1/* $OpenBSD: aic79xx.seq,v 1.9 2007/11/24 12:59:28 jmc Exp $ */ 2/* 3 * Adaptec U320 device driver firmware for Linux and FreeBSD. 4 * 5 * Copyright (c) 1994-2001, 2004 Justin T. Gibbs. 6 * Copyright (c) 2000-2002 Adaptec Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions, and the following disclaimer, 14 * without modification. 15 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 16 * substantially similar to the "NO WARRANTY" disclaimer below 17 * ("Disclaimer") and any redistribution must be conditioned upon 18 * including a substantially similar Disclaimer requirement for further 19 * binary redistribution. 20 * 3. Neither the names of the above-listed copyright holders nor the names 21 * of any contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * Alternatively, this software may be distributed under the terms of the 25 * GNU General Public License ("GPL") version 2 as published by the Free 26 * Software Foundation. 27 * 28 * NO WARRANTY 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 37 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 38 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 39 * POSSIBILITY OF SUCH DAMAGES. 40 * 41 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.17 2004/08/04 17:55:34 gibbs Exp $ 42 */ 43 44VERSION = "$Id: aic79xx.seq,v 1.9 2007/11/24 12:59:28 jmc Exp $" 45PATCH_ARG_LIST = "struct ahd_softc *ahd" 46PREFIX = "ahd_" 47 48#include <dev/microcode/aic7xxx/aic79xx.reg> 49#include <scsi/scsi_message.h> 50 51restart: 52if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 53 test SEQINTCODE, 0xFF jz idle_loop; 54 SET_SEQINTCODE(NO_SEQINT) 55} 56 57idle_loop: 58 59 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 60 /* 61 * Convert ERROR status into a sequencer 62 * interrupt to handle the case of an 63 * interrupt collision on the hardware 64 * setting of HWERR. 65 */ 66 test ERROR, 0xFF jz no_error_set; 67 SET_SEQINTCODE(SAW_HWERR) 68no_error_set: 69 } 70 SET_MODE(M_SCSI, M_SCSI) 71 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 72 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; 73 /* 74 * If the kernel has caught up with us, thaw the queue. 75 */ 76 mov A, KERNEL_QFREEZE_COUNT; 77 cmp QFREEZE_COUNT, A jne check_frozen_completions; 78 mov A, KERNEL_QFREEZE_COUNT[1]; 79 cmp QFREEZE_COUNT[1], A jne check_frozen_completions; 80 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; 81 jmp check_waiting_list; 82check_frozen_completions: 83 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; 84BEGIN_CRITICAL; 85 /* 86 * If we have completions stalled waiting for the qfreeze 87 * to take effect, move them over to the complete_scb list 88 * now that no selections are pending. 89 */ 90 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; 91 /* 92 * Find the end of the qfreeze list. The first element has 93 * to be treated specially. 94 */ 95 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; 96 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; 97 /* 98 * Now the normal loop. 99 */ 100 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 101 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; 102join_lists: 103 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 104 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; 105 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; 106 jmp idle_loop_checkbus; 107check_waiting_list: 108 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 109 /* 110 * ENSELO is cleared by a SELDO, so we must test for SELDO 111 * one last time. 112 */ 113 test SSTAT0, SELDO jnz select_out; 114 call start_selection; 115idle_loop_checkbus: 116 test SSTAT0, SELDO jnz select_out; 117END_CRITICAL; 118 test SSTAT0, SELDI jnz select_in; 119 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 120 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 121 call unexpected_nonpkt_phase_find_ctxt; 122idle_loop_check_nonpackreq: 123 test SSTAT2, NONPACKREQ jz . + 2; 124 call unexpected_nonpkt_phase_find_ctxt; 125 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 126 /* 127 * On Rev A. hardware, the busy LED is only 128 * turned on automatically during selections 129 * and re-selections. Make the LED status 130 * more useful by forcing it to be on so 131 * long as one of our data FIFOs is active. 132 */ 133 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 134 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 135 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 136 jmp . + 2; 137 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 138 } 139 call idle_loop_gsfifo_in_scsi_mode; 140 call idle_loop_service_fifos; 141 call idle_loop_cchan; 142 jmp idle_loop; 143 144idle_loop_gsfifo: 145 SET_MODE(M_SCSI, M_SCSI) 146BEGIN_CRITICAL; 147idle_loop_gsfifo_in_scsi_mode: 148 test LQISTAT2, LQIGSAVAIL jz return; 149 /* 150 * We have received good status for this transaction. There may 151 * still be data in our FIFOs draining to the host. Complete 152 * the SCB only if all data has transferred to the host. 153 */ 154good_status_IU_done: 155 bmov SCBPTR, GSFIFO, 2; 156 clr SCB_SCSI_STATUS; 157 /* 158 * If a command completed before an attempted task management 159 * function completed, notify the host after disabling any 160 * pending select-outs. 161 */ 162 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 163 test SSTAT0, SELDO|SELINGO jnz . + 2; 164 and SCSISEQ0, ~ENSELO; 165 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 166gsfifo_complete_normally: 167 or SCB_CONTROL, STATUS_RCVD; 168 169 /* 170 * Since this status did not consume a FIFO, we have to 171 * be a bit more diligent in how we check for FIFOs pertaining 172 * to this transaction. There are two states that a FIFO still 173 * transferring data may be in. 174 * 175 * 1) Configured and draining to the host, with a FIFO handler. 176 * 2) Pending cfg4data, fifo not empty. 177 * 178 * Case 1 can be detected by noticing a non-zero FIFO active 179 * count in the SCB. In this case, we allow the routine servicing 180 * the FIFO to complete the SCB. 181 * 182 * Case 2 implies either a pending or yet to occur save data 183 * pointers for this same context in the other FIFO. So, if 184 * we detect case 1, we will properly defer the post of the SCB 185 * and achieve the desired result. The pending cfg4data will 186 * notice that status has been received and complete the SCB. 187 */ 188 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 189 call complete; 190END_CRITICAL; 191 jmp idle_loop_gsfifo_in_scsi_mode; 192 193idle_loop_service_fifos: 194 SET_MODE(M_DFF0, M_DFF0) 195BEGIN_CRITICAL; 196 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 197 call longjmp; 198END_CRITICAL; 199idle_loop_next_fifo: 200 SET_MODE(M_DFF1, M_DFF1) 201BEGIN_CRITICAL; 202 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 203END_CRITICAL; 204return: 205 ret; 206 207idle_loop_cchan: 208 SET_MODE(M_CCHAN, M_CCHAN) 209 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 210 or QOFF_CTLSTA, HS_MAILBOX_ACT; 211 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 212hs_mailbox_empty: 213BEGIN_CRITICAL; 214 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 215 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 216 test CCSCBCTL, CCSCBDONE jz return; 217 /* FALLTHROUGH */ 218scbdma_tohost_done: 219 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 220 /* 221 * An SCB has been successfully uploaded to the host. 222 * If the SCB was uploaded for some reason other than 223 * bad SCSI status (currently only for underruns), we 224 * queue the SCB for normal completion. Otherwise, we 225 * wait until any select-out activity has halted, and 226 * then queue the completion. 227 */ 228 and CCSCBCTL, ~(CCARREN|CCSCBEN); 229 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 230 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; 231 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; 232 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 233 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; 234 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; 235scbdma_queue_completion: 236 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 237 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 238fill_qoutfifo_dmadone: 239 and CCSCBCTL, ~(CCARREN|CCSCBEN); 240 call qoutfifo_updated; 241 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 242 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 243 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 244 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 245 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 246END_CRITICAL; 247 248qoutfifo_updated: 249 /* 250 * If there are more commands waiting to be dma'ed 251 * to the host, always coalesce. Otherwise honor the 252 * host's wishes. 253 */ 254 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 255 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 256 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 257 258 /* 259 * If we have relatively few commands outstanding, don't 260 * bother waiting for another command to complete. 261 */ 262 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 263 /* Add -1 so that jnc means <= not just < */ 264 add A, -1, INT_COALESCING_MINCMDS; 265 add NONE, A, CMDS_PENDING; 266 jnc issue_cmdcmplt; 267 268 /* 269 * If coalescing, only coalesce up to the limit 270 * provided by the host driver. 271 */ 272coalesce_by_count: 273 mov A, INT_COALESCING_MAXCMDS; 274 add NONE, A, INT_COALESCING_CMDCOUNT; 275 jc issue_cmdcmplt; 276 /* 277 * If the timer is not currently active, 278 * fire it up. 279 */ 280 test INTCTL, SWTMINTMASK jz return; 281 bmov SWTIMER, INT_COALESCING_TIMER, 2; 282 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 283 or INTCTL, SWTMINTEN|SWTIMER_START; 284 and INTCTL, ~SWTMINTMASK ret; 285 286issue_cmdcmplt: 287 mvi INTSTAT, CMDCMPLT; 288 clr INT_COALESCING_CMDCOUNT; 289 or INTCTL, SWTMINTMASK ret; 290 291BEGIN_CRITICAL; 292fetch_new_scb_inprog: 293 test CCSCBCTL, ARRDONE jz return; 294fetch_new_scb_done: 295 and CCSCBCTL, ~(CCARREN|CCSCBEN); 296 clr A; 297 add CMDS_PENDING, 1; 298 adc CMDS_PENDING[1], A; 299 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 300 /* 301 * "Short Luns" are not placed into outgoing LQ 302 * packets in the correct byte order. Use a full 303 * sized lun field instead and fill it with the 304 * one byte of lun information we support. 