (model > SB_16) 539 model = SB_16; /* later models work like SB16 */ 540 541 /* 542 * Prior to the SB16, we have only one clock, so make the sample 543 * rates match. 544 */ 545 if (!ISSB16CLASS(sc) && 546 play->sample_rate != rec->sample_rate && 547 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 548 if (setmode == AUMODE_PLAY) { 549 rec->sample_rate = play->sample_rate; 550 setmode |= AUMODE_RECORD; 551 } else if (setmode == AUMODE_RECORD) { 552 play->sample_rate = rec->sample_rate; 553 setmode |= AUMODE_PLAY; 554 } else 555 return (EINVAL); 556 } 557 558 /* Set first record info, then play info */ 559 for (mode = AUMODE_RECORD; mode != -1; 560 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 561 if ((setmode & mode) == 0) 562 continue; 563 564 p = mode == AUMODE_PLAY ? play : rec; 565 /* Locate proper commands */ 566 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 567 m->model != -1; m++) { 568 if (model == m->model && 569 p->channels == m->channels && 570 p->precision == m->precision && 571 p->sample_rate >= m->lowrate && 572 p->sample_rate <= m->highrate) 573 break; 574 } 575 if (m->model == -1) 576 return EINVAL; 577 rate = p->sample_rate; 578 swcode = 0; 579 factor = 1; 580 tc = 1; 581 bmode = -1; 582 if (model == SB_16) { 583 switch (p->encoding) { 584 case AUDIO_ENCODING_SLINEAR_BE: 585 if (p->precision == 16) 586 swcode = swap_bytes; 587 /* fall into */ 588 case AUDIO_ENCODING_SLINEAR_LE: 589 bmode = SB_BMODE_SIGNED; 590 break; 591 case AUDIO_ENCODING_ULINEAR_BE: 592 if (p->precision == 16) 593 swcode = swap_bytes; 594 /* fall into */ 595 case AUDIO_ENCODING_ULINEAR_LE: 596 bmode = SB_BMODE_UNSIGNED; 597 break; 598 case AUDIO_ENCODING_ULAW: 599 if (mode == AUMODE_PLAY) { 600 swcode = mulaw_to_ulinear16_le; 601 factor = 2; 602 m = &sbpmodes[PLAY16]; 603 } else 604 swcode = ulinear8_to_mulaw; 605 bmode = SB_BMODE_UNSIGNED; 606 break; 607 case AUDIO_ENCODING_ALAW: 608 if (mode == AUMODE_PLAY) { 609 swcode = alaw_to_ulinear16_le; 610 factor = 2; 611 m = &sbpmodes[PLAY16]; 612 } else 613 swcode = ulinear8_to_alaw; 614 bmode = SB_BMODE_UNSIGNED; 615 break; 616 default: 617 return EINVAL; 618 } 619 if (p->channels == 2) 620 bmode |= SB_BMODE_STEREO; 621 } else if (m->model == SB_JAZZ && m->precision == 16) { 622 switch (p->encoding) { 623 case AUDIO_ENCODING_SLINEAR_LE: 624 break; 625 case AUDIO_ENCODING_ULINEAR_LE: 626 swcode = change_sign16_le; 627 break; 628 case AUDIO_ENCODING_SLINEAR_BE: 629 swcode = swap_bytes; 630 break; 631 case AUDIO_ENCODING_ULINEAR_BE: 632 swcode = mode == AUMODE_PLAY ? 633 swap_bytes_change_sign16_le : change_sign16_swap_bytes_le; 634 break; 635 case AUDIO_ENCODING_ULAW: 636 swcode = mode == AUMODE_PLAY ? 637 mulaw_to_ulinear8 : ulinear8_to_mulaw; 638 break; 639 case AUDIO_ENCODING_ALAW: 640 swcode = mode == AUMODE_PLAY ? 641 alaw_to_ulinear8 : ulinear8_to_alaw; 642 break; 643 default: 644 return EINVAL; 645 } 646 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 647 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 648 } else { 649 switch (p->encoding) { 650 case AUDIO_ENCODING_SLINEAR_BE: 651 case AUDIO_ENCODING_SLINEAR_LE: 652 swcode = change_sign8; 653 break; 654 case AUDIO_ENCODING_ULINEAR_BE: 655 case AUDIO_ENCODING_ULINEAR_LE: 656 break; 657 case AUDIO_ENCODING_ULAW: 658 swcode = mode == AUMODE_PLAY ? 659 mulaw_to_ulinear8 : ulinear8_to_mulaw; 660 break; 661 case AUDIO_ENCODING_ALAW: 662 swcode = mode == AUMODE_PLAY ? 663 alaw_to_ulinear8 : ulinear8_to_alaw; 664 break; 665 default: 666 return EINVAL; 667 } 668 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 669 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 670 } 671 672 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 673 if (mode == AUMODE_PLAY) { 674 sc->sc_o.rate = rate; 675 sc->sc_o.tc = tc; 676 sc->sc_o.modep = m; 677 sc->sc_o.bmode = bmode; 678 sc->sc_o.dmachan = chan; 679 } else { 680 sc->sc_i.rate = rate; 681 sc->sc_i.tc = tc; 682 sc->sc_i.modep = m; 683 sc->sc_i.bmode = bmode; 684 sc->sc_i.dmachan = chan; 685 } 686 687 p->sw_code = swcode; 688 p->factor = factor; 689 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 690 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 691 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 692 693 } 694 695 /* 696 * XXX 697 * Should wait for chip to be idle. 698 */ 699 sc->sc_i.run = SB_NOTRUNNING; 700 sc->sc_o.run = SB_NOTRUNNING; 701 702 if (sc->sc_fullduplex && 703 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 704 sc->sc_i.dmachan == sc->sc_o.dmachan) { 705 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 706 if (sc->sc_o.dmachan == sc->sc_drq8) { 707 /* Use 16 bit DMA for playing by expanding the samples. */ 708 play->sw_code = linear8_to_linear16_le; 709 play->factor = 2; 710 sc->sc_o.modep = &sbpmodes[PLAY16]; 711 sc->sc_o.dmachan = sc->sc_drq16; 712 } else { 713 return EINVAL; 714 } 715 } 716 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 717 sc->sc_i.dmachan, sc->sc_o.dmachan)); 718 719 return 0; 720 } 721 722 void 723 sbdsp_set_ifilter(addr, which) 724 void *addr; 725 int which; 726 { 727 struct sbdsp_softc *sc = addr; 728 int mixval; 729 730 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 731 switch (which) { 732 case 0: 733 mixval |= SBP_FILTER_OFF; 734 break; 735 case SB_TREBLE: 736 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 737 break; 738 case SB_BASS: 739 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 740 break; 741 default: 742 return; 743 } 744 sc->in_filter = mixval & SBP_IFILTER_MASK; 745 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 746 } 747 748 int 749 sbdsp_get_ifilter(addr) 750 void *addr; 751 { 752 struct sbdsp_softc *sc = addr; 753 754 sc->in_filter = 755 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 756 switch (sc->in_filter) { 757 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 758 return SB_TREBLE; 759 case SBP_FILTER_ON|SBP_IFILTER_LOW: 760 return SB_BASS; 761 default: 762 return 0; 763 } 764 } 765 766 int 767 sbdsp_set_in_ports(sc, mask) 