1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 #include "amdgpu_xgmi.h" 38 39 /** 40 * DOC: GPUVM 41 * 42 * GPUVM is similar to the legacy gart on older asics, however 43 * rather than there being a single global gart table 44 * for the entire GPU, there are multiple VM page tables active 45 * at any given time. The VM page tables can contain a mix 46 * vram pages and system memory pages and system memory pages 47 * can be mapped as snooped (cached system pages) or unsnooped 48 * (uncached system pages). 49 * Each VM has an ID associated with it and there is a page table 50 * associated with each VMID. When execting a command buffer, 51 * the kernel tells the the ring what VMID to use for that command 52 * buffer. VMIDs are allocated dynamically as commands are submitted. 53 * The userspace drivers maintain their own address space and the kernel 54 * sets up their pages tables accordingly when they submit their 55 * command buffers and a VMID is assigned. 56 * Cayman/Trinity support up to 8 active VMs at any given time; 57 * SI supports 16. 58 */ 59 60 #define START(node) ((node)->start) 61 #define LAST(node) ((node)->last) 62 63 #ifdef __linux__ 64 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 65 START, LAST, static, amdgpu_vm_it) 66 #else 67 static struct amdgpu_bo_va_mapping * 68 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start, 69 uint64_t last) 70 { 71 struct amdgpu_bo_va_mapping *node; 72 struct rb_node *rb; 73 74 for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) { 75 node = rb_entry(rb, typeof(*node), rb); 76 if (LAST(node) >= start && START(node) <= last) 77 return node; 78 } 79 return NULL; 80 } 81 82 static struct amdgpu_bo_va_mapping * 83 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start, 84 uint64_t last) 85 { 86 STUB(); 87 struct rb_node *rb = &node->rb; 88 89 for (rb = rb_next(rb); rb; rb = rb_next(rb)) { 90 node = rb_entry(rb, typeof(*node), rb); 91 if (LAST(node) >= start && START(node) <= last) 92 return node; 93 } 94 return NULL; 95 } 96 97 static void 98 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node, 99 struct rb_root_cached *root) 100 { 101 rb_erase_cached(&node->rb, root); 102 } 103 104 static void 105 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node, 106 struct rb_root_cached *root) 107 { 108 struct rb_node **iter = &root->rb_root.rb_node; 109 struct rb_node *parent = NULL; 110 struct amdgpu_bo_va_mapping *iter_node; 111 112 while (*iter) { 113 parent = *iter; 114 iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb); 115 116 if (node->start < iter_node->start) 117 iter = &(*iter)->rb_left; 118 else 119 iter = &(*iter)->rb_right; 120 } 121 122 rb_link_node(&node->rb, parent, iter); 123 rb_insert_color_cached(&node->rb, root, false); 124 } 125 #endif 126 127 #undef START 128 #undef LAST 129 130 /** 131 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 132 */ 133 struct amdgpu_prt_cb { 134 135 /** 136 * @adev: amdgpu device 137 */ 138 struct amdgpu_device *adev; 139 140 /** 141 * @cb: callback 142 */ 143 struct dma_fence_cb cb; 144 }; 145 146 /** 147 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 148 * happens while holding this lock anywhere to prevent deadlocks when 149 * an MMU notifier runs in reclaim-FS context. 150 */ 151 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 152 { 153 mutex_lock(&vm->eviction_lock); 154 #ifdef notyet 155 vm->saved_flags = memalloc_nofs_save(); 156 #endif 157 } 158 159 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 160 { 161 if (mutex_trylock(&vm->eviction_lock)) { 162 #ifdef notyet 163 vm->saved_flags = memalloc_nofs_save(); 164 #endif 165 return 1; 166 } 167 return 0; 168 } 169 170 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 171 { 172 #ifdef notyet 173 memalloc_nofs_restore(vm->saved_flags); 174 #endif 175 mutex_unlock(&vm->eviction_lock); 176 } 177 178 /** 179 * amdgpu_vm_level_shift - return the addr shift for each level 180 * 181 * @adev: amdgpu_device pointer 182 * @level: VMPT level 183 * 184 * Returns: 185 * The number of bits the pfn needs to be right shifted for a level. 186 */ 187 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 188 unsigned level) 189 { 190 switch (level) { 191 case AMDGPU_VM_PDB2: 192 case AMDGPU_VM_PDB1: 193 case AMDGPU_VM_PDB0: 194 return 9 * (AMDGPU_VM_PDB0 - level) + 195 adev->vm_manager.block_size; 196 case AMDGPU_VM_PTB: 197 return 0; 198 default: 199 return ~0; 200 } 201 } 202 203 /** 204 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 205 * 206 * @adev: amdgpu_device pointer 207 * @level: VMPT level 208 * 209 * Returns: 210 * The number of entries in a page directory or page table. 211 */ 212 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 213 unsigned level) 214 { 215 unsigned shift = amdgpu_vm_level_shift(adev, 216 adev->vm_manager.root_level); 217 218 if (level == adev->vm_manager.root_level) 219 /* For the root directory */ 220 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 221 >> shift; 222 else if (level != AMDGPU_VM_PTB) 223 /* Everything in between */ 224 return 512; 225 else 226 /* For the page tables on the leaves */ 227 return AMDGPU_VM_PTE_COUNT(adev); 228 } 229 230 /** 231 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 232 * 233 * @adev: amdgpu_device pointer 234 * 235 * Returns: 236 * The number of entries in the root page directory which needs the ATS setting. 237 */ 238 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 239 { 240 unsigned shift; 241 242 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 243 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 244 } 245 246 /** 247 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 248 * 249 * @adev: amdgpu_device pointer 250 * @level: VMPT level 251 * 252 * Returns: 253 * The mask to extract the entry number of a PD/PT from an address. 254 */ 255 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 256 unsigned int level) 257 { 258 if (level <= adev->vm_manager.root_level) 259 return 0xffffffff; 260 else if (level != AMDGPU_VM_PTB) 261 return 0x1ff; 262 else 263 return AMDGPU_VM_PTE_COUNT(adev) - 1; 264 } 265 266 /** 267 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 268 * 269 * @adev: amdgpu_device pointer 270 * @level: VMPT level 271 * 272 * Returns: 273 * The size of the BO for a page directory or page table in bytes. 274 */ 275 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 276 { 277 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 278 } 279 280 /** 281 * amdgpu_vm_bo_evicted - vm_bo is evicted 282 * 283 * @vm_bo: vm_bo which is evicted 284 * 285 * State for PDs/PTs and per VM BOs which are not at the location they should 286 * be. 287 */ 288 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 289 { 290 struct amdgpu_vm *vm = vm_bo->vm; 291 struct amdgpu_bo *bo = vm_bo->bo; 292 293 vm_bo->moved = true; 294 if (bo->tbo.type == ttm_bo_type_kernel) 295 list_move(&vm_bo->vm_status, &vm->evicted); 296 else 297 list_move_tail(&vm_bo->vm_status, &vm->evicted); 298 } 299 /** 300 * amdgpu_vm_bo_moved - vm_bo is moved 301 * 302 * @vm_bo: vm_bo which is moved 303 * 304 * State for per VM BOs which are moved, but that change is not yet reflected 305 * in the page tables. 306 */ 307 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 308 { 309 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 310 } 311 312 /** 313 * amdgpu_vm_bo_idle - vm_bo is idle 314 * 315 * @vm_bo: vm_bo which is now idle 316 * 317 * State for PDs/PTs and per VM BOs which have gone through the state machine 318 * and are now idle. 319 */ 320 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 321 { 322 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 323 vm_bo->moved = false; 324 } 325 326 /** 327 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 328 * 329 * @vm_bo: vm_bo which is now invalidated 330 * 331 * State for normal BOs which are invalidated and that change not yet reflected 332 * in the PTs. 333 */ 334 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 335 { 336 spin_lock(&vm_bo->vm->invalidated_lock); 337 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 338 spin_unlock(&vm_bo->vm->invalidated_lock); 339 } 340 341 /** 342 * amdgpu_vm_bo_relocated - vm_bo is reloacted 343 * 344 * @vm_bo: vm_bo which is relocated 345 * 346 * State for PDs/PTs which needs to update their parent PD. 347 * For the root PD, just move to idle state. 348 */ 349 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 350 { 351 if (vm_bo->bo->parent) 352 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 353 else 354 amdgpu_vm_bo_idle(vm_bo); 355 } 356 357 /** 358 * amdgpu_vm_bo_done - vm_bo is done 359 * 360 * @vm_bo: vm_bo which is now done 361 * 362 * State for normal BOs which are invalidated and that change has been updated 363 * in the PTs. 364 */ 365 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 366 { 367 spin_lock(&vm_bo->vm->invalidated_lock); 368 list_del_init(&vm_bo->vm_status); 369 spin_unlock(&vm_bo->vm->invalidated_lock); 370 } 371 372 /** 373 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 374 * 375 * @base: base structure for tracking BO usage in a VM 376 * @vm: vm to which bo is to be added 377 * @bo: amdgpu buffer object 378 * 379 * Initialize a bo_va_base structure and add it to the appropriate lists 380 * 381 */ 382 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 383 struct amdgpu_vm *vm, 384 struct amdgpu_bo *bo) 385 { 386 base->vm = vm; 387 base->bo = bo; 388 base->next = NULL; 389 INIT_LIST_HEAD(&base->vm_status); 390 391 if (!bo) 392 return; 393 base->next = bo->vm_bo; 394 bo->vm_bo = base; 395 396 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 397 return; 398 399 vm->bulk_moveable = false; 400 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 401 amdgpu_vm_bo_relocated(base); 402 else 403 amdgpu_vm_bo_idle(base); 404 405 if (bo->preferred_domains & 406 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 407 return; 408 409 /* 410 * we checked all the prerequisites, but it looks like this per vm bo 411 * is currently evicted. add the bo to the evicted list to make sure it 412 * is validated on next vm use to avoid fault. 413 * */ 414 amdgpu_vm_bo_evicted(base); 415 } 416 417 /** 418 * amdgpu_vm_pt_parent - get the parent page directory 419 * 420 * @pt: child page table 421 * 422 * Helper to get the parent entry for the child page table. NULL if we are at 423 * the root page directory. 424 */ 425 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 426 { 427 struct amdgpu_bo *parent = pt->base.bo->parent; 428 429 if (!parent) 430 return NULL; 431 432 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 433 } 434 435 /* 436 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 437 */ 438 struct amdgpu_vm_pt_cursor { 439 uint64_t pfn; 440 struct amdgpu_vm_pt *parent; 441 struct amdgpu_vm_pt *entry; 442 unsigned level; 443 }; 444 445 /** 446 * amdgpu_vm_pt_start - start PD/PT walk 447 * 448 * @adev: amdgpu_device pointer 449 * @vm: amdgpu_vm structure 450 * @start: start address of the walk 451 * @cursor: state to initialize 452 * 453 * Initialize a amdgpu_vm_pt_cursor to start a walk. 454 */ 455 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 456 struct amdgpu_vm *vm, uint64_t start, 457 struct amdgpu_vm_pt_cursor *cursor) 458 { 459 cursor->pfn = start; 460 cursor->parent = NULL; 461 cursor->entry = &vm->root; 462 cursor->level = adev->vm_manager.root_level; 463 } 464 465 /** 466 * amdgpu_vm_pt_descendant - go to child node 467 * 468 * @adev: amdgpu_device pointer 469 * @cursor: current state 470 * 471 * Walk to the child node of the current node. 472 * Returns: 473 * True if the walk was possible, false otherwise. 