xref: /openbsd/sys/dev/microcode/aic7xxx/aic79xx.seq (revision a6445c1d)
1/*	$OpenBSD: aic79xx.seq,v 1.9 2007/11/24 12:59:28 jmc Exp $	*/
2/*
3 * Adaptec U320 device driver firmware for Linux and FreeBSD.
4 *
5 * Copyright (c) 1994-2001, 2004 Justin T. Gibbs.
6 * Copyright (c) 2000-2002 Adaptec Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions, and the following disclaimer,
14 *    without modification.
15 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
16 *    substantially similar to the "NO WARRANTY" disclaimer below
17 *    ("Disclaimer") and any redistribution must be conditioned upon
18 *    including a substantially similar Disclaimer requirement for further
19 *    binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 *    of any contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
37 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
38 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGES.
40 *
41 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.17 2004/08/04 17:55:34 gibbs Exp $
42 */
43
44VERSION = "$Id: aic79xx.seq,v 1.9 2007/11/24 12:59:28 jmc Exp $"
45PATCH_ARG_LIST = "struct ahd_softc *ahd"
46PREFIX = "ahd_"
47
48#include <dev/microcode/aic7xxx/aic79xx.reg>
49#include <scsi/scsi_message.h>
50
51restart:
52if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
53	test	SEQINTCODE, 0xFF jz idle_loop;
54	SET_SEQINTCODE(NO_SEQINT)
55}
56
57idle_loop:
58
59	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
60		/*
61		 * Convert ERROR status into a sequencer
62		 * interrupt to handle the case of an
63		 * interrupt collision on the hardware
64		 * setting of HWERR.
65		 */
66		test	ERROR, 0xFF jz no_error_set;
67		SET_SEQINTCODE(SAW_HWERR)
68no_error_set:
69	}
70	SET_MODE(M_SCSI, M_SCSI)
71	test	SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
72	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list;
73	/*
74	 * If the kernel has caught up with us, thaw the queue.
75	 */
76	mov	A, KERNEL_QFREEZE_COUNT;
77	cmp	QFREEZE_COUNT, A jne check_frozen_completions;
78	mov	A, KERNEL_QFREEZE_COUNT[1];
79	cmp	QFREEZE_COUNT[1], A jne check_frozen_completions;
80	and	SEQ_FLAGS2, ~SELECTOUT_QFROZEN;
81	jmp	check_waiting_list;
82check_frozen_completions:
83	test	SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus;
84BEGIN_CRITICAL;
85	/*
86	 * If we have completions stalled waiting for the qfreeze
87	 * to take effect, move them over to the complete_scb list
88	 * now that no selections are pending.
89	 */
90	cmp	COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus;
91	/*
92	 * Find the end of the qfreeze list.  The first element has
93	 * to be treated specially.
94	 */
95	bmov	SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2;
96	cmp 	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists;
97	/*
98	 * Now the normal loop.
99	 */
100	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
101	cmp 	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1;
102join_lists:
103	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
104	bmov	COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2;
105	mvi	COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL;
106	jmp	idle_loop_checkbus;
107check_waiting_list:
108	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
109	/*
110	 * ENSELO is cleared by a SELDO, so we must test for SELDO
111	 * one last time.
112	 */
113	test	SSTAT0, SELDO jnz select_out;
114	call	start_selection;
115idle_loop_checkbus:
116	test	SSTAT0, SELDO jnz select_out;
117END_CRITICAL;
118	test	SSTAT0, SELDI jnz select_in;
119	test	SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
120	test	SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
121	call	unexpected_nonpkt_phase_find_ctxt;
122idle_loop_check_nonpackreq:
123	test	SSTAT2, NONPACKREQ jz . + 2;
124	call	unexpected_nonpkt_phase_find_ctxt;
125	if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
126		/*
127		 * On Rev A. hardware, the busy LED is only
128		 * turned on automatically during selections
129		 * and re-selections.  Make the LED status
130		 * more useful by forcing it to be on so
131		 * long as one of our data FIFOs is active.
132		 */
133		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
134		cmp	A, FIFO0FREE|FIFO1FREE jne . + 3;
135		and	SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
136		jmp	. + 2;
137		or	SBLKCTL, DIAGLEDEN|DIAGLEDON;
138	}
139	call	idle_loop_gsfifo_in_scsi_mode;
140	call	idle_loop_service_fifos;
141	call	idle_loop_cchan;
142	jmp	idle_loop;
143
144idle_loop_gsfifo:
145	SET_MODE(M_SCSI, M_SCSI)
146BEGIN_CRITICAL;
147idle_loop_gsfifo_in_scsi_mode:
148	test	LQISTAT2, LQIGSAVAIL jz return;
149	/*
150	 * We have received good status for this transaction.  There may
151	 * still be data in our FIFOs draining to the host.  Complete
152	 * the SCB only if all data has transferred to the host.
153	 */
154good_status_IU_done:
155	bmov	SCBPTR, GSFIFO, 2;
156	clr	SCB_SCSI_STATUS;
157	/*
158	 * If a command completed before an attempted task management
159	 * function completed, notify the host after disabling any
160	 * pending select-outs.
161	 */
162	test	SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
163	test	SSTAT0, SELDO|SELINGO jnz . + 2;
164	and	SCSISEQ0, ~ENSELO;
165	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
166gsfifo_complete_normally:
167	or	SCB_CONTROL, STATUS_RCVD;
168
169	/*
170	 * Since this status did not consume a FIFO, we have to
171	 * be a bit more diligent in how we check for FIFOs pertaining
172	 * to this transaction.  There are two states that a FIFO still
173	 * transferring data may be in.
174	 *
175	 * 1) Configured and draining to the host, with a FIFO handler.
176	 * 2) Pending cfg4data, fifo not empty.
177	 *
178	 * Case 1 can be detected by noticing a non-zero FIFO active
179	 * count in the SCB.  In this case, we allow the routine servicing
180	 * the FIFO to complete the SCB.
181	 *
182	 * Case 2 implies either a pending or yet to occur save data
183	 * pointers for this same context in the other FIFO.  So, if
184	 * we detect case 1, we will properly defer the post of the SCB
185	 * and achieve the desired result.  The pending cfg4data will
186	 * notice that status has been received and complete the SCB.
187	 */
188	test	SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
189	call	complete;
190END_CRITICAL;
191	jmp	idle_loop_gsfifo_in_scsi_mode;
192
193idle_loop_service_fifos:
194	SET_MODE(M_DFF0, M_DFF0)
195BEGIN_CRITICAL;
196	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
197	call	longjmp;
198END_CRITICAL;
199idle_loop_next_fifo:
200	SET_MODE(M_DFF1, M_DFF1)
201BEGIN_CRITICAL;
202	test	LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
203END_CRITICAL;
204return:
205	ret;
206
207idle_loop_cchan:
208	SET_MODE(M_CCHAN, M_CCHAN)
209	test	QOFF_CTLSTA, HS_MAILBOX_ACT jz	hs_mailbox_empty;
210	or	QOFF_CTLSTA, HS_MAILBOX_ACT;
211	mov	LOCAL_HS_MAILBOX, HS_MAILBOX;
212hs_mailbox_empty:
213BEGIN_CRITICAL;
214	test	CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
215	test	CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
216	test	CCSCBCTL, CCSCBDONE jz return;
217	/* FALLTHROUGH */
218scbdma_tohost_done:
219	test	CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
220	/*
221	 * An SCB has been successfully uploaded to the host.
222	 * If the SCB was uploaded for some reason other than
223	 * bad SCSI status (currently only for underruns), we
224	 * queue the SCB for normal completion.  Otherwise, we
225	 * wait until any select-out activity has halted, and
226	 * then queue the completion.
227	 */
228	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
229	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
230	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2;
231	mvi	COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL;
232	test	SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion;
233	bmov	SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2;
234	bmov	COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret;
235scbdma_queue_completion:
236	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
237	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
238fill_qoutfifo_dmadone:
239	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
240	call	qoutfifo_updated;
241	mvi	COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
242	bmov	QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
243	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
244	bmov	QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
245	xor	QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
246END_CRITICAL;
247
248qoutfifo_updated:
249	/*
250	 * If there are more commands waiting to be dma'ed
251	 * to the host, always coalesce.  Otherwise honor the
252	 * host's wishes.
253	 */
254	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
255	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
256	test	LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
257
258	/*
259	 * If we have relatively few commands outstanding, don't
260	 * bother waiting for another command to complete.
261	 */
262	test	CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
263	/* Add -1 so that jnc means <= not just < */
264	add	A, -1, INT_COALESCING_MINCMDS;
265	add	NONE, A, CMDS_PENDING;
266	jnc	issue_cmdcmplt;
267
268	/*
269	 * If coalescing, only coalesce up to the limit
270	 * provided by the host driver.
271	 */
272coalesce_by_count:
273	mov	A, INT_COALESCING_MAXCMDS;
274	add	NONE, A, INT_COALESCING_CMDCOUNT;
275	jc	issue_cmdcmplt;
276	/*
277	 * If the timer is not currently active,
278	 * fire it up.
279	 */
280	test	INTCTL, SWTMINTMASK jz return;
281	bmov	SWTIMER, INT_COALESCING_TIMER, 2;
282	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
283	or	INTCTL, SWTMINTEN|SWTIMER_START;
284	and	INTCTL, ~SWTMINTMASK ret;
285
286issue_cmdcmplt:
287	mvi	INTSTAT, CMDCMPLT;
288	clr	INT_COALESCING_CMDCOUNT;
289	or	INTCTL, SWTMINTMASK ret;
290
291BEGIN_CRITICAL;
292fetch_new_scb_inprog:
293	test	CCSCBCTL, ARRDONE jz return;
294fetch_new_scb_done:
295	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
296	clr	A;
297	add	CMDS_PENDING, 1;
298	adc	CMDS_PENDING[1], A;
299	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
300		/*
301		 * "Short Luns" are not placed into outgoing LQ
302		 * packets in the correct byte order.  Use a full
303		 * sized lun field instead and fill it with the
304		 * one byte of lun information we support.
305		 */
306		mov	SCB_PKT_LUN[6], SCB_LUN;
307	}
308	/*
309	 * The FIFO use count field is shared with the
310	 * tag set by the host so that our SCB dma engine
311	 * knows the correct location to store the SCB.
312	 * Set it to zero before processing the SCB.
313	 */
314	clr	SCB_FIFO_USE_COUNT;
315	/* Update the next SCB address to download. */
316	bmov	NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
317	/*
318	 * NULL out the SCB links since these fields
319	 * occupy the same location as SCB_NEXT_SCB_BUSADDR.
320	 */
321	mvi	SCB_NEXT[1], SCB_LIST_NULL;
322	mvi	SCB_NEXT2[1], SCB_LIST_NULL;
323	/* Increment our position in the QINFIFO. */
324	mov	NONE, SNSCB_QOFF;
325
326	/*
327	 * Save SCBID of this SCB in REG0 since
328	 * SCBPTR will be clobbered during target
329	 * list updates.  We also record the SCB's
330	 * flags so that we can refer to them even
331	 * after SCBPTR has been changed.