768 struct sbdsp_softc *sc; 769 int mask; 770 { 771 int bitsl, bitsr; 772 int sbport; 773 774 if (sc->sc_open == SB_OPEN_MIDI) 775 return EBUSY; 776 777 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 778 sc->sc_mixer_model, mask)); 779 780 switch(sc->sc_mixer_model) { 781 case SBM_NONE: 782 return EINVAL; 783 case SBM_CT1335: 784 if (mask != (1 << SB_MIC_VOL)) 785 return EINVAL; 786 break; 787 case SBM_CT1345: 788 switch (mask) { 789 case 1 << SB_MIC_VOL: 790 sbport = SBP_FROM_MIC; 791 break; 792 case 1 << SB_LINE_IN_VOL: 793 sbport = SBP_FROM_LINE; 794 break; 795 case 1 << SB_CD_VOL: 796 sbport = SBP_FROM_CD; 797 break; 798 default: 799 return (EINVAL); 800 } 801 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 802 break; 803 case SBM_CT1XX5: 804 case SBM_CT1745: 805 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 806 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 807 return EINVAL; 808 bitsr = 0; 809 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 810 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 811 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 812 bitsl = SB_SRC_R_TO_L(bitsr); 813 if (mask & (1<<SB_MIC_VOL)) { 814 bitsl |= SBP_MIC_SRC; 815 bitsr |= SBP_MIC_SRC; 816 } 817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 818 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 819 break; 820 } 821 sc->in_mask = mask; 822 823 return 0; 824 } 825 826 int 827 sbdsp_speaker_ctl(addr, newstate) 828 void *addr; 829 int newstate; 830 { 831 struct sbdsp_softc *sc = addr; 832 833 if (sc->sc_open == SB_OPEN_MIDI) 834 return EBUSY; 835 836 if ((newstate == SPKR_ON) && 837 (sc->spkr_state == SPKR_OFF)) { 838 sbdsp_spkron(sc); 839 sc->spkr_state = SPKR_ON; 840 } 841 if ((newstate == SPKR_OFF) && 842 (sc->spkr_state == SPKR_ON)) { 843 sbdsp_spkroff(sc); 844 sc->spkr_state = SPKR_OFF; 845 } 846 return 0; 847 } 848 849 int 850 sbdsp_round_blocksize(addr, blk) 851 void *addr; 852 int blk; 853 { 854 return (blk + 3) & -4; /* round to biggest sample size */ 855 } 856 857 int 858 sbdsp_open(addr, flags) 859 void *addr; 860 int flags; 861 { 862 struct sbdsp_softc *sc = addr; 863 864 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 865 866 if (sc->sc_open != SB_CLOSED) 867 return EBUSY; 868 if (sbdsp_reset(sc) != 0) 869 return EIO; 870 871 sc->sc_open = SB_OPEN_AUDIO; 872 sc->sc_openflags = flags; 873 sc->sc_intrm = 0; 874 if (ISSBPRO(sc) && 875 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 876 DPRINTF(("sbdsp_open: can't set mono mode\n")); 877 /* we'll readjust when it's time for DMA. */ 878 } 879 880 /* 881 * Leave most things as they were; users must change things if 882 * the previous process didn't leave it they way they wanted. 883 * Looked at another way, it's easy to set up a configuration 884 * in one program and leave it for another to inherit. 885 */ 886 DPRINTF(("sbdsp_open: opened\n")); 887 888 return 0; 889 } 890 891 void 892 sbdsp_close(addr) 893 void *addr; 894 { 895 struct sbdsp_softc *sc = addr; 896 897 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 898 899 sc->sc_open = SB_CLOSED; 900 sbdsp_spkroff(sc); 901 sc->spkr_state = SPKR_OFF; 902 sc->sc_intr8 = 0; 903 sc->sc_intr16 = 0; 904 sc->sc_intrm = 0; 905 sbdsp_haltdma(sc); 906 907 DPRINTF(("sbdsp_close: closed\n")); 908 } 909 910 /* 911 * Lower-level routines 912 */ 913 914 /* 915 * Reset the card. 916 * Return non-zero if the card isn't detected. 917 */ 918 int 919 sbdsp_reset(sc) 920 struct sbdsp_softc *sc; 921 { 922 bus_space_tag_t iot = sc->sc_iot; 923 bus_space_handle_t ioh = sc->sc_ioh; 924 925 sc->sc_intr8 = 0; 926 sc->sc_intr16 = 0; 927 if (sc->sc_i.run != SB_NOTRUNNING) { 928 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan); 929 sc->sc_i.run = SB_NOTRUNNING; 930 } 931 if (sc->sc_o.run != SB_NOTRUNNING) { 932 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan); 933 sc->sc_o.run = SB_NOTRUNNING; 934 } 935 936 /* 937 * See SBK, section 11.3. 938 * We pulse a reset signal into the card. 939 * Gee, what a brilliant hardware design. 940 */ 941 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 942 delay(10); 943 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 944 delay(30); 945 if (sbdsp_rdsp(sc) != SB_MAGIC) 946 return -1; 947 948 return 0; 949 } 950 951 /* 952 * Write a byte to the dsp. 953 * We are at the mercy of the card as we use a 954 * polling loop and wait until it can take the byte. 955 */ 956 int 957 sbdsp_wdsp(sc, v) 958 struct sbdsp_softc *sc; 959 int v; 960 { 961 bus_space_tag_t iot = sc->sc_iot; 962 bus_space_handle_t ioh = sc->sc_ioh; 963 int i; 964 u_char x; 965 966 for (i = SBDSP_NPOLL; --i >= 0; ) { 967 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 968 delay(10); 969 if ((x & SB_DSP_BUSY) == 0) { 970 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 971 delay(10); 972 return 0; 973 } 974 } 975 ++sberr.wdsp; 976 return -1; 977 } 978 979 /* 980 * Read a byte from the DSP, using polling. 981 */ 982 int 983 sbdsp_rdsp(sc) 984 struct sbdsp_softc *sc; 985 { 986 bus_space_tag_t iot = sc->sc_iot; 987 bus_space_handle_t ioh = sc->sc_ioh; 988 int i; 989 u_char x; 990 991 for (i = SBDSP_NPOLL; --i >= 0; ) { 992 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 993 delay(10); 994 if (x & SB_DSP_READY) { 995 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 996 delay(10); 997 return x; 998 } 999 } 1000 ++sberr.rdsp; 1001 return -1; 1002 } 1003 1004 /* 1005 * Doing certain things (like toggling the speaker) make 1006 * the SB hardware go away for a while, so pause a little. 