305 */ 306 mov SCB_PKT_LUN[6], SCB_LUN; 307 } 308 /* 309 * The FIFO use count field is shared with the 310 * tag set by the host so that our SCB dma engine 311 * knows the correct location to store the SCB. 312 * Set it to zero before processing the SCB. 313 */ 314 clr SCB_FIFO_USE_COUNT; 315 /* Update the next SCB address to download. */ 316 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 317 /* 318 * NULL out the SCB links since these fields 319 * occupy the same location as SCB_NEXT_SCB_BUSADDR. 320 */ 321 mvi SCB_NEXT[1], SCB_LIST_NULL; 322 mvi SCB_NEXT2[1], SCB_LIST_NULL; 323 /* Increment our position in the QINFIFO. */ 324 mov NONE, SNSCB_QOFF; 325 326 /* 327 * Save SCBID of this SCB in REG0 since 328 * SCBPTR will be clobbered during target 329 * list updates. We also record the SCB's 330 * flags so that we can refer to them even 331 * after SCBPTR has been changed. 332 */ 333 bmov REG0, SCBPTR, 2; 334 mov A, SCB_CONTROL; 335 336 /* 337 * Find the tail SCB of the execution queue 338 * for this target. 339 */ 340 shr SINDEX, 3, SCB_SCSIID; 341 and SINDEX, ~0x1; 342 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 343 bmov DINDEX, SINDEX, 2; 344 bmov SCBPTR, SINDIR, 2; 345 346 /* 347 * Update the tail to point to the new SCB. 348 */ 349 bmov DINDIR, REG0, 2; 350 351 /* 352 * If the queue was empty, queue this SCB as 353 * the first for this target. 354 */ 355 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 356 357 /* 358 * SCBs that want to send messages must always be 359 * at the head of their per-target queue so that 360 * ATN can be asserted even if the current 361 * negotiation agreement is packetized. If the 362 * target queue is empty, the SCB can be queued 363 * immediately. If the queue is not empty, we must 364 * wait for it to empty before entering this SCB 365 * into the waiting for selection queue. Otherwise 366 * our batching and round-robin selection scheme 367 * could allow commands to be queued out of order. 368 * To simplify the implementation, we stop pulling 369 * new commands from the host until the MK_MESSAGE 370 * SCB can be queued to the waiting for selection 371 * list. 372 */ 373 test A, MK_MESSAGE jz batch_scb; 374 375 /* 376 * If the last SCB is also a MK_MESSAGE SCB, then 377 * order is preserved even if we batch. 378 */ 379 test SCB_CONTROL, MK_MESSAGE jz batch_scb; 380 381 /* 382 * Defer this SCB and stop fetching new SCBs until 383 * it can be queued. Since the SCB_SCSIID of the 384 * tail SCB must be the same as that of the newly 385 * queued SCB, there is no need to restore the SCBID 386 * here. 387 */ 388 or SEQ_FLAGS2, PENDING_MK_MESSAGE; 389 bmov MK_MESSAGE_SCB, REG0, 2; 390 mov MK_MESSAGE_SCSIID, SCB_SCSIID ret; 391 392batch_scb: 393 /* 394 * Otherwise just update the previous tail SCB to 395 * point to the new tail. 396 */ 397 bmov SCB_NEXT, REG0, 2 ret; 398 399first_new_target_scb: 400 /* 401 * Append SCB to the tail of the waiting for 402 * selection list. 403 */ 404 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 405 bmov SCBPTR, WAITING_TID_TAIL, 2; 406 bmov SCB_NEXT2, REG0, 2; 407 bmov WAITING_TID_TAIL, REG0, 2 ret; 408first_new_scb: 409 /* 410 * Whole list is empty, so the head of 411 * the list must be initialized too. 412 */ 413 bmov WAITING_TID_HEAD, REG0, 2; 414 bmov WAITING_TID_TAIL, REG0, 2 ret; 415END_CRITICAL; 416 417scbdma_idle: 418 /* 419 * Don't bother downloading new SCBs to execute 420 * if select-outs are currently frozen or we have 421 * a MK_MESSAGE SCB waiting to enter the queue. 422 */ 423 test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE 424 jnz scbdma_no_new_scbs; 425BEGIN_CRITICAL; 426 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 427scbdma_no_new_scbs: 428 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 429 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 430 /* FALLTHROUGH */ 431fill_qoutfifo: 432 /* 433 * Keep track of the SCBs we are dmaing just 434 * in case the DMA fails or is aborted. 435 */ 436 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 437 mvi CCSCBCTL, CCSCBRESET; 438 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 439 mov A, QOUTFIFO_NEXT_ADDR; 440 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 441fill_qoutfifo_loop: 442 bmov CCSCBRAM, SCBPTR, 2; 443 mov CCSCBRAM, SCB_SGPTR[0]; 444 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; 445 mov NONE, SDSCB_QOFF; 446 inc INT_COALESCING_CMDCOUNT; 447 add CMDS_PENDING, -1; 448 adc CMDS_PENDING[1], -1; 449 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 450 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 451 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 452 /* 453 * Don't cross an ADB or Cachline boundary when DMA'ing 454 * completion entries. In PCI mode, at least in 32/33 455 * configurations, the SCB DMA engine may lose its place 456 * in the data-stream should the target force a retry on 457 * something other than an 8byte aligned boundary. In 458 * PCI-X mode, we do this to avoid split transactions since 459 * many chipsets seem to be unable to format proper split 460 * completions to continue the data transfer. 461 */ 462 add SINDEX, A, CCSCBADDR; 463 test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done; 464 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 465 jmp fill_qoutfifo_loop; 466fill_qoutfifo_done: 467 mov SCBHCNT, CCSCBADDR; 468 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 469 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 470 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 471 472fetch_new_scb: 473 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 474 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 475dma_complete_scb: 476 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 477 bmov SCBHADDR, SCB_BUSADDR, 4; 478 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 479 480/* 481 * Either post or fetch an SCB from host memory. The caller 482 * is responsible for polling for transfer completion. 483 * 484 * Prerequisites: Mode == M_CCHAN 485 * SINDEX contains CCSCBCTL flags 486 * SCBHADDR set to Host SCB address 487 * SCBPTR set to SCB src location on "push" operations 488 */ 489SET_SRC_MODE M_CCHAN; 490SET_DST_MODE M_CCHAN; 491dma_scb: 492 mvi SCBHCNT, SCB_TRANSFER_SIZE; 493 mov CCSCBCTL, SINDEX ret; 494 495setjmp: 496 /* 497 * At least on the A, a return in the same 498 * instruction as the bmov results in a return 499 * to the caller, not to the new address at the 500 * top of the stack. Since we want the latter 501 * (we use setjmp to register a handler from an 502 * interrupt context but not invoke that handler 503 * until we return to our idle loop), use a 504 * separate ret instruction. 505 */ 506 bmov LONGJMP_ADDR, STACK, 2; 507 ret; 508setjmp_inline: 509 bmov LONGJMP_ADDR, STACK, 2; 510longjmp: 511 bmov STACK, LONGJMP_ADDR, 2 ret; 512END_CRITICAL; 513 514/*************************** Chip Bug Work Arounds ****************************/ 515/* 516 * Must disable interrupts when setting the mode pointer 517 * register as an interrupt occurring mid update will 518 * fail to store the new mode value for restoration on 519 * an iret. 520 */ 521if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 522set_mode_work_around: 523 mvi SEQINTCTL, INTVEC1DSL; 524 mov MODE_PTR, SINDEX; 525 clr SEQINTCTL ret; 526} 527 528 529if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 530set_seqint_work_around: 531 mov SEQINTCODE, SINDEX; 532 mvi SEQINTCODE, NO_SEQINT ret; 533} 534 535/************************ Packetized LongJmp Routines *************************/ 536SET_SRC_MODE M_SCSI; 537SET_DST_MODE M_SCSI; 538start_selection: 539BEGIN_CRITICAL; 540 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 541 /* 542 * Razor #494 543 * Rev A hardware fails to update LAST/CURR/NEXTSCB 544 * correctly after a packetized selection in several 545 * situations: 546 * 547 * 1) If only one command existed in the queue, the 548 * LAST/CURR/NEXTSCB are unchanged. 549 * 550 * 2) In a non QAS, protocol allowed phase change, 551 * the queue is shifted 1 too far. LASTSCB is 552 * the last SCB that was correctly processed. 553 * 554 * 3) In the QAS case, if the full list of commands 555 * was successfully sent, NEXTSCB is NULL and neither 556 * CURRSCB nor LASTSCB can be trusted. We must 557 * manually walk the list counting MAXCMDCNT elements 558 * to find the last SCB that was sent correctly. 559 * 560 * To simplify the workaround for this bug in SELDO 561 * handling, we initialize LASTSCB prior to enabling 562 * selection so we can rely on it even for case #1 above. 563 */ 564 bmov LASTSCB, WAITING_TID_HEAD, 2; 565 } 566 bmov CURRSCB, WAITING_TID_HEAD, 2; 567 bmov SCBPTR, WAITING_TID_HEAD, 2; 568 shr SELOID, 4, SCB_SCSIID; 569 /* 570 * If we want to send a message to the device, ensure 571 * we are selecting with atn irregardless of our packetized 572 * agreement. Since SPI4 only allows target reset or PPR 573 * messages if this is a packetized connection, the change 574 * to our negotiation table entry for this selection will 575 * be cleared when the message is acted on. 576 */ 577 test SCB_CONTROL, MK_MESSAGE jz . + 3; 578 mov NEGOADDR, SELOID; 579 or NEGCONOPTS, ENAUTOATNO; 580 or SCSISEQ0, ENSELO ret; 581END_CRITICAL; 582 583/* 584 * Allocate a FIFO for a non-packetized transaction. 585 * In RevA hardware, both FIFOs must be free before we 586 * can allocate a FIFO for a non-packetized transaction. 