332	 */
333	bmov	REG0, SCBPTR, 2;
334	mov	A, SCB_CONTROL;
335
336	/*
337	 * Find the tail SCB of the execution queue
338	 * for this target.
339	 */
340	shr	SINDEX, 3, SCB_SCSIID;
341	and	SINDEX, ~0x1;
342	mvi	SINDEX[1], (WAITING_SCB_TAILS >> 8);
343	bmov	DINDEX, SINDEX, 2;
344	bmov	SCBPTR, SINDIR, 2;
345
346	/*
347	 * Update the tail to point to the new SCB.
348	 */
349	bmov	DINDIR, REG0, 2;
350
351	/*
352	 * If the queue was empty, queue this SCB as
353	 * the first for this target.
354	 */
355	cmp	SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
356
357	/*
358	 * SCBs that want to send messages must always be
359	 * at the head of their per-target queue so that
360	 * ATN can be asserted even if the current
361	 * negotiation agreement is packetized.  If the
362	 * target queue is empty, the SCB can be queued
363	 * immediately.  If the queue is not empty, we must
364	 * wait for it to empty before entering this SCB
365	 * into the waiting for selection queue.  Otherwise
366	 * our batching and round-robin selection scheme
367	 * could allow commands to be queued out of order.
368	 * To simplify the implementation, we stop pulling
369	 * new commands from the host until the MK_MESSAGE
370	 * SCB can be queued to the waiting for selection
371	 * list.
372	 */
373	test	A, MK_MESSAGE jz batch_scb;
374
375	/*
376	 * If the last SCB is also a MK_MESSAGE SCB, then
377	 * order is preserved even if we batch.
378	 */
379	test	SCB_CONTROL, MK_MESSAGE jz batch_scb;
380
381	/*
382	 * Defer this SCB and stop fetching new SCBs until
383	 * it can be queued.  Since the SCB_SCSIID of the
384	 * tail SCB must be the same as that of the newly
385	 * queued SCB, there is no need to restore the SCBID
386	 * here.
387	 */
388	or	SEQ_FLAGS2, PENDING_MK_MESSAGE;
389	bmov	MK_MESSAGE_SCB, REG0, 2;
390	mov	MK_MESSAGE_SCSIID, SCB_SCSIID ret;
391
392batch_scb:
393	/*
394	 * Otherwise just update the previous tail SCB to
395	 * point to the new tail.
396	 */
397	bmov	SCB_NEXT, REG0, 2 ret;
398
399first_new_target_scb:
400	/*
401	 * Append SCB to the tail of the waiting for
402	 * selection list.
403	 */
404	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
405	bmov	SCBPTR, WAITING_TID_TAIL, 2;
406	bmov	SCB_NEXT2, REG0, 2;
407	bmov	WAITING_TID_TAIL, REG0, 2 ret;
408first_new_scb:
409	/*
410	 * Whole list is empty, so the head of
411	 * the list must be initialized too.
412	 */
413	bmov	WAITING_TID_HEAD, REG0, 2;
414	bmov	WAITING_TID_TAIL, REG0, 2 ret;
415END_CRITICAL;
416
417scbdma_idle:
418	/*
419	 * Don't bother downloading new SCBs to execute
420	 * if select-outs are currently frozen or we have
421	 * a MK_MESSAGE SCB waiting to enter the queue.
422	 */
423	test	SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE
424		jnz scbdma_no_new_scbs;
425BEGIN_CRITICAL;
426	test	QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
427scbdma_no_new_scbs:
428	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
429	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
430	/* FALLTHROUGH */
431fill_qoutfifo:
432	/*
433	 * Keep track of the SCBs we are dmaing just
434	 * in case the DMA fails or is aborted.
435	 */
436	bmov	COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
437	mvi	CCSCBCTL, CCSCBRESET;
438	bmov	SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
439	mov	A, QOUTFIFO_NEXT_ADDR;
440	bmov	SCBPTR, COMPLETE_SCB_HEAD, 2;
441fill_qoutfifo_loop:
442	bmov	CCSCBRAM, SCBPTR, 2;
443	mov	CCSCBRAM, SCB_SGPTR[0];
444	mov	CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG;
445	mov	NONE, SDSCB_QOFF;
446	inc	INT_COALESCING_CMDCOUNT;
447	add	CMDS_PENDING, -1;
448	adc	CMDS_PENDING[1], -1;
449	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
450	cmp	CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
451	test	QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
452	/*
453	 * Don't cross an ADB or Cachline boundary when DMA'ing
454	 * completion entries.  In PCI mode, at least in 32/33
455	 * configurations, the SCB DMA engine may lose its place
456	 * in the data-stream should the target force a retry on
457	 * something other than an 8byte aligned boundary. In
458	 * PCI-X mode, we do this to avoid split transactions since
459	 * many chipsets seem to be unable to format proper split
460	 * completions to continue the data transfer.
461	 */
462	add	SINDEX, A, CCSCBADDR;
463	test	SINDEX, CACHELINE_MASK jz fill_qoutfifo_done;
464	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
465	jmp	fill_qoutfifo_loop;
466fill_qoutfifo_done:
467	mov	SCBHCNT, CCSCBADDR;
468	mvi	CCSCBCTL, CCSCBEN|CCSCBRESET;
469	bmov	COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
470	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
471
472fetch_new_scb:
473	bmov	SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
474	mvi	CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
475dma_complete_scb:
476	bmov	SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
477	bmov	SCBHADDR, SCB_BUSADDR, 4;
478	mvi	CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
479
480/*
481 * Either post or fetch an SCB from host memory.  The caller
482 * is responsible for polling for transfer completion.
483 *
484 * Prerequisites: Mode == M_CCHAN
485 *		  SINDEX contains CCSCBCTL flags
486 *		  SCBHADDR set to Host SCB address
487 *		  SCBPTR set to SCB src location on "push" operations
488 */
489SET_SRC_MODE	M_CCHAN;
490SET_DST_MODE	M_CCHAN;
491dma_scb:
492	mvi	SCBHCNT, SCB_TRANSFER_SIZE;
493	mov	CCSCBCTL, SINDEX ret;
494
495setjmp:
496	/*
497	 * At least on the A, a return in the same
498	 * instruction as the bmov results in a return
499	 * to the caller, not to the new address at the
500	 * top of the stack.  Since we want the latter
501	 * (we use setjmp to register a handler from an
502	 * interrupt context but not invoke that handler
503	 * until we return to our idle loop), use a
504	 * separate ret instruction.
505	 */
506	bmov	LONGJMP_ADDR, STACK, 2;
507	ret;
508setjmp_inline:
509	bmov	LONGJMP_ADDR, STACK, 2;
510longjmp:
511	bmov	STACK, LONGJMP_ADDR, 2 ret;
512END_CRITICAL;
513
514/*************************** Chip Bug Work Arounds ****************************/
515/*
516 * Must disable interrupts when setting the mode pointer
517 * register as an interrupt occurring mid update will
518 * fail to store the new mode value for restoration on
519 * an iret.
520 */
521if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
522set_mode_work_around:
523	mvi	SEQINTCTL, INTVEC1DSL;
524	mov	MODE_PTR, SINDEX;
525	clr	SEQINTCTL ret;
526}
527
528
529if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
530set_seqint_work_around:
531	mov	SEQINTCODE, SINDEX;
532	mvi	SEQINTCODE, NO_SEQINT ret;
533}
534
535/************************ Packetized LongJmp Routines *************************/
536SET_SRC_MODE	M_SCSI;
537SET_DST_MODE	M_SCSI;
538start_selection:
539BEGIN_CRITICAL;
540	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
541		/*
542		 * Razor #494
543		 * Rev A hardware fails to update LAST/CURR/NEXTSCB
544		 * correctly after a packetized selection in several
545		 * situations:
546		 *
547		 * 1) If only one command existed in the queue, the
548		 *    LAST/CURR/NEXTSCB are unchanged.
549		 *
550		 * 2) In a non QAS, protocol allowed phase change,
551		 *    the queue is shifted 1 too far.  LASTSCB is
552		 *    the last SCB that was correctly processed.
553		 *
554		 * 3) In the QAS case, if the full list of commands
555		 *    was successfully sent, NEXTSCB is NULL and neither
556		 *    CURRSCB nor LASTSCB can be trusted.  We must
557		 *    manually walk the list counting MAXCMDCNT elements
558		 *    to find the last SCB that was sent correctly.
559		 *
560		 * To simplify the workaround for this bug in SELDO
561		 * handling, we initialize LASTSCB prior to enabling
562		 * selection so we can rely on it even for case #1 above.
563		 */
564		bmov	LASTSCB, WAITING_TID_HEAD, 2;
565	}
566	bmov	CURRSCB, WAITING_TID_HEAD, 2;
567	bmov	SCBPTR, WAITING_TID_HEAD, 2;
568	shr	SELOID, 4, SCB_SCSIID;
569	/*
570	 * If we want to send a message to the device, ensure
571	 * we are selecting with atn irregardless of our packetized
572	 * agreement.  Since SPI4 only allows target reset or PPR
573	 * messages if this is a packetized connection, the change
574	 * to our negotiation table entry for this selection will
575	 * be cleared when the message is acted on.
576	 */
577	test	SCB_CONTROL, MK_MESSAGE jz . + 3;
578	mov	NEGOADDR, SELOID;
579	or	NEGCONOPTS, ENAUTOATNO;
580	or	SCSISEQ0, ENSELO ret;
581END_CRITICAL;
582
583/*
584 * Allocate a FIFO for a non-packetized transaction.
585 * In RevA hardware, both FIFOs must be free before we
586 * can allocate a FIFO for a non-packetized transaction.
587 */
588allocate_fifo_loop:
589	/*
590	 * Do whatever work is required to free a FIFO.
591	 */
592	call	idle_loop_service_fifos;
593	SET_MODE(M_SCSI, M_SCSI)
594allocate_fifo:
595	if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
596		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
597		cmp	A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
598	} else {
599		test	DFFSTAT, FIFO1FREE jnz allocate_fifo1;
600		test	DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
601		mvi	DFFSTAT, B_CURRFIFO_0;
602		SET_MODE(M_DFF0, M_DFF0)
603		bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
604	}
605SET_SRC_MODE	M_SCSI;
606SET_DST_MODE	M_SCSI;
607allocate_fifo1:
608	mvi	DFFSTAT, CURRFIFO_1;
609	SET_MODE(M_DFF1, M_DFF1)
610	bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
611
612/*
613 * We have been reselected as an initiator
614 * or selected as a target.