1007 */ 1008 void 1009 sbdsp_to(arg) 1010 void *arg; 1011 { 1012 wakeup(arg); 1013 } 1014 1015 void 1016 sbdsp_pause(sc) 1017 struct sbdsp_softc *sc; 1018 { 1019 timeout_add_msec(&sc->sc_tmo, 125); /* 8x per second */ 1020 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0); 1021 } 1022 1023 /* 1024 * Turn on the speaker. The SBK documention says this operation 1025 * can take up to 1/10 of a second. Higher level layers should 1026 * probably let the task sleep for this amount of time after 1027 * calling here. Otherwise, things might not work (because 1028 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1029 * 1030 * These engineers had their heads up their ass when 1031 * they designed this card. 1032 */ 1033 void 1034 sbdsp_spkron(sc) 1035 struct sbdsp_softc *sc; 1036 { 1037 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1038 sbdsp_pause(sc); 1039 } 1040 1041 /* 1042 * Turn off the speaker; see comment above. 1043 */ 1044 void 1045 sbdsp_spkroff(sc) 1046 struct sbdsp_softc *sc; 1047 { 1048 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1049 sbdsp_pause(sc); 1050 } 1051 1052 /* 1053 * Read the version number out of the card. 1054 * Store version information in the softc. 1055 */ 1056 void 1057 sbversion(sc) 1058 struct sbdsp_softc *sc; 1059 { 1060 int v; 1061 1062 sc->sc_model = SB_UNK; 1063 sc->sc_version = 0; 1064 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1065 return; 1066 v = sbdsp_rdsp(sc) << 8; 1067 v |= sbdsp_rdsp(sc); 1068 if (v < 0) 1069 return; 1070 sc->sc_version = v; 1071 switch(SBVER_MAJOR(v)) { 1072 case 1: 1073 sc->sc_mixer_model = SBM_NONE; 1074 sc->sc_model = SB_1; 1075 break; 1076 case 2: 1077 /* Some SB2 have a mixer, some don't. */ 1078 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1079 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1080 /* Check if we can read back the mixer values. */ 1081 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1082 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1083 sc->sc_mixer_model = SBM_CT1335; 1084 else 1085 sc->sc_mixer_model = SBM_NONE; 1086 if (SBVER_MINOR(v) == 0) 1087 sc->sc_model = SB_20; 1088 else 1089 sc->sc_model = SB_2x; 1090 break; 1091 case 3: 1092 sc->sc_mixer_model = SBM_CT1345; 1093 sc->sc_model = SB_PRO; 1094 break; 1095 case 4: 1096 #if 0 1097 /* XXX This does not work */ 1098 /* Most SB16 have a tone controls, but some don't. */ 1099 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1100 /* Check if we can read back the mixer value. */ 1101 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1102 sc->sc_mixer_model = SBM_CT1745; 1103 else 1104 sc->sc_mixer_model = SBM_CT1XX5; 1105 #else 1106 sc->sc_mixer_model = SBM_CT1745; 1107 #endif 1108 #if 0 1109 /* XXX figure out a good way of determining the model */ 1110 /* XXX what about SB_32 */ 1111 if (SBVER_MINOR(v) == 16) 1112 sc->sc_model = SB_64; 1113 else 1114 #endif 1115 sc->sc_model = SB_16; 1116 break; 1117 } 1118 } 1119 1120 /* 1121 * Halt a DMA in progress. 1122 */ 1123 int 1124 sbdsp_haltdma(addr) 1125 void *addr; 1126 { 1127 struct sbdsp_softc *sc = addr; 1128 1129 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc)); 1130 1131 sbdsp_reset(sc); 1132 return 0; 1133 } 1134 1135 int 1136 sbdsp_set_timeconst(sc, tc) 1137 struct sbdsp_softc *sc; 1138 int tc; 1139 { 1140 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1141 1142 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1143 sbdsp_wdsp(sc, tc) < 0) 1144 return EIO; 1145 1146 return 0; 1147 } 1148 1149 int 1150 sbdsp16_set_rate(sc, cmd, rate) 1151 struct sbdsp_softc *sc; 1152 int cmd, rate; 1153 { 1154 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1155 1156 if (sbdsp_wdsp(sc, cmd) < 0 || 1157 sbdsp_wdsp(sc, rate >> 8) < 0 || 1158 sbdsp_wdsp(sc, rate) < 0) 1159 return EIO; 1160 return 0; 1161 } 1162 1163 int 1164 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1165 void *addr; 1166 void *start, *end; 1167 int blksize; 1168 void (*intr)(void *); 1169 void *arg; 1170 struct audio_params *param; 1171 { 1172 struct sbdsp_softc *sc = addr; 1173 int stereo = param->channels == 2; 1174 int width = param->precision * param->factor; 1175 int filter; 1176 1177 #ifdef DIAGNOSTIC 1178 if (stereo && (blksize & 1)) { 1179 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1180 return (EIO); 1181 } 1182 #endif 1183 1184 sc->sc_intrr = intr; 1185 sc->sc_argr = arg; 1186 1187 if (width == 8) { 1188 #ifdef DIAGNOSTIC 1189 if (sc->sc_i.dmachan != sc->sc_drq8) { 1190 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1191 width, sc->sc_i.dmachan); 1192 return (EIO); 1193 } 1194 #endif 1195 sc->sc_intr8 = sbdsp_block_input; 1196 sc->sc_arg8 = addr; 1197 } else { 1198 #ifdef DIAGNOSTIC 1199 if (sc->sc_i.dmachan != sc->sc_drq16) { 1200 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1201 width, sc->sc_i.dmachan); 1202 return (EIO); 1203 } 1204 #endif 1205 sc->sc_intr16 = sbdsp_block_input; 1206 sc->sc_arg16 = addr; 1207 } 1208 1209 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1210 blksize >>= 1; 1211 --blksize; 1212 sc->sc_i.blksize = blksize; 1213 1214 if (ISSBPRO(sc)) { 1215 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1216 return (EIO); 1217 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1218 sbdsp_mix_write(sc, SBP_INFILTER, 1219 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1220 filter); 1221 } 1222 1223 if (ISSB16CLASS(sc)) { 1224 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1225 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1226 sc->sc_i.rate)); 1227 return (EIO); 1228 } 1229 } else { 1230 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1231 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1232 sc->sc_i.rate)); 1233 return (EIO); 1234 } 1235 } 1236 1237 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n", 1238 start, end, sc->sc_i.dmachan)); 1239 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, start, (char *)end - 1240 (char *)start, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1241 1242 return sbdsp_block_input(addr); 1243 } 1244 1245 int 1246 sbdsp_block_input(addr) 1247 void *addr; 1248 { 1249 struct sbdsp_softc *sc = addr; 1250 int cc = sc->sc_i.blksize; 1251 1252 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1253 1254 if (sc->sc_i.run != SB_NOTRUNNING) 1255 sc->sc_intrr(sc->sc_argr); 1256 1257 if (sc->sc_model == SB_1) { 1258 /* Non-looping mode, start DMA */ 1259 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1260 