474 */ 475 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 476 struct amdgpu_vm_pt_cursor *cursor) 477 { 478 unsigned mask, shift, idx; 479 480 if (!cursor->entry->entries) 481 return false; 482 483 BUG_ON(!cursor->entry->base.bo); 484 mask = amdgpu_vm_entries_mask(adev, cursor->level); 485 shift = amdgpu_vm_level_shift(adev, cursor->level); 486 487 ++cursor->level; 488 idx = (cursor->pfn >> shift) & mask; 489 cursor->parent = cursor->entry; 490 cursor->entry = &cursor->entry->entries[idx]; 491 return true; 492 } 493 494 /** 495 * amdgpu_vm_pt_sibling - go to sibling node 496 * 497 * @adev: amdgpu_device pointer 498 * @cursor: current state 499 * 500 * Walk to the sibling node of the current node. 501 * Returns: 502 * True if the walk was possible, false otherwise. 503 */ 504 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 505 struct amdgpu_vm_pt_cursor *cursor) 506 { 507 unsigned shift, num_entries; 508 509 /* Root doesn't have a sibling */ 510 if (!cursor->parent) 511 return false; 512 513 /* Go to our parents and see if we got a sibling */ 514 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 515 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 516 517 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 518 return false; 519 520 cursor->pfn += 1ULL << shift; 521 cursor->pfn &= ~((1ULL << shift) - 1); 522 ++cursor->entry; 523 return true; 524 } 525 526 /** 527 * amdgpu_vm_pt_ancestor - go to parent node 528 * 529 * @cursor: current state 530 * 531 * Walk to the parent node of the current node. 532 * Returns: 533 * True if the walk was possible, false otherwise. 534 */ 535 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 536 { 537 if (!cursor->parent) 538 return false; 539 540 --cursor->level; 541 cursor->entry = cursor->parent; 542 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 543 return true; 544 } 545 546 /** 547 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 548 * 549 * @adev: amdgpu_device pointer 550 * @cursor: current state 551 * 552 * Walk the PD/PT tree to the next node. 553 */ 554 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 555 struct amdgpu_vm_pt_cursor *cursor) 556 { 557 /* First try a newborn child */ 558 if (amdgpu_vm_pt_descendant(adev, cursor)) 559 return; 560 561 /* If that didn't worked try to find a sibling */ 562 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 563 /* No sibling, go to our parents and grandparents */ 564 if (!amdgpu_vm_pt_ancestor(cursor)) { 565 cursor->pfn = ~0ll; 566 return; 567 } 568 } 569 } 570 571 /** 572 * amdgpu_vm_pt_first_dfs - start a deep first search 573 * 574 * @adev: amdgpu_device structure 575 * @vm: amdgpu_vm structure 576 * @start: optional cursor to start with 577 * @cursor: state to initialize 578 * 579 * Starts a deep first traversal of the PD/PT tree. 580 */ 581 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm *vm, 583 struct amdgpu_vm_pt_cursor *start, 584 struct amdgpu_vm_pt_cursor *cursor) 585 { 586 if (start) 587 *cursor = *start; 588 else 589 amdgpu_vm_pt_start(adev, vm, 0, cursor); 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 } 592 593 /** 594 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 595 * 596 * @start: starting point for the search 597 * @entry: current entry 598 * 599 * Returns: 600 * True when the search should continue, false otherwise. 601 */ 602 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 603 struct amdgpu_vm_pt *entry) 604 { 605 return entry && (!start || entry != start->entry); 606 } 607 608 /** 609 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 610 * 611 * @adev: amdgpu_device structure 612 * @cursor: current state 613 * 614 * Move the cursor to the next node in a deep first search. 615 */ 616 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 617 struct amdgpu_vm_pt_cursor *cursor) 618 { 619 if (!cursor->entry) 620 return; 621 622 if (!cursor->parent) 623 cursor->entry = NULL; 624 else if (amdgpu_vm_pt_sibling(adev, cursor)) 625 while (amdgpu_vm_pt_descendant(adev, cursor)); 626 else 627 amdgpu_vm_pt_ancestor(cursor); 628 } 629 630 /* 631 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 632 */ 633 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 634 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 635 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 636 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 637 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 638 639 /** 640 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 641 * 642 * @vm: vm providing the BOs 643 * @validated: head of validation list 644 * @entry: entry to add 645 * 646 * Add the page directory to the list of BOs to 647 * validate for command submission. 648 */ 649 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 650 struct list_head *validated, 651 struct amdgpu_bo_list_entry *entry) 652 { 653 entry->priority = 0; 654 entry->tv.bo = &vm->root.base.bo->tbo; 655 /* Two for VM updates, one for TTM and one for the CS job */ 656 entry->tv.num_shared = 4; 657 entry->user_pages = NULL; 658 list_add(&entry->tv.head, validated); 659 } 660 661 /** 662 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 663 * 664 * @bo: BO which was removed from the LRU 665 * 666 * Make sure the bulk_moveable flag is updated when a BO is removed from the 667 * LRU. 668 */ 669 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 670 { 671 struct amdgpu_bo *abo; 672 struct amdgpu_vm_bo_base *bo_base; 673 674 if (!amdgpu_bo_is_amdgpu_bo(bo)) 675 return; 676 677 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 678 return; 679 680 abo = ttm_to_amdgpu_bo(bo); 681 if (!abo->parent) 682 return; 683 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 684 struct amdgpu_vm *vm = bo_base->vm; 685 686 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 687 vm->bulk_moveable = false; 688 } 689 690 } 691 /** 692 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 693 * 694 * @adev: amdgpu device pointer 695 * @vm: vm providing the BOs 696 * 697 * Move all BOs to the end of LRU and remember their positions to put them 698 * together. 699 */ 700 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 701 struct amdgpu_vm *vm) 702 { 703 struct amdgpu_vm_bo_base *bo_base; 704 705 if (vm->bulk_moveable) { 706 spin_lock(&ttm_bo_glob.lru_lock); 707 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 708 spin_unlock(&ttm_bo_glob.lru_lock); 709 return; 710 } 711 712 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 713 714 spin_lock(&ttm_bo_glob.lru_lock); 715 list_for_each_entry(bo_base, &vm->idle, vm_status) { 716 struct amdgpu_bo *bo = bo_base->bo; 717 718 if (!bo->parent) 719 continue; 720 721 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 722 if (bo->shadow) 723 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 724 &vm->lru_bulk_move); 725 } 726 spin_unlock(&ttm_bo_glob.lru_lock); 727 728 vm->bulk_moveable = true; 729 } 730 731 /** 732 * amdgpu_vm_validate_pt_bos - validate the page table BOs 733 * 734 * @adev: amdgpu device pointer 735 * @vm: vm providing the BOs 736 * @validate: callback to do the validation 737 * @param: parameter for the validation callback 738 * 739 * Validate the page table BOs on command submission if neccessary. 740 * 741 * Returns: 742 * Validation result. 743 */ 744 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 745 int (*validate)(void *p, struct amdgpu_bo *bo), 746 void *param) 747 { 748 struct amdgpu_vm_bo_base *bo_base, *tmp; 749 int r; 750 751 vm->bulk_moveable &= list_empty(&vm->evicted); 752 753 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 754 struct amdgpu_bo *bo = bo_base->bo; 755 756 r = validate(param, bo); 757 if (r) 758 return r; 759 760 if (bo->tbo.type != ttm_bo_type_kernel) { 761 amdgpu_vm_bo_moved(bo_base); 762 } else { 763 vm->update_funcs->map_table(bo); 764 amdgpu_vm_bo_relocated(bo_base); 765 } 766 } 767 768 amdgpu_vm_eviction_lock(vm); 769 vm->evicting = false; 770 amdgpu_vm_eviction_unlock(vm); 771 772 return 0; 773 } 774 775 /** 776 * amdgpu_vm_ready - check VM is ready for updates 777 * 778 * @vm: VM to check 779 * 780 * Check if all VM PDs/PTs are ready for updates 781 * 782 * Returns: 783 * True if eviction list is empty. 784 */ 785 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 786 { 787 return list_empty(&vm->evicted); 788 } 789 790 /** 791 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 792 * 793 * @adev: amdgpu_device pointer 794 * @vm: VM to clear BO from 795 * @bo: BO to clear 796 * @direct: use a direct update 797 * 798 * Root PD needs to be reserved when calling this. 799 * 800 * Returns: 801 * 0 on success, errno otherwise. 802 */ 803 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 804 struct amdgpu_vm *vm, 805 struct amdgpu_bo *bo, 806 bool direct) 807 { 808 struct ttm_operation_ctx ctx = { true, false }; 809 unsigned level = adev->vm_manager.root_level; 810 struct amdgpu_vm_update_params params; 811 struct amdgpu_bo *ancestor = bo; 812 unsigned entries, ats_entries; 813 uint64_t addr; 814 int r; 815 816 /* Figure out our place in the hierarchy */ 817 if (ancestor->parent) { 818 ++level; 819 while (ancestor->parent->parent) { 820 ++level; 821 ancestor = ancestor->parent; 822 } 823 } 824 825 entries = amdgpu_bo_size(bo) / 8; 826 if (!vm->pte_support_ats) { 827 ats_entries = 0; 828 829 } else if (!bo->parent) { 830 ats_entries = amdgpu_vm_num_ats_entries(adev); 831 ats_entries = min(ats_entries, entries); 832 entries -= ats_entries; 833 834 } else { 835 struct amdgpu_vm_pt *pt; 836 837 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 838 ats_entries = amdgpu_vm_num_ats_entries(adev); 839 if ((pt - vm->root.entries) >= ats_entries) { 840 ats_entries = 0; 841 } else { 842 ats_entries = entries; 843 entries = 0; 844 } 845 } 846 847 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 848 if (r) 849 return r; 850 851 if (bo->shadow) { 852 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 853 &ctx); 854 if (r) 855 return r; 856 } 857 858 r = vm->update_funcs->map_table(bo); 859 if (r) 860 return r; 861 862 memset(¶ms, 0, sizeof(params)); 863 params.adev = adev; 864 params.vm = vm; 865 params.direct = direct; 866 867 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 868 if (r) 869 return r; 870 871 addr = 0; 872 if (ats_entries) { 873 uint64_t value = 0, flags; 874 875 flags = AMDGPU_PTE_DEFAULT_ATC; 876 if (level != AMDGPU_VM_PTB) { 877 /* Handle leaf PDEs as PTEs */ 878 flags |= AMDGPU_PDE_PTE; 879 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 880 } 881 882 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 883 value, flags); 884 if (r) 885 return r; 886 887 addr += ats_entries * 8; 888 } 889 890 if (entries) { 891 uint64_t value = 0, flags = 0; 892 893 if (adev->asic_type >= CHIP_VEGA10) { 894 if (level != AMDGPU_VM_PTB) { 895 /* Handle leaf PDEs as PTEs */ 896 flags |= AMDGPU_PDE_PTE; 897 amdgpu_gmc_get_vm_pde(adev, level, 898 &value, &flags); 899 } else { 900 /* Workaround for fault priority problem on GMC9 */ 901 flags = AMDGPU_PTE_EXECUTABLE; 902 } 903 } 904 905 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 906 value, flags); 907 if (r) 908 return r; 909 } 910 911 return vm->update_funcs->commit(¶ms, NULL); 912 } 913 914 /** 915 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 916 * 917 * @adev: amdgpu_device pointer 918 * @vm: requesting vm 919 * @level: the page table level 920 * @direct: use a direct update 921 * @bp: resulting BO allocation parameters 922 */ 923 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 924 int level, bool direct, 925 struct amdgpu_bo_param *bp) 926 { 927 memset(bp, 0, sizeof(*bp)); 928 929 bp->size = amdgpu_vm_bo_size(adev, level); 930 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 931 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 932 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 933 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 934 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 935 if (vm->use_cpu_for_update) 936 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 937 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 938 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 939 bp->type = ttm_bo_type_kernel; 940 bp->no_wait_gpu = direct; 941 if (vm->root.base.bo) 942 bp->resv = vm->root.base.bo->tbo.base.resv; 943 } 944 945 /** 946 * amdgpu_vm_alloc_pts - Allocate a specific page table 947 * 948 * @adev: amdgpu_device pointer 949 * @vm: VM to allocate page tables for 950 * @cursor: Which page table to allocate 951 * @direct: use a direct update 952 * 953 * Make sure a specific page table or directory is allocated. 