615 */
616SET_SRC_MODE	M_SCSI;
617SET_DST_MODE	M_SCSI;
618select_in:
619	if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
620		/*
621		 * On Rev A. hardware, the busy LED is only
622		 * turned on automatically during selections
623		 * and re-selections.  Make the LED status
624		 * more useful by forcing it to be on from
625		 * the point of selection until our idle
626		 * loop determines that neither of our FIFOs
627		 * are busy.  This handles the non-packetized
628		 * case nicely as we will not return to the
629		 * idle loop until the busfree at the end of
630		 * each transaction.
631		 */
632		or	SBLKCTL, DIAGLEDEN|DIAGLEDON;
633	}
634	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
635		/*
636		 * Test to ensure that the bus has not
637		 * already gone free prior to clearing
638		 * any stale busfree status.  This avoids
639		 * a window whereby a busfree just after
640		 * a selection could be missed.
641		 */
642		test	SCSISIGI, BSYI jz . + 2;
643		mvi	CLRSINT1,CLRBUSFREE;
644		or	SIMODE1, ENBUSFREE;
645	}
646	or	SXFRCTL0, SPIOEN;
647	and	SAVED_SCSIID, SELID_MASK, SELID;
648	and	A, OID, IOWNID;
649	or	SAVED_SCSIID, A;
650	mvi	CLRSINT0, CLRSELDI;
651	jmp	ITloop;
652
653/*
654 * We have successfully selected out.
655 *
656 * Clear SELDO.
657 * Dequeue all SCBs sent from the waiting queue
658 * Requeue all SCBs *not* sent to the tail of the waiting queue
659 * Take Razor #494 into account for above.
660 *
661 * In Packetized Mode:
662 *	Return to the idle loop.  Our interrupt handler will take
663 *	care of any incoming L_Qs.
664 *
665 * In Non-Packetize Mode:
666 *	Continue to our normal state machine.
667 */
668SET_SRC_MODE	M_SCSI;
669SET_DST_MODE	M_SCSI;
670select_out:
671BEGIN_CRITICAL;
672	if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
673		/*
674		 * On Rev A. hardware, the busy LED is only
675		 * turned on automatically during selections
676		 * and re-selections.  Make the LED status
677		 * more useful by forcing it to be on from
678		 * the point of re-selection until our idle
679		 * loop determines that neither of our FIFOs
680		 * are busy.  This handles the non-packetized
681		 * case nicely as we will not return to the
682		 * idle loop until the busfree at the end of
683		 * each transaction.
684		 */
685		or	SBLKCTL, DIAGLEDEN|DIAGLEDON;
686	}
687	/* Clear out all SCBs that have been successfully sent. */
688	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
689		/*
690		 * For packetized, the LQO manager clears ENSELO on
691		 * the assertion of SELDO.  If we are non-packetized,
692		 * LASTSCB and CURRSCB are accurate.
693		 */
694		test	SCSISEQ0, ENSELO jnz use_lastscb;
695
696		/*
697		 * The update is correct for LQOSTAT1 errors.  All
698		 * but LQOBUSFREE are handled by kernel interrupts.
699		 * If we see LQOBUSFREE, return to the idle loop.
700		 * Once we are out of the select_out critical section,
701		 * the kernel will cleanup the LQOBUSFREE and we will
702		 * eventually restart the selection if appropriate.
703		 */
704		test	LQOSTAT1, LQOBUSFREE jnz idle_loop;
705
706		/*
707		 * On a phase change outside of packet boundaries,
708		 * LASTSCB points to the currently active SCB context
709		 * on the bus.
710		 */
711		test	LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
712
713		/*
714		 * If the hardware has traversed the whole list, NEXTSCB
715		 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
716		 * but MAXCMDCNT is accurate.  If we stop part way through
717		 * the list or only had one command to issue, NEXTSCB[1] is
718		 * not NULL and LASTSCB is the last command to go out.
719		 */
720		cmp	NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
721
722		/*
723		 * Brute force walk.
724		 */
725		bmov	SCBPTR, WAITING_TID_HEAD, 2;
726		mvi	SEQINTCTL, INTVEC1DSL;
727		mvi	MODE_PTR, MK_MODE(M_CFG, M_CFG);
728		mov	A, MAXCMDCNT;
729		mvi	MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
730		clr	SEQINTCTL;
731find_lastscb_loop:
732		dec	A;
733		test	A, 0xFF jz found_last_sent_scb;
734		bmov	SCBPTR, SCB_NEXT, 2;
735		jmp	find_lastscb_loop;
736use_lastscb:
737		bmov	SCBPTR, LASTSCB, 2;
738found_last_sent_scb:
739		bmov	CURRSCB, SCBPTR, 2;
740curscb_ww_done:
741	} else {
742		bmov	SCBPTR, CURRSCB, 2;
743	}
744
745	/*
746	 * The whole list made it.  Clear our tail pointer to indicate
747	 * that the per-target selection queue is now empty.
748	 */
749	cmp	SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail;
750
751	/*
752	 * Requeue any SCBs not sent, to the tail of the waiting Q.
753	 * We know that neither the per-TID list nor the list of
754	 * TIDs is empty.  Use this knowledge to our advantage and
755	 * queue the remainder to the tail of the global execution
756	 * queue.
757	 */
758	bmov	REG0, SCB_NEXT, 2;
759select_out_queue_remainder:
760	bmov	SCBPTR, WAITING_TID_TAIL, 2;
761	bmov	SCB_NEXT2, REG0, 2;
762	bmov	WAITING_TID_TAIL, REG0, 2;
763	jmp	select_out_inc_tid_q;
764
765select_out_clear_tail:
766	/*
767	 * Queue any pending MK_MESSAGE SCB for this target now
768	 * that the queue is empty.
769	 */
770	test	SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb;
771	mov	A, MK_MESSAGE_SCSIID;
772	cmp	SCB_SCSIID, A jne select_out_no_mk_message_scb;
773	and	SEQ_FLAGS2, ~PENDING_MK_MESSAGE;
774	bmov	REG0, MK_MESSAGE_SCB, 2;
775	jmp select_out_queue_remainder;
776
777select_out_no_mk_message_scb:
778	/*
779	 * Clear this target's execution tail and increment the queue.
780	 */
781	shr	DINDEX, 3, SCB_SCSIID;
782	or	DINDEX, 1;	/* Want only the second byte */
783	mvi	DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
784	mvi	DINDIR, SCB_LIST_NULL;
785select_out_inc_tid_q:
786	bmov	SCBPTR, WAITING_TID_HEAD, 2;
787	bmov	WAITING_TID_HEAD, SCB_NEXT2, 2;
788	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
789	mvi	WAITING_TID_TAIL[1], SCB_LIST_NULL;
790	bmov	SCBPTR, CURRSCB, 2;
791	mvi	CLRSINT0, CLRSELDO;
792	test	LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared;
793	test	LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared;
794
795	/*
796	 * If this is a packetized connection, return to our
797	 * idle_loop and let our interrupt handler deal with
798	 * any connection setup/teardown issues.  The only
799	 * exceptions are the case of MK_MESSAGE and task management
800	 * SCBs.
801	 */
802	if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
803		/*
804		 * In the A, the LQO manager transitions to LQOSTOP0 even if
805		 * we have selected out with ATN asserted and the target
806		 * REQs in a non-packet phase.
807		 */
808		test 	SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
809		test	SCSISIGO, ATNO jnz select_out_non_packetized;
810select_out_no_message:
811	}
812	test	LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
813	test	SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
814	SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
815	jmp	idle_loop;
816
817select_out_non_packetized:
818	/* Non packetized request. */
819	and     SCSISEQ0, ~ENSELO;
820	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
821		/*
822		 * Test to ensure that the bus has not
823		 * already gone free prior to clearing
824		 * any stale busfree status.  This avoids
825		 * a window whereby a busfree just after
826		 * a selection could be missed.
827		 */
828		test	SCSISIGI, BSYI jz . + 2;
829		mvi	CLRSINT1,CLRBUSFREE;
830		or	SIMODE1, ENBUSFREE;
831	}
832	mov	SAVED_SCSIID, SCB_SCSIID;
833	mov	SAVED_LUN, SCB_LUN;
834	mvi	SEQ_FLAGS, NO_CDB_SENT;
835END_CRITICAL;
836	or	SXFRCTL0, SPIOEN;
837
838	/*
839	 * As soon as we get a successful selection, the target
840	 * should go into the message out phase since we have ATN
841	 * asserted.
842	 */
843	mvi	MSG_OUT, MSG_IDENTIFYFLAG;
844
845	/*
846	 * Main loop for information transfer phases.  Wait for the
847	 * target to assert REQ before checking MSG, C/D and I/O for
848	 * the bus phase.
849	 */
850mesgin_phasemis:
851ITloop:
852	call	phase_lock;
853
854	mov	A, LASTPHASE;
855
856	test	A, ~P_DATAIN_DT	jz p_data;
857	cmp	A,P_COMMAND	je p_command;
858	cmp	A,P_MESGOUT	je p_mesgout;
859	cmp	A,P_STATUS	je p_status;
860	cmp	A,P_MESGIN	je p_mesgin;
861
862	SET_SEQINTCODE(BAD_PHASE)
863	jmp	ITloop;			/* Try reading the bus again. */
864
865/*
866 * Command phase.  Set up the DMA registers and let 'er rip.
867 */
868p_command:
869	test	SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
870	SET_SEQINTCODE(PROTO_VIOLATION)
871p_command_okay:
872	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
873		jnz p_command_allocate_fifo;
874	/*
875	 * Command retry.  Free our current FIFO and
876	 * re-allocate a FIFO so transfer state is
877	 * reset.
878	 */
879SET_SRC_MODE	M_DFF1;
880SET_DST_MODE	M_DFF1;
881	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
882	SET_MODE(M_SCSI, M_SCSI)
883p_command_allocate_fifo:
884	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
885	call	allocate_fifo;
886SET_SRC_MODE	M_DFF1;
887SET_DST_MODE	M_DFF1;
888	add	NONE, -17, SCB_CDB_LEN;
889	jnc	p_command_embedded;
890p_command_from_host:
891	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
892	mvi	SG_CACHE_PRE, LAST_SEG;
893	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
894	jmp	p_command_xfer;
895p_command_embedded:
896	bmov	SHCNT[0], SCB_CDB_LEN,  1;
897	bmov	DFDAT, SCB_CDB_STORE, 16;
898	mvi	DFCNTRL, SCSIEN;
899p_command_xfer:
900	and	SEQ_FLAGS, ~NO_CDB_SENT;
901	if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
902		/*
903		 * To speed up CDB delivery in Rev B, all CDB acks
904		 * are "released" to the output sync as soon as the
905		 * command phase starts.  There is only one problem
906		 * with this approach.  If the target changes phase
907		 * before all data are sent, we have left over acks
908		 * that can go out on the bus in a data phase.  Due
909		 * to other chip contraints, this only happens if
910		 * the target goes to data-in, but if the acks go
911		 * out before we can test SDONE, we'll think that
912		 * the transfer has completed successfully.  Work
913		 * around this by taking advantage of the 400ns or
914		 * 800ns dead time between command phase and the REQ
915		 * of the new phase.  If the transfer has completed
916		 * successfully, SCSIEN should fall *long* before we
917		 * see a phase change.  We thus treat any phasemiss
918		 * that occurs before SCSIEN falls as an incomplete
919		 * transfer.