587 */ 588allocate_fifo_loop: 589 /* 590 * Do whatever work is required to free a FIFO. 591 */ 592 call idle_loop_service_fifos; 593 SET_MODE(M_SCSI, M_SCSI) 594allocate_fifo: 595 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 596 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 597 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 598 } else { 599 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 600 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 601 mvi DFFSTAT, B_CURRFIFO_0; 602 SET_MODE(M_DFF0, M_DFF0) 603 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 604 } 605SET_SRC_MODE M_SCSI; 606SET_DST_MODE M_SCSI; 607allocate_fifo1: 608 mvi DFFSTAT, CURRFIFO_1; 609 SET_MODE(M_DFF1, M_DFF1) 610 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 611 612/* 613 * We have been reselected as an initiator 614 * or selected as a target. 615 */ 616SET_SRC_MODE M_SCSI; 617SET_DST_MODE M_SCSI; 618select_in: 619 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 620 /* 621 * On Rev A. hardware, the busy LED is only 622 * turned on automatically during selections 623 * and re-selections. Make the LED status 624 * more useful by forcing it to be on from 625 * the point of selection until our idle 626 * loop determines that neither of our FIFOs 627 * are busy. This handles the non-packetized 628 * case nicely as we will not return to the 629 * idle loop until the busfree at the end of 630 * each transaction. 631 */ 632 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 633 } 634 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 635 /* 636 * Test to ensure that the bus has not 637 * already gone free prior to clearing 638 * any stale busfree status. This avoids 639 * a window whereby a busfree just after 640 * a selection could be missed. 641 */ 642 test SCSISIGI, BSYI jz . + 2; 643 mvi CLRSINT1,CLRBUSFREE; 644 or SIMODE1, ENBUSFREE; 645 } 646 or SXFRCTL0, SPIOEN; 647 and SAVED_SCSIID, SELID_MASK, SELID; 648 and A, OID, IOWNID; 649 or SAVED_SCSIID, A; 650 mvi CLRSINT0, CLRSELDI; 651 jmp ITloop; 652 653/* 654 * We have successfully selected out. 655 * 656 * Clear SELDO. 657 * Dequeue all SCBs sent from the waiting queue 658 * Requeue all SCBs *not* sent to the tail of the waiting queue 659 * Take Razor #494 into account for above. 660 * 661 * In Packetized Mode: 662 * Return to the idle loop. Our interrupt handler will take 663 * care of any incoming L_Qs. 664 * 665 * In Non-Packetize Mode: 666 * Continue to our normal state machine. 667 */ 668SET_SRC_MODE M_SCSI; 669SET_DST_MODE M_SCSI; 670select_out: 671BEGIN_CRITICAL; 672 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 673 /* 674 * On Rev A. hardware, the busy LED is only 675 * turned on automatically during selections 676 * and re-selections. Make the LED status 677 * more useful by forcing it to be on from 678 * the point of re-selection until our idle 679 * loop determines that neither of our FIFOs 680 * are busy. This handles the non-packetized 681 * case nicely as we will not return to the 682 * idle loop until the busfree at the end of 683 * each transaction. 684 */ 685 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 686 } 687 /* Clear out all SCBs that have been successfully sent. */ 688 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 689 /* 690 * For packetized, the LQO manager clears ENSELO on 691 * the assertion of SELDO. If we are non-packetized, 692 * LASTSCB and CURRSCB are accurate. 693 */ 694 test SCSISEQ0, ENSELO jnz use_lastscb; 695 696 /* 697 * The update is correct for LQOSTAT1 errors. All 698 * but LQOBUSFREE are handled by kernel interrupts. 699 * If we see LQOBUSFREE, return to the idle loop. 700 * Once we are out of the select_out critical section, 701 * the kernel will cleanup the LQOBUSFREE and we will 702 * eventually restart the selection if appropriate. 703 */ 704 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 705 706 /* 707 * On a phase change outside of packet boundaries, 708 * LASTSCB points to the currently active SCB context 709 * on the bus. 710 */ 711 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 712 713 /* 714 * If the hardware has traversed the whole list, NEXTSCB 715 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 716 * but MAXCMDCNT is accurate. If we stop part way through 717 * the list or only had one command to issue, NEXTSCB[1] is 718 * not NULL and LASTSCB is the last command to go out. 719 */ 720 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 721 722 /* 723 * Brute force walk. 724 */ 725 bmov SCBPTR, WAITING_TID_HEAD, 2; 726 mvi SEQINTCTL, INTVEC1DSL; 727 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 728 mov A, MAXCMDCNT; 729 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 730 clr SEQINTCTL; 731find_lastscb_loop: 732 dec A; 733 test A, 0xFF jz found_last_sent_scb; 734 bmov SCBPTR, SCB_NEXT, 2; 735 jmp find_lastscb_loop; 736use_lastscb: 737 bmov SCBPTR, LASTSCB, 2; 738found_last_sent_scb: 739 bmov CURRSCB, SCBPTR, 2; 740curscb_ww_done: 741 } else { 742 bmov SCBPTR, CURRSCB, 2; 743 } 744 745 /* 746 * The whole list made it. Clear our tail pointer to indicate 747 * that the per-target selection queue is now empty. 748 */ 749 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail; 750 751 /* 752 * Requeue any SCBs not sent, to the tail of the waiting Q. 753 * We know that neither the per-TID list nor the list of 754 * TIDs is empty. Use this knowledge to our advantage and 755 * queue the remainder to the tail of the global execution 756 * queue. 757 */ 758 bmov REG0, SCB_NEXT, 2; 759select_out_queue_remainder: 760 bmov SCBPTR, WAITING_TID_TAIL, 2; 761 bmov SCB_NEXT2, REG0, 2; 762 bmov WAITING_TID_TAIL, REG0, 2; 763 jmp select_out_inc_tid_q; 764 765select_out_clear_tail: 766 /* 767 * Queue any pending MK_MESSAGE SCB for this target now 768 * that the queue is empty. 769 */ 770 test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb; 771 mov A, MK_MESSAGE_SCSIID; 772 cmp SCB_SCSIID, A jne select_out_no_mk_message_scb; 773 and SEQ_FLAGS2, ~PENDING_MK_MESSAGE; 774 bmov REG0, MK_MESSAGE_SCB, 2; 775 jmp select_out_queue_remainder; 776 777select_out_no_mk_message_scb: 778 /* 779 * Clear this target's execution tail and increment the queue. 780 */ 781 shr DINDEX, 3, SCB_SCSIID; 782 or DINDEX, 1; /* Want only the second byte */ 783 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 784 mvi DINDIR, SCB_LIST_NULL; 785select_out_inc_tid_q: 786 bmov SCBPTR, WAITING_TID_HEAD, 2; 787 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 788 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 789 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 790 bmov SCBPTR, CURRSCB, 2; 791 mvi CLRSINT0, CLRSELDO; 792 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared; 793 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared; 794 795 /* 796 * If this is a packetized connection, return to our 797 * idle_loop and let our interrupt handler deal with 798 * any connection setup/teardown issues. The only 799 * exceptions are the case of MK_MESSAGE and task management 800 * SCBs. 801 */ 802 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 803 /* 804 * In the A, the LQO manager transitions to LQOSTOP0 even if 805 * we have selected out with ATN asserted and the target 806 * REQs in a non-packet phase. 807 */ 808 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 809 test SCSISIGO, ATNO jnz select_out_non_packetized; 810select_out_no_message: 811 } 812 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 813 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 814 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 815 jmp idle_loop; 816 817select_out_non_packetized: 818 /* Non packetized request. */ 819 and SCSISEQ0, ~ENSELO; 820 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 821 /* 822 * Test to ensure that the bus has not 823 * already gone free prior to clearing 824 * any stale busfree status. This avoids 825 * a window whereby a busfree just after 826 * a selection could be missed. 827 */ 828 test SCSISIGI, BSYI jz . + 2; 829 mvi CLRSINT1,CLRBUSFREE; 830 or SIMODE1, ENBUSFREE; 831 } 832 mov SAVED_SCSIID, SCB_SCSIID; 833 mov SAVED_LUN, SCB_LUN; 834 mvi SEQ_FLAGS, NO_CDB_SENT; 835END_CRITICAL; 836 or SXFRCTL0, SPIOEN; 837 838 /* 839 * As soon as we get a successful selection, the target 840 * should go into the message out phase since we have ATN 841 * asserted. 842 */ 843 mvi MSG_OUT, MSG_IDENTIFYFLAG; 844 845 /* 846 * Main loop for information transfer phases. Wait for the 847 * target to assert REQ before checking MSG, C/D and I/O for 848 * the bus phase. 849 */ 850mesgin_phasemis: 851ITloop: 852 call phase_lock; 853 854 mov A, LASTPHASE; 855 856 test A, ~P_DATAIN_DT jz p_data; 857 cmp A,P_COMMAND je p_command; 858 cmp A,P_MESGOUT je p_mesgout; 859 cmp A,P_STATUS je p_status; 860 cmp A,P_MESGIN je p_mesgin; 861 862 SET_SEQINTCODE(BAD_PHASE) 863 jmp ITloop; /* Try reading the bus again. */ 864 865/* 866 * Command phase. Set up the DMA registers and let 'er rip. 867 */ 868p_command: 869 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 870 SET_SEQINTCODE(PROTO_VIOLATION) 871p_command_okay: 872 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 873 jnz p_command_allocate_fifo; 874 /* 875 * Command retry. Free our current FIFO and 876 * re-allocate a FIFO so transfer state is 877 * reset. 878 */ 879SET_SRC_MODE M_DFF1; 880SET_DST_MODE M_DFF1; 881 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 882 SET_MODE(M_SCSI, M_SCSI) 883p_command_allocate_fifo: 884 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 885 call allocate_fifo; 886SET_SRC_MODE M_DFF1; 887SET_DST_MODE M_DFF1; 888 add NONE, -17, SCB_CDB_LEN; 889 jnc p_command_embedded; 890p_command_from_host: 891 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 892 mvi SG_CACHE_PRE, LAST_SEG; 893 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 894 jmp p_command_xfer; 895p_command_embedded: 896 bmov SHCNT[0], SCB_CDB_LEN, 1; 897 bmov DFDAT, SCB_CDB_STORE, 16; 898 mvi DFCNTRL, SCSIEN; 899p_command_xfer: 900 and SEQ_FLAGS, ~NO_CDB_SENT; 901 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 902 /* 903 * To speed up CDB delivery in Rev B, all CDB acks 904 * are "released" to the output sync as soon as the 905 * command phase starts. There is only one problem 906 * with this approach. If the target changes phase 907 * before all data are sent, we have left over acks 908 * that can go out on the bus in a data phase. Due 909 * to other chip contraints, this only happens if 910 * the target goes to data-in, but if the acks go 911 * out before we can test SDONE, we'll think that 912 * the transfer has completed successfully. Work 913 * around this by taking advantage of the 400ns or 914 * 800ns dead time between command phase and the REQ 915 * of the new phase. If the transfer has completed 916 * successfully, SCSIEN should fall *long* before we 917 * see a phase change. We thus treat any phasemiss 918 * that occurs before SCSIEN falls as an incomplete 919 * transfer. 