954 * 955 * Returns: 956 * 1 if page table needed to be allocated, 0 if page table was already 957 * allocated, negative errno if an error occurred. 958 */ 959 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 960 struct amdgpu_vm *vm, 961 struct amdgpu_vm_pt_cursor *cursor, 962 bool direct) 963 { 964 struct amdgpu_vm_pt *entry = cursor->entry; 965 struct amdgpu_bo_param bp; 966 struct amdgpu_bo *pt; 967 int r; 968 969 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 970 unsigned num_entries; 971 972 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 973 entry->entries = kvmalloc_array(num_entries, 974 sizeof(*entry->entries), 975 GFP_KERNEL | __GFP_ZERO); 976 if (!entry->entries) 977 return -ENOMEM; 978 } 979 980 if (entry->base.bo) 981 return 0; 982 983 amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp); 984 985 r = amdgpu_bo_create(adev, &bp, &pt); 986 if (r) 987 return r; 988 989 /* Keep a reference to the root directory to avoid 990 * freeing them up in the wrong order. 991 */ 992 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 993 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 994 995 r = amdgpu_vm_clear_bo(adev, vm, pt, direct); 996 if (r) 997 goto error_free_pt; 998 999 return 0; 1000 1001 error_free_pt: 1002 amdgpu_bo_unref(&pt->shadow); 1003 amdgpu_bo_unref(&pt); 1004 return r; 1005 } 1006 1007 /** 1008 * amdgpu_vm_free_table - fre one PD/PT 1009 * 1010 * @entry: PDE to free 1011 */ 1012 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 1013 { 1014 if (entry->base.bo) { 1015 entry->base.bo->vm_bo = NULL; 1016 list_del(&entry->base.vm_status); 1017 amdgpu_bo_unref(&entry->base.bo->shadow); 1018 amdgpu_bo_unref(&entry->base.bo); 1019 } 1020 kvfree(entry->entries); 1021 entry->entries = NULL; 1022 } 1023 1024 /** 1025 * amdgpu_vm_free_pts - free PD/PT levels 1026 * 1027 * @adev: amdgpu device structure 1028 * @vm: amdgpu vm structure 1029 * @start: optional cursor where to start freeing PDs/PTs 1030 * 1031 * Free the page directory or page table level and all sub levels. 1032 */ 1033 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1034 struct amdgpu_vm *vm, 1035 struct amdgpu_vm_pt_cursor *start) 1036 { 1037 struct amdgpu_vm_pt_cursor cursor; 1038 struct amdgpu_vm_pt *entry; 1039 1040 vm->bulk_moveable = false; 1041 1042 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1043 amdgpu_vm_free_table(entry); 1044 1045 if (start) 1046 amdgpu_vm_free_table(start->entry); 1047 } 1048 1049 /** 1050 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1051 * 1052 * @adev: amdgpu_device pointer 1053 */ 1054 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1055 { 1056 const struct amdgpu_ip_block *ip_block; 1057 bool has_compute_vm_bug; 1058 struct amdgpu_ring *ring; 1059 int i; 1060 1061 has_compute_vm_bug = false; 1062 1063 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1064 if (ip_block) { 1065 /* Compute has a VM bug for GFX version < 7. 1066 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1067 if (ip_block->version->major <= 7) 1068 has_compute_vm_bug = true; 1069 else if (ip_block->version->major == 8) 1070 if (adev->gfx.mec_fw_version < 673) 1071 has_compute_vm_bug = true; 1072 } 1073 1074 for (i = 0; i < adev->num_rings; i++) { 1075 ring = adev->rings[i]; 1076 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1077 /* only compute rings */ 1078 ring->has_compute_vm_bug = has_compute_vm_bug; 1079 else 1080 ring->has_compute_vm_bug = false; 1081 } 1082 } 1083 1084 /** 1085 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1086 * 1087 * @ring: ring on which the job will be submitted 1088 * @job: job to submit 1089 * 1090 * Returns: 1091 * True if sync is needed. 1092 */ 1093 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1094 struct amdgpu_job *job) 1095 { 1096 struct amdgpu_device *adev = ring->adev; 1097 unsigned vmhub = ring->funcs->vmhub; 1098 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1099 struct amdgpu_vmid *id; 1100 bool gds_switch_needed; 1101 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1102 1103 if (job->vmid == 0) 1104 return false; 1105 id = &id_mgr->ids[job->vmid]; 1106 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1107 id->gds_base != job->gds_base || 1108 id->gds_size != job->gds_size || 1109 id->gws_base != job->gws_base || 1110 id->gws_size != job->gws_size || 1111 id->oa_base != job->oa_base || 1112 id->oa_size != job->oa_size); 1113 1114 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1115 return true; 1116 1117 return vm_flush_needed || gds_switch_needed; 1118 } 1119 1120 /** 1121 * amdgpu_vm_flush - hardware flush the vm 1122 * 1123 * @ring: ring to use for flush 1124 * @job: related job 1125 * @need_pipe_sync: is pipe sync needed 1126 * 1127 * Emit a VM flush when it is necessary. 1128 * 1129 * Returns: 1130 * 0 on success, errno otherwise. 1131 */ 1132 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1133 bool need_pipe_sync) 1134 { 1135 struct amdgpu_device *adev = ring->adev; 1136 unsigned vmhub = ring->funcs->vmhub; 1137 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1138 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1139 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1140 id->gds_base != job->gds_base || 1141 id->gds_size != job->gds_size || 1142 id->gws_base != job->gws_base || 1143 id->gws_size != job->gws_size || 1144 id->oa_base != job->oa_base || 1145 id->oa_size != job->oa_size); 1146 bool vm_flush_needed = job->vm_needs_flush; 1147 struct dma_fence *fence = NULL; 1148 bool pasid_mapping_needed = false; 1149 unsigned patch_offset = 0; 1150 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1151 int r; 1152 1153 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1154 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1155 1156 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1157 gds_switch_needed = true; 1158 vm_flush_needed = true; 1159 pasid_mapping_needed = true; 1160 } 1161 1162 mutex_lock(&id_mgr->lock); 1163 if (id->pasid != job->pasid || !id->pasid_mapping || 1164 !dma_fence_is_signaled(id->pasid_mapping)) 1165 pasid_mapping_needed = true; 1166 mutex_unlock(&id_mgr->lock); 1167 1168 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1169 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1170 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1171 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1172 ring->funcs->emit_wreg; 1173 1174 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1175 return 0; 1176 1177 if (ring->funcs->init_cond_exec) 1178 patch_offset = amdgpu_ring_init_cond_exec(ring); 1179 1180 if (need_pipe_sync) 1181 amdgpu_ring_emit_pipeline_sync(ring); 1182 1183 if (vm_flush_needed) { 1184 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1185 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1186 } 1187 1188 if (pasid_mapping_needed) 1189 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1190 1191 if (vm_flush_needed || pasid_mapping_needed) { 1192 r = amdgpu_fence_emit(ring, &fence, 0); 1193 if (r) 1194 return r; 1195 } 1196 1197 if (vm_flush_needed) { 1198 mutex_lock(&id_mgr->lock); 1199 dma_fence_put(id->last_flush); 1200 id->last_flush = dma_fence_get(fence); 1201 id->current_gpu_reset_count = 1202 atomic_read(&adev->gpu_reset_counter); 1203 mutex_unlock(&id_mgr->lock); 1204 } 1205 1206 if (pasid_mapping_needed) { 1207 mutex_lock(&id_mgr->lock); 1208 id->pasid = job->pasid; 1209 dma_fence_put(id->pasid_mapping); 1210 id->pasid_mapping = dma_fence_get(fence); 1211 mutex_unlock(&id_mgr->lock); 1212 } 1213 dma_fence_put(fence); 1214 1215 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1216 id->gds_base = job->gds_base; 1217 id->gds_size = job->gds_size; 1218 id->gws_base = job->gws_base; 1219 id->gws_size = job->gws_size; 1220 id->oa_base = job->oa_base; 1221 id->oa_size = job->oa_size; 1222 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1223 job->gds_size, job->gws_base, 1224 job->gws_size, job->oa_base, 1225 job->oa_size); 1226 } 1227 1228 if (ring->funcs->patch_cond_exec) 1229 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1230 1231 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1232 if (ring->funcs->emit_switch_buffer) { 1233 amdgpu_ring_emit_switch_buffer(ring); 1234 amdgpu_ring_emit_switch_buffer(ring); 1235 } 1236 return 0; 1237 } 1238 1239 /** 1240 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1241 * 1242 * @vm: requested vm 1243 * @bo: requested buffer object 1244 * 1245 * Find @bo inside the requested vm. 1246 * Search inside the @bos vm list for the requested vm 1247 * Returns the found bo_va or NULL if none is found 1248 * 1249 * Object has to be reserved! 1250 * 1251 * Returns: 1252 * Found bo_va or NULL. 1253 */ 1254 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1255 struct amdgpu_bo *bo) 1256 { 1257 struct amdgpu_vm_bo_base *base; 1258 1259 for (base = bo->vm_bo; base; base = base->next) { 1260 if (base->vm != vm) 1261 continue; 1262 1263 return container_of(base, struct amdgpu_bo_va, base); 1264 } 1265 return NULL; 1266 } 1267 1268 /** 1269 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1270 * 1271 * @pages_addr: optional DMA address to use for lookup 1272 * @addr: the unmapped addr 1273 * 1274 * Look up the physical address of the page that the pte resolves 1275 * to. 1276 * 1277 * Returns: 1278 * The pointer for the page table entry. 1279 */ 1280 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1281 { 1282 uint64_t result; 1283 1284 /* page table offset */ 1285 result = pages_addr[addr >> PAGE_SHIFT]; 1286 1287 /* in case cpu page size != gpu page size*/ 1288 result |= addr & (PAGE_MASK); 1289 1290 result &= 0xFFFFFFFFFFFFF000ULL; 1291 1292 return result; 1293 } 1294 1295 /** 1296 * amdgpu_vm_update_pde - update a single level in the hierarchy 1297 * 1298 * @params: parameters for the update 1299 * @vm: requested vm 1300 * @entry: entry to update 1301 * 1302 * Makes sure the requested entry in parent is up to date. 1303 */ 1304 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1305 struct amdgpu_vm *vm, 1306 struct amdgpu_vm_pt *entry) 1307 { 1308 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1309 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1310 uint64_t pde, pt, flags; 1311 unsigned level; 1312 1313 for (level = 0, pbo = bo->parent; pbo; ++level) 1314 pbo = pbo->parent; 1315 1316 level += params->adev->vm_manager.root_level; 1317 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1318 pde = (entry - parent->entries) * 8; 1319 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1320 } 1321 1322 /** 1323 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1324 * 1325 * @adev: amdgpu_device pointer 1326 * @vm: related vm 1327 * 1328 * Mark all PD level as invalid after an error. 1329 */ 1330 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1331 struct amdgpu_vm *vm) 1332 { 1333 struct amdgpu_vm_pt_cursor cursor; 1334 struct amdgpu_vm_pt *entry; 1335 1336 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1337 if (entry->base.bo && !entry->base.moved) 1338 amdgpu_vm_bo_relocated(&entry->base); 1339 } 1340 1341 /** 1342 * amdgpu_vm_update_pdes - make sure that all directories are valid 1343 * 1344 * @adev: amdgpu_device pointer 1345 * @vm: requested vm 1346 * @direct: submit directly to the paging queue 1347 * 1348 * Makes sure all directories are up to date. 1349 * 1350 * Returns: 1351 * 0 for success, error for failure. 