920		 */
921		test	SSTAT1, PHASEMIS jnz p_command_xfer_failed;
922		test	DFCNTRL, SCSIEN jnz . - 1;
923	} else {
924		test	DFCNTRL, SCSIEN jnz .;
925	}
926	/*
927	 * DMA Channel automatically disabled.
928	 * Don't allow a data phase if the command
929	 * was not fully transferred.
930	 */
931	test	SSTAT2, SDONE jnz ITloop;
932p_command_xfer_failed:
933	or	SEQ_FLAGS, NO_CDB_SENT;
934	jmp	ITloop;
935
936
937/*
938 * Status phase.  Wait for the data byte to appear, then read it
939 * and store it into the SCB.
940 */
941SET_SRC_MODE	M_SCSI;
942SET_DST_MODE	M_SCSI;
943p_status:
944	test	SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
945p_status_okay:
946	mov	SCB_SCSI_STATUS, SCSIDAT;
947	or	SCB_CONTROL, STATUS_RCVD;
948	jmp	ITloop;
949
950/*
951 * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
952 * identify message sequence and send it to the target.  The host may
953 * override this behavior by setting the MK_MESSAGE bit in the SCB
954 * control byte.  This will cause us to interrupt the host and allow
955 * it to handle the message phase completely on its own.  If the bit
956 * associated with this target is set, we will also interrupt the host,
957 * thereby allowing it to send a message on the next selection regardless
958 * of the transaction being sent.
959 *
960 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
961 * This is done to allow the host to send messages outside of an identify
962 * sequence while protecting the sequencer from testing the MK_MESSAGE bit
963 * on an SCB that might not be for the current nexus. (For example, a
964 * BDR message in response to a bad reselection would leave us pointed to
965 * an SCB that doesn't have anything to do with the current target).
966 *
967 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
968 * bus device reset).
969 *
970 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
971 * in case the target decides to put us in this phase for some strange
972 * reason.
973 */
974p_mesgout_retry:
975	/* Turn on ATN for the retry */
976	mvi	SCSISIGO, ATNO;
977p_mesgout:
978	mov	SINDEX, MSG_OUT;
979	cmp	SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
980	test	SCB_CONTROL,MK_MESSAGE	jnz host_message_loop;
981p_mesgout_identify:
982	or	SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
983	test	SCB_CONTROL, DISCENB jnz . + 2;
984	and	SINDEX, ~DISCENB;
985/*
986 * Send a tag message if TAG_ENB is set in the SCB control block.
987 * Use SCB_NONPACKET_TAG as the tag value.
988 */
989p_mesgout_tag:
990	test	SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
991	mov	SCSIDAT, SINDEX;	/* Send the identify message */
992	call	phase_lock;
993	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
994	and	SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
995	call	phase_lock;
996	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
997	mov	SCBPTR jmp p_mesgout_onebyte;
998/*
999 * Interrupt the driver, and allow it to handle this message
1000 * phase and any required retries.
1001 */
1002p_mesgout_from_host:
1003	cmp	SINDEX, HOST_MSG	jne p_mesgout_onebyte;
1004	jmp	host_message_loop;
1005
1006p_mesgout_onebyte:
1007	mvi	CLRSINT1, CLRATNO;
1008	mov	SCSIDAT, SINDEX;
1009
1010/*
1011 * If the next bus phase after ATN drops is message out, it means
1012 * that the target is requesting that the last message(s) be resent.
1013 */
1014	call	phase_lock;
1015	cmp	LASTPHASE, P_MESGOUT	je p_mesgout_retry;
1016
1017p_mesgout_done:
1018	mvi	CLRSINT1,CLRATNO;	/* Be sure to turn ATNO off */
1019	mov	LAST_MSG, MSG_OUT;
1020	mvi	MSG_OUT, MSG_NOOP;	/* No message left */
1021	jmp	ITloop;
1022
1023/*
1024 * Message in phase.  Bytes are read using Automatic PIO mode.
1025 */
1026p_mesgin:
1027	/* read the 1st message byte */
1028	mvi	ACCUM		call inb_first;
1029
1030	test	A,MSG_IDENTIFYFLAG	jnz mesgin_identify;
1031	cmp	A,MSG_DISCONNECT	je mesgin_disconnect;
1032	cmp	A,MSG_SAVEDATAPOINTER	je mesgin_sdptrs;
1033	cmp	ALLZEROS,A		je mesgin_complete;
1034	cmp	A,MSG_RESTOREPOINTERS	je mesgin_rdptrs;
1035	cmp	A,MSG_IGN_WIDE_RESIDUE	je mesgin_ign_wide_residue;
1036	cmp	A,MSG_NOOP		je mesgin_done;
1037
1038/*
1039 * Pushed message loop to allow the kernel to
1040 * run its own message state engine.  To avoid an
1041 * extra nop instruction after signaling the kernel,
1042 * we perform the phase_lock before checking to see
1043 * if we should exit the loop and skip the phase_lock
1044 * in the ITloop.  Performing back to back phase_locks
1045 * shouldn't hurt, but why do it twice...
1046 */
1047host_message_loop:
1048	call	phase_lock;	/* Benign the first time through. */
1049	SET_SEQINTCODE(HOST_MSG_LOOP)
1050	cmp	RETURN_1, EXIT_MSG_LOOP	je ITloop;
1051	cmp	RETURN_1, CONT_MSG_LOOP_WRITE	jne . + 3;
1052	mov	SCSIDAT, RETURN_2;
1053	jmp	host_message_loop;
1054	/* Must be CONT_MSG_LOOP_READ */
1055	mov	NONE, SCSIDAT;	/* ACK Byte */
1056	jmp	host_message_loop;
1057
1058mesgin_ign_wide_residue:
1059	mov	SAVED_MODE, MODE_PTR;
1060	SET_MODE(M_SCSI, M_SCSI)
1061	shr	NEGOADDR, 4, SAVED_SCSIID;
1062	mov	A, NEGCONOPTS;
1063	RESTORE_MODE(SAVED_MODE)
1064	test	A, WIDEXFER jz mesgin_reject;
1065	/* Pull the residue byte */
1066	mvi	REG0	call inb_next;
1067	cmp	REG0, 0x01 jne mesgin_reject;
1068	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
1069	test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
1070	SET_SEQINTCODE(IGN_WIDE_RES)
1071	jmp	mesgin_done;
1072
1073mesgin_proto_violation:
1074	SET_SEQINTCODE(PROTO_VIOLATION)
1075	jmp	mesgin_done;
1076mesgin_reject:
1077	mvi	MSG_MESSAGE_REJECT	call mk_mesg;
1078mesgin_done:
1079	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
1080	jmp	ITloop;
1081
1082#define INDEX_DISC_LIST(scsiid, lun)					\
1083	and	A, 0xC0, scsiid;					\
1084	or	SCBPTR, A, lun;						\
1085	clr	SCBPTR[1];						\
1086	and	SINDEX, 0x30, scsiid;					\
1087	shr	SINDEX, 3;	/* Multiply by 2 */			\
1088	add	SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);		\
1089	mvi	SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
1090
1091mesgin_identify:
1092	/*
1093	 * Determine whether a target is using tagged or non-tagged
1094	 * transactions by first looking at the transaction stored in
1095	 * the per-device, disconnected array.  If there is no untagged
1096	 * transaction for this target, this must be a tagged transaction.
1097	 */
1098	and	SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
1099	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1100	bmov	DINDEX, SINDEX, 2;
1101	bmov	REG0, SINDIR, 2;
1102	cmp	REG0[1], SCB_LIST_NULL je snoop_tag;
1103	/* Untagged.  Clear the busy table entry and setup the SCB. */
1104	bmov	DINDIR, ALLONES, 2;
1105	bmov	SCBPTR, REG0, 2;
1106	jmp	setup_SCB;
1107
1108/*
1109 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
1110 * If we get one, we use the tag returned to find the proper
1111 * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
1112 * tag + 256.
1113 */
1114snoop_tag:
1115	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1116		or	SEQ_FLAGS, 0x80;
1117	}
1118	mov	NONE, SCSIDAT;		/* ACK Identify MSG */
1119	call	phase_lock;
1120	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1121		or	SEQ_FLAGS, 0x1;
1122	}
1123	cmp	LASTPHASE, P_MESGIN	jne not_found_ITloop;
1124	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1125		or	SEQ_FLAGS, 0x2;
1126	}
1127	cmp	SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
1128get_tag:
1129	clr	SCBPTR[1];
1130	mvi	SCBPTR	call inb_next;	/* tag value */
1131verify_scb:
1132	test	SCB_CONTROL,DISCONNECTED jz verify_other_scb;
1133	mov	A, SAVED_SCSIID;
1134	cmp	SCB_SCSIID, A jne verify_other_scb;
1135	mov	A, SAVED_LUN;
1136	cmp	SCB_LUN, A je setup_SCB_disconnected;
1137verify_other_scb:
1138	xor	SCBPTR[1], 1;
1139	test	SCBPTR[1], 0xFF jnz verify_scb;
1140	jmp	not_found;
1141
1142/*
1143 * Ensure that the SCB the tag points to is for
1144 * an SCB transaction to the reconnecting target.
1145 */
1146setup_SCB:
1147	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1148		or	SEQ_FLAGS, 0x10;
1149	}
1150	test	SCB_CONTROL,DISCONNECTED jz not_found;
1151setup_SCB_disconnected:
1152	and	SCB_CONTROL,~DISCONNECTED;
1153	clr	SEQ_FLAGS;	/* make note of IDENTIFY */
1154	test	SCB_SGPTR, SG_LIST_NULL jnz . + 3;
1155	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
1156	call	allocate_fifo;
1157	/* See if the host wants to send a message upon reconnection */
1158	test	SCB_CONTROL, MK_MESSAGE jz mesgin_done;
1159	mvi	HOST_MSG	call mk_mesg;
1160	jmp	mesgin_done;
1161
1162not_found:
1163	SET_SEQINTCODE(NO_MATCH)
1164	jmp	mesgin_done;
1165
1166not_found_ITloop:
1167	SET_SEQINTCODE(NO_MATCH)
1168	jmp	ITloop;
1169
1170/*
1171 * We received a "command complete" message.  Put the SCB on the complete
1172 * queue and trigger a completion interrupt via the idle loop.  Before doing
1173 * so, check to see if there is a residual or the status byte is something
1174 * other than STATUS_GOOD (0).  In either of these conditions, we upload the
1175 * SCB back to the host so it can process this information.
1176 */
1177mesgin_complete:
1178
1179	/*
1180	 * If ATN is raised, we still want to give the target a message.
1181	 * Perhaps there was a parity error on this last message byte.