920 */ 921 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 922 test DFCNTRL, SCSIEN jnz . - 1; 923 } else { 924 test DFCNTRL, SCSIEN jnz .; 925 } 926 /* 927 * DMA Channel automatically disabled. 928 * Don't allow a data phase if the command 929 * was not fully transferred. 930 */ 931 test SSTAT2, SDONE jnz ITloop; 932p_command_xfer_failed: 933 or SEQ_FLAGS, NO_CDB_SENT; 934 jmp ITloop; 935 936 937/* 938 * Status phase. Wait for the data byte to appear, then read it 939 * and store it into the SCB. 940 */ 941SET_SRC_MODE M_SCSI; 942SET_DST_MODE M_SCSI; 943p_status: 944 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 945p_status_okay: 946 mov SCB_SCSI_STATUS, SCSIDAT; 947 or SCB_CONTROL, STATUS_RCVD; 948 jmp ITloop; 949 950/* 951 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 952 * identify message sequence and send it to the target. The host may 953 * override this behavior by setting the MK_MESSAGE bit in the SCB 954 * control byte. This will cause us to interrupt the host and allow 955 * it to handle the message phase completely on its own. If the bit 956 * associated with this target is set, we will also interrupt the host, 957 * thereby allowing it to send a message on the next selection regardless 958 * of the transaction being sent. 959 * 960 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 961 * This is done to allow the host to send messages outside of an identify 962 * sequence while protecting the sequencer from testing the MK_MESSAGE bit 963 * on an SCB that might not be for the current nexus. (For example, a 964 * BDR message in response to a bad reselection would leave us pointed to 965 * an SCB that doesn't have anything to do with the current target). 966 * 967 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 968 * bus device reset). 969 * 970 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 971 * in case the target decides to put us in this phase for some strange 972 * reason. 973 */ 974p_mesgout_retry: 975 /* Turn on ATN for the retry */ 976 mvi SCSISIGO, ATNO; 977p_mesgout: 978 mov SINDEX, MSG_OUT; 979 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 980 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 981p_mesgout_identify: 982 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 983 test SCB_CONTROL, DISCENB jnz . + 2; 984 and SINDEX, ~DISCENB; 985/* 986 * Send a tag message if TAG_ENB is set in the SCB control block. 987 * Use SCB_NONPACKET_TAG as the tag value. 988 */ 989p_mesgout_tag: 990 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 991 mov SCSIDAT, SINDEX; /* Send the identify message */ 992 call phase_lock; 993 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 994 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 995 call phase_lock; 996 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 997 mov SCBPTR jmp p_mesgout_onebyte; 998/* 999 * Interrupt the driver, and allow it to handle this message 1000 * phase and any required retries. 1001 */ 1002p_mesgout_from_host: 1003 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 1004 jmp host_message_loop; 1005 1006p_mesgout_onebyte: 1007 mvi CLRSINT1, CLRATNO; 1008 mov SCSIDAT, SINDEX; 1009 1010/* 1011 * If the next bus phase after ATN drops is message out, it means 1012 * that the target is requesting that the last message(s) be resent. 1013 */ 1014 call phase_lock; 1015 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 1016 1017p_mesgout_done: 1018 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 1019 mov LAST_MSG, MSG_OUT; 1020 mvi MSG_OUT, MSG_NOOP; /* No message left */ 1021 jmp ITloop; 1022 1023/* 1024 * Message in phase. Bytes are read using Automatic PIO mode. 1025 */ 1026p_mesgin: 1027 /* read the 1st message byte */ 1028 mvi ACCUM call inb_first; 1029 1030 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 1031 cmp A,MSG_DISCONNECT je mesgin_disconnect; 1032 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 1033 cmp ALLZEROS,A je mesgin_complete; 1034 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 1035 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 1036 cmp A,MSG_NOOP je mesgin_done; 1037 1038/* 1039 * Pushed message loop to allow the kernel to 1040 * run its own message state engine. To avoid an 1041 * extra nop instruction after signaling the kernel, 1042 * we perform the phase_lock before checking to see 1043 * if we should exit the loop and skip the phase_lock 1044 * in the ITloop. Performing back to back phase_locks 1045 * shouldn't hurt, but why do it twice... 1046 */ 1047host_message_loop: 1048 call phase_lock; /* Benign the first time through. */ 1049 SET_SEQINTCODE(HOST_MSG_LOOP) 1050 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 1051 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 1052 mov SCSIDAT, RETURN_2; 1053 jmp host_message_loop; 1054 /* Must be CONT_MSG_LOOP_READ */ 1055 mov NONE, SCSIDAT; /* ACK Byte */ 1056 jmp host_message_loop; 1057 1058mesgin_ign_wide_residue: 1059 mov SAVED_MODE, MODE_PTR; 1060 SET_MODE(M_SCSI, M_SCSI) 1061 shr NEGOADDR, 4, SAVED_SCSIID; 1062 mov A, NEGCONOPTS; 1063 RESTORE_MODE(SAVED_MODE) 1064 test A, WIDEXFER jz mesgin_reject; 1065 /* Pull the residue byte */ 1066 mvi REG0 call inb_next; 1067 cmp REG0, 0x01 jne mesgin_reject; 1068 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 1069 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 1070 SET_SEQINTCODE(IGN_WIDE_RES) 1071 jmp mesgin_done; 1072 1073mesgin_proto_violation: 1074 SET_SEQINTCODE(PROTO_VIOLATION) 1075 jmp mesgin_done; 1076mesgin_reject: 1077 mvi MSG_MESSAGE_REJECT call mk_mesg; 1078mesgin_done: 1079 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1080 jmp ITloop; 1081 1082#define INDEX_DISC_LIST(scsiid, lun) \ 1083 and A, 0xC0, scsiid; \ 1084 or SCBPTR, A, lun; \ 1085 clr SCBPTR[1]; \ 1086 and SINDEX, 0x30, scsiid; \ 1087 shr SINDEX, 3; /* Multiply by 2 */ \ 1088 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 1089 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 1090 1091mesgin_identify: 1092 /* 1093 * Determine whether a target is using tagged or non-tagged 1094 * transactions by first looking at the transaction stored in 1095 * the per-device, disconnected array. If there is no untagged 1096 * transaction for this target, this must be a tagged transaction. 1097 */ 1098 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 1099 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1100 bmov DINDEX, SINDEX, 2; 1101 bmov REG0, SINDIR, 2; 1102 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 1103 /* Untagged. Clear the busy table entry and setup the SCB. */ 1104 bmov DINDIR, ALLONES, 2; 1105 bmov SCBPTR, REG0, 2; 1106 jmp setup_SCB; 1107 1108/* 1109 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 1110 * If we get one, we use the tag returned to find the proper 1111 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 1112 * tag + 256. 1113 */ 1114snoop_tag: 1115 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1116 or SEQ_FLAGS, 0x80; 1117 } 1118 mov NONE, SCSIDAT; /* ACK Identify MSG */ 1119 call phase_lock; 1120 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1121 or SEQ_FLAGS, 0x1; 1122 } 1123 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 1124 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1125 or SEQ_FLAGS, 0x2; 1126 } 1127 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 1128get_tag: 1129 clr SCBPTR[1]; 1130 mvi SCBPTR call inb_next; /* tag value */ 1131verify_scb: 1132 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 1133 mov A, SAVED_SCSIID; 1134 cmp SCB_SCSIID, A jne verify_other_scb; 1135 mov A, SAVED_LUN; 1136 cmp SCB_LUN, A je setup_SCB_disconnected; 1137verify_other_scb: 1138 xor SCBPTR[1], 1; 1139 test SCBPTR[1], 0xFF jnz verify_scb; 1140 jmp not_found; 1141 1142/* 1143 * Ensure that the SCB the tag points to is for 1144 * an SCB transaction to the reconnecting target. 1145 */ 1146setup_SCB: 1147 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1148 or SEQ_FLAGS, 0x10; 1149 } 1150 test SCB_CONTROL,DISCONNECTED jz not_found; 1151setup_SCB_disconnected: 1152 and SCB_CONTROL,~DISCONNECTED; 1153 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1154 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1155 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1156 call allocate_fifo; 1157 /* See if the host wants to send a message upon reconnection */ 1158 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1159 mvi HOST_MSG call mk_mesg; 1160 jmp mesgin_done; 1161 1162not_found: 1163 SET_SEQINTCODE(NO_MATCH) 1164 jmp mesgin_done; 1165 1166not_found_ITloop: 1167 SET_SEQINTCODE(NO_MATCH) 1168 jmp ITloop; 1169 1170/* 1171 * We received a "command complete" message. Put the SCB on the complete 1172 * queue and trigger a completion interrupt via the idle loop. Before doing 1173 * so, check to see if there is a residual or the status byte is something 1174 * other than STATUS_GOOD (0). In either of these conditions, we upload the 1175 * SCB back to the host so it can process this information. 1176 */ 1177mesgin_complete: 1178 1179 /* 1180 * If ATN is raised, we still want to give the target a message. 1181 * Perhaps there was a parity error on this last message byte. 1182 * Either way, the target should take us to message out phase 1183 * and then attempt to complete the command again. We should use a 1184 * critical section here to guard against a timeout triggering 1185 * for this command and setting ATN while we are still processing 1186 * the completion. 