sbdsp_wdsp(sc, cc) < 0 || 1261 sbdsp_wdsp(sc, cc >> 8) < 0) { 1262 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1263 return (EIO); 1264 } 1265 sc->sc_i.run = SB_RUNNING; 1266 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1267 /* Initialize looping PCM */ 1268 if (ISSB16CLASS(sc)) { 1269 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1270 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1271 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1272 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1273 sbdsp_wdsp(sc, cc) < 0 || 1274 sbdsp_wdsp(sc, cc >> 8) < 0) { 1275 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1276 return (EIO); 1277 } 1278 } else { 1279 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1280 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1281 sbdsp_wdsp(sc, cc) < 0 || 1282 sbdsp_wdsp(sc, cc >> 8) < 0) { 1283 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1284 return (EIO); 1285 } 1286 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1287 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1288 return (EIO); 1289 } 1290 } 1291 sc->sc_i.run = SB_LOOPING; 1292 } 1293 1294 return (0); 1295 } 1296 1297 int 1298 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1299 void *addr; 1300 void *start, *end; 1301 int blksize; 1302 void (*intr)(void *); 1303 void *arg; 1304 struct audio_params *param; 1305 { 1306 struct sbdsp_softc *sc = addr; 1307 int stereo = param->channels == 2; 1308 int width = param->precision * param->factor; 1309 int cmd; 1310 1311 #ifdef DIAGNOSTIC 1312 if (stereo && (blksize & 1)) { 1313 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1314 return (EIO); 1315 } 1316 #endif 1317 1318 sc->sc_intrp = intr; 1319 sc->sc_argp = arg; 1320 1321 if (width == 8) { 1322 #ifdef DIAGNOSTIC 1323 if (sc->sc_o.dmachan != sc->sc_drq8) { 1324 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1325 width, sc->sc_o.dmachan); 1326 return (EIO); 1327 } 1328 #endif 1329 sc->sc_intr8 = sbdsp_block_output; 1330 sc->sc_arg8 = addr; 1331 } else { 1332 #ifdef DIAGNOSTIC 1333 if (sc->sc_o.dmachan != sc->sc_drq16) { 1334 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1335 width, sc->sc_o.dmachan); 1336 return (EIO); 1337 } 1338 #endif 1339 sc->sc_intr16 = sbdsp_block_output; 1340 sc->sc_arg16 = addr; 1341 } 1342 1343 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1344 blksize >>= 1; 1345 --blksize; 1346 sc->sc_o.blksize = blksize; 1347 1348 if (ISSBPRO(sc)) { 1349 /* make sure we re-set stereo mixer bit when we start output. */ 1350 sbdsp_mix_write(sc, SBP_STEREO, 1351 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1352 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1353 cmd = sc->sc_o.modep->cmdchan; 1354 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1355 return (EIO); 1356 } 1357 1358 if (ISSB16CLASS(sc)) { 1359 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1360 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1361 sc->sc_o.rate)); 1362 return (EIO); 1363 } 1364 } else { 1365 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1366 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1367 sc->sc_o.rate)); 1368 return (EIO); 1369 } 1370 } 1371 1372 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n", 1373 start, end, sc->sc_o.dmachan)); 1374 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, start, (char *)end - 1375 (char *)start, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1376 1377 return sbdsp_block_output(addr); 1378 } 1379 1380 int 1381 sbdsp_block_output(addr) 1382 void *addr; 1383 { 1384 struct sbdsp_softc *sc = addr; 1385 int cc = sc->sc_o.blksize; 1386 1387 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1388 1389 if (sc->sc_o.run != SB_NOTRUNNING) 1390 sc->sc_intrp(sc->sc_argp); 1391 1392 if (sc->sc_model == SB_1) { 1393 /* Non-looping mode, initialized. Start DMA and PCM */ 1394 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1395 sbdsp_wdsp(sc, cc) < 0 || 1396 sbdsp_wdsp(sc, cc >> 8) < 0) { 1397 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1398 return (EIO); 1399 } 1400 sc->sc_o.run = SB_RUNNING; 1401 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1402 /* Initialize looping PCM */ 1403 if (ISSB16CLASS(sc)) { 1404 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1405 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1406 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1407 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1408 sbdsp_wdsp(sc, cc) < 0 || 1409 sbdsp_wdsp(sc, cc >> 8) < 0) { 1410 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1411 return (EIO); 1412 } 1413 } else { 1414 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1415 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1416 sbdsp_wdsp(sc, cc) < 0 || 1417 sbdsp_wdsp(sc, cc >> 8) < 0) { 1418 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1419 return (EIO); 1420 } 1421 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1422 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1423 return (EIO); 1424 } 1425 } 1426 sc->sc_o.run = SB_LOOPING; 1427 } 1428 1429 return (0); 1430 } 1431 1432 /* 1433 * Only the DSP unit on the sound blaster generates interrupts. 1434 * There are three cases of interrupt: reception of a midi byte 1435 * (when mode is enabled), completion of dma transmission, or 1436 * completion of a dma reception. 1437 * 1438 * If there is interrupt sharing or a spurious interrupt occurs 1439 * there is no way to distinguish this on an SB2. So if you have 1440 * an SB2 and experience problems, buy an SB16 (it's only $40). 