1182	 * Either way, the target should take us to message out phase
1183	 * and then attempt to complete the command again.  We should use a
1184	 * critical section here to guard against a timeout triggering
1185	 * for this command and setting ATN while we are still processing
1186	 * the completion.
1187	test	SCSISIGI, ATNI jnz mesgin_done;
1188	 */
1189
1190	/*
1191	 * If we are identified and have successfully sent the CDB,
1192	 * any status will do.  Optimize this fast path.
1193	 */
1194	test	SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
1195	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
1196
1197	/*
1198	 * If the target never sent an identify message but instead went
1199	 * to mesgin to give an invalid message, let the host abort us.
1200	 */
1201	test	SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1202
1203	/*
1204	 * If we received good status but never successfully sent the
1205	 * cdb, abort the command.
1206	 */
1207	test	SCB_SCSI_STATUS,0xff	jnz complete_accepted;
1208	test	SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1209complete_accepted:
1210
1211	/*
1212	 * See if we attempted to deliver a message but the target ingnored us.
1213	 */
1214	test	SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1215	SET_SEQINTCODE(MKMSG_FAILED)
1216complete_nomsg:
1217	call	queue_scb_completion;
1218	jmp	await_busfree;
1219
1220BEGIN_CRITICAL;
1221freeze_queue:
1222	/* Cancel any pending select-out. */
1223	test	SSTAT0, SELDO|SELINGO jnz . + 2;
1224	and	SCSISEQ0, ~ENSELO;
1225	mov	ACCUM_SAVE, A;
1226	clr	A;
1227	add	QFREEZE_COUNT, 1;
1228	adc	QFREEZE_COUNT[1], A;
1229	or	SEQ_FLAGS2, SELECTOUT_QFROZEN;
1230	mov	A, ACCUM_SAVE ret;
1231END_CRITICAL;
1232
1233/*
1234 * Complete the current FIFO's SCB if data for this same
1235 * SCB is not transferring in the other FIFO.
1236 */
1237SET_SRC_MODE	M_DFF1;
1238SET_DST_MODE	M_DFF1;
1239pkt_complete_scb_if_fifos_idle:
1240	bmov	ARG_1, SCBPTR, 2;
1241	mvi	DFFSXFRCTL, CLRCHN;
1242	SET_MODE(M_SCSI, M_SCSI)
1243	bmov	SCBPTR, ARG_1, 2;
1244	test	SCB_FIFO_USE_COUNT, 0xFF jnz return;
1245queue_scb_completion:
1246	test	SCB_SCSI_STATUS,0xff	jnz bad_status;
1247	/*
1248	 * Check for residuals
1249	 */
1250	test	SCB_SGPTR, SG_LIST_NULL jnz complete;	/* No xfer */
1251	test	SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1252	test	SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1253complete:
1254BEGIN_CRITICAL;
1255	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1256	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1257END_CRITICAL;
1258bad_status:
1259	cmp	SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1260	call	freeze_queue;
1261upload_scb:
1262	/*
1263	 * Restore SCB TAG since we reuse this field
1264	 * in the sequencer.  We don't want to corrupt
1265	 * it on the host.
1266	 */
1267	bmov	SCB_TAG, SCBPTR, 2;
1268BEGIN_CRITICAL;
1269	or	SCB_SGPTR, SG_STATUS_VALID;
1270	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL;
1271	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail;
1272	bmov	COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1273	bmov	COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret;
1274add_dma_scb_tail:
1275	bmov	REG0, SCBPTR, 2;
1276	bmov	SCBPTR, COMPLETE_DMA_SCB_TAIL, 2;
1277	bmov	SCB_NEXT_COMPLETE, REG0, 2;
1278	bmov	COMPLETE_DMA_SCB_TAIL, REG0, 2 ret;
1279END_CRITICAL;
1280
1281/*
1282 * Is it a disconnect message?  Set a flag in the SCB to remind us
1283 * and await the bus going free.  If this is an untagged transaction
1284 * store the SCB id for it in our untagged target table for lookup on
1285 * a reselection.
1286 */
1287mesgin_disconnect:
1288	/*
1289	 * If ATN is raised, we still want to give the target a message.
1290	 * Perhaps there was a parity error on this last message byte
1291	 * or we want to abort this command.  Either way, the target
1292	 * should take us to message out phase and then attempt to
1293	 * disconnect again.
1294	 * XXX - Wait for more testing.
1295	test	SCSISIGI, ATNI jnz mesgin_done;
1296	 */
1297	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1298		jnz mesgin_proto_violation;
1299	or	SCB_CONTROL,DISCONNECTED;
1300	test	SCB_CONTROL, TAG_ENB jnz await_busfree;
1301queue_disc_scb:
1302	bmov	REG0, SCBPTR, 2;
1303	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1304	bmov	DINDEX, SINDEX, 2;
1305	bmov	DINDIR, REG0, 2;
1306	bmov	SCBPTR, REG0, 2;
1307	/* FALLTHROUGH */
1308await_busfree:
1309	and	SIMODE1, ~ENBUSFREE;
1310	if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1311		/*
1312		 * In the BUSFREEREV_BUG case, the
1313		 * busfree status was cleared at the
1314		 * beginning of the connection.
1315		 */
1316		mvi	CLRSINT1,CLRBUSFREE;
1317	}
1318	mov	NONE, SCSIDAT;		/* Ack the last byte */
1319	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1320		jnz await_busfree_not_m_dff;
1321SET_SRC_MODE	M_DFF1;
1322SET_DST_MODE	M_DFF1;
1323await_busfree_clrchn:
1324	mvi	DFFSXFRCTL, CLRCHN;
1325await_busfree_not_m_dff:
1326	/* clear target specific flags */
1327	mvi	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT;
1328	test	SSTAT1,REQINIT|BUSFREE	jz .;
1329	/*
1330	 * We only set BUSFREE status once either a new
1331	 * phase has been detected or we are really
1332	 * BUSFREE.  This allows the driver to know
1333	 * that we are active on the bus even though
1334	 * no identified transaction exists should a
1335	 * timeout occur while awaiting busfree.
1336	 */
1337	mvi	LASTPHASE, P_BUSFREE;
1338	test	SSTAT1, BUSFREE jnz idle_loop;
1339	SET_SEQINTCODE(MISSED_BUSFREE)
1340
1341
1342/*
1343 * Save data pointers message:
1344 * Copying RAM values back to SCB, for Save Data Pointers message, but
1345 * only if we've actually been into a data phase to change them.  This
1346 * protects against bogus data in scratch ram and the residual counts
1347 * since they are only initialized when we go into data_in or data_out.
1348 * Ack the message as soon as possible.
1349 */
1350SET_SRC_MODE	M_DFF1;
1351SET_DST_MODE	M_DFF1;
1352mesgin_sdptrs:
1353	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
1354	test	SEQ_FLAGS, DPHASE	jz ITloop;
1355	call	save_pointers;
1356	jmp	ITloop;
1357
1358save_pointers:
1359	/*
1360	 * If we are asked to save our position at the end of the
1361	 * transfer, just mark us at the end rather than perform a
1362	 * full save.
1363	 */
1364	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1365	or	SCB_SGPTR, SG_LIST_NULL ret;
1366
1367save_pointers_full:
1368	/*
1369	 * The SCB_DATAPTR becomes the current SHADDR.
1370	 * All other information comes directly from our residual
1371	 * state.
1372	 */
1373	bmov	SCB_DATAPTR, SHADDR, 8;
1374	bmov	SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1375
1376/*
1377 * Restore pointers message?  Data pointers are recopied from the
1378 * SCB anytime we enter a data phase for the first time, so all
1379 * we need to do is clear the DPHASE flag and let the data phase
1380 * code do the rest.  We also reset/reallocate the FIFO to make
1381 * sure we have a clean start for the next data or command phase.
1382 */
1383mesgin_rdptrs:
1384	and	SEQ_FLAGS, ~DPHASE;
1385	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1386	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
1387	SET_MODE(M_SCSI, M_SCSI)
1388msgin_rdptrs_get_fifo:
1389	call	allocate_fifo;
1390	jmp	mesgin_done;
1391
1392phase_lock:
1393	if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1394		/*
1395		 * Don't ignore persistent REQ assertions just because
1396		 * they were asserted within the bus settle delay window.
1397		 * This allows us to tolerate devices like the GEM318
1398		 * that violate the SCSI spec.  We are careful not to
1399		 * count REQ while we are waiting for it to fall during
1400		 * an async phase due to our asserted ACK.  Each
1401		 * sequencer instruction takes ~25ns, so the REQ must
1402		 * last at least 100ns in order to be counted as a true
1403		 * REQ.
1404		 */
1405		test	SCSIPHASE, 0xFF jnz phase_locked;
1406		test	SCSISIGI, ACKI jnz phase_lock;
1407		test	SCSISIGI, REQI jz phase_lock;
1408		test	SCSIPHASE, 0xFF jnz phase_locked;
1409		test	SCSISIGI, ACKI jnz phase_lock;
1410		test	SCSISIGI, REQI jz phase_lock;
1411phase_locked:
1412	} else {
1413		test	SCSIPHASE, 0xFF jz .;
1414	}
1415	test	SSTAT1, SCSIPERR jnz phase_lock;
1416phase_lock_latch_phase:
1417	and	LASTPHASE, PHASE_MASK, SCSISIGI ret;
1418
1419/*
1420 * Functions to read data in Automatic PIO mode.
1421 *
1422 * An ACK is not sent on input from the target until SCSIDATL is read from.
1423 * So we wait until SCSIDATL is latched (the usual way), then read the data
1424 * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
1425 * line, or we just want to acknowledge the byte, then we do a dummy read
1426 * from SCISDATL.  The SCSI spec guarantees that the target will hold the
1427 * data byte on the bus until we send our ACK.
1428 *
1429 * The assumption here is that these are called in a particular sequence,
1430 * and that REQ is already set when inb_first is called.  inb_{first,next}
1431 * use the same calling convention as inb.
1432 */
1433inb_next:
1434	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
1435inb_next_wait:
1436	/*
1437	 * If there is a parity error, wait for the kernel to
1438	 * see the interrupt and prepare our message response
1439	 * before continuing.
1440	 */
1441	test	SCSIPHASE, 0xFF jz .;
1442	test	SSTAT1, SCSIPERR jnz inb_next_wait;
1443inb_next_check_phase:
1444	and	LASTPHASE, PHASE_MASK, SCSISIGI;
1445	cmp	LASTPHASE, P_MESGIN jne mesgin_phasemis;
1446inb_first:
1447	clr	DINDEX[1];
1448	mov	DINDEX,SINDEX;
1449	mov	DINDIR,SCSIBUS	ret;		/*read byte directly from bus*/
1450inb_last:
1451	mov	NONE,SCSIDAT ret;		/*dummy read from latch to ACK*/
1452
1453mk_mesg:
1454	mvi	SCSISIGO, ATNO;
1455	mov	MSG_OUT,SINDEX ret;
1456
1457SET_SRC_MODE	M_DFF1;
1458SET_DST_MODE	M_DFF1;
1459disable_ccsgen:
1460	test	SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1461	clr	CCSGCTL;
1462disable_ccsgen_fetch_done:
1463	clr	SG_STATE ret;
1464
1465service_fifo:
1466	/*
1467	 * Do we have any prefetch left???