1187 test SCSISIGI, ATNI jnz mesgin_done; 1188 */ 1189 1190 /* 1191 * If we are identified and have successfully sent the CDB, 1192 * any status will do. Optimize this fast path. 1193 */ 1194 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1195 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1196 1197 /* 1198 * If the target never sent an identify message but instead went 1199 * to mesgin to give an invalid message, let the host abort us. 1200 */ 1201 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1202 1203 /* 1204 * If we received good status but never successfully sent the 1205 * cdb, abort the command. 1206 */ 1207 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1208 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1209complete_accepted: 1210 1211 /* 1212 * See if we attempted to deliver a message but the target ingnored us. 1213 */ 1214 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1215 SET_SEQINTCODE(MKMSG_FAILED) 1216complete_nomsg: 1217 call queue_scb_completion; 1218 jmp await_busfree; 1219 1220BEGIN_CRITICAL; 1221freeze_queue: 1222 /* Cancel any pending select-out. */ 1223 test SSTAT0, SELDO|SELINGO jnz . + 2; 1224 and SCSISEQ0, ~ENSELO; 1225 mov ACCUM_SAVE, A; 1226 clr A; 1227 add QFREEZE_COUNT, 1; 1228 adc QFREEZE_COUNT[1], A; 1229 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1230 mov A, ACCUM_SAVE ret; 1231END_CRITICAL; 1232 1233/* 1234 * Complete the current FIFO's SCB if data for this same 1235 * SCB is not transferring in the other FIFO. 1236 */ 1237SET_SRC_MODE M_DFF1; 1238SET_DST_MODE M_DFF1; 1239pkt_complete_scb_if_fifos_idle: 1240 bmov ARG_1, SCBPTR, 2; 1241 mvi DFFSXFRCTL, CLRCHN; 1242 SET_MODE(M_SCSI, M_SCSI) 1243 bmov SCBPTR, ARG_1, 2; 1244 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1245queue_scb_completion: 1246 test SCB_SCSI_STATUS,0xff jnz bad_status; 1247 /* 1248 * Check for residuals 1249 */ 1250 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1251 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1252 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1253complete: 1254BEGIN_CRITICAL; 1255 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1256 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1257END_CRITICAL; 1258bad_status: 1259 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1260 call freeze_queue; 1261upload_scb: 1262 /* 1263 * Restore SCB TAG since we reuse this field 1264 * in the sequencer. We don't want to corrupt 1265 * it on the host. 1266 */ 1267 bmov SCB_TAG, SCBPTR, 2; 1268BEGIN_CRITICAL; 1269 or SCB_SGPTR, SG_STATUS_VALID; 1270 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; 1271 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; 1272 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1273 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; 1274add_dma_scb_tail: 1275 bmov REG0, SCBPTR, 2; 1276 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; 1277 bmov SCB_NEXT_COMPLETE, REG0, 2; 1278 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; 1279END_CRITICAL; 1280 1281/* 1282 * Is it a disconnect message? Set a flag in the SCB to remind us 1283 * and await the bus going free. If this is an untagged transaction 1284 * store the SCB id for it in our untagged target table for lookup on 1285 * a reselection. 1286 */ 1287mesgin_disconnect: 1288 /* 1289 * If ATN is raised, we still want to give the target a message. 1290 * Perhaps there was a parity error on this last message byte 1291 * or we want to abort this command. Either way, the target 1292 * should take us to message out phase and then attempt to 1293 * disconnect again. 1294 * XXX - Wait for more testing. 1295 test SCSISIGI, ATNI jnz mesgin_done; 1296 */ 1297 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1298 jnz mesgin_proto_violation; 1299 or SCB_CONTROL,DISCONNECTED; 1300 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1301queue_disc_scb: 1302 bmov REG0, SCBPTR, 2; 1303 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1304 bmov DINDEX, SINDEX, 2; 1305 bmov DINDIR, REG0, 2; 1306 bmov SCBPTR, REG0, 2; 1307 /* FALLTHROUGH */ 1308await_busfree: 1309 and SIMODE1, ~ENBUSFREE; 1310 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1311 /* 1312 * In the BUSFREEREV_BUG case, the 1313 * busfree status was cleared at the 1314 * beginning of the connection. 1315 */ 1316 mvi CLRSINT1,CLRBUSFREE; 1317 } 1318 mov NONE, SCSIDAT; /* Ack the last byte */ 1319 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1320 jnz await_busfree_not_m_dff; 1321SET_SRC_MODE M_DFF1; 1322SET_DST_MODE M_DFF1; 1323await_busfree_clrchn: 1324 mvi DFFSXFRCTL, CLRCHN; 1325await_busfree_not_m_dff: 1326 /* clear target specific flags */ 1327 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1328 test SSTAT1,REQINIT|BUSFREE jz .; 1329 /* 1330 * We only set BUSFREE status once either a new 1331 * phase has been detected or we are really 1332 * BUSFREE. This allows the driver to know 1333 * that we are active on the bus even though 1334 * no identified transaction exists should a 1335 * timeout occur while awaiting busfree. 1336 */ 1337 mvi LASTPHASE, P_BUSFREE; 1338 test SSTAT1, BUSFREE jnz idle_loop; 1339 SET_SEQINTCODE(MISSED_BUSFREE) 1340 1341 1342/* 1343 * Save data pointers message: 1344 * Copying RAM values back to SCB, for Save Data Pointers message, but 1345 * only if we've actually been into a data phase to change them. This 1346 * protects against bogus data in scratch ram and the residual counts 1347 * since they are only initialized when we go into data_in or data_out. 1348 * Ack the message as soon as possible. 1349 */ 1350SET_SRC_MODE M_DFF1; 1351SET_DST_MODE M_DFF1; 1352mesgin_sdptrs: 1353 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1354 test SEQ_FLAGS, DPHASE jz ITloop; 1355 call save_pointers; 1356 jmp ITloop; 1357 1358save_pointers: 1359 /* 1360 * If we are asked to save our position at the end of the 1361 * transfer, just mark us at the end rather than perform a 1362 * full save. 1363 */ 1364 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1365 or SCB_SGPTR, SG_LIST_NULL ret; 1366 1367save_pointers_full: 1368 /* 1369 * The SCB_DATAPTR becomes the current SHADDR. 1370 * All other information comes directly from our residual 1371 * state. 1372 */ 1373 bmov SCB_DATAPTR, SHADDR, 8; 1374 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1375 1376/* 1377 * Restore pointers message? Data pointers are recopied from the 1378 * SCB anytime we enter a data phase for the first time, so all 1379 * we need to do is clear the DPHASE flag and let the data phase 1380 * code do the rest. We also reset/reallocate the FIFO to make 1381 * sure we have a clean start for the next data or command phase. 1382 */ 1383mesgin_rdptrs: 1384 and SEQ_FLAGS, ~DPHASE; 1385 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1386 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1387 SET_MODE(M_SCSI, M_SCSI) 1388msgin_rdptrs_get_fifo: 1389 call allocate_fifo; 1390 jmp mesgin_done; 1391 1392phase_lock: 1393 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1394 /* 1395 * Don't ignore persistent REQ assertions just because 1396 * they were asserted within the bus settle delay window. 1397 * This allows us to tolerate devices like the GEM318 1398 * that violate the SCSI spec. We are careful not to 1399 * count REQ while we are waiting for it to fall during 1400 * an async phase due to our asserted ACK. Each 1401 * sequencer instruction takes ~25ns, so the REQ must 1402 * last at least 100ns in order to be counted as a true 1403 * REQ. 1404 */ 1405 test SCSIPHASE, 0xFF jnz phase_locked; 1406 test SCSISIGI, ACKI jnz phase_lock; 1407 test SCSISIGI, REQI jz phase_lock; 1408 test SCSIPHASE, 0xFF jnz phase_locked; 1409 test SCSISIGI, ACKI jnz phase_lock; 1410 test SCSISIGI, REQI jz phase_lock; 1411phase_locked: 1412 } else { 1413 test SCSIPHASE, 0xFF jz .; 1414 } 1415 test SSTAT1, SCSIPERR jnz phase_lock; 1416phase_lock_latch_phase: 1417 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1418 1419/* 1420 * Functions to read data in Automatic PIO mode. 1421 * 1422 * An ACK is not sent on input from the target until SCSIDATL is read from. 1423 * So we wait until SCSIDATL is latched (the usual way), then read the data 1424 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1425 * line, or we just want to acknowledge the byte, then we do a dummy read 1426 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1427 * data byte on the bus until we send our ACK. 1428 * 1429 * The assumption here is that these are called in a particular sequence, 1430 * and that REQ is already set when inb_first is called. inb_{first,next} 1431 * use the same calling convention as inb. 1432 */ 1433inb_next: 1434 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1435inb_next_wait: 1436 /* 1437 * If there is a parity error, wait for the kernel to 1438 * see the interrupt and prepare our message response 1439 * before continuing. 1440 */ 1441 test SCSIPHASE, 0xFF jz .; 1442 test SSTAT1, SCSIPERR jnz inb_next_wait; 1443inb_next_check_phase: 1444 and LASTPHASE, PHASE_MASK, SCSISIGI; 1445 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1446inb_first: 1447 clr DINDEX[1]; 1448 mov DINDEX,SINDEX; 1449 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1450inb_last: 1451 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1452 1453mk_mesg: 1454 mvi SCSISIGO, ATNO; 1455 mov MSG_OUT,SINDEX ret; 1456 1457SET_SRC_MODE M_DFF1; 1458SET_DST_MODE M_DFF1; 1459disable_ccsgen: 1460 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1461 clr CCSGCTL; 1462disable_ccsgen_fetch_done: 1463 clr SG_STATE ret; 1464 1465service_fifo: 1466 /* 1467 * Do we have any prefetch left??? 1468 */ 1469 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1470 1471 /* 1472 * Can this FIFO have access to the S/G cache yet? 1473 */ 1474 test CCSGCTL, SG_CACHE_AVAIL jz return; 1475 1476 /* Did we just finish fetching segs? */ 1477 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1478 1479 /* Are we actively fetching segments? */ 1480 test CCSGCTL, CCSGENACK jnz return; 1481 1482 /* 1483 * Should the other FIFO get the S/G cache first? If 1484 * both FIFOs have been allocated since we last checked 1485 * any FIFO, it is important that we service a FIFO 1486 * that is not actively on the bus first. This guarantees 1487 * that a FIFO will be freed to handle snapshot requests for 1488 * any FIFO that is still on the bus. Chips with RTI do not 1489 * perform snapshots, so don't bother with this test there. 