1352 */ 1353 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1354 struct amdgpu_vm *vm, bool direct) 1355 { 1356 struct amdgpu_vm_update_params params; 1357 int r; 1358 1359 if (list_empty(&vm->relocated)) 1360 return 0; 1361 1362 memset(¶ms, 0, sizeof(params)); 1363 params.adev = adev; 1364 params.vm = vm; 1365 params.direct = direct; 1366 1367 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1368 if (r) 1369 return r; 1370 1371 while (!list_empty(&vm->relocated)) { 1372 struct amdgpu_vm_pt *entry; 1373 1374 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1375 base.vm_status); 1376 amdgpu_vm_bo_idle(&entry->base); 1377 1378 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1379 if (r) 1380 goto error; 1381 } 1382 1383 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1384 if (r) 1385 goto error; 1386 return 0; 1387 1388 error: 1389 amdgpu_vm_invalidate_pds(adev, vm); 1390 return r; 1391 } 1392 1393 /* 1394 * amdgpu_vm_update_flags - figure out flags for PTE updates 1395 * 1396 * Make sure to set the right flags for the PTEs at the desired level. 1397 */ 1398 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1399 struct amdgpu_bo *bo, unsigned level, 1400 uint64_t pe, uint64_t addr, 1401 unsigned count, uint32_t incr, 1402 uint64_t flags) 1403 1404 { 1405 if (level != AMDGPU_VM_PTB) { 1406 flags |= AMDGPU_PDE_PTE; 1407 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1408 1409 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1410 !(flags & AMDGPU_PTE_VALID) && 1411 !(flags & AMDGPU_PTE_PRT)) { 1412 1413 /* Workaround for fault priority problem on GMC9 */ 1414 flags |= AMDGPU_PTE_EXECUTABLE; 1415 } 1416 1417 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1418 flags); 1419 } 1420 1421 /** 1422 * amdgpu_vm_fragment - get fragment for PTEs 1423 * 1424 * @params: see amdgpu_vm_update_params definition 1425 * @start: first PTE to handle 1426 * @end: last PTE to handle 1427 * @flags: hw mapping flags 1428 * @frag: resulting fragment size 1429 * @frag_end: end of this fragment 1430 * 1431 * Returns the first possible fragment for the start and end address. 1432 */ 1433 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1434 uint64_t start, uint64_t end, uint64_t flags, 1435 unsigned int *frag, uint64_t *frag_end) 1436 { 1437 /** 1438 * The MC L1 TLB supports variable sized pages, based on a fragment 1439 * field in the PTE. When this field is set to a non-zero value, page 1440 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1441 * flags are considered valid for all PTEs within the fragment range 1442 * and corresponding mappings are assumed to be physically contiguous. 1443 * 1444 * The L1 TLB can store a single PTE for the whole fragment, 1445 * significantly increasing the space available for translation 1446 * caching. This leads to large improvements in throughput when the 1447 * TLB is under pressure. 1448 * 1449 * The L2 TLB distributes small and large fragments into two 1450 * asymmetric partitions. The large fragment cache is significantly 1451 * larger. Thus, we try to use large fragments wherever possible. 1452 * Userspace can support this by aligning virtual base address and 1453 * allocation size to the fragment size. 1454 * 1455 * Starting with Vega10 the fragment size only controls the L1. The L2 1456 * is now directly feed with small/huge/giant pages from the walker. 1457 */ 1458 unsigned max_frag; 1459 1460 if (params->adev->asic_type < CHIP_VEGA10) 1461 max_frag = params->adev->vm_manager.fragment_size; 1462 else 1463 max_frag = 31; 1464 1465 /* system pages are non continuously */ 1466 if (params->pages_addr) { 1467 *frag = 0; 1468 *frag_end = end; 1469 return; 1470 } 1471 1472 /* This intentionally wraps around if no bit is set */ 1473 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1474 if (*frag >= max_frag) { 1475 *frag = max_frag; 1476 *frag_end = end & ~((1ULL << max_frag) - 1); 1477 } else { 1478 *frag_end = start + (1 << *frag); 1479 } 1480 } 1481 1482 /** 1483 * amdgpu_vm_update_ptes - make sure that page tables are valid 1484 * 1485 * @params: see amdgpu_vm_update_params definition 1486 * @start: start of GPU address range 1487 * @end: end of GPU address range 1488 * @dst: destination address to map to, the next dst inside the function 1489 * @flags: mapping flags 1490 * 1491 * Update the page tables in the range @start - @end. 1492 * 1493 * Returns: 1494 * 0 for success, -EINVAL for failure. 1495 */ 1496 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1497 uint64_t start, uint64_t end, 1498 uint64_t dst, uint64_t flags) 1499 { 1500 struct amdgpu_device *adev = params->adev; 1501 struct amdgpu_vm_pt_cursor cursor; 1502 uint64_t frag_start = start, frag_end; 1503 unsigned int frag; 1504 int r; 1505 1506 /* figure out the initial fragment */ 1507 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1508 1509 /* walk over the address space and update the PTs */ 1510 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1511 while (cursor.pfn < end) { 1512 unsigned shift, parent_shift, mask; 1513 uint64_t incr, entry_end, pe_start; 1514 struct amdgpu_bo *pt; 1515 1516 if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1517 /* make sure that the page tables covering the 1518 * address range are actually allocated 1519 */ 1520 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1521 &cursor, params->direct); 1522 if (r) 1523 return r; 1524 } 1525 1526 shift = amdgpu_vm_level_shift(adev, cursor.level); 1527 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1528 if (adev->asic_type < CHIP_VEGA10 && 1529 (flags & AMDGPU_PTE_VALID)) { 1530 /* No huge page support before GMC v9 */ 1531 if (cursor.level != AMDGPU_VM_PTB) { 1532 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1533 return -ENOENT; 1534 continue; 1535 } 1536 } else if (frag < shift) { 1537 /* We can't use this level when the fragment size is 1538 * smaller than the address shift. Go to the next 1539 * child entry and try again. 1540 */ 1541 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1542 continue; 1543 } else if (frag >= parent_shift) { 1544 /* If the fragment size is even larger than the parent 1545 * shift we should go up one level and check it again. 1546 */ 1547 if (!amdgpu_vm_pt_ancestor(&cursor)) 1548 return -EINVAL; 1549 continue; 1550 } 1551 1552 pt = cursor.entry->base.bo; 1553 if (!pt) { 1554 /* We need all PDs and PTs for mapping something, */ 1555 if (flags & AMDGPU_PTE_VALID) 1556 return -ENOENT; 1557 1558 /* but unmapping something can happen at a higher 1559 * level. 1560 */ 1561 if (!amdgpu_vm_pt_ancestor(&cursor)) 1562 return -EINVAL; 1563 1564 pt = cursor.entry->base.bo; 1565 shift = parent_shift; 1566 } 1567 1568 /* Looks good so far, calculate parameters for the update */ 1569 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1570 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1571 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1572 entry_end = ((uint64_t)mask + 1) << shift; 1573 entry_end += cursor.pfn & ~(entry_end - 1); 1574 entry_end = min(entry_end, end); 1575 1576 do { 1577 uint64_t upd_end = min(entry_end, frag_end); 1578 unsigned nptes = (upd_end - frag_start) >> shift; 1579 1580 /* This can happen when we set higher level PDs to 1581 * silent to stop fault floods. 1582 */ 1583 nptes = max(nptes, 1u); 1584 amdgpu_vm_update_flags(params, pt, cursor.level, 1585 pe_start, dst, nptes, incr, 1586 flags | AMDGPU_PTE_FRAG(frag)); 1587 1588 pe_start += nptes * 8; 1589 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1590 1591 frag_start = upd_end; 1592 if (frag_start >= frag_end) { 1593 /* figure out the next fragment */ 1594 amdgpu_vm_fragment(params, frag_start, end, 1595 flags, &frag, &frag_end); 1596 if (frag < shift) 1597 break; 1598 } 1599 } while (frag_start < entry_end); 1600 1601 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1602 /* Free all child entries. 1603 * Update the tables with the flags and addresses and free up subsequent 1604 * tables in the case of huge pages or freed up areas. 1605 * This is the maximum you can free, because all other page tables are not 1606 * completely covered by the range and so potentially still in use. 1607 */ 1608 while (cursor.pfn < frag_start) { 1609 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1610 amdgpu_vm_pt_next(adev, &cursor); 1611 } 1612 1613 } else if (frag >= shift) { 1614 /* or just move on to the next on the same level. */ 1615 amdgpu_vm_pt_next(adev, &cursor); 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 /** 1623 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1624 * 1625 * @adev: amdgpu_device pointer 1626 * @vm: requested vm 1627 * @direct: direct submission in a page fault 1628 * @resv: fences we need to sync to 1629 * @start: start of mapped range 1630 * @last: last mapped entry 1631 * @flags: flags for the entries 1632 * @addr: addr to set the area to 1633 * @pages_addr: DMA addresses to use for mapping 1634 * @fence: optional resulting fence 1635 * 1636 * Fill in the page table entries between @start and @last. 1637 * 1638 * Returns: 1639 * 0 for success, -EINVAL for failure. 1640 */ 1641 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1642 struct amdgpu_vm *vm, bool direct, 1643 struct dma_resv *resv, 1644 uint64_t start, uint64_t last, 1645 uint64_t flags, uint64_t addr, 1646 dma_addr_t *pages_addr, 1647 struct dma_fence **fence) 1648 { 1649 struct amdgpu_vm_update_params params; 1650 enum amdgpu_sync_mode sync_mode; 1651 int r; 1652 1653 memset(¶ms, 0, sizeof(params)); 1654 params.adev = adev; 1655 params.vm = vm; 1656 params.direct = direct; 1657 params.pages_addr = pages_addr; 1658 1659 /* Implicitly sync to command submissions in the same VM before 1660 * unmapping. Sync to moving fences before mapping. 1661 */ 1662 if (!(flags & AMDGPU_PTE_VALID)) 1663 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1664 else 1665 sync_mode = AMDGPU_SYNC_EXPLICIT; 1666 1667 amdgpu_vm_eviction_lock(vm); 1668 if (vm->evicting) { 1669 r = -EBUSY; 1670 goto error_unlock; 1671 } 1672 1673 if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1674 struct amdgpu_bo *root = vm->root.base.bo; 1675 1676 if (!dma_fence_is_signaled(vm->last_direct)) 1677 amdgpu_bo_fence(root, vm->last_direct, true); 1678 } 1679 1680 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1681 if (r) 1682 goto error_unlock; 1683 1684 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1685 if (r) 1686 goto error_unlock; 1687 1688 r = vm->update_funcs->commit(¶ms, fence); 1689 1690 error_unlock: 1691 amdgpu_vm_eviction_unlock(vm); 1692 return r; 1693 } 1694 1695 /** 1696 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1697 * 1698 * @adev: amdgpu_device pointer 1699 * @resv: fences we need to sync to 1700 * @pages_addr: DMA addresses to use for mapping 1701 * @vm: requested vm 1702 * @mapping: mapped range and flags to use for the update 1703 * @flags: HW flags for the mapping 1704 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1705 * @nodes: array of drm_mm_nodes with the MC addresses 1706 * @fence: optional resulting fence 1707 * 1708 * Split the mapping into smaller chunks so that each update fits 1709 * into a SDMA IB. 1710 * 1711 * Returns: 1712 * 0 for success, -EINVAL for failure. 