1468	 */
1469	test	SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1470
1471	/*
1472	 * Can this FIFO have access to the S/G cache yet?
1473	 */
1474	test	CCSGCTL, SG_CACHE_AVAIL jz return;
1475
1476	/* Did we just finish fetching segs? */
1477	test	CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1478
1479	/* Are we actively fetching segments? */
1480	test	CCSGCTL, CCSGENACK jnz return;
1481
1482	/*
1483	 * Should the other FIFO get the S/G cache first?  If
1484	 * both FIFOs have been allocated since we last checked
1485	 * any FIFO, it is important that we service a FIFO
1486	 * that is not actively on the bus first.  This guarantees
1487	 * that a FIFO will be freed to handle snapshot requests for
1488	 * any FIFO that is still on the bus.  Chips with RTI do not
1489	 * perform snapshots, so don't bother with this test there.
1490	 */
1491	if ((ahd->features & AHD_RTI) == 0) {
1492		/*
1493		 * If we're not still receiving SCSI data,
1494		 * it is safe to allocate the S/G cache to
1495		 * this FIFO.
1496		 */
1497		test	DFCNTRL, SCSIEN jz idle_sgfetch_start;
1498
1499		/*
1500		 * Switch to the other FIFO.  Non-RTI chips
1501		 * also have the "set mode" bug, so we must
1502		 * disable interrupts during the switch.
1503		 */
1504		mvi	SEQINTCTL, INTVEC1DSL;
1505		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1506
1507		/*
1508		 * If the other FIFO needs loading, then it
1509		 * must not have claimed the S/G cache yet
1510		 * (SG_CACHE_AVAIL would have been cleared in
1511		 * the original FIFO mode and we test this above).
1512		 * Return to the idle loop so we can process the
1513		 * FIFO not currently on the bus first.
1514		 */
1515		test	SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay;
1516		clr	SEQINTCTL ret;
1517idle_sgfetch_okay:
1518		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1519		clr	SEQINTCTL;
1520	}
1521
1522idle_sgfetch_start:
1523	/*
1524	 * We fetch a "cacheline aligned" and sized amount of data
1525	 * so we don't end up referencing a non-existent page.
1526	 * Cacheline aligned is in quotes because the kernel will
1527	 * set the prefetch amount to a reasonable level if the
1528	 * cacheline size is unknown.
1529	 */
1530	bmov	SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1531	mvi	SGHCNT, SG_PREFETCH_CNT;
1532	if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1533		/*
1534		 * Need two instructions between "touches" of SGHADDR.
1535		 */
1536		nop;
1537	}
1538	and	SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1539	mvi	CCSGCTL, CCSGEN|CCSGRESET;
1540	or	SG_STATE, FETCH_INPROG ret;
1541idle_sgfetch_complete:
1542	/*
1543	 * Guard against SG_CACHE_AVAIL activating during sg fetch
1544	 * request in the other FIFO.
1545	 */
1546	test	SG_STATE, FETCH_INPROG jz return;
1547	clr	CCSGCTL;
1548	and	CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1549	mvi	SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1550idle_sg_avail:
1551	/* Does the hardware have space for another SG entry? */
1552	test	DFSTATUS, PRELOAD_AVAIL jz return;
1553	/*
1554	 * On the A, preloading a segment before HDMAENACK
1555	 * comes true can clobber the shadow address of the
1556	 * first segment in the S/G FIFO.  Wait until it is
1557	 * safe to proceed.
1558	 */
1559	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1560		test	DFCNTRL, HDMAENACK jz return;
1561	}
1562	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1563		bmov	HADDR, CCSGRAM, 8;
1564	} else {
1565		bmov 	HADDR, CCSGRAM, 4;
1566	}
1567	bmov	HCNT, CCSGRAM, 3;
1568	bmov	SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1569	if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1570		and	HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1571	}
1572	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1573		/* Skip 4 bytes of pad. */
1574		add	CCSGADDR, 4;
1575	}
1576sg_advance:
1577	clr	A;			/* add sizeof(struct scatter) */
1578	add	SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1579	adc	SCB_RESIDUAL_SGPTR[1],A;
1580	adc	SCB_RESIDUAL_SGPTR[2],A;
1581	adc	SCB_RESIDUAL_SGPTR[3],A;
1582	mov	SINDEX, SCB_RESIDUAL_SGPTR[0];
1583	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1584	or	SINDEX, LAST_SEG;
1585	clr	SG_STATE;
1586	mov	SG_CACHE_PRE, SINDEX;
1587	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1588		/*
1589		 * Use SCSIENWRDIS so that SCSIEN is never
1590		 * modified by this operation.
1591		 */
1592		or	DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1593	} else {
1594		or	DFCNTRL, PRELOADEN|HDMAEN;
1595	}
1596	/*
1597	 * Do we have another segment in the cache?
1598	 */
1599	add	NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1600	jnc	return;
1601	and	SG_STATE, ~SEGS_AVAIL ret;
1602
1603/*
1604 * Initialize the DMA address and counter from the SCB.
1605 */
1606load_first_seg:
1607	bmov	HADDR, SCB_DATAPTR, 11;
1608	and	REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1609	test	SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1610	or	REG_ISR, LAST_SEG;
1611	mov	SG_CACHE_PRE, REG_ISR;
1612	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1613	/*
1614	 * Since we've are entering a data phase, we will
1615	 * rely on the SCB_RESID* fields.  Initialize the
1616	 * residual and clear the full residual flag.
1617	 */
1618	and	SCB_SGPTR[0], ~SG_FULL_RESID;
1619	bmov	SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1620	/* If we need more S/G elements, tell the idle loop */
1621	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1622	mvi	SG_STATE, LOADING_NEEDED ret;
1623	clr	SG_STATE ret;
1624
1625p_data_handle_xfer:
1626	call	setjmp;
1627	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
1628p_data_clear_handler:
1629	or	LONGJMP_ADDR[1], INVALID_ADDR ret;
1630
1631p_data:
1632	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz p_data_allowed;
1633	SET_SEQINTCODE(PROTO_VIOLATION)
1634p_data_allowed:
1635
1636	test	SEQ_FLAGS, DPHASE	jz data_phase_initialize;
1637
1638	/*
1639	 * If we re-enter the data phase after going through another
1640	 * phase, our transfer location has almost certainly been
1641	 * corrupted by the interveining, non-data, transfers.  Ask
1642	 * the host driver to fix us up based on the transfer residual
1643	 * unless we already know that we should be bitbucketing.
1644	 */
1645	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1646	SET_SEQINTCODE(PDATA_REINIT)
1647	jmp	data_phase_inbounds;
1648
1649p_data_bitbucket:
1650	/*
1651	 * Turn on `Bit Bucket' mode, wait until the target takes
1652	 * us to another phase, and then notify the host.
1653	 */
1654	mov	SAVED_MODE, MODE_PTR;
1655	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1656		jnz bitbucket_not_m_dff;
1657	/*
1658	 * Ensure that any FIFO contents are cleared out and the
1659	 * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
1660	 * doesn't discard data already in the FIFO.
1661	 */
1662	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
1663	SET_MODE(M_SCSI, M_SCSI)
1664bitbucket_not_m_dff:
1665	or	SXFRCTL1,BITBUCKET;
1666	/* Wait for non-data phase. */
1667	test	SCSIPHASE, ~DATA_PHASE_MASK jz .;
1668	and	SXFRCTL1, ~BITBUCKET;
1669	RESTORE_MODE(SAVED_MODE)
1670SET_SRC_MODE	M_DFF1;
1671SET_DST_MODE	M_DFF1;
1672	SET_SEQINTCODE(DATA_OVERRUN)
1673	jmp	ITloop;
1674
1675data_phase_initialize:
1676	test	SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1677	call	load_first_seg;
1678data_phase_inbounds:
1679	/* We have seen a data phase at least once. */
1680	or	SEQ_FLAGS, DPHASE;
1681	mov	SAVED_MODE, MODE_PTR;
1682	test	SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1683	call	p_data_handle_xfer;
1684data_group_dma_loop:
1685	/*
1686	 * The transfer is complete if either the last segment
1687	 * completes or the target changes phase.  Both conditions
1688	 * will clear SCSIEN.
1689	 */
1690	call	idle_loop_service_fifos;
1691	call	idle_loop_cchan;
1692	call	idle_loop_gsfifo;
1693	RESTORE_MODE(SAVED_MODE)
1694	test	DFCNTRL, SCSIEN jnz data_group_dma_loop;
1695
1696data_group_dmafinish:
1697	/*
1698	 * The transfer has terminated either due to a phase
1699	 * change, and/or the completion of the last segment.
1700	 * We have two goals here.  Do as much other work
1701	 * as possible while the data fifo drains on a read
1702	 * and respond as quickly as possible to the standard
1703	 * messages (save data pointers/disconnect and command
1704	 * complete) that usually follow a data phase.
1705	 */
1706	call	calc_residual;
1707
1708	/*
1709	 * Go ahead and shut down the DMA engine now.
1710	 */
1711	test	DFCNTRL, DIRECTION jnz data_phase_finish;
1712data_group_fifoflush:
1713	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1714		or	DFCNTRL, FIFOFLUSH;
1715	}
1716	/*
1717	 * We have enabled the auto-ack feature.  This means
1718	 * that the controller may have already transferred
1719	 * some overrun bytes into the data FIFO and acked them
1720	 * on the bus.  The only way to detect this situation is
1721	 * to wait for LAST_SEG_DONE to come true on a completed
1722	 * transfer and then test to see if the data FIFO is
1723	 * non-empty.  We know there is more data yet to transfer
1724	 * if SG_LIST_NULL is not yet set, thus there cannot be
1725	 * an overrun.
1726	 */
1727	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1728	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1729	test	DFSTATUS, FIFOEMP jnz data_phase_finish;
1730	/* Overrun */
1731	jmp	p_data;
1732data_phase_finish:
1733	/*
1734	 * If the target has left us in data phase, loop through
1735	 * the dma code again.  We will only loop if there is a
1736	 * data overrun.
1737	 */
1738	if ((ahd->flags & AHD_TARGETROLE) != 0) {
1739		test	SSTAT0, TARGET jnz data_phase_done;
1740	}
1741	if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1742		test	SSTAT1, REQINIT jz .;
1743		test	SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1744	}
1745
1746data_phase_done:
1747	/* Kill off any pending prefetch */
1748	call	disable_ccsgen;
1749	or 	LONGJMP_ADDR[1], INVALID_ADDR;
1750
1751	if ((ahd->flags & AHD_TARGETROLE) != 0) {
1752		test	SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1753		/*
1754		and	SEQ_FLAGS, ~DPHASE_PENDING;
1755		 * For data-in phases, wait for any pending acks from the
1756		 * initiator before changing phase.  We only need to
1757		 * send Ignore Wide Residue messages for data-in phases.