1441 */ 1442 int 1443 sbdsp_intr(arg) 1444 void *arg; 1445 { 1446 struct sbdsp_softc *sc = arg; 1447 u_char irq; 1448 1449 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1450 sc->sc_intr8, sc->sc_intr16)); 1451 if (ISSB16CLASS(sc)) { 1452 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS); 1453 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1454 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1455 return 0; 1456 } 1457 } else { 1458 /* XXXX CHECK FOR INTERRUPT */ 1459 irq = SBP_IRQ_DMA8; 1460 } 1461 1462 sc->sc_interrupts++; 1463 delay(10); /* XXX why? */ 1464 1465 /* clear interrupt */ 1466 if (irq & SBP_IRQ_DMA8) { 1467 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1468 if (sc->sc_intr8) 1469 sc->sc_intr8(sc->sc_arg8); 1470 } 1471 if (irq & SBP_IRQ_DMA16) { 1472 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1473 if (sc->sc_intr16) 1474 sc->sc_intr16(sc->sc_arg16); 1475 } 1476 #if NMIDI > 0 1477 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) { 1478 mpu_intr(&sc->sc_mpu_sc); 1479 } 1480 #endif 1481 return 1; 1482 } 1483 1484 /* Like val & mask, but make sure the result is correctly rounded. */ 1485 #define MAXVAL 256 1486 static int 1487 sbdsp_adjust(val, mask) 1488 int val, mask; 1489 { 1490 val += (MAXVAL - mask) >> 1; 1491 if (val >= MAXVAL) 1492 val = MAXVAL-1; 1493 return val & mask; 1494 } 1495 1496 void 1497 sbdsp_set_mixer_gain(sc, port) 1498 struct sbdsp_softc *sc; 1499 int port; 1500 { 1501 int src, gain; 1502 1503 switch(sc->sc_mixer_model) { 1504 case SBM_NONE: 1505 return; 1506 case SBM_CT1335: 1507 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1508 switch(port) { 1509 case SB_MASTER_VOL: 1510 src = SBP_1335_MASTER_VOL; 1511 break; 1512 case SB_MIDI_VOL: 1513 src = SBP_1335_MIDI_VOL; 1514 break; 1515 case SB_CD_VOL: 1516 src = SBP_1335_CD_VOL; 1517 break; 1518 case SB_VOICE_VOL: 1519 src = SBP_1335_VOICE_VOL; 1520 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1521 break; 1522 default: 1523 return; 1524 } 1525 sbdsp_mix_write(sc, src, gain); 1526 break; 1527 case SBM_CT1345: 1528 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1529 sc->gain[port][SB_RIGHT]); 1530 switch (port) { 1531 case SB_MIC_VOL: 1532 src = SBP_MIC_VOL; 1533 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1534 break; 1535 case SB_MASTER_VOL: 1536 src = SBP_MASTER_VOL; 1537 break; 1538 case SB_LINE_IN_VOL: 1539 src = SBP_LINE_VOL; 1540 break; 1541 case SB_VOICE_VOL: 1542 src = SBP_VOICE_VOL; 1543 break; 1544 case SB_MIDI_VOL: 1545 src = SBP_MIDI_VOL; 1546 break; 1547 case SB_CD_VOL: 1548 src = SBP_CD_VOL; 1549 break; 1550 default: 1551 return; 1552 } 1553 sbdsp_mix_write(sc, src, gain); 1554 break; 1555 case SBM_CT1XX5: 1556 case SBM_CT1745: 1557 switch (port) { 1558 case SB_MIC_VOL: 1559 src = SB16P_MIC_L; 1560 break; 1561 case SB_MASTER_VOL: 1562 src = SB16P_MASTER_L; 1563 break; 1564 case SB_LINE_IN_VOL: 1565 src = SB16P_LINE_L; 1566 break; 1567 case SB_VOICE_VOL: 1568 src = SB16P_VOICE_L; 1569 break; 1570 case SB_MIDI_VOL: 1571 src = SB16P_MIDI_L; 1572 break; 1573 case SB_CD_VOL: 1574 src = SB16P_CD_L; 1575 break; 1576 case SB_INPUT_GAIN: 1577 src = SB16P_INPUT_GAIN_L; 1578 break; 1579 case SB_OUTPUT_GAIN: 1580 src = SB16P_OUTPUT_GAIN_L; 1581 break; 1582 case SB_TREBLE: 1583 src = SB16P_TREBLE_L; 1584 break; 1585 case SB_BASS: 1586 src = SB16P_BASS_L; 1587 break; 1588 case SB_PCSPEAKER: 1589 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1590 return; 1591 default: 1592 return; 1593 } 1594 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1595 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1596 break; 1597 } 1598 } 1599 1600 int 1601 sbdsp_mixer_set_port(addr, cp) 1602 void *addr; 1603 mixer_ctrl_t *cp; 1604 { 1605 struct sbdsp_softc *sc = addr; 1606 int lgain, rgain; 1607 int mask, bits; 1608 int lmask, rmask, lbits, rbits; 1609 int mute, swap; 1610 1611 if (sc->sc_open == SB_OPEN_MIDI) 1612 return EBUSY; 1613 1614 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1615 cp->un.value.num_channels)); 1616 1617 if (sc->sc_mixer_model == SBM_NONE) 1618 return EINVAL; 1619 1620 switch (cp->dev) { 1621 case SB_TREBLE: 1622 case SB_BASS: 1623 if (sc->sc_mixer_model == SBM_CT1345 || 1624 sc->sc_mixer_model == SBM_CT1XX5) { 1625 if (cp->type != AUDIO_MIXER_ENUM) 1626 return EINVAL; 1627 switch (cp->dev) { 1628 case SB_TREBLE: 1629 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1630 return 0; 1631 case SB_BASS: 1632 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1633 return 0; 1634 } 1635 } 1636 case SB_PCSPEAKER: 1637 case SB_INPUT_GAIN: 1638 case SB_OUTPUT_GAIN: 1639 if (!ISSBM1745(sc)) 1640 return EINVAL; 1641 case SB_MIC_VOL: 1642 case SB_LINE_IN_VOL: 1643 if (sc->sc_mixer_model == SBM_CT1335) 1644 return EINVAL; 1645 case SB_VOICE_VOL: 1646 case SB_MIDI_VOL: 1647 case SB_CD_VOL: 1648 case SB_MASTER_VOL: 1649 if (cp->type != AUDIO_MIXER_VALUE) 1650 return EINVAL; 1651 1652 /* 1653 * All the mixer ports are stereo except for the microphone. 1654 * If we get a single-channel gain value passed in, then we 1655 * duplicate it to both left and right channels. 1656 */ 1657 1658 switch (cp->dev) { 1659 case SB_MIC_VOL: 1660 if (cp->un.value.num_channels != 1) 1661 return EINVAL; 1662 1663 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1664 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1665 break; 1666 case SB_PCSPEAKER: 1667 if (cp->un.value.num_channels != 1) 1668 return EINVAL; 1669 /* fall into */ 1670 case SB_INPUT_GAIN: 1671 case SB_OUTPUT_GAIN: 1672 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1673 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1674 break; 1675 default: 1676 switch (cp->un.value.num_channels) { 1677 case 1: 1678 lgain = rgain = SB_ADJUST_GAIN(sc, 1679 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1680 break; 1681 case 2: 1682 if (sc->sc_mixer_model == SBM_CT1335) 1683 return EINVAL; 1684 lgain = SB_ADJUST_GAIN(sc, 1685 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1686 rgain = SB_ADJUST_GAIN(sc, 1687 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1688 break; 1689 default: 1690 return EINVAL; 1691 } 1692 break; 1693 } 1694 sc->gain[cp->dev][SB_LEFT] = lgain; 1695 sc->gain[cp->dev][SB_RIGHT] = rgain; 1696 1697 sbdsp_set_mixer_gain(sc, cp->dev); 1698 break; 1699 1700 case SB_RECORD_SOURCE: 1701 if (ISSBM1745(sc)) { 1702 if (cp->type != AUDIO_MIXER_SET) 1703 return EINVAL; 1704 