1713 */ 1714 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1715 struct dma_resv *resv, 1716 dma_addr_t *pages_addr, 1717 struct amdgpu_vm *vm, 1718 struct amdgpu_bo_va_mapping *mapping, 1719 uint64_t flags, 1720 struct amdgpu_device *bo_adev, 1721 struct drm_mm_node *nodes, 1722 struct dma_fence **fence) 1723 { 1724 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1725 uint64_t pfn, start = mapping->start; 1726 int r; 1727 1728 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1729 * but in case of something, we filter the flags in first place 1730 */ 1731 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1732 flags &= ~AMDGPU_PTE_READABLE; 1733 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1734 flags &= ~AMDGPU_PTE_WRITEABLE; 1735 1736 /* Apply ASIC specific mapping flags */ 1737 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1738 1739 trace_amdgpu_vm_bo_update(mapping); 1740 1741 pfn = mapping->offset >> PAGE_SHIFT; 1742 if (nodes) { 1743 while (pfn >= nodes->size) { 1744 pfn -= nodes->size; 1745 ++nodes; 1746 } 1747 } 1748 1749 do { 1750 dma_addr_t *dma_addr = NULL; 1751 uint64_t max_entries; 1752 uint64_t addr, last; 1753 1754 if (nodes) { 1755 addr = nodes->start << PAGE_SHIFT; 1756 max_entries = (nodes->size - pfn) * 1757 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1758 } else { 1759 addr = 0; 1760 max_entries = S64_MAX; 1761 } 1762 1763 if (pages_addr) { 1764 uint64_t count; 1765 1766 for (count = 1; 1767 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1768 ++count) { 1769 uint64_t idx = pfn + count; 1770 1771 if (pages_addr[idx] != 1772 (pages_addr[idx - 1] + PAGE_SIZE)) 1773 break; 1774 } 1775 1776 if (count < min_linear_pages) { 1777 addr = pfn << PAGE_SHIFT; 1778 dma_addr = pages_addr; 1779 } else { 1780 addr = pages_addr[pfn]; 1781 max_entries = count * 1782 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1783 } 1784 1785 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1786 addr += bo_adev->vm_manager.vram_base_offset; 1787 addr += pfn << PAGE_SHIFT; 1788 } 1789 1790 last = min((uint64_t)mapping->last, start + max_entries - 1); 1791 r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv, 1792 start, last, flags, addr, 1793 dma_addr, fence); 1794 if (r) 1795 return r; 1796 1797 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1798 if (nodes && nodes->size == pfn) { 1799 pfn = 0; 1800 ++nodes; 1801 } 1802 start = last + 1; 1803 1804 } while (unlikely(start != mapping->last + 1)); 1805 1806 return 0; 1807 } 1808 1809 /** 1810 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1811 * 1812 * @adev: amdgpu_device pointer 1813 * @bo_va: requested BO and VM object 1814 * @clear: if true clear the entries 1815 * 1816 * Fill in the page table entries for @bo_va. 1817 * 1818 * Returns: 1819 * 0 for success, -EINVAL for failure. 1820 */ 1821 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1822 bool clear) 1823 { 1824 struct amdgpu_bo *bo = bo_va->base.bo; 1825 struct amdgpu_vm *vm = bo_va->base.vm; 1826 struct amdgpu_bo_va_mapping *mapping; 1827 dma_addr_t *pages_addr = NULL; 1828 struct ttm_mem_reg *mem; 1829 struct drm_mm_node *nodes; 1830 struct dma_fence **last_update; 1831 struct dma_resv *resv; 1832 uint64_t flags; 1833 struct amdgpu_device *bo_adev = adev; 1834 int r; 1835 1836 if (clear || !bo) { 1837 mem = NULL; 1838 nodes = NULL; 1839 resv = vm->root.base.bo->tbo.base.resv; 1840 } else { 1841 struct ttm_dma_tt *ttm; 1842 1843 mem = &bo->tbo.mem; 1844 nodes = mem->mm_node; 1845 if (mem->mem_type == TTM_PL_TT) { 1846 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1847 pages_addr = ttm->dma_address; 1848 } 1849 resv = bo->tbo.base.resv; 1850 } 1851 1852 if (bo) { 1853 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1854 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1855 } else { 1856 flags = 0x0; 1857 } 1858 1859 if (clear || (bo && bo->tbo.base.resv == 1860 vm->root.base.bo->tbo.base.resv)) 1861 last_update = &vm->last_update; 1862 else 1863 last_update = &bo_va->last_pt_update; 1864 1865 if (!clear && bo_va->base.moved) { 1866 bo_va->base.moved = false; 1867 list_splice_init(&bo_va->valids, &bo_va->invalids); 1868 1869 } else if (bo_va->cleared != clear) { 1870 list_splice_init(&bo_va->valids, &bo_va->invalids); 1871 } 1872 1873 list_for_each_entry(mapping, &bo_va->invalids, list) { 1874 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm, 1875 mapping, flags, bo_adev, nodes, 1876 last_update); 1877 if (r) 1878 return r; 1879 } 1880 1881 /* If the BO is not in its preferred location add it back to 1882 * the evicted list so that it gets validated again on the 1883 * next command submission. 1884 */ 1885 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1886 uint32_t mem_type = bo->tbo.mem.mem_type; 1887 1888 if (!(bo->preferred_domains & 1889 amdgpu_mem_type_to_domain(mem_type))) 1890 amdgpu_vm_bo_evicted(&bo_va->base); 1891 else 1892 amdgpu_vm_bo_idle(&bo_va->base); 1893 } else { 1894 amdgpu_vm_bo_done(&bo_va->base); 1895 } 1896 1897 list_splice_init(&bo_va->invalids, &bo_va->valids); 1898 bo_va->cleared = clear; 1899 1900 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1901 list_for_each_entry(mapping, &bo_va->valids, list) 1902 trace_amdgpu_vm_bo_mapping(mapping); 1903 } 1904 1905 return 0; 1906 } 1907 1908 /** 1909 * amdgpu_vm_update_prt_state - update the global PRT state 1910 * 1911 * @adev: amdgpu_device pointer 1912 */ 1913 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1914 { 1915 unsigned long flags; 1916 bool enable; 1917 1918 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1919 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1920 adev->gmc.gmc_funcs->set_prt(adev, enable); 1921 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1922 } 1923 1924 /** 1925 * amdgpu_vm_prt_get - add a PRT user 1926 * 1927 * @adev: amdgpu_device pointer 1928 */ 1929 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1930 { 1931 if (!adev->gmc.gmc_funcs->set_prt) 1932 return; 1933 1934 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1935 amdgpu_vm_update_prt_state(adev); 1936 } 1937 1938 /** 1939 * amdgpu_vm_prt_put - drop a PRT user 1940 * 1941 * @adev: amdgpu_device pointer 1942 */ 1943 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1944 { 1945 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1946 amdgpu_vm_update_prt_state(adev); 1947 } 1948 1949 /** 1950 * amdgpu_vm_prt_cb - callback for updating the PRT status 1951 * 1952 * @fence: fence for the callback 1953 * @_cb: the callback function 1954 */ 1955 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1956 { 1957 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1958 1959 amdgpu_vm_prt_put(cb->adev); 1960 kfree(cb); 1961 } 1962 1963 /** 1964 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1965 * 1966 * @adev: amdgpu_device pointer 1967 * @fence: fence for the callback 1968 */ 1969 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1970 struct dma_fence *fence) 1971 { 1972 struct amdgpu_prt_cb *cb; 1973 1974 if (!adev->gmc.gmc_funcs->set_prt) 1975 return; 1976 1977 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1978 if (!cb) { 1979 /* Last resort when we are OOM */ 1980 if (fence) 1981 dma_fence_wait(fence, false); 1982 1983 amdgpu_vm_prt_put(adev); 1984 } else { 1985 cb->adev = adev; 1986 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1987 amdgpu_vm_prt_cb)) 1988 amdgpu_vm_prt_cb(fence, &cb->cb); 1989 } 1990 } 1991 1992 /** 1993 * amdgpu_vm_free_mapping - free a mapping 1994 * 1995 * @adev: amdgpu_device pointer 1996 * @vm: requested vm 1997 * @mapping: mapping to be freed 1998 * @fence: fence of the unmap operation 1999 * 2000 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2001 */ 2002 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2003 struct amdgpu_vm *vm, 2004 struct amdgpu_bo_va_mapping *mapping, 2005 struct dma_fence *fence) 2006 { 2007 if (mapping->flags & AMDGPU_PTE_PRT) 2008 amdgpu_vm_add_prt_cb(adev, fence); 2009 kfree(mapping); 2010 } 2011 2012 /** 2013 * amdgpu_vm_prt_fini - finish all prt mappings 2014 * 2015 * @adev: amdgpu_device pointer 2016 * @vm: requested vm 2017 * 2018 * Register a cleanup callback to disable PRT support after VM dies. 2019 */ 2020 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2021 { 2022 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2023 struct dma_fence *excl, **shared; 2024 unsigned i, shared_count; 2025 int r; 2026 2027 r = dma_resv_get_fences_rcu(resv, &excl, 2028 &shared_count, &shared); 2029 if (r) { 2030 /* Not enough memory to grab the fence list, as last resort 2031 * block for all the fences to complete. 2032 */ 2033 dma_resv_wait_timeout_rcu(resv, true, false, 2034 MAX_SCHEDULE_TIMEOUT); 2035 return; 2036 } 2037 2038 /* Add a callback for each fence in the reservation object */ 2039 amdgpu_vm_prt_get(adev); 2040 amdgpu_vm_add_prt_cb(adev, excl); 2041 2042 for (i = 0; i < shared_count; ++i) { 2043 amdgpu_vm_prt_get(adev); 2044 amdgpu_vm_add_prt_cb(adev, shared[i]); 2045 } 2046 2047 kfree(shared); 2048 } 2049 2050 /** 2051 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2052 * 2053 * @adev: amdgpu_device pointer 2054 * @vm: requested vm 2055 * @fence: optional resulting fence (unchanged if no work needed to be done 2056 * or if an error occurred) 2057 * 2058 * Make sure all freed BOs are cleared in the PT. 2059 * PTs have to be reserved and mutex must be locked! 2060 * 2061 * Returns: 2062 * 0 for success. 2063 * 2064 */ 2065 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2066 struct amdgpu_vm *vm, 2067 struct dma_fence **fence) 2068 { 2069 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2070 struct amdgpu_bo_va_mapping *mapping; 2071 uint64_t init_pte_value = 0; 2072 struct dma_fence *f = NULL; 2073 int r; 2074 2075 while (!list_empty(&vm->freed)) { 2076 mapping = list_first_entry(&vm->freed, 2077 struct amdgpu_bo_va_mapping, list); 2078 list_del(&mapping->list); 2079 2080 if (vm->pte_support_ats && 2081 mapping->start < AMDGPU_GMC_HOLE_START) 2082 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2083 2084 r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv, 2085 mapping->start, mapping->last, 2086 init_pte_value, 0, NULL, &f); 2087 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2088 if (r) { 2089 dma_fence_put(f); 2090 return r; 2091 } 2092 } 2093 2094 if (fence && f) { 2095 dma_fence_put(*fence); 2096 *fence = f; 2097 } else { 2098 dma_fence_put(f); 2099 } 2100 2101 return 0; 2102 2103 } 2104 2105 /** 2106 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2107 * 2108 * @adev: amdgpu_device pointer 2109 * @vm: requested vm 2110 * 2111 * Make sure all BOs which are moved are updated in the PTs. 2112 * 2113 * Returns: 2114 * 0 for success. 2115 * 2116 * PTs have to be reserved! 2117 */ 2118 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2119 struct amdgpu_vm *vm) 2120 { 2121 struct amdgpu_bo_va *bo_va, *tmp; 2122 struct dma_resv *resv; 2123 bool clear; 2124 int r; 2125 2126 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2127 /* Per VM BOs never need to bo cleared in the page tables */ 2128 r = amdgpu_vm_bo_update(adev, bo_va, false); 2129 if (r) 2130 return r; 2131 } 2132 2133 spin_lock(&vm->invalidated_lock); 2134 while (!list_empty(&vm->invalidated)) { 2135 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2136 base.vm_status); 2137 resv = bo_va->base.bo->tbo.base.resv; 2138 spin_unlock(&vm->invalidated_lock); 2139 2140 /* Try to reserve the BO to avoid clearing its ptes */ 2141 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2142 clear = false; 2143 /* Somebody else is using the BO right now */ 2144 else 2145 clear = true; 2146 2147 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2148 if (r) 2149 return r; 2150 2151 if (!clear) 2152 dma_resv_unlock(resv); 2153 spin_lock(&vm->invalidated_lock); 2154 } 2155 spin_unlock(&vm->invalidated_lock); 2156 2157 return 0; 2158 } 2159 2160 /** 2161 * amdgpu_vm_bo_add - add a bo to a specific vm 2162 * 2163 * @adev: amdgpu_device pointer 2164 * @vm: requested vm 2165 * @bo: amdgpu buffer object 2166 * 2167 * Add @bo into the requested vm. 2168 * Add @bo to the list of bos associated with the vm 2169 * 2170 * Returns: 2171 * Newly added bo_va or NULL for failure 2172 * 2173 * Object has to be reserved! 2174 */ 2175 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2176 struct amdgpu_vm *vm, 2177 struct amdgpu_bo *bo) 2178 { 2179 struct amdgpu_bo_va *bo_va; 2180 2181 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2182 if (bo_va == NULL) { 2183 return NULL; 2184 } 2185 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2186 2187 bo_va->ref_count = 1; 2188 INIT_LIST_HEAD(&bo_va->valids); 2189 INIT_LIST_HEAD(&bo_va->invalids); 2190 2191 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) && 2192 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) { 2193 bo_va->is_xgmi = true; 2194 mutex_lock(&adev->vm_manager.lock_pstate); 2195 /* Power up XGMI if it can be potentially used */ 2196 if (++adev->vm_manager.xgmi_map_counter == 1) 2197 amdgpu_xgmi_set_pstate(adev, 1); 2198 mutex_unlock(&adev->vm_manager.lock_pstate); 2199 } 2200 2201 return bo_va; 2202 } 2203 2204 2205 /** 2206 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2207 * 2208 * @adev: amdgpu_device pointer 2209 * @bo_va: bo_va to store the address 2210 * @mapping: the mapping to insert 2211 * 2212 * Insert a new mapping into all structures. 