1758		test	DFCNTRL, DIRECTION jz target_ITloop;
1759		test	SSTAT1, REQINIT	jnz .;
1760		test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
1761		SET_MODE(M_SCSI, M_SCSI)
1762		test	NEGCONOPTS, WIDEXFER jz target_ITloop;
1763		 */
1764		/*
1765		 * Issue an Ignore Wide Residue Message.
1766		mvi	P_MESGIN|BSYO call change_phase;
1767		mvi	MSG_IGN_WIDE_RESIDUE call target_outb;
1768		mvi	1 call target_outb;
1769		jmp	target_ITloop;
1770		 */
1771	} else {
1772		jmp	ITloop;
1773	}
1774
1775/*
1776 * We assume that, even though data may still be
1777 * transferring to the host, that the SCSI side of
1778 * the DMA engine is now in a static state.  This
1779 * allows us to update our notion of where we are
1780 * in this transfer.
1781 *
1782 * If, by chance, we stopped before being able
1783 * to fetch additional segments for this transfer,
1784 * yet the last S/G was completely exhausted,
1785 * call our idle loop until it is able to load
1786 * another segment.  This will allow us to immediately
1787 * pickup on the next segment on the next data phase.
1788 *
1789 * If we happened to stop on the last segment, then
1790 * our residual information is still correct from
1791 * the idle loop and there is no need to perform
1792 * any fixups.
1793 */
1794residual_before_last_seg:
1795	test    MDFFSTAT, SHVALID	jnz sgptr_fixup;
1796	/*
1797	 * Can never happen from an interrupt as the packetized
1798	 * hardware will only interrupt us once SHVALID or
1799	 * LAST_SEG_DONE.
1800	 */
1801	call	idle_loop_service_fifos;
1802	RESTORE_MODE(SAVED_MODE)
1803	/* FALLTHROUGH */
1804calc_residual:
1805	test	SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1806	/* Record if we've consumed all S/G entries */
1807	test	MDFFSTAT, SHVALID	jz . + 2;
1808	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1809	or	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1810
1811sgptr_fixup:
1812	/*
1813	 * Fixup the residual next S/G pointer.  The S/G preload
1814	 * feature of the chip allows us to load two elements
1815	 * in addition to the currently active element.  We
1816	 * store the bottom byte of the next S/G pointer in
1817	 * the SG_CACHE_PTR register so we can restore the
1818	 * correct value when the DMA completes.  If the next
1819	 * sg ptr value has advanced to the point where higher
1820	 * bytes in the address have been affected, fix them
1821	 * too.
1822	 */
1823	test	SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1824	test	SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1825	add	SCB_RESIDUAL_SGPTR[1], -1;
1826	adc	SCB_RESIDUAL_SGPTR[2], -1;
1827	adc	SCB_RESIDUAL_SGPTR[3], -1;
1828sgptr_fixup_done:
1829	and	SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1830	clr	SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1831	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1832
1833export timer_isr:
1834	call	issue_cmdcmplt;
1835	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1836	if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1837		/*
1838		 * In H2A4, the mode pointer is not saved
1839		 * for intvec2, but is restored on iret.
1840		 * This can lead to the restoration of a
1841		 * bogus mode ptr.  Manually clear the
1842		 * intmask bits and do a normal return
1843		 * to compensate.
1844		 */
1845		and	SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1846	} else {
1847		or	SEQINTCTL, IRET ret;
1848	}
1849
1850export seq_isr:
1851	if ((ahd->features & AHD_RTI) == 0) {
1852		/*
1853		 * On RevA Silicon, if the target returns us to data-out
1854		 * after we have already trained for data-out, it is
1855		 * possible for us to transition the free running clock to
1856		 * data-valid before the required 100ns P1 setup time (8 P1
1857		 * assertions in fast-160 mode).  This will only happen if
1858		 * this L-Q is a continuation of a data transfer for which
1859		 * we have already prefetched data into our FIFO (LQ/Data
1860		 * followed by LQ/Data for the same write transaction).
1861		 * This can cause some target implementations to miss the
1862		 * first few data transfers on the bus.  We detect this
1863		 * situation by noticing that this is the first data transfer
1864		 * after an LQ (LQIWORKONLQ true), that the data transfer is
1865		 * a continuation of a transfer already setup in our FIFO
1866		 * (SAVEPTRS interrupt), and that the transaction is a write
1867		 * (DIRECTION set in DFCNTRL). The delay is performed by
1868		 * disabling SCSIEN until we see the first REQ from the
1869		 * target.
1870		 *
1871		 * First instruction in an ISR cannot be a branch on
1872		 * Rev A.  Snapshot LQISTAT2 so the status is not missed
1873		 * and deffer the test by one instruction.
1874		 */
1875		mov	REG_ISR, LQISTAT2;
1876		test	REG_ISR, LQIWORKONLQ jz main_isr;
1877		test	SEQINTSRC, SAVEPTRS  jz main_isr;
1878		test	LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1879		/*
1880		 * Switch to the active FIFO after clearing the snapshot
1881		 * savepointer in the current FIFO.  We do this so that
1882		 * a pending CTXTDONE or SAVEPTR is visible in the active
1883		 * FIFO.  This status is the only way we can detect if we
1884		 * have lost the race (e.g. host paused us) and our attempts
1885		 * to disable the channel occurred after all REQs were
1886		 * already seen and acked (REQINIT never comes true).
1887		 */
1888		mvi	DFFSXFRCTL, CLRCHN;
1889		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1890		test	DFCNTRL, DIRECTION jz interrupt_return;
1891		and	DFCNTRL, ~SCSIEN;
1892snapshot_wait_data_valid:
1893		test	SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return;
1894		test	SSTAT1, REQINIT	jz snapshot_wait_data_valid;
1895snapshot_data_valid:
1896		or	DFCNTRL, SCSIEN;
1897		or	SEQINTCTL, IRET ret;
1898snapshot_saveptr:
1899		mvi	DFFSXFRCTL, CLRCHN;
1900		or	SEQINTCTL, IRET ret;
1901main_isr:
1902	}
1903	test	SEQINTSRC, CFG4DATA	jnz cfg4data_intr;
1904	test	SEQINTSRC, CFG4ISTAT	jnz cfg4istat_intr;
1905	test	SEQINTSRC, SAVEPTRS	jnz saveptr_intr;
1906	test	SEQINTSRC, CFG4ICMD	jnz cfg4icmd_intr;
1907	SET_SEQINTCODE(INVALID_SEQINT)
1908
1909/*
1910 * There are two types of save pointers interrupts:
1911 * The first is a snapshot save pointers where the current FIFO is not
1912 * active and contains a snapshot of the current pointer information.
1913 * This happens between packets in a stream for a single L_Q.  Since we
1914 * are not performing a pointer save, we can safely clear the channel
1915 * so it can be used for other transactions.  On RTI capable controllers,
1916 * where snapshots can be, and are, disabled, the code to handle this type
1917 * of snapshot is not active.
1918 *
1919 * The second case is a save pointers on an active FIFO which occurs
1920 * if the target changes to a new L_Q or busfrees/QASes and the transfer
1921 * has a residual.  This should occur coincident with a ctxtdone.  We
1922 * disable the interrupt and allow our active routine to handle the
1923 * save.
1924 */
1925saveptr_intr:
1926	if ((ahd->features & AHD_RTI) == 0) {
1927		test	LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1928	}
1929saveptr_active_fifo:
1930	and	SEQIMODE, ~ENSAVEPTRS;
1931	or	SEQINTCTL, IRET ret;
1932
1933cfg4data_intr:
1934	test	SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
1935	call	load_first_seg;
1936	call	pkt_handle_xfer;
1937	inc	SCB_FIFO_USE_COUNT;
1938interrupt_return:
1939	or	SEQINTCTL, IRET ret;
1940
1941cfg4istat_intr:
1942	call	freeze_queue;
1943	add	NONE, -13, SCB_CDB_LEN;
1944	jnc	cfg4istat_have_sense_addr;
1945	test	SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1946	/*
1947	 * Host sets up address/count and enables transfer.
1948	 */
1949	SET_SEQINTCODE(CFG4ISTAT_INTR)
1950	jmp	cfg4istat_setup_handler;
1951cfg4istat_have_sense_addr:
1952	bmov	HADDR, SCB_SENSE_BUSADDR, 4;
1953	mvi	HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1954	mvi	SG_CACHE_PRE, LAST_SEG;
1955	mvi	DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1956cfg4istat_setup_handler:
1957	/*
1958	 * Status pkt is transferring to host.
1959	 * Wait in idle loop for transfer to complete.
1960	 * If a command completed before an attempted
1961	 * task management function completed, notify the host.
1962	 */
1963	test	SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1964	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1965cfg4istat_no_taskmgmt_func:
1966	call	pkt_handle_status;
1967	or	SEQINTCTL, IRET ret;
1968
1969cfg4icmd_intr:
1970	/*
1971	 * In the case of DMAing a CDB from the host, the normal
1972	 * CDB buffer is formatted with an 8 byte address followed
1973	 * by a 1 byte count.
1974	 */
1975	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
1976	mvi	SG_CACHE_PRE, LAST_SEG;
1977	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1978	call	pkt_handle_cdb;
1979	or	SEQINTCTL, IRET ret;
1980
1981/*
1982 * See if the target has gone on in this context creating an
1983 * overrun condition.  For the write case, the hardware cannot
1984 * ack bytes until data are provided.  So, if the target begins
1985 * another  packet without changing contexts, implying we are
1986 * not sitting on a packet boundary, we are in an overrun
1987 * situation.  For the read case, the hardware will continue to
1988 * ack bytes into the FIFO, and may even ack the last overrun packet
1989 * into the FIFO.   If the FIFO should become non-empty, we are in
1990 * a read overrun case.
1991 */
1992#define check_overrun							\
1993	/* Not on a packet boundary. */					\
1994	test 	MDFFSTAT, DLZERO jz pkt_handle_overrun;			\
1995	test	DFSTATUS, FIFOEMP jz pkt_handle_overrun
1996
1997pkt_handle_xfer:
1998	test	SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1999	call	setjmp;
2000	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2001	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2002	test	SCSISIGO, ATNO jnz . + 2;
2003	test	SSTAT2, NONPACKREQ jz pkt_service_fifo;
2004	/*
2005	 * Defer handling of this NONPACKREQ until we
2006	 * can be sure it pertains to this FIFO.  SAVEPTRS
2007	 * will not be asserted if the NONPACKREQ is for us,
2008	 * so we must simulate it if shadow is valid.  If
2009	 * shadow is not valid, keep running this FIFO until we
2010	 * have satisfied the transfer by loading segments and
2011	 * waiting for either shadow valid or last_seg_done.