return sbdsp_set_in_ports(sc, cp->un.mask); 1705 } else { 1706 if (cp->type != AUDIO_MIXER_ENUM) 1707 return EINVAL; 1708 sc->in_port = cp->un.ord; 1709 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1710 } 1711 break; 1712 1713 case SB_AGC: 1714 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1715 return EINVAL; 1716 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1717 break; 1718 1719 case SB_CD_OUT_MUTE: 1720 mask = SB16P_SW_CD; 1721 goto omute; 1722 case SB_MIC_OUT_MUTE: 1723 mask = SB16P_SW_MIC; 1724 goto omute; 1725 case SB_LINE_OUT_MUTE: 1726 mask = SB16P_SW_LINE; 1727 omute: 1728 if (cp->type != AUDIO_MIXER_ENUM) 1729 return EINVAL; 1730 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1731 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1732 if (cp->un.ord) 1733 bits = bits & ~mask; 1734 else 1735 bits = bits | mask; 1736 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1737 break; 1738 1739 case SB_MIC_IN_MUTE: 1740 case SB_MIC_SWAP: 1741 lmask = rmask = SB16P_SW_MIC; 1742 goto imute; 1743 case SB_CD_IN_MUTE: 1744 case SB_CD_SWAP: 1745 lmask = SB16P_SW_CD_L; 1746 rmask = SB16P_SW_CD_R; 1747 goto imute; 1748 case SB_LINE_IN_MUTE: 1749 case SB_LINE_SWAP: 1750 lmask = SB16P_SW_LINE_L; 1751 rmask = SB16P_SW_LINE_R; 1752 goto imute; 1753 case SB_MIDI_IN_MUTE: 1754 case SB_MIDI_SWAP: 1755 lmask = SB16P_SW_MIDI_L; 1756 rmask = SB16P_SW_MIDI_R; 1757 imute: 1758 if (cp->type != AUDIO_MIXER_ENUM) 1759 return EINVAL; 1760 mask = lmask | rmask; 1761 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1762 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1763 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1764 if (SB_IS_IN_MUTE(cp->dev)) { 1765 mute = cp->dev; 1766 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1767 } else { 1768 swap = cp->dev; 1769 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1770 } 1771 if (sc->gain[swap][SB_LR]) { 1772 mask = lmask; 1773 lmask = rmask; 1774 rmask = mask; 1775 } 1776 if (!sc->gain[mute][SB_LR]) { 1777 lbits = lbits | lmask; 1778 rbits = rbits | rmask; 1779 } 1780 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1781 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1782 break; 1783 1784 default: 1785 return EINVAL; 1786 } 1787 1788 return 0; 1789 } 1790 1791 int 1792 sbdsp_mixer_get_port(addr, cp) 1793 void *addr; 1794 mixer_ctrl_t *cp; 1795 { 1796 struct sbdsp_softc *sc = addr; 1797 1798 if (sc->sc_open == SB_OPEN_MIDI) 1799 return EBUSY; 1800 1801 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1802 1803 if (sc->sc_mixer_model == SBM_NONE) 1804 return EINVAL; 1805 1806 switch (cp->dev) { 1807 case SB_TREBLE: 1808 case SB_BASS: 1809 if (sc->sc_mixer_model == SBM_CT1345 || 1810 sc->sc_mixer_model == SBM_CT1XX5) { 1811 switch (cp->dev) { 1812 case SB_TREBLE: 1813 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1814 return 0; 1815 case SB_BASS: 1816 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1817 return 0; 1818 } 1819 } 1820 case SB_PCSPEAKER: 1821 case SB_INPUT_GAIN: 1822 case SB_OUTPUT_GAIN: 1823 if (!ISSBM1745(sc)) 1824 return EINVAL; 1825 case SB_MIC_VOL: 1826 case SB_LINE_IN_VOL: 1827 if (sc->sc_mixer_model == SBM_CT1335) 1828 return EINVAL; 1829 case SB_VOICE_VOL: 1830 case SB_MIDI_VOL: 1831 case SB_CD_VOL: 1832 case SB_MASTER_VOL: 1833 switch (cp->dev) { 1834 case SB_MIC_VOL: 1835 case SB_PCSPEAKER: 1836 if (cp->un.value.num_channels != 1) 1837 return EINVAL; 1838 /* fall into */ 1839 default: 1840 switch (cp->un.value.num_channels) { 1841 case 1: 1842 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1843 sc->gain[cp->dev][SB_LEFT]; 1844 break; 1845 case 2: 1846 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1847 sc->gain[cp->dev][SB_LEFT]; 1848 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1849 sc->gain[cp->dev][SB_RIGHT]; 1850 break; 1851 default: 1852 return EINVAL; 1853 } 1854 break; 1855 } 1856 break; 1857 1858 case SB_RECORD_SOURCE: 1859 if (ISSBM1745(sc)) 1860 cp->un.mask = sc->in_mask; 1861 else 1862 cp->un.ord = sc->in_port; 1863 break; 1864 1865 case SB_AGC: 1866 if (!ISSBM1745(sc)) 1867 return EINVAL; 1868 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1869 break; 1870 1871 case SB_CD_IN_MUTE: 1872 case SB_MIC_IN_MUTE: 1873 case SB_LINE_IN_MUTE: 1874 case SB_MIDI_IN_MUTE: 1875 case SB_CD_SWAP: 1876 case SB_MIC_SWAP: 1877 case SB_LINE_SWAP: 1878 case SB_MIDI_SWAP: 1879 case SB_CD_OUT_MUTE: 1880 case SB_MIC_OUT_MUTE: 1881 case SB_LINE_OUT_MUTE: 1882 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1883 break; 1884 1885 default: 1886 return EINVAL; 1887 } 1888 1889 return 0; 1890 } 1891 1892 int 1893 sbdsp_mixer_query_devinfo(addr, dip) 1894 void *addr; 1895 mixer_devinfo_t *dip; 1896 { 1897 struct sbdsp_softc *sc = addr; 1898 int chan, class, is1745; 1899 1900 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1901 sc->sc_mixer_model, dip->index)); 1902 1903 if (dip->index < 0) 1904 return ENXIO; 1905 1906 if (sc->sc_mixer_model == SBM_NONE) 1907 return ENXIO; 1908 1909 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 1910 is1745 = ISSBM1745(sc); 1911 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 1912 1913 switch (dip->index) { 1914 case SB_MASTER_VOL: 1915 dip->type = AUDIO_MIXER_VALUE; 1916 dip->mixer_class = SB_OUTPUT_CLASS; 1917 dip->prev = dip->next = AUDIO_MIXER_LAST; 1918 strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); 1919 dip->un.v.num_channels = chan; 1920 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1921 return 0; 1922 case SB_MIDI_VOL: 1923 dip->type = AUDIO_MIXER_VALUE; 1924 dip->mixer_class = class; 1925 dip->prev = AUDIO_MIXER_LAST; 1926 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 1927 strlcpy(dip->label.name, AudioNfmsynth, sizeof dip->label.name); 1928 dip->un.v.num_channels = chan; 1929 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1930 return 0; 1931 case SB_CD_VOL: 1932 dip->type = AUDIO_MIXER_VALUE; 1933 dip->mixer_class = class; 1934 dip->prev = AUDIO_MIXER_LAST; 1935 