2213 */ 2214 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2215 struct amdgpu_bo_va *bo_va, 2216 struct amdgpu_bo_va_mapping *mapping) 2217 { 2218 struct amdgpu_vm *vm = bo_va->base.vm; 2219 struct amdgpu_bo *bo = bo_va->base.bo; 2220 2221 mapping->bo_va = bo_va; 2222 list_add(&mapping->list, &bo_va->invalids); 2223 amdgpu_vm_it_insert(mapping, &vm->va); 2224 2225 if (mapping->flags & AMDGPU_PTE_PRT) 2226 amdgpu_vm_prt_get(adev); 2227 2228 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2229 !bo_va->base.moved) { 2230 list_move(&bo_va->base.vm_status, &vm->moved); 2231 } 2232 trace_amdgpu_vm_bo_map(bo_va, mapping); 2233 } 2234 2235 /** 2236 * amdgpu_vm_bo_map - map bo inside a vm 2237 * 2238 * @adev: amdgpu_device pointer 2239 * @bo_va: bo_va to store the address 2240 * @saddr: where to map the BO 2241 * @offset: requested offset in the BO 2242 * @size: BO size in bytes 2243 * @flags: attributes of pages (read/write/valid/etc.) 2244 * 2245 * Add a mapping of the BO at the specefied addr into the VM. 2246 * 2247 * Returns: 2248 * 0 for success, error for failure. 2249 * 2250 * Object has to be reserved and unreserved outside! 2251 */ 2252 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2253 struct amdgpu_bo_va *bo_va, 2254 uint64_t saddr, uint64_t offset, 2255 uint64_t size, uint64_t flags) 2256 { 2257 struct amdgpu_bo_va_mapping *mapping, *tmp; 2258 struct amdgpu_bo *bo = bo_va->base.bo; 2259 struct amdgpu_vm *vm = bo_va->base.vm; 2260 uint64_t eaddr; 2261 2262 /* validate the parameters */ 2263 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2264 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2265 return -EINVAL; 2266 2267 /* make sure object fit at this offset */ 2268 eaddr = saddr + size - 1; 2269 if (saddr >= eaddr || 2270 (bo && offset + size > amdgpu_bo_size(bo))) 2271 return -EINVAL; 2272 2273 saddr /= AMDGPU_GPU_PAGE_SIZE; 2274 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2275 2276 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2277 if (tmp) { 2278 /* bo and tmp overlap, invalid addr */ 2279 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2280 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2281 tmp->start, tmp->last + 1); 2282 return -EINVAL; 2283 } 2284 2285 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2286 if (!mapping) 2287 return -ENOMEM; 2288 2289 mapping->start = saddr; 2290 mapping->last = eaddr; 2291 mapping->offset = offset; 2292 mapping->flags = flags; 2293 2294 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2295 2296 return 0; 2297 } 2298 2299 /** 2300 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2301 * 2302 * @adev: amdgpu_device pointer 2303 * @bo_va: bo_va to store the address 2304 * @saddr: where to map the BO 2305 * @offset: requested offset in the BO 2306 * @size: BO size in bytes 2307 * @flags: attributes of pages (read/write/valid/etc.) 2308 * 2309 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2310 * mappings as we do so. 2311 * 2312 * Returns: 2313 * 0 for success, error for failure. 2314 * 2315 * Object has to be reserved and unreserved outside! 2316 */ 2317 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2318 struct amdgpu_bo_va *bo_va, 2319 uint64_t saddr, uint64_t offset, 2320 uint64_t size, uint64_t flags) 2321 { 2322 struct amdgpu_bo_va_mapping *mapping; 2323 struct amdgpu_bo *bo = bo_va->base.bo; 2324 uint64_t eaddr; 2325 int r; 2326 2327 /* validate the parameters */ 2328 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2329 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2330 return -EINVAL; 2331 2332 /* make sure object fit at this offset */ 2333 eaddr = saddr + size - 1; 2334 if (saddr >= eaddr || 2335 (bo && offset + size > amdgpu_bo_size(bo))) 2336 return -EINVAL; 2337 2338 /* Allocate all the needed memory */ 2339 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2340 if (!mapping) 2341 return -ENOMEM; 2342 2343 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2344 if (r) { 2345 kfree(mapping); 2346 return r; 2347 } 2348 2349 saddr /= AMDGPU_GPU_PAGE_SIZE; 2350 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2351 2352 mapping->start = saddr; 2353 mapping->last = eaddr; 2354 mapping->offset = offset; 2355 mapping->flags = flags; 2356 2357 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2358 2359 return 0; 2360 } 2361 2362 /** 2363 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2364 * 2365 * @adev: amdgpu_device pointer 2366 * @bo_va: bo_va to remove the address from 2367 * @saddr: where to the BO is mapped 2368 * 2369 * Remove a mapping of the BO at the specefied addr from the VM. 2370 * 2371 * Returns: 2372 * 0 for success, error for failure. 2373 * 2374 * Object has to be reserved and unreserved outside! 2375 */ 2376 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2377 struct amdgpu_bo_va *bo_va, 2378 uint64_t saddr) 2379 { 2380 struct amdgpu_bo_va_mapping *mapping; 2381 struct amdgpu_vm *vm = bo_va->base.vm; 2382 bool valid = true; 2383 2384 saddr /= AMDGPU_GPU_PAGE_SIZE; 2385 2386 list_for_each_entry(mapping, &bo_va->valids, list) { 2387 if (mapping->start == saddr) 2388 break; 2389 } 2390 2391 if (&mapping->list == &bo_va->valids) { 2392 valid = false; 2393 2394 list_for_each_entry(mapping, &bo_va->invalids, list) { 2395 if (mapping->start == saddr) 2396 break; 2397 } 2398 2399 if (&mapping->list == &bo_va->invalids) 2400 return -ENOENT; 2401 } 2402 2403 list_del(&mapping->list); 2404 amdgpu_vm_it_remove(mapping, &vm->va); 2405 mapping->bo_va = NULL; 2406 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2407 2408 if (valid) 2409 list_add(&mapping->list, &vm->freed); 2410 else 2411 amdgpu_vm_free_mapping(adev, vm, mapping, 2412 bo_va->last_pt_update); 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2419 * 2420 * @adev: amdgpu_device pointer 2421 * @vm: VM structure to use 2422 * @saddr: start of the range 2423 * @size: size of the range 2424 * 2425 * Remove all mappings in a range, split them as appropriate. 2426 * 2427 * Returns: 2428 * 0 for success, error for failure. 2429 */ 2430 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2431 struct amdgpu_vm *vm, 2432 uint64_t saddr, uint64_t size) 2433 { 2434 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2435 DRM_LIST_HEAD(removed); 2436 uint64_t eaddr; 2437 2438 eaddr = saddr + size - 1; 2439 saddr /= AMDGPU_GPU_PAGE_SIZE; 2440 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2441 2442 /* Allocate all the needed memory */ 2443 before = kzalloc(sizeof(*before), GFP_KERNEL); 2444 if (!before) 2445 return -ENOMEM; 2446 INIT_LIST_HEAD(&before->list); 2447 2448 after = kzalloc(sizeof(*after), GFP_KERNEL); 2449 if (!after) { 2450 kfree(before); 2451 return -ENOMEM; 2452 } 2453 INIT_LIST_HEAD(&after->list); 2454 2455 /* Now gather all removed mappings */ 2456 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2457 while (tmp) { 2458 /* Remember mapping split at the start */ 2459 if (tmp->start < saddr) { 2460 before->start = tmp->start; 2461 before->last = saddr - 1; 2462 before->offset = tmp->offset; 2463 before->flags = tmp->flags; 2464 before->bo_va = tmp->bo_va; 2465 list_add(&before->list, &tmp->bo_va->invalids); 2466 } 2467 2468 /* Remember mapping split at the end */ 2469 if (tmp->last > eaddr) { 2470 after->start = eaddr + 1; 2471 after->last = tmp->last; 2472 after->offset = tmp->offset; 2473 after->offset += after->start - tmp->start; 2474 after->flags = tmp->flags; 2475 after->bo_va = tmp->bo_va; 2476 list_add(&after->list, &tmp->bo_va->invalids); 2477 } 2478 2479 list_del(&tmp->list); 2480 list_add(&tmp->list, &removed); 2481 2482 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2483 } 2484 2485 /* And free them up */ 2486 list_for_each_entry_safe(tmp, next, &removed, list) { 2487 amdgpu_vm_it_remove(tmp, &vm->va); 2488 list_del(&tmp->list); 2489 2490 if (tmp->start < saddr) 2491 tmp->start = saddr; 2492 if (tmp->last > eaddr) 2493 tmp->last = eaddr; 2494 2495 tmp->bo_va = NULL; 2496 list_add(&tmp->list, &vm->freed); 2497 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2498 } 2499 2500 /* Insert partial mapping before the range */ 2501 if (!list_empty(&before->list)) { 2502 amdgpu_vm_it_insert(before, &vm->va); 2503 if (before->flags & AMDGPU_PTE_PRT) 2504 amdgpu_vm_prt_get(adev); 2505 } else { 2506 kfree(before); 2507 } 2508 2509 /* Insert partial mapping after the range */ 2510 if (!list_empty(&after->list)) { 2511 amdgpu_vm_it_insert(after, &vm->va); 2512 if (after->flags & AMDGPU_PTE_PRT) 2513 amdgpu_vm_prt_get(adev); 2514 } else { 2515 kfree(after); 2516 } 2517 2518 return 0; 2519 } 2520 2521 /** 2522 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2523 * 2524 * @vm: the requested VM 2525 * @addr: the address 2526 * 2527 * Find a mapping by it's address. 2528 * 2529 * Returns: 2530 * The amdgpu_bo_va_mapping matching for addr or NULL 2531 * 2532 */ 2533 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2534 uint64_t addr) 2535 { 2536 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2537 } 2538 2539 /** 2540 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2541 * 2542 * @vm: the requested vm 2543 * @ticket: CS ticket 2544 * 2545 * Trace all mappings of BOs reserved during a command submission. 2546 */ 2547 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2548 { 2549 struct amdgpu_bo_va_mapping *mapping; 2550 2551 if (!trace_amdgpu_vm_bo_cs_enabled()) 2552 return; 2553 2554 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2555 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2556 if (mapping->bo_va && mapping->bo_va->base.bo) { 2557 struct amdgpu_bo *bo; 2558 2559 bo = mapping->bo_va->base.bo; 2560 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2561 ticket) 2562 continue; 2563 } 2564 2565 trace_amdgpu_vm_bo_cs(mapping); 2566 } 2567 } 2568 2569 /** 2570 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2571 * 2572 * @adev: amdgpu_device pointer 2573 * @bo_va: requested bo_va 2574 * 2575 * Remove @bo_va->bo from the requested vm. 2576 * 2577 * Object have to be reserved! 2578 */ 2579 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2580 struct amdgpu_bo_va *bo_va) 2581 { 2582 struct amdgpu_bo_va_mapping *mapping, *next; 2583 struct amdgpu_bo *bo = bo_va->base.bo; 2584 struct amdgpu_vm *vm = bo_va->base.vm; 2585 struct amdgpu_vm_bo_base **base; 2586 2587 if (bo) { 2588 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2589 vm->bulk_moveable = false; 2590 2591 for (base = &bo_va->base.bo->vm_bo; *base; 2592 base = &(*base)->next) { 2593 if (*base != &bo_va->base) 2594 continue; 2595 2596 *base = bo_va->base.next; 2597 break; 2598 } 2599 } 2600 2601 spin_lock(&vm->invalidated_lock); 2602 list_del(&bo_va->base.vm_status); 2603 spin_unlock(&vm->invalidated_lock); 2604 2605 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2606 list_del(&mapping->list); 2607 amdgpu_vm_it_remove(mapping, &vm->va); 2608 mapping->bo_va = NULL; 2609 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2610 list_add(&mapping->list, &vm->freed); 2611 } 2612 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2613 list_del(&mapping->list); 2614 amdgpu_vm_it_remove(mapping, &vm->va); 2615 amdgpu_vm_free_mapping(adev, vm, mapping, 2616 bo_va->last_pt_update); 2617 } 2618 2619 dma_fence_put(bo_va->last_pt_update); 2620 2621 if (bo && bo_va->is_xgmi) { 2622 mutex_lock(&adev->vm_manager.lock_pstate); 2623 if (--adev->vm_manager.xgmi_map_counter == 0) 2624 amdgpu_xgmi_set_pstate(adev, 0); 2625 mutex_unlock(&adev->vm_manager.lock_pstate); 2626 } 2627 2628 kfree(bo_va); 2629 } 2630 2631 /** 2632 * amdgpu_vm_evictable - check if we can evict a VM 2633 * 2634 * @bo: A page table of the VM. 2635 * 2636 * Check if it is possible to evict a VM. 2637 */ 2638 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2639 { 2640 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2641 2642 /* Page tables of a destroyed VM can go away immediately */ 2643 if (!bo_base || !bo_base->vm) 2644 return true; 2645 2646 /* Don't evict VM page tables while they are busy */ 2647 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2648 return false; 2649 2650 /* Try to block ongoing updates */ 2651 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2652 return false; 2653 2654 /* Don't evict VM page tables while they are updated */ 2655 if (!dma_fence_is_signaled(bo_base->vm->last_direct)) { 2656 amdgpu_vm_eviction_unlock(bo_base->vm); 2657 return false; 2658 } 2659 2660 bo_base->vm->evicting = true; 2661 amdgpu_vm_eviction_unlock(bo_base->vm); 2662 return true; 2663 } 2664 2665 /** 2666 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2667 * 2668 * @adev: amdgpu_device pointer 2669 * @bo: amdgpu buffer object 2670 * @evicted: is the BO evicted 2671 * 2672 * Mark @bo as invalid. 