1490 */ 1491 if ((ahd->features & AHD_RTI) == 0) { 1492 /* 1493 * If we're not still receiving SCSI data, 1494 * it is safe to allocate the S/G cache to 1495 * this FIFO. 1496 */ 1497 test DFCNTRL, SCSIEN jz idle_sgfetch_start; 1498 1499 /* 1500 * Switch to the other FIFO. Non-RTI chips 1501 * also have the "set mode" bug, so we must 1502 * disable interrupts during the switch. 1503 */ 1504 mvi SEQINTCTL, INTVEC1DSL; 1505 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1506 1507 /* 1508 * If the other FIFO needs loading, then it 1509 * must not have claimed the S/G cache yet 1510 * (SG_CACHE_AVAIL would have been cleared in 1511 * the original FIFO mode and we test this above). 1512 * Return to the idle loop so we can process the 1513 * FIFO not currently on the bus first. 1514 */ 1515 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; 1516 clr SEQINTCTL ret; 1517idle_sgfetch_okay: 1518 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1519 clr SEQINTCTL; 1520 } 1521 1522idle_sgfetch_start: 1523 /* 1524 * We fetch a "cacheline aligned" and sized amount of data 1525 * so we don't end up referencing a non-existent page. 1526 * Cacheline aligned is in quotes because the kernel will 1527 * set the prefetch amount to a reasonable level if the 1528 * cacheline size is unknown. 1529 */ 1530 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1531 mvi SGHCNT, SG_PREFETCH_CNT; 1532 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1533 /* 1534 * Need two instructions between "touches" of SGHADDR. 1535 */ 1536 nop; 1537 } 1538 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1539 mvi CCSGCTL, CCSGEN|CCSGRESET; 1540 or SG_STATE, FETCH_INPROG ret; 1541idle_sgfetch_complete: 1542 /* 1543 * Guard against SG_CACHE_AVAIL activating during sg fetch 1544 * request in the other FIFO. 1545 */ 1546 test SG_STATE, FETCH_INPROG jz return; 1547 clr CCSGCTL; 1548 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1549 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1550idle_sg_avail: 1551 /* Does the hardware have space for another SG entry? */ 1552 test DFSTATUS, PRELOAD_AVAIL jz return; 1553 /* 1554 * On the A, preloading a segment before HDMAENACK 1555 * comes true can clobber the shadow address of the 1556 * first segment in the S/G FIFO. Wait until it is 1557 * safe to proceed. 1558 */ 1559 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1560 test DFCNTRL, HDMAENACK jz return; 1561 } 1562 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1563 bmov HADDR, CCSGRAM, 8; 1564 } else { 1565 bmov HADDR, CCSGRAM, 4; 1566 } 1567 bmov HCNT, CCSGRAM, 3; 1568 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1569 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1570 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1571 } 1572 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1573 /* Skip 4 bytes of pad. */ 1574 add CCSGADDR, 4; 1575 } 1576sg_advance: 1577 clr A; /* add sizeof(struct scatter) */ 1578 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1579 adc SCB_RESIDUAL_SGPTR[1],A; 1580 adc SCB_RESIDUAL_SGPTR[2],A; 1581 adc SCB_RESIDUAL_SGPTR[3],A; 1582 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1583 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1584 or SINDEX, LAST_SEG; 1585 clr SG_STATE; 1586 mov SG_CACHE_PRE, SINDEX; 1587 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1588 /* 1589 * Use SCSIENWRDIS so that SCSIEN is never 1590 * modified by this operation. 1591 */ 1592 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1593 } else { 1594 or DFCNTRL, PRELOADEN|HDMAEN; 1595 } 1596 /* 1597 * Do we have another segment in the cache? 1598 */ 1599 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1600 jnc return; 1601 and SG_STATE, ~SEGS_AVAIL ret; 1602 1603/* 1604 * Initialize the DMA address and counter from the SCB. 1605 */ 1606load_first_seg: 1607 bmov HADDR, SCB_DATAPTR, 11; 1608 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1609 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1610 or REG_ISR, LAST_SEG; 1611 mov SG_CACHE_PRE, REG_ISR; 1612 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1613 /* 1614 * Since we've are entering a data phase, we will 1615 * rely on the SCB_RESID* fields. Initialize the 1616 * residual and clear the full residual flag. 1617 */ 1618 and SCB_SGPTR[0], ~SG_FULL_RESID; 1619 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1620 /* If we need more S/G elements, tell the idle loop */ 1621 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1622 mvi SG_STATE, LOADING_NEEDED ret; 1623 clr SG_STATE ret; 1624 1625p_data_handle_xfer: 1626 call setjmp; 1627 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1628p_data_clear_handler: 1629 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1630 1631p_data: 1632 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1633 SET_SEQINTCODE(PROTO_VIOLATION) 1634p_data_allowed: 1635 1636 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1637 1638 /* 1639 * If we re-enter the data phase after going through another 1640 * phase, our transfer location has almost certainly been 1641 * corrupted by the interveining, non-data, transfers. Ask 1642 * the host driver to fix us up based on the transfer residual 1643 * unless we already know that we should be bitbucketing. 1644 */ 1645 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1646 SET_SEQINTCODE(PDATA_REINIT) 1647 jmp data_phase_inbounds; 1648 1649p_data_bitbucket: 1650 /* 1651 * Turn on `Bit Bucket' mode, wait until the target takes 1652 * us to another phase, and then notify the host. 1653 */ 1654 mov SAVED_MODE, MODE_PTR; 1655 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1656 jnz bitbucket_not_m_dff; 1657 /* 1658 * Ensure that any FIFO contents are cleared out and the 1659 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1660 * doesn't discard data already in the FIFO. 1661 */ 1662 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1663 SET_MODE(M_SCSI, M_SCSI) 1664bitbucket_not_m_dff: 1665 or SXFRCTL1,BITBUCKET; 1666 /* Wait for non-data phase. */ 1667 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1668 and SXFRCTL1, ~BITBUCKET; 1669 RESTORE_MODE(SAVED_MODE) 1670SET_SRC_MODE M_DFF1; 1671SET_DST_MODE M_DFF1; 1672 SET_SEQINTCODE(DATA_OVERRUN) 1673 jmp ITloop; 1674 1675data_phase_initialize: 1676 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1677 call load_first_seg; 1678data_phase_inbounds: 1679 /* We have seen a data phase at least once. */ 1680 or SEQ_FLAGS, DPHASE; 1681 mov SAVED_MODE, MODE_PTR; 1682 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1683 call p_data_handle_xfer; 1684data_group_dma_loop: 1685 /* 1686 * The transfer is complete if either the last segment 1687 * completes or the target changes phase. Both conditions 1688 * will clear SCSIEN. 1689 */ 1690 call idle_loop_service_fifos; 1691 call idle_loop_cchan; 1692 call idle_loop_gsfifo; 1693 RESTORE_MODE(SAVED_MODE) 1694 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1695 1696data_group_dmafinish: 1697 /* 1698 * The transfer has terminated either due to a phase 1699 * change, and/or the completion of the last segment. 1700 * We have two goals here. Do as much other work 1701 * as possible while the data fifo drains on a read 1702 * and respond as quickly as possible to the standard 1703 * messages (save data pointers/disconnect and command 1704 * complete) that usually follow a data phase. 1705 */ 1706 call calc_residual; 1707 1708 /* 1709 * Go ahead and shut down the DMA engine now. 1710 */ 1711 test DFCNTRL, DIRECTION jnz data_phase_finish; 1712data_group_fifoflush: 1713 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1714 or DFCNTRL, FIFOFLUSH; 1715 } 1716 /* 1717 * We have enabled the auto-ack feature. This means 1718 * that the controller may have already transferred 1719 * some overrun bytes into the data FIFO and acked them 1720 * on the bus. The only way to detect this situation is 1721 * to wait for LAST_SEG_DONE to come true on a completed 1722 * transfer and then test to see if the data FIFO is 1723 * non-empty. We know there is more data yet to transfer 1724 * if SG_LIST_NULL is not yet set, thus there cannot be 1725 * an overrun. 1726 */ 1727 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1728 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1729 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1730 /* Overrun */ 1731 jmp p_data; 1732data_phase_finish: 1733 /* 1734 * If the target has left us in data phase, loop through 1735 * the dma code again. We will only loop if there is a 1736 * data overrun. 1737 */ 1738 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1739 test SSTAT0, TARGET jnz data_phase_done; 1740 } 1741 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1742 test SSTAT1, REQINIT jz .; 1743 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1744 } 1745 1746data_phase_done: 1747 /* Kill off any pending prefetch */ 1748 call disable_ccsgen; 1749 or LONGJMP_ADDR[1], INVALID_ADDR; 1750 1751 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1752 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1753 /* 1754 and SEQ_FLAGS, ~DPHASE_PENDING; 1755 * For data-in phases, wait for any pending acks from the 1756 * initiator before changing phase. We only need to 1757 * send Ignore Wide Residue messages for data-in phases. 1758 test DFCNTRL, DIRECTION jz target_ITloop; 1759 test SSTAT1, REQINIT jnz .; 1760 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1761 SET_MODE(M_SCSI, M_SCSI) 1762 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1763 */ 1764 /* 1765 * Issue an Ignore Wide Residue Message. 