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 1936 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 1937 dip->un.v.num_channels = chan; 1938 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1939 return 0; 1940 case SB_VOICE_VOL: 1941 dip->type = AUDIO_MIXER_VALUE; 1942 dip->mixer_class = class; 1943 dip->prev = AUDIO_MIXER_LAST; 1944 dip->next = AUDIO_MIXER_LAST; 1945 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 1946 dip->un.v.num_channels = chan; 1947 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1948 return 0; 1949 case SB_OUTPUT_CLASS: 1950 dip->type = AUDIO_MIXER_CLASS; 1951 dip->mixer_class = SB_OUTPUT_CLASS; 1952 dip->next = dip->prev = AUDIO_MIXER_LAST; 1953 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 1954 return 0; 1955 } 1956 1957 if (sc->sc_mixer_model == SBM_CT1335) 1958 return ENXIO; 1959 1960 switch (dip->index) { 1961 case SB_MIC_VOL: 1962 dip->type = AUDIO_MIXER_VALUE; 1963 dip->mixer_class = class; 1964 dip->prev = AUDIO_MIXER_LAST; 1965 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 1966 strlcpy(dip->label.name, AudioNmicrophone, 1967 sizeof dip->label.name); 1968 dip->un.v.num_channels = 1; 1969 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1970 return 0; 1971 1972 case SB_LINE_IN_VOL: 1973 dip->type = AUDIO_MIXER_VALUE; 1974 dip->mixer_class = class; 1975 dip->prev = AUDIO_MIXER_LAST; 1976 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 1977 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 1978 dip->un.v.num_channels = 2; 1979 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1980 return 0; 1981 1982 case SB_RECORD_SOURCE: 1983 dip->mixer_class = SB_RECORD_CLASS; 1984 dip->prev = dip->next = AUDIO_MIXER_LAST; 1985 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 1986 if (ISSBM1745(sc)) { 1987 dip->type = AUDIO_MIXER_SET; 1988 dip->un.s.num_mem = 4; 1989 strlcpy(dip->un.s.member[0].label.name, 1990 AudioNmicrophone, 1991 sizeof dip->un.s.member[0].label.name); 1992 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 1993 strlcpy(dip->un.s.member[1].label.name, 1994 AudioNcd, sizeof dip->un.s.member[1].label.name); 1995 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 1996 strlcpy(dip->un.s.member[2].label.name, 1997 AudioNline, sizeof dip->un.s.member[2].label.name); 1998 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 1999 strlcpy(dip->un.s.member[3].label.name, 2000 AudioNfmsynth, 2001 sizeof dip->un.s.member[3].label.name); 2002 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2003 } else { 2004 dip->type = AUDIO_MIXER_ENUM; 2005 dip->un.e.num_mem = 3; 2006 strlcpy(dip->un.e.member[0].label.name, 2007 AudioNmicrophone, 2008 sizeof dip->un.e.member[0].label.name); 2009 dip->un.e.member[0].ord = SB_MIC_VOL; 2010 strlcpy(dip->un.e.member[1].label.name, AudioNcd, 2011 sizeof dip->un.e.member[1].label.name); 2012 dip->un.e.member[1].ord = SB_CD_VOL; 2013 strlcpy(dip->un.e.member[2].label.name, AudioNline, 2014 sizeof dip->un.e.member[2].label.name); 2015 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2016 } 2017 return 0; 2018 2019 case SB_BASS: 2020 dip->prev = dip->next = AUDIO_MIXER_LAST; 2021 strlcpy(dip->label.name, AudioNbass, sizeof dip->label.name); 2022 if (sc->sc_mixer_model == SBM_CT1745) { 2023 dip->type = AUDIO_MIXER_VALUE; 2024 dip->mixer_class = SB_EQUALIZATION_CLASS; 2025 dip->un.v.num_channels = 2; 2026 strlcpy(dip->un.v.units.name, AudioNbass, sizeof dip->un.v.units.name); 2027 } else { 2028 dip->type = AUDIO_MIXER_ENUM; 2029 dip->mixer_class = SB_INPUT_CLASS; 2030 dip->un.e.num_mem = 2; 2031 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2032 sizeof dip->un.e.member[0].label.name); 2033 dip->un.e.member[0].ord = 0; 2034 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2035 sizeof dip->un.e.member[1].label.name); 2036 dip->un.e.member[1].ord = 1; 2037 } 2038 return 0; 2039 2040 case SB_TREBLE: 2041 dip->prev = dip->next = AUDIO_MIXER_LAST; 2042 strlcpy(dip->label.name, AudioNtreble, sizeof dip->label.name); 2043 if (sc->sc_mixer_model == SBM_CT1745) { 2044 dip->type = AUDIO_MIXER_VALUE; 2045 dip->mixer_class = SB_EQUALIZATION_CLASS; 2046 dip->un.v.num_channels = 2; 2047 strlcpy(dip->un.v.units.name, AudioNtreble, sizeof dip->un.v.units.name); 2048 } else { 2049 dip->type = AUDIO_MIXER_ENUM; 2050 dip->mixer_class = SB_INPUT_CLASS; 2051 dip->un.e.num_mem = 2; 2052 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2053 sizeof dip->un.e.member[0].label.name); 2054 dip->un.e.member[0].ord = 0; 2055 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2056 sizeof dip->un.e.member[1].label.name); 2057 dip->un.e.member[1].ord = 1; 2058 } 2059 return 0; 2060 2061 case SB_RECORD_CLASS: /* record source class */ 2062 dip->type = AUDIO_MIXER_CLASS; 2063 dip->mixer_class = SB_RECORD_CLASS; 2064 dip->next = dip->prev = AUDIO_MIXER_LAST; 2065 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 2066 return 0; 2067 2068 case SB_INPUT_CLASS: 2069 dip->type = AUDIO_MIXER_CLASS; 2070 dip->mixer_class = SB_INPUT_CLASS; 2071 dip->next = dip->prev = AUDIO_MIXER_LAST; 2072 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 2073 return 0; 2074 2075 } 2076 2077 if (sc->sc_mixer_model == SBM_CT1345) 2078 return ENXIO; 2079 2080 switch(dip->index) { 2081 case SB_PCSPEAKER: 2082 dip->type = AUDIO_MIXER_VALUE; 2083 dip->mixer_class = SB_INPUT_CLASS; 2084 dip->prev = dip->next = AUDIO_MIXER_LAST; 2085 strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); 2086 dip->un.v.num_channels = 1; 2087 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2088 return 0; 2089 2090 case SB_INPUT_GAIN: 2091 dip->type = AUDIO_MIXER_VALUE; 2092 dip->mixer_class = SB_INPUT_CLASS; 2093 dip->prev = dip->next = AUDIO_MIXER_LAST; 2094 strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name); 2095 dip->un.v.num_channels = 2; 2096 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2097 return 0; 2098 2099 case SB_OUTPUT_GAIN: 2100 dip->type = AUDIO_MIXER_VALUE; 2101 dip->mixer_class = SB_OUTPUT_CLASS; 2102 