2673 */ 2674 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2675 struct amdgpu_bo *bo, bool evicted) 2676 { 2677 struct amdgpu_vm_bo_base *bo_base; 2678 2679 /* shadow bo doesn't have bo base, its validation needs its parent */ 2680 if (bo->parent && bo->parent->shadow == bo) 2681 bo = bo->parent; 2682 2683 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2684 struct amdgpu_vm *vm = bo_base->vm; 2685 2686 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2687 amdgpu_vm_bo_evicted(bo_base); 2688 continue; 2689 } 2690 2691 if (bo_base->moved) 2692 continue; 2693 bo_base->moved = true; 2694 2695 if (bo->tbo.type == ttm_bo_type_kernel) 2696 amdgpu_vm_bo_relocated(bo_base); 2697 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2698 amdgpu_vm_bo_moved(bo_base); 2699 else 2700 amdgpu_vm_bo_invalidated(bo_base); 2701 } 2702 } 2703 2704 /** 2705 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2706 * 2707 * @vm_size: VM size 2708 * 2709 * Returns: 2710 * VM page table as power of two 2711 */ 2712 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2713 { 2714 /* Total bits covered by PD + PTs */ 2715 unsigned bits = ilog2(vm_size) + 18; 2716 2717 /* Make sure the PD is 4K in size up to 8GB address space. 2718 Above that split equal between PD and PTs */ 2719 if (vm_size <= 8) 2720 return (bits - 9); 2721 else 2722 return ((bits + 3) / 2); 2723 } 2724 2725 /** 2726 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2727 * 2728 * @adev: amdgpu_device pointer 2729 * @min_vm_size: the minimum vm size in GB if it's set auto 2730 * @fragment_size_default: Default PTE fragment size 2731 * @max_level: max VMPT level 2732 * @max_bits: max address space size in bits 2733 * 2734 */ 2735 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2736 uint32_t fragment_size_default, unsigned max_level, 2737 unsigned max_bits) 2738 { 2739 unsigned int max_size = 1 << (max_bits - 30); 2740 unsigned int vm_size; 2741 uint64_t tmp; 2742 2743 /* adjust vm size first */ 2744 if (amdgpu_vm_size != -1) { 2745 vm_size = amdgpu_vm_size; 2746 if (vm_size > max_size) { 2747 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2748 amdgpu_vm_size, max_size); 2749 vm_size = max_size; 2750 } 2751 } else { 2752 #ifdef __linux__ 2753 struct sysinfo si; 2754 #endif 2755 unsigned int phys_ram_gb; 2756 2757 /* Optimal VM size depends on the amount of physical 2758 * RAM available. Underlying requirements and 2759 * assumptions: 2760 * 2761 * - Need to map system memory and VRAM from all GPUs 2762 * - VRAM from other GPUs not known here 2763 * - Assume VRAM <= system memory 2764 * - On GFX8 and older, VM space can be segmented for 2765 * different MTYPEs 2766 * - Need to allow room for fragmentation, guard pages etc. 2767 * 2768 * This adds up to a rough guess of system memory x3. 2769 * Round up to power of two to maximize the available 2770 * VM size with the given page table size. 2771 */ 2772 #ifdef __linux__ 2773 si_meminfo(&si); 2774 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2775 (1 << 30) - 1) >> 30; 2776 #else 2777 phys_ram_gb = ((uint64_t)ptoa(physmem) + 2778 (1 << 30) - 1) >> 30; 2779 #endif 2780 vm_size = roundup_pow_of_two( 2781 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2782 } 2783 2784 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2785 2786 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2787 if (amdgpu_vm_block_size != -1) 2788 tmp >>= amdgpu_vm_block_size - 9; 2789 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2790 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2791 switch (adev->vm_manager.num_level) { 2792 case 3: 2793 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2794 break; 2795 case 2: 2796 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2797 break; 2798 case 1: 2799 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2800 break; 2801 default: 2802 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2803 } 2804 /* block size depends on vm size and hw setup*/ 2805 if (amdgpu_vm_block_size != -1) 2806 adev->vm_manager.block_size = 2807 min((unsigned)amdgpu_vm_block_size, max_bits 2808 - AMDGPU_GPU_PAGE_SHIFT 2809 - 9 * adev->vm_manager.num_level); 2810 else if (adev->vm_manager.num_level > 1) 2811 adev->vm_manager.block_size = 9; 2812 else 2813 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2814 2815 if (amdgpu_vm_fragment_size == -1) 2816 adev->vm_manager.fragment_size = fragment_size_default; 2817 else 2818 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2819 2820 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2821 vm_size, adev->vm_manager.num_level + 1, 2822 adev->vm_manager.block_size, 2823 adev->vm_manager.fragment_size); 2824 } 2825 2826 /** 2827 * amdgpu_vm_wait_idle - wait for the VM to become idle 2828 * 2829 * @vm: VM object to wait for 2830 * @timeout: timeout to wait for VM to become idle 2831 */ 2832 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2833 { 2834 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2835 true, true, timeout); 2836 if (timeout <= 0) 2837 return timeout; 2838 2839 return dma_fence_wait_timeout(vm->last_direct, true, timeout); 2840 } 2841 2842 /** 2843 * amdgpu_vm_init - initialize a vm instance 2844 * 2845 * @adev: amdgpu_device pointer 2846 * @vm: requested vm 2847 * @vm_context: Indicates if it GFX or Compute context 2848 * @pasid: Process address space identifier 2849 * 2850 * Init @vm fields. 2851 * 2852 * Returns: 2853 * 0 for success, error for failure. 2854 */ 2855 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2856 int vm_context, unsigned int pasid) 2857 { 2858 struct amdgpu_bo_param bp; 2859 struct amdgpu_bo *root; 2860 int r, i; 2861 2862 vm->va = RB_ROOT_CACHED; 2863 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2864 vm->reserved_vmid[i] = NULL; 2865 INIT_LIST_HEAD(&vm->evicted); 2866 INIT_LIST_HEAD(&vm->relocated); 2867 INIT_LIST_HEAD(&vm->moved); 2868 INIT_LIST_HEAD(&vm->idle); 2869 INIT_LIST_HEAD(&vm->invalidated); 2870 mtx_init(&vm->invalidated_lock, IPL_NONE); 2871 INIT_LIST_HEAD(&vm->freed); 2872 2873 2874 /* create scheduler entities for page table updates */ 2875 r = drm_sched_entity_init(&vm->direct, DRM_SCHED_PRIORITY_NORMAL, 2876 adev->vm_manager.vm_pte_scheds, 2877 adev->vm_manager.vm_pte_num_scheds, NULL); 2878 if (r) 2879 return r; 2880 2881 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2882 adev->vm_manager.vm_pte_scheds, 2883 adev->vm_manager.vm_pte_num_scheds, NULL); 2884 if (r) 2885 goto error_free_direct; 2886 2887 vm->pte_support_ats = false; 2888 vm->is_compute_context = false; 2889 2890 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2891 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2892 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2893 2894 if (adev->asic_type == CHIP_RAVEN) 2895 vm->pte_support_ats = true; 2896 } else { 2897 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2898 AMDGPU_VM_USE_CPU_FOR_GFX); 2899 } 2900 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2901 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2902 WARN_ONCE((vm->use_cpu_for_update && 2903 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2904 "CPU update of VM recommended only for large BAR system\n"); 2905 2906 if (vm->use_cpu_for_update) 2907 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2908 else 2909 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2910 vm->last_update = NULL; 2911 vm->last_direct = dma_fence_get_stub(); 2912 2913 rw_init(&vm->eviction_lock, "avmev"); 2914 vm->evicting = false; 2915 2916 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2917 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2918 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2919 r = amdgpu_bo_create(adev, &bp, &root); 2920 if (r) 2921 goto error_free_delayed; 2922 2923 r = amdgpu_bo_reserve(root, true); 2924 if (r) 2925 goto error_free_root; 2926 2927 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2928 if (r) 2929 goto error_unreserve; 2930 2931 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2932 2933 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2934 if (r) 2935 goto error_unreserve; 2936 2937 amdgpu_bo_unreserve(vm->root.base.bo); 2938 2939 if (pasid) { 2940 unsigned long flags; 2941 2942 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2943 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2944 GFP_ATOMIC); 2945 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2946 if (r < 0) 2947 goto error_free_root; 2948 2949 vm->pasid = pasid; 2950 } 2951 2952 #ifdef __linux__ 2953 INIT_KFIFO(vm->faults); 2954 #else 2955 SIMPLEQ_INIT(&vm->faults); 2956 #endif 2957 2958 return 0; 2959 2960 error_unreserve: 2961 amdgpu_bo_unreserve(vm->root.base.bo); 2962 2963 error_free_root: 2964 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2965 amdgpu_bo_unref(&vm->root.base.bo); 2966 vm->root.base.bo = NULL; 2967 2968 error_free_delayed: 2969 dma_fence_put(vm->last_direct); 2970 drm_sched_entity_destroy(&vm->delayed); 2971 2972 error_free_direct: 2973 drm_sched_entity_destroy(&vm->direct); 2974 2975 return r; 2976 } 2977 2978 /** 2979 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2980 * 2981 * @adev: amdgpu_device pointer 2982 * @vm: the VM to check 2983 * 2984 * check all entries of the root PD, if any subsequent PDs are allocated, 2985 * it means there are page table creating and filling, and is no a clean 2986 * VM 2987 * 2988 * Returns: 2989 * 0 if this VM is clean 2990 */ 2991 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2992 struct amdgpu_vm *vm) 2993 { 2994 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2995 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2996 unsigned int i = 0; 2997 2998 if (!(vm->root.entries)) 2999 return 0; 3000 3001 for (i = 0; i < entries; i++) { 3002 if (vm->root.entries[i].base.bo) 3003 return -EINVAL; 3004 } 3005 3006 return 0; 3007 } 3008 3009 /** 3010 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3011 * 3012 * @adev: amdgpu_device pointer 3013 * @vm: requested vm 3014 * @pasid: pasid to use 3015 * 3016 * This only works on GFX VMs that don't have any BOs added and no 3017 * page tables allocated yet. 3018 * 3019 * Changes the following VM parameters: 3020 * - use_cpu_for_update 3021 * - pte_supports_ats 3022 * - pasid (old PASID is released, because compute manages its own PASIDs) 3023 * 3024 * Reinitializes the page directory to reflect the changed ATS 3025 * setting. 3026 * 3027 * Returns: 3028 * 0 for success, -errno for errors. 