2012	 */
2013	test	MDFFSTAT, SHVALID jnz pkt_saveptrs;
2014pkt_service_fifo:
2015	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
2016pkt_last_seg:
2017	call	setjmp;
2018	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2019	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
2020	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2021	test	SCSISIGO, ATNO jnz . + 2;
2022	test	SSTAT2, NONPACKREQ jz return;
2023	test	MDFFSTAT, SHVALID jz return;
2024	/* FALLTHROUGH */
2025
2026/*
2027 * Either a SAVEPTRS interrupt condition is pending for this FIFO
2028 * or we have a pending NONPACKREQ for this FIFO.  We differentiate
2029 * between the two by capturing the state of the SAVEPTRS interrupt
2030 * prior to clearing this status and executing the common code for
2031 * these two cases.
2032 */
2033pkt_saveptrs:
2034BEGIN_CRITICAL;
2035	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2036		or	DFCNTRL, FIFOFLUSH;
2037	}
2038	mov	REG0, SEQINTSRC;
2039	call	calc_residual;
2040	call	save_pointers;
2041	mvi	CLRSEQINTSRC, CLRSAVEPTRS;
2042	call	disable_ccsgen;
2043	or	SEQIMODE, ENSAVEPTRS;
2044	test	DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
2045	test	DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
2046	/*
2047	 * Keep a handler around for this FIFO until it drains
2048	 * to the host to guarantee that we don't complete the
2049	 * command to the host before the data arrives.
2050	 */
2051pkt_saveptrs_wait_fifoemp:
2052	call	setjmp;
2053	test	DFSTATUS, FIFOEMP jz return;
2054pkt_saveptrs_check_status:
2055	or	LONGJMP_ADDR[1], INVALID_ADDR;
2056	test	REG0, SAVEPTRS jz unexpected_nonpkt_phase;
2057	dec	SCB_FIFO_USE_COUNT;
2058	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2059	mvi	DFFSXFRCTL, CLRCHN ret;
2060
2061/*
2062 * LAST_SEG_DONE status has been seen in the current FIFO.
2063 * This indicates that all of the allowed data for this
2064 * command has transferred across the SCSI and host buses.
2065 * Check for overrun and see if we can complete this command.
2066 */
2067pkt_last_seg_done:
2068	/*
2069	 * Mark transfer as completed.
2070	 */
2071	or	SCB_SGPTR, SG_LIST_NULL;
2072
2073	/*
2074	 * Wait for the current context to finish to verify that
2075	 * no overrun condition has occurred.
2076	 */
2077	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2078	call	setjmp;
2079pkt_wait_ctxt_done_loop:
2080	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2081	/*
2082	 * A sufficiently large overrun or a NONPACKREQ may
2083	 * prevent CTXTDONE from ever asserting, so we must
2084	 * poll for these statuses too.
2085	 */
2086	check_overrun;
2087	test	SSTAT2, NONPACKREQ jz return;
2088	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2089	/* FALLTHROUGH */
2090
2091pkt_ctxt_done:
2092	check_overrun;
2093	or	LONGJMP_ADDR[1], INVALID_ADDR;
2094	/*
2095	 * If status has been received, it is safe to skip
2096	 * the check to see if another FIFO is active because
2097	 * LAST_SEG_DONE has been observed.  However, we check
2098	 * the FIFO anyway since it costs us only one extra
2099	 * instruction to leverage common code to perform the
2100	 * SCB completion.
2101	 */
2102	dec	SCB_FIFO_USE_COUNT;
2103	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2104	mvi	DFFSXFRCTL, CLRCHN ret;
2105END_CRITICAL;
2106
2107/*
2108 * Must wait until CDB xfer is over before issuing the
2109 * clear channel.
2110 */
2111pkt_handle_cdb:
2112	call	setjmp;
2113	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
2114	or	LONGJMP_ADDR[1], INVALID_ADDR;
2115	mvi	DFFSXFRCTL, CLRCHN ret;
2116
2117/*
2118 * Watch over the status transfer.  Our host sense buffer is
2119 * large enough to take the maximum allowed status packet.
2120 * None-the-less, we must still catch and report overruns to
2121 * the host.  Additionally, properly catch unexpected non-packet
2122 * phases that are typically caused by CRC errors in status packet
2123 * transmission.
2124 */
2125pkt_handle_status:
2126	call	setjmp;
2127	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2128	test	SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
2129	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2130pkt_status_IU_done:
2131	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2132		or	DFCNTRL, FIFOFLUSH;
2133	}
2134	test	DFSTATUS, FIFOEMP jz return;
2135BEGIN_CRITICAL;
2136	or	LONGJMP_ADDR[1], INVALID_ADDR;
2137	mvi	SCB_SCSI_STATUS, STATUS_PKT_SENSE;
2138	or	SCB_CONTROL, STATUS_RCVD;
2139	jmp	pkt_complete_scb_if_fifos_idle;
2140END_CRITICAL;
2141pkt_status_check_overrun:
2142	/*
2143	 * Status PKT overruns are unceremoniously recovered with a
2144	 * bus reset.  If we've overrun, let the host know so that
2145	 * recovery can be performed.
2146	 *
2147	 * LAST_SEG_DONE has been observed.  If either CTXTDONE or
2148	 * a NONPACKREQ phase change have occurred and the FIFO is
2149	 * empty, there is no overrun.
2150	 */
2151	test	DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
2152	test	SEQINTSRC, CTXTDONE jz . + 2;
2153	test	DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
2154	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
2155	test	DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
2156pkt_status_report_overrun:
2157	SET_SEQINTCODE(STATUS_OVERRUN)
2158	/* SEQUENCER RESTARTED */
2159pkt_status_check_nonpackreq:
2160	/*
2161	 * CTXTDONE may be held off if a NONPACKREQ is associated with
2162	 * the current context.  If a NONPACKREQ is observed, decide
2163	 * if it is for the current context.  If it is for the current
2164	 * context, we must defer NONPACKREQ processing until all data
2165	 * has transferred to the host.
2166	 */
2167	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
2168	test	SCSISIGO, ATNO jnz . + 2;
2169	test	SSTAT2, NONPACKREQ jz return;
2170	test	SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
2171	test	DFSTATUS, FIFOEMP jz return;
2172	/*
2173	 * The unexpected nonpkt phase handler assumes that any
2174	 * data channel use will have a FIFO reference count.  It
2175	 * turns out that the status handler doesn't need a reference
2176	 * count since the status received flag, and thus completion
2177	 * processing, cannot be set until the handler is finished.
2178	 * We increment the count here to make the nonpkt handler
2179	 * happy.
2180	 */
2181	inc	SCB_FIFO_USE_COUNT;
2182	/* FALLTHROUGH */
2183
2184/*
2185 * Nonpackreq is a polled status.  It can come true in three situations:
2186 * we have received an L_Q, we have sent one or more L_Qs, or there is no
2187 * L_Q context associated with this REQ (REQ occurs immediately after a
2188 * (re)selection).  Routines that know that the context responsible for this
2189 * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
2190 * top level idle loop, we exhaust all active contexts prior to determining that
2191 * we simply do not have the full I_T_L_Q for this phase.
2192 */
2193unexpected_nonpkt_phase_find_ctxt:
2194	/*
2195	 * This nonpackreq is most likely associated with one of the tags
2196	 * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
2197	 * nonpackreq if we've cleared out the FIFOs and handled any
2198	 * pending SELDO.
2199	 */
2200SET_SRC_MODE	M_SCSI;
2201SET_DST_MODE	M_SCSI;
2202	and	A, FIFO1FREE|FIFO0FREE, DFFSTAT;
2203	cmp	A, FIFO1FREE|FIFO0FREE jne return;
2204	test	SSTAT0, SELDO jnz return;
2205	mvi	SCBPTR[1], SCB_LIST_NULL;
2206unexpected_nonpkt_phase:
2207	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
2208		jnz unexpected_nonpkt_mode_cleared;
2209SET_SRC_MODE	M_DFF0;
2210SET_DST_MODE	M_DFF0;
2211	or	LONGJMP_ADDR[1], INVALID_ADDR;
2212	dec	SCB_FIFO_USE_COUNT;
2213	mvi	DFFSXFRCTL, CLRCHN;
2214unexpected_nonpkt_mode_cleared:
2215	mvi	CLRSINT2, CLRNONPACKREQ;
2216	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
2217		/*
2218		 * Test to ensure that the bus has not
2219		 * already gone free prior to clearing
2220		 * any stale busfree status.  This avoids
2221		 * a window whereby a busfree just after
2222		 * a selection could be missed.
2223		 */
2224		test	SCSISIGI, BSYI jz . + 2;
2225		mvi	CLRSINT1,CLRBUSFREE;
2226		or	SIMODE1, ENBUSFREE;
2227	}
2228	test	SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
2229	SET_SEQINTCODE(ENTERING_NONPACK)
2230	jmp	ITloop;
2231
2232illegal_phase:
2233	SET_SEQINTCODE(ILLEGAL_PHASE)
2234	jmp	ITloop;
2235
2236/*
2237 * We have entered an overrun situation.  If we have working
2238 * BITBUCKET, flip that on and let the hardware eat any overrun
2239 * data.  Otherwise use an overrun buffer in the host to simulate
2240 * BITBUCKET.
2241 */
2242pkt_handle_overrun_inc_use_count:
2243	inc	SCB_FIFO_USE_COUNT;
2244pkt_handle_overrun:
2245	SET_SEQINTCODE(CFG4OVERRUN)
2246	call	freeze_queue;
2247	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
2248		or	DFFSXFRCTL, DFFBITBUCKET;
2249SET_SRC_MODE	M_DFF1;
2250SET_DST_MODE	M_DFF1;
2251	} else {
2252		call	load_overrun_buf;
2253		mvi	DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
2254	}
2255	call	setjmp;
2256	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2257		test	DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
2258		call	load_overrun_buf;
2259		or	DFCNTRL, PRELOADEN;
2260overrun_load_done:
2261		test	SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
2262	} else {
2263		test	DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
2264	}
2265	test	SSTAT2, NONPACKREQ jz return;
2266pkt_overrun_end:
2267	or	SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
2268	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2269	dec	SCB_FIFO_USE_COUNT;
2270	or	LONGJMP_ADDR[1], INVALID_ADDR;
2271	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2272	mvi	DFFSXFRCTL, CLRCHN ret;
2273
2274if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2275load_overrun_buf:
2276	/*
2277	 * Load a dummy segment if preload space is available.
2278	 */
2279	mov 	HADDR[0], SHARED_DATA_ADDR;
2280	add	HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
2281	mov	ACCUM_SAVE, A;
2282	clr	A;
2283	adc	HADDR[2], A, SHARED_DATA_ADDR[2];
2284	adc	HADDR[3], A, SHARED_DATA_ADDR[3];
2285	mov	A, ACCUM_SAVE;
2286	bmov	HADDR[4], ALLZEROS, 4;
2287	/* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
2288	clr	HCNT[0];
2289	mvi	HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
2290	clr	HCNT[2] ret;
2291}
2292