1766 mvi P_MESGIN|BSYO call change_phase; 1767 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1768 mvi 1 call target_outb; 1769 jmp target_ITloop; 1770 */ 1771 } else { 1772 jmp ITloop; 1773 } 1774 1775/* 1776 * We assume that, even though data may still be 1777 * transferring to the host, that the SCSI side of 1778 * the DMA engine is now in a static state. This 1779 * allows us to update our notion of where we are 1780 * in this transfer. 1781 * 1782 * If, by chance, we stopped before being able 1783 * to fetch additional segments for this transfer, 1784 * yet the last S/G was completely exhausted, 1785 * call our idle loop until it is able to load 1786 * another segment. This will allow us to immediately 1787 * pickup on the next segment on the next data phase. 1788 * 1789 * If we happened to stop on the last segment, then 1790 * our residual information is still correct from 1791 * the idle loop and there is no need to perform 1792 * any fixups. 1793 */ 1794residual_before_last_seg: 1795 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1796 /* 1797 * Can never happen from an interrupt as the packetized 1798 * hardware will only interrupt us once SHVALID or 1799 * LAST_SEG_DONE. 1800 */ 1801 call idle_loop_service_fifos; 1802 RESTORE_MODE(SAVED_MODE) 1803 /* FALLTHROUGH */ 1804calc_residual: 1805 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1806 /* Record if we've consumed all S/G entries */ 1807 test MDFFSTAT, SHVALID jz . + 2; 1808 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1809 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1810 1811sgptr_fixup: 1812 /* 1813 * Fixup the residual next S/G pointer. The S/G preload 1814 * feature of the chip allows us to load two elements 1815 * in addition to the currently active element. We 1816 * store the bottom byte of the next S/G pointer in 1817 * the SG_CACHE_PTR register so we can restore the 1818 * correct value when the DMA completes. If the next 1819 * sg ptr value has advanced to the point where higher 1820 * bytes in the address have been affected, fix them 1821 * too. 1822 */ 1823 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1824 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1825 add SCB_RESIDUAL_SGPTR[1], -1; 1826 adc SCB_RESIDUAL_SGPTR[2], -1; 1827 adc SCB_RESIDUAL_SGPTR[3], -1; 1828sgptr_fixup_done: 1829 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1830 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1831 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1832 1833export timer_isr: 1834 call issue_cmdcmplt; 1835 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1836 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1837 /* 1838 * In H2A4, the mode pointer is not saved 1839 * for intvec2, but is restored on iret. 1840 * This can lead to the restoration of a 1841 * bogus mode ptr. Manually clear the 1842 * intmask bits and do a normal return 1843 * to compensate. 1844 */ 1845 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1846 } else { 1847 or SEQINTCTL, IRET ret; 1848 } 1849 1850export seq_isr: 1851 if ((ahd->features & AHD_RTI) == 0) { 1852 /* 1853 * On RevA Silicon, if the target returns us to data-out 1854 * after we have already trained for data-out, it is 1855 * possible for us to transition the free running clock to 1856 * data-valid before the required 100ns P1 setup time (8 P1 1857 * assertions in fast-160 mode). This will only happen if 1858 * this L-Q is a continuation of a data transfer for which 1859 * we have already prefetched data into our FIFO (LQ/Data 1860 * followed by LQ/Data for the same write transaction). 1861 * This can cause some target implementations to miss the 1862 * first few data transfers on the bus. We detect this 1863 * situation by noticing that this is the first data transfer 1864 * after an LQ (LQIWORKONLQ true), that the data transfer is 1865 * a continuation of a transfer already setup in our FIFO 1866 * (SAVEPTRS interrupt), and that the transaction is a write 1867 * (DIRECTION set in DFCNTRL). The delay is performed by 1868 * disabling SCSIEN until we see the first REQ from the 1869 * target. 1870 * 1871 * First instruction in an ISR cannot be a branch on 1872 * Rev A. Snapshot LQISTAT2 so the status is not missed 1873 * and deffer the test by one instruction. 1874 */ 1875 mov REG_ISR, LQISTAT2; 1876 test REG_ISR, LQIWORKONLQ jz main_isr; 1877 test SEQINTSRC, SAVEPTRS jz main_isr; 1878 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1879 /* 1880 * Switch to the active FIFO after clearing the snapshot 1881 * savepointer in the current FIFO. We do this so that 1882 * a pending CTXTDONE or SAVEPTR is visible in the active 1883 * FIFO. This status is the only way we can detect if we 1884 * have lost the race (e.g. host paused us) and our attempts 1885 * to disable the channel occurred after all REQs were 1886 * already seen and acked (REQINIT never comes true). 1887 */ 1888 mvi DFFSXFRCTL, CLRCHN; 1889 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1890 test DFCNTRL, DIRECTION jz interrupt_return; 1891 and DFCNTRL, ~SCSIEN; 1892snapshot_wait_data_valid: 1893 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1894 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1895snapshot_data_valid: 1896 or DFCNTRL, SCSIEN; 1897 or SEQINTCTL, IRET ret; 1898snapshot_saveptr: 1899 mvi DFFSXFRCTL, CLRCHN; 1900 or SEQINTCTL, IRET ret; 1901main_isr: 1902 } 1903 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1904 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1905 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1906 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1907 SET_SEQINTCODE(INVALID_SEQINT) 1908 1909/* 1910 * There are two types of save pointers interrupts: 1911 * The first is a snapshot save pointers where the current FIFO is not 1912 * active and contains a snapshot of the current pointer information. 1913 * This happens between packets in a stream for a single L_Q. Since we 1914 * are not performing a pointer save, we can safely clear the channel 1915 * so it can be used for other transactions. On RTI capable controllers, 1916 * where snapshots can be, and are, disabled, the code to handle this type 1917 * of snapshot is not active. 1918 * 1919 * The second case is a save pointers on an active FIFO which occurs 1920 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1921 * has a residual. This should occur coincident with a ctxtdone. We 1922 * disable the interrupt and allow our active routine to handle the 1923 * save. 1924 */ 1925saveptr_intr: 1926 if ((ahd->features & AHD_RTI) == 0) { 1927 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1928 } 1929saveptr_active_fifo: 1930 and SEQIMODE, ~ENSAVEPTRS; 1931 or SEQINTCTL, IRET ret; 1932 1933cfg4data_intr: 1934 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1935 call load_first_seg; 1936 call pkt_handle_xfer; 1937 inc SCB_FIFO_USE_COUNT; 1938interrupt_return: 1939 or SEQINTCTL, IRET ret; 1940 1941cfg4istat_intr: 1942 call freeze_queue; 1943 add NONE, -13, SCB_CDB_LEN; 1944 jnc cfg4istat_have_sense_addr; 1945 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1946 /* 1947 * Host sets up address/count and enables transfer. 1948 */ 1949 SET_SEQINTCODE(CFG4ISTAT_INTR) 1950 jmp cfg4istat_setup_handler; 1951cfg4istat_have_sense_addr: 1952 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1953 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1954 mvi SG_CACHE_PRE, LAST_SEG; 1955 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1956cfg4istat_setup_handler: 1957 /* 1958 * Status pkt is transferring to host. 1959 * Wait in idle loop for transfer to complete. 1960 * If a command completed before an attempted 1961 * task management function completed, notify the host. 1962 */ 1963 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1964 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1965cfg4istat_no_taskmgmt_func: 1966 call pkt_handle_status; 1967 or SEQINTCTL, IRET ret; 1968 1969cfg4icmd_intr: 1970 /* 1971 * In the case of DMAing a CDB from the host, the normal 1972 * CDB buffer is formatted with an 8 byte address followed 1973 * by a 1 byte count. 1974 */ 1975 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1976 mvi SG_CACHE_PRE, LAST_SEG; 1977 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1978 call pkt_handle_cdb; 1979 or SEQINTCTL, IRET ret; 1980 1981/* 1982 * See if the target has gone on in this context creating an 1983 * overrun condition. For the write case, the hardware cannot 1984 * ack bytes until data are provided. So, if the target begins 1985 * another packet without changing contexts, implying we are 1986 * not sitting on a packet boundary, we are in an overrun 1987 * situation. For the read case, the hardware will continue to 1988 * ack bytes into the FIFO, and may even ack the last overrun packet 1989 * into the FIFO. If the FIFO should become non-empty, we are in 1990 * a read overrun case. 1991 */ 1992#define check_overrun \ 1993 /* Not on a packet boundary. */ \ 1994 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1995 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1996 1997pkt_handle_xfer: 1998 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1999 call setjmp; 2000 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 2001 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 2002 test SCSISIGO, ATNO jnz . + 2; 2003 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 2004 /* 2005 * Defer handling of this NONPACKREQ until we 2006 * can be sure it pertains to this FIFO. SAVEPTRS 2007 * will not be asserted if the NONPACKREQ is for us, 2008 * so we must simulate it if shadow is valid. If 2009 * shadow is not valid, keep running this FIFO until we 2010 * have satisfied the transfer by loading segments and 2011 * waiting for either shadow valid or last_seg_done. 2012 */ 2013 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 2014pkt_service_fifo: 2015 test SG_STATE, LOADING_NEEDED jnz service_fifo; 2016pkt_last_seg: 2017 call setjmp; 2018 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 2019 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 2020 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 2021 test SCSISIGO, ATNO jnz . + 2; 2022 test SSTAT2, NONPACKREQ jz return; 2023 test MDFFSTAT, SHVALID jz return; 2024 /* FALLTHROUGH */ 2025 2026/* 2027 * Either a SAVEPTRS interrupt condition is pending for this FIFO 2028 * or we have a pending NONPACKREQ for this FIFO. We differentiate 2029 * between the two by capturing the state of the SAVEPTRS interrupt 2030 * prior to clearing this status and executing the common code for 2031 * these two cases. 