3029 */ 3030 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 3031 unsigned int pasid) 3032 { 3033 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3034 int r; 3035 3036 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3037 if (r) 3038 return r; 3039 3040 /* Sanity checks */ 3041 r = amdgpu_vm_check_clean_reserved(adev, vm); 3042 if (r) 3043 goto unreserve_bo; 3044 3045 if (pasid) { 3046 unsigned long flags; 3047 3048 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3049 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3050 GFP_ATOMIC); 3051 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3052 3053 if (r == -ENOSPC) 3054 goto unreserve_bo; 3055 r = 0; 3056 } 3057 3058 /* Check if PD needs to be reinitialized and do it before 3059 * changing any other state, in case it fails. 3060 */ 3061 if (pte_support_ats != vm->pte_support_ats) { 3062 vm->pte_support_ats = pte_support_ats; 3063 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 3064 if (r) 3065 goto free_idr; 3066 } 3067 3068 /* Update VM state */ 3069 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3070 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3071 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3072 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3073 WARN_ONCE((vm->use_cpu_for_update && 3074 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3075 "CPU update of VM recommended only for large BAR system\n"); 3076 3077 if (vm->use_cpu_for_update) { 3078 /* Sync with last SDMA update/clear before switching to CPU */ 3079 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3080 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3081 if (r) 3082 goto free_idr; 3083 3084 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3085 } else { 3086 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3087 } 3088 dma_fence_put(vm->last_update); 3089 vm->last_update = NULL; 3090 vm->is_compute_context = true; 3091 3092 if (vm->pasid) { 3093 unsigned long flags; 3094 3095 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3096 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3097 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3098 3099 /* Free the original amdgpu allocated pasid 3100 * Will be replaced with kfd allocated pasid 3101 */ 3102 amdgpu_pasid_free(vm->pasid); 3103 vm->pasid = 0; 3104 } 3105 3106 /* Free the shadow bo for compute VM */ 3107 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3108 3109 if (pasid) 3110 vm->pasid = pasid; 3111 3112 goto unreserve_bo; 3113 3114 free_idr: 3115 if (pasid) { 3116 unsigned long flags; 3117 3118 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3119 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3120 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3121 } 3122 unreserve_bo: 3123 amdgpu_bo_unreserve(vm->root.base.bo); 3124 return r; 3125 } 3126 3127 /** 3128 * amdgpu_vm_release_compute - release a compute vm 3129 * @adev: amdgpu_device pointer 3130 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3131 * 3132 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3133 * pasid from vm. Compute should stop use of vm after this call. 3134 */ 3135 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3136 { 3137 if (vm->pasid) { 3138 unsigned long flags; 3139 3140 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3141 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3142 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3143 } 3144 vm->pasid = 0; 3145 vm->is_compute_context = false; 3146 } 3147 3148 /** 3149 * amdgpu_vm_fini - tear down a vm instance 3150 * 3151 * @adev: amdgpu_device pointer 3152 * @vm: requested vm 3153 * 3154 * Tear down @vm. 3155 * Unbind the VM and remove all bos from the vm bo list 3156 */ 3157 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3158 { 3159 struct amdgpu_bo_va_mapping *mapping, *tmp; 3160 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3161 struct amdgpu_bo *root; 3162 int i; 3163 3164 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3165 3166 root = amdgpu_bo_ref(vm->root.base.bo); 3167 amdgpu_bo_reserve(root, true); 3168 if (vm->pasid) { 3169 unsigned long flags; 3170 3171 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3172 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3173 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3174 vm->pasid = 0; 3175 } 3176 3177 dma_fence_wait(vm->last_direct, false); 3178 dma_fence_put(vm->last_direct); 3179 3180 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3181 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3182 amdgpu_vm_prt_fini(adev, vm); 3183 prt_fini_needed = false; 3184 } 3185 3186 list_del(&mapping->list); 3187 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3188 } 3189 3190 amdgpu_vm_free_pts(adev, vm, NULL); 3191 amdgpu_bo_unreserve(root); 3192 amdgpu_bo_unref(&root); 3193 WARN_ON(vm->root.base.bo); 3194 3195 drm_sched_entity_destroy(&vm->direct); 3196 drm_sched_entity_destroy(&vm->delayed); 3197 3198 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3199 dev_err(adev->dev, "still active bo inside vm\n"); 3200 } 3201 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3202 &vm->va.rb_root, rb) { 3203 /* Don't remove the mapping here, we don't want to trigger a 3204 * rebalance and the tree is about to be destroyed anyway. 3205 */ 3206 list_del(&mapping->list); 3207 kfree(mapping); 3208 } 3209 3210 dma_fence_put(vm->last_update); 3211 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3212 amdgpu_vmid_free_reserved(adev, vm, i); 3213 } 3214 3215 /** 3216 * amdgpu_vm_manager_init - init the VM manager 3217 * 3218 * @adev: amdgpu_device pointer 3219 * 3220 * Initialize the VM manager structures 3221 */ 3222 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3223 { 3224 unsigned i; 3225 3226 amdgpu_vmid_mgr_init(adev); 3227 3228 adev->vm_manager.fence_context = 3229 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3230 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3231 adev->vm_manager.seqno[i] = 0; 3232 3233 mtx_init(&adev->vm_manager.prt_lock, IPL_TTY); 3234 atomic_set(&adev->vm_manager.num_prt_users, 0); 3235 3236 /* If not overridden by the user, by default, only in large BAR systems 3237 * Compute VM tables will be updated by CPU 3238 */ 3239 #ifdef CONFIG_X86_64 3240 if (amdgpu_vm_update_mode == -1) { 3241 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3242 adev->vm_manager.vm_update_mode = 3243 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3244 else 3245 adev->vm_manager.vm_update_mode = 0; 3246 } else 3247 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3248 #else 3249 adev->vm_manager.vm_update_mode = 0; 3250 #endif 3251 3252 idr_init(&adev->vm_manager.pasid_idr); 3253 mtx_init(&adev->vm_manager.pasid_lock, IPL_TTY); 3254 3255 adev->vm_manager.xgmi_map_counter = 0; 3256 rw_init(&adev->vm_manager.lock_pstate, "avmps"); 3257 } 3258 3259 /** 3260 * amdgpu_vm_manager_fini - cleanup VM manager 3261 * 3262 * @adev: amdgpu_device pointer 3263 * 3264 * Cleanup the VM manager and free resources. 3265 */ 3266 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3267 { 3268 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3269 idr_destroy(&adev->vm_manager.pasid_idr); 3270 3271 amdgpu_vmid_mgr_fini(adev); 3272 } 3273 3274 /** 3275 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3276 * 3277 * @dev: drm device pointer 3278 * @data: drm_amdgpu_vm 3279 * @filp: drm file pointer 3280 * 3281 * Returns: 3282 * 0 for success, -errno for errors. 3283 */ 3284 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3285 { 3286 union drm_amdgpu_vm *args = data; 3287 struct amdgpu_device *adev = dev->dev_private; 3288 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3289 long timeout = msecs_to_jiffies(2000); 3290 int r; 3291 3292 switch (args->in.op) { 3293 case AMDGPU_VM_OP_RESERVE_VMID: 3294 /* We only have requirement to reserve vmid from gfxhub */ 3295 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3296 AMDGPU_GFXHUB_0); 3297 if (r) 3298 return r; 3299 break; 3300 case AMDGPU_VM_OP_UNRESERVE_VMID: 3301 if (amdgpu_sriov_runtime(adev)) 3302 timeout = 8 * timeout; 3303 3304 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3305 * not referenced anymore. 3306 */ 3307 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3308 if (r) 3309 return r; 3310 3311 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3312 if (r < 0) 3313 return r; 3314 3315 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3316 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3317 break; 3318 default: 3319 return -EINVAL; 3320 } 3321 3322 return 0; 3323 } 3324 3325 /** 3326 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3327 * 3328 * @adev: drm device pointer 3329 * @pasid: PASID identifier for VM 3330 * @task_info: task_info to fill. 3331 */ 3332 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3333 struct amdgpu_task_info *task_info) 3334 { 3335 struct amdgpu_vm *vm; 3336 unsigned long flags; 3337 3338 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3339 3340 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3341 if (vm) 3342 *task_info = vm->task_info; 3343 3344 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3345 } 3346 3347 /** 3348 * amdgpu_vm_set_task_info - Sets VMs task info. 3349 * 3350 * @vm: vm for which to set the info 3351 */ 3352 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3353 { 3354 if (vm->task_info.pid) 3355 return; 3356 3357 #ifdef __linux__ 3358 vm->task_info.pid = current->pid; 3359 get_task_comm(vm->task_info.task_name, current); 3360 3361 if (current->group_leader->mm != current->mm) 3362 return; 3363 3364 vm->task_info.tgid = current->group_leader->pid; 3365 get_task_comm(vm->task_info.process_name, current->group_leader); 3366 #else 3367 vm->task_info.pid = curproc->p_p->ps_pid; 3368 strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm, 3369 sizeof(vm->task_info.task_name)); 3370 #endif 3371 } 3372 3373 /** 3374 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3375 * @adev: amdgpu device pointer 3376 * @pasid: PASID of the VM 3377 * @addr: Address of the fault 3378 * 3379 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3380 * shouldn't be reported any more. 3381 */ 3382 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid, 3383 uint64_t addr) 3384 { 3385 struct amdgpu_bo *root; 3386 uint64_t value, flags; 3387 struct amdgpu_vm *vm; 3388 long r; 3389 3390 spin_lock(&adev->vm_manager.pasid_lock); 3391 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3392 if (vm) 3393 root = amdgpu_bo_ref(vm->root.base.bo); 3394 else 3395 root = NULL; 3396 spin_unlock(&adev->vm_manager.pasid_lock); 3397 3398 if (!root) 3399 return false; 3400 3401 r = amdgpu_bo_reserve(root, true); 3402 if (r) 3403 goto error_unref; 3404 3405 /* Double check that the VM still exists */ 3406 spin_lock(&adev->vm_manager.pasid_lock); 3407 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3408 if (vm && vm->root.base.bo != root) 3409 vm = NULL; 3410 spin_unlock(&adev->vm_manager.pasid_lock); 3411 if (!vm) 3412 goto error_unlock; 3413 3414 addr /= AMDGPU_GPU_PAGE_SIZE; 3415 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3416 AMDGPU_PTE_SYSTEM; 3417 3418 if (vm->is_compute_context) { 3419 /* Intentionally setting invalid PTE flag 3420 * combination to force a no-retry-fault 3421 */ 3422 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3423 AMDGPU_PTE_TF; 3424 value = 0; 3425 3426 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3427 /* Redirect the access to the dummy page */ 3428 value = adev->dummy_page_addr; 3429 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3430 AMDGPU_PTE_WRITEABLE; 3431 3432 } else { 3433 /* Let the hw retry silently on the PTE */ 3434 value = 0; 3435 } 3436 3437 r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1, 3438 flags, value, NULL, NULL); 3439 if (r) 3440 goto error_unlock; 3441 3442 r = amdgpu_vm_update_pdes(adev, vm, true); 3443 3444 error_unlock: 3445 amdgpu_bo_unreserve(root); 3446 if (r < 0) 3447 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3448 3449 error_unref: 3450 amdgpu_bo_unref(&root); 3451 3452 return false; 3453 } 3454