dip->prev = dip->next = AUDIO_MIXER_LAST; 2103 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); 2104 dip->un.v.num_channels = 2; 2105 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2106 return 0; 2107 2108 case SB_AGC: 2109 dip->type = AUDIO_MIXER_ENUM; 2110 dip->mixer_class = SB_INPUT_CLASS; 2111 dip->prev = dip->next = AUDIO_MIXER_LAST; 2112 strlcpy(dip->label.name, "agc", sizeof dip->label.name); 2113 dip->un.e.num_mem = 2; 2114 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2115 sizeof dip->un.e.member[0].label.name); 2116 dip->un.e.member[0].ord = 0; 2117 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2118 sizeof dip->un.e.member[1].label.name); 2119 dip->un.e.member[1].ord = 1; 2120 return 0; 2121 2122 case SB_EQUALIZATION_CLASS: 2123 dip->type = AUDIO_MIXER_CLASS; 2124 dip->mixer_class = SB_EQUALIZATION_CLASS; 2125 dip->next = dip->prev = AUDIO_MIXER_LAST; 2126 strlcpy(dip->label.name, AudioCequalization, sizeof dip->label.name); 2127 return 0; 2128 2129 case SB_CD_IN_MUTE: 2130 dip->prev = SB_CD_VOL; 2131 dip->next = SB_CD_SWAP; 2132 dip->mixer_class = SB_INPUT_CLASS; 2133 goto mute; 2134 2135 case SB_MIC_IN_MUTE: 2136 dip->prev = SB_MIC_VOL; 2137 dip->next = SB_MIC_SWAP; 2138 dip->mixer_class = SB_INPUT_CLASS; 2139 goto mute; 2140 2141 case SB_LINE_IN_MUTE: 2142 dip->prev = SB_LINE_IN_VOL; 2143 dip->next = SB_LINE_SWAP; 2144 dip->mixer_class = SB_INPUT_CLASS; 2145 goto mute; 2146 2147 case SB_MIDI_IN_MUTE: 2148 dip->prev = SB_MIDI_VOL; 2149 dip->next = SB_MIDI_SWAP; 2150 dip->mixer_class = SB_INPUT_CLASS; 2151 goto mute; 2152 2153 case SB_CD_SWAP: 2154 dip->prev = SB_CD_IN_MUTE; 2155 dip->next = SB_CD_OUT_MUTE; 2156 goto swap; 2157 2158 case SB_MIC_SWAP: 2159 dip->prev = SB_MIC_IN_MUTE; 2160 dip->next = SB_MIC_OUT_MUTE; 2161 goto swap; 2162 2163 case SB_LINE_SWAP: 2164 dip->prev = SB_LINE_IN_MUTE; 2165 dip->next = SB_LINE_OUT_MUTE; 2166 goto swap; 2167 2168 case SB_MIDI_SWAP: 2169 dip->prev = SB_MIDI_IN_MUTE; 2170 dip->next = AUDIO_MIXER_LAST; 2171 swap: 2172 dip->mixer_class = SB_INPUT_CLASS; 2173 strlcpy(dip->label.name, AudioNswap, sizeof dip->label.name); 2174 goto mute1; 2175 2176 case SB_CD_OUT_MUTE: 2177 dip->prev = SB_CD_SWAP; 2178 dip->next = AUDIO_MIXER_LAST; 2179 dip->mixer_class = SB_OUTPUT_CLASS; 2180 goto mute; 2181 2182 case SB_MIC_OUT_MUTE: 2183 dip->prev = SB_MIC_SWAP; 2184 dip->next = AUDIO_MIXER_LAST; 2185 dip->mixer_class = SB_OUTPUT_CLASS; 2186 goto mute; 2187 2188 case SB_LINE_OUT_MUTE: 2189 dip->prev = SB_LINE_SWAP; 2190 dip->next = AUDIO_MIXER_LAST; 2191 dip->mixer_class = SB_OUTPUT_CLASS; 2192 mute: 2193 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 2194 mute1: 2195 dip->type = AUDIO_MIXER_ENUM; 2196 dip->un.e.num_mem = 2; 2197 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2198 sizeof dip->un.e.member[0].label.name); 2199 dip->un.e.member[0].ord = 0; 2200 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2201 sizeof dip->un.e.member[1].label.name); 2202 dip->un.e.member[1].ord = 1; 2203 return 0; 2204 2205 } 2206 2207 return ENXIO; 2208 } 2209 2210 void * 2211 sb_malloc(addr, direction, size, pool, flags) 2212 void *addr; 2213 int direction; 2214 size_t size; 2215 int pool; 2216 int flags; 2217 { 2218 struct sbdsp_softc *sc = addr; 2219 int drq; 2220 2221 /* 8-bit has more restrictive alignment */ 2222 if (sc->sc_drq8 != -1) 2223 drq = sc->sc_drq8; 2224 else 2225 drq = sc->sc_drq16; 2226 2227 return isa_malloc(sc->sc_isa, drq, size, pool, flags); 2228 } 2229 2230 void 2231 sb_free(addr, ptr, pool) 2232 void *addr; 2233 void *ptr; 2234 int pool; 2235 { 2236 isa_free(ptr, pool); 2237 } 2238 2239 size_t 2240 sb_round(addr, direction, size) 2241 void *addr; 2242 int direction; 2243 size_t size; 2244 { 2245 if (size > MAX_ISADMA) 2246 size = MAX_ISADMA; 2247 return size; 2248 } 2249 2250 paddr_t 2251 sb_mappage(addr, mem, off, prot) 2252 void *addr; 2253 void *mem; 2254 off_t off; 2255 int prot; 2256 { 2257 return isa_mappage(mem, off, prot); 2258 } 2259 2260 int 2261 sbdsp_get_props(addr) 2262 void *addr; 2263 { 2264 struct sbdsp_softc *sc = addr; 2265 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2266 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2267 } 2268 2269 #if NMIDI > 0 2270 /* 2271 * MIDI related routines. 2272 */ 2273 2274 int 2275 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2276 void *addr; 2277 int flags; 2278 void (*iintr)(void *, int); 2279 void (*ointr)(void *); 2280 void *arg; 2281 { 2282 struct sbdsp_softc *sc = addr; 2283 2284 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2285 2286 if (sc->sc_open != SB_CLOSED) 2287 return EBUSY; 2288 if (sbdsp_reset(sc) != 0) 2289 return EIO; 2290 2291 if (sc->sc_model >= SB_20) 2292 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2293 return EIO; 2294 sc->sc_open = SB_OPEN_MIDI; 2295 sc->sc_openflags = flags; 2296 sc->sc_intr8 = sbdsp_midi_intr; 2297 sc->sc_arg8 = addr; 2298 sc->sc_intrm = iintr; 2299 sc->sc_argm = arg; 2300 return 0; 2301 } 2302 2303 void 2304 sbdsp_midi_close(addr) 2305 void *addr; 2306 { 2307 struct sbdsp_softc *sc = addr; 2308 2309 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2310 2311 if (sc->sc_model >= SB_20) 2312 sbdsp_reset(sc); /* exit UART mode */ 2313 sc->sc_open = SB_CLOSED; 2314 sc->sc_intrm = 0; 2315 } 2316 2317 int 2318 sbdsp_midi_output(addr, d) 2319 void *addr; 2320 int d; 2321 { 2322 struct sbdsp_softc *sc = addr; 2323 2324 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2325 return EIO; 2326 if (sbdsp_wdsp(sc, d)) 2327 return EIO; 2328 return 0; 2329 } 2330 2331 void 2332 sbdsp_midi_getinfo(addr, mi) 2333 void *addr; 2334 struct midi_info *mi; 2335 { 2336 struct sbdsp_softc *sc = addr; 2337 2338 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2339 mi->props = MIDI_PROP_CAN_INPUT; 2340 } 2341 2342 int 2343 sbdsp_midi_intr(addr) 2344 void *addr; 2345 { 2346 struct sbdsp_softc *sc = addr; 2347 2348 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2349 return (0); 2350 } 2351 2352 #endif 2353