2032 */ 2033pkt_saveptrs: 2034BEGIN_CRITICAL; 2035 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2036 or DFCNTRL, FIFOFLUSH; 2037 } 2038 mov REG0, SEQINTSRC; 2039 call calc_residual; 2040 call save_pointers; 2041 mvi CLRSEQINTSRC, CLRSAVEPTRS; 2042 call disable_ccsgen; 2043 or SEQIMODE, ENSAVEPTRS; 2044 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 2045 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 2046 /* 2047 * Keep a handler around for this FIFO until it drains 2048 * to the host to guarantee that we don't complete the 2049 * command to the host before the data arrives. 2050 */ 2051pkt_saveptrs_wait_fifoemp: 2052 call setjmp; 2053 test DFSTATUS, FIFOEMP jz return; 2054pkt_saveptrs_check_status: 2055 or LONGJMP_ADDR[1], INVALID_ADDR; 2056 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 2057 dec SCB_FIFO_USE_COUNT; 2058 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2059 mvi DFFSXFRCTL, CLRCHN ret; 2060 2061/* 2062 * LAST_SEG_DONE status has been seen in the current FIFO. 2063 * This indicates that all of the allowed data for this 2064 * command has transferred across the SCSI and host buses. 2065 * Check for overrun and see if we can complete this command. 2066 */ 2067pkt_last_seg_done: 2068 /* 2069 * Mark transfer as completed. 2070 */ 2071 or SCB_SGPTR, SG_LIST_NULL; 2072 2073 /* 2074 * Wait for the current context to finish to verify that 2075 * no overrun condition has occurred. 2076 */ 2077 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2078 call setjmp; 2079pkt_wait_ctxt_done_loop: 2080 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2081 /* 2082 * A sufficiently large overrun or a NONPACKREQ may 2083 * prevent CTXTDONE from ever asserting, so we must 2084 * poll for these statuses too. 2085 */ 2086 check_overrun; 2087 test SSTAT2, NONPACKREQ jz return; 2088 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2089 /* FALLTHROUGH */ 2090 2091pkt_ctxt_done: 2092 check_overrun; 2093 or LONGJMP_ADDR[1], INVALID_ADDR; 2094 /* 2095 * If status has been received, it is safe to skip 2096 * the check to see if another FIFO is active because 2097 * LAST_SEG_DONE has been observed. However, we check 2098 * the FIFO anyway since it costs us only one extra 2099 * instruction to leverage common code to perform the 2100 * SCB completion. 2101 */ 2102 dec SCB_FIFO_USE_COUNT; 2103 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2104 mvi DFFSXFRCTL, CLRCHN ret; 2105END_CRITICAL; 2106 2107/* 2108 * Must wait until CDB xfer is over before issuing the 2109 * clear channel. 2110 */ 2111pkt_handle_cdb: 2112 call setjmp; 2113 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 2114 or LONGJMP_ADDR[1], INVALID_ADDR; 2115 mvi DFFSXFRCTL, CLRCHN ret; 2116 2117/* 2118 * Watch over the status transfer. Our host sense buffer is 2119 * large enough to take the maximum allowed status packet. 2120 * None-the-less, we must still catch and report overruns to 2121 * the host. Additionally, properly catch unexpected non-packet 2122 * phases that are typically caused by CRC errors in status packet 2123 * transmission. 2124 */ 2125pkt_handle_status: 2126 call setjmp; 2127 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2128 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 2129 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2130pkt_status_IU_done: 2131 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2132 or DFCNTRL, FIFOFLUSH; 2133 } 2134 test DFSTATUS, FIFOEMP jz return; 2135BEGIN_CRITICAL; 2136 or LONGJMP_ADDR[1], INVALID_ADDR; 2137 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 2138 or SCB_CONTROL, STATUS_RCVD; 2139 jmp pkt_complete_scb_if_fifos_idle; 2140END_CRITICAL; 2141pkt_status_check_overrun: 2142 /* 2143 * Status PKT overruns are unceremoniously recovered with a 2144 * bus reset. If we've overrun, let the host know so that 2145 * recovery can be performed. 2146 * 2147 * LAST_SEG_DONE has been observed. If either CTXTDONE or 2148 * a NONPACKREQ phase change have occurred and the FIFO is 2149 * empty, there is no overrun. 2150 */ 2151 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 2152 test SEQINTSRC, CTXTDONE jz . + 2; 2153 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 2154 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2155 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 2156pkt_status_report_overrun: 2157 SET_SEQINTCODE(STATUS_OVERRUN) 2158 /* SEQUENCER RESTARTED */ 2159pkt_status_check_nonpackreq: 2160 /* 2161 * CTXTDONE may be held off if a NONPACKREQ is associated with 2162 * the current context. If a NONPACKREQ is observed, decide 2163 * if it is for the current context. If it is for the current 2164 * context, we must defer NONPACKREQ processing until all data 2165 * has transferred to the host. 2166 */ 2167 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2168 test SCSISIGO, ATNO jnz . + 2; 2169 test SSTAT2, NONPACKREQ jz return; 2170 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 2171 test DFSTATUS, FIFOEMP jz return; 2172 /* 2173 * The unexpected nonpkt phase handler assumes that any 2174 * data channel use will have a FIFO reference count. It 2175 * turns out that the status handler doesn't need a reference 2176 * count since the status received flag, and thus completion 2177 * processing, cannot be set until the handler is finished. 2178 * We increment the count here to make the nonpkt handler 2179 * happy. 2180 */ 2181 inc SCB_FIFO_USE_COUNT; 2182 /* FALLTHROUGH */ 2183 2184/* 2185 * Nonpackreq is a polled status. It can come true in three situations: 2186 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2187 * L_Q context associated with this REQ (REQ occurs immediately after a 2188 * (re)selection). Routines that know that the context responsible for this 2189 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2190 * top level idle loop, we exhaust all active contexts prior to determining that 2191 * we simply do not have the full I_T_L_Q for this phase. 2192 */ 2193unexpected_nonpkt_phase_find_ctxt: 2194 /* 2195 * This nonpackreq is most likely associated with one of the tags 2196 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2197 * nonpackreq if we've cleared out the FIFOs and handled any 2198 * pending SELDO. 2199 */ 2200SET_SRC_MODE M_SCSI; 2201SET_DST_MODE M_SCSI; 2202 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2203 cmp A, FIFO1FREE|FIFO0FREE jne return; 2204 test SSTAT0, SELDO jnz return; 2205 mvi SCBPTR[1], SCB_LIST_NULL; 2206unexpected_nonpkt_phase: 2207 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2208 jnz unexpected_nonpkt_mode_cleared; 2209SET_SRC_MODE M_DFF0; 2210SET_DST_MODE M_DFF0; 2211 or LONGJMP_ADDR[1], INVALID_ADDR; 2212 dec SCB_FIFO_USE_COUNT; 2213 mvi DFFSXFRCTL, CLRCHN; 2214unexpected_nonpkt_mode_cleared: 2215 mvi CLRSINT2, CLRNONPACKREQ; 2216 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 2217 /* 2218 * Test to ensure that the bus has not 2219 * already gone free prior to clearing 2220 * any stale busfree status. This avoids 2221 * a window whereby a busfree just after 2222 * a selection could be missed. 2223 */ 2224 test SCSISIGI, BSYI jz . + 2; 2225 mvi CLRSINT1,CLRBUSFREE; 2226 or SIMODE1, ENBUSFREE; 2227 } 2228 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2229 SET_SEQINTCODE(ENTERING_NONPACK) 2230 jmp ITloop; 2231 2232illegal_phase: 2233 SET_SEQINTCODE(ILLEGAL_PHASE) 2234 jmp ITloop; 2235 2236/* 2237 * We have entered an overrun situation. If we have working 2238 * BITBUCKET, flip that on and let the hardware eat any overrun 2239 * data. Otherwise use an overrun buffer in the host to simulate 2240 * BITBUCKET. 2241 */ 2242pkt_handle_overrun_inc_use_count: 2243 inc SCB_FIFO_USE_COUNT; 2244pkt_handle_overrun: 2245 SET_SEQINTCODE(CFG4OVERRUN) 2246 call freeze_queue; 2247 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2248 or DFFSXFRCTL, DFFBITBUCKET; 2249SET_SRC_MODE M_DFF1; 2250SET_DST_MODE M_DFF1; 2251 } else { 2252 call load_overrun_buf; 2253 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2254 } 2255 call setjmp; 2256 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2257 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2258 call load_overrun_buf; 2259 or DFCNTRL, PRELOADEN; 2260overrun_load_done: 2261 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2262 } else { 2263 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2264 } 2265 test SSTAT2, NONPACKREQ jz return; 2266pkt_overrun_end: 2267 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2268 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2269 dec SCB_FIFO_USE_COUNT; 2270 or LONGJMP_ADDR[1], INVALID_ADDR; 2271 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2272 mvi DFFSXFRCTL, CLRCHN ret; 2273 2274if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2275load_overrun_buf: 2276 /* 2277 * Load a dummy segment if preload space is available. 2278 */ 2279 mov HADDR[0], SHARED_DATA_ADDR; 2280 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2281 mov ACCUM_SAVE, A; 2282 clr A; 2283 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2284 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2285 mov A, ACCUM_SAVE; 2286 bmov HADDR[4], ALLZEROS, 4; 2287 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2288 clr HCNT[0]; 2289 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2290 clr HCNT[2] ret; 2291} 2292