xref: /openbsd/sys/dev/pci/drm/amd/amdkfd/kfd_priv.h (revision 771fbea0)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 
49 #define KFD_MAX_RING_ENTRY_SIZE	8
50 
51 #define KFD_SYSFS_FILE_MODE 0444
52 
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55 
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57  * BITS[63:62] - Encode MMAP type
58  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59  * BITS[45:0]  - MMAP offset value
60  *
61  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62  *  defines are w.r.t to PAGE_SIZE
63  */
64 #define KFD_MMAP_TYPE_SHIFT	62
65 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70 
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 				<< KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 				& KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77 				>> KFD_MMAP_GPU_ID_SHIFT)
78 
79 /*
80  * When working with cp scheduler we should assign the HIQ manually or via
81  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82  * definitions for Kaveri. In Kaveri only the first ME queues participates
83  * in the cp scheduling taking that in mind we set the HIQ slot in the
84  * second ME.
85  */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88 
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct)	\
91 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92 
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95 
96 /*
97  * Size of the per-process TBA+TMA buffer: 2 pages
98  *
99  * The first page is the TBA used for the CWSR ISA code. The second
100  * page is used as TMA for daisy changing a user-mode trap handler.
101  */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104 
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106 	(KFD_MAX_NUM_OF_PROCESSES *			\
107 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108 
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110 
111 #define KFD_UNMAP_LATENCY_MS	(4000)
112 
113 /*
114  * 512 = 0x200
115  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120  */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122 
123 
124 /*
125  * Kernel module parameter to specify maximum number of supported queues per
126  * device
127  */
128 extern int max_num_of_queues_per_device;
129 
130 
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133 
134 /*
135  * Kernel module parameter to specify the maximum process
136  * number per HW scheduler
137  */
138 extern int hws_max_conc_proc;
139 
140 extern int cwsr_enable;
141 
142 /*
143  * Kernel module parameter to specify whether to send sigterm to HSA process on
144  * unhandled exception
145  */
146 extern int send_sigterm;
147 
148 /*
149  * This kernel module is used to simulate large bar machine on non-large bar
150  * enabled machines.
151  */
152 extern int debug_largebar;
153 
154 /*
155  * Ignore CRAT table during KFD initialization, can be used to work around
156  * broken CRAT tables on some AMD systems
157  */
158 extern int ignore_crat;
159 
160 /*
161  * Set sh_mem_config.retry_disable on Vega10
162  */
163 extern int amdgpu_noretry;
164 
165 /*
166  * Halt if HWS hang is detected
167  */
168 extern int halt_if_hws_hang;
169 
170 /*
171  * Whether MEC FW support GWS barriers
172  */
173 extern bool hws_gws_support;
174 
175 /*
176  * Queue preemption timeout in ms
177  */
178 extern int queue_preemption_timeout_ms;
179 
180 enum cache_policy {
181 	cache_policy_coherent,
182 	cache_policy_noncoherent
183 };
184 
185 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
186 
187 struct kfd_event_interrupt_class {
188 	bool (*interrupt_isr)(struct kfd_dev *dev,
189 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
190 			bool *patched_flag);
191 	void (*interrupt_wq)(struct kfd_dev *dev,
192 			const uint32_t *ih_ring_entry);
193 };
194 
195 struct kfd_device_info {
196 	enum amd_asic_type asic_family;
197 	const char *asic_name;
198 	const struct kfd_event_interrupt_class *event_interrupt_class;
199 	unsigned int max_pasid_bits;
200 	unsigned int max_no_of_hqd;
201 	unsigned int doorbell_size;
202 	size_t ih_ring_entry_size;
203 	uint8_t num_of_watch_points;
204 	uint16_t mqd_size_aligned;
205 	bool supports_cwsr;
206 	bool needs_iommu_device;
207 	bool needs_pci_atomics;
208 	unsigned int num_sdma_engines;
209 	unsigned int num_xgmi_sdma_engines;
210 	unsigned int num_sdma_queues_per_engine;
211 };
212 
213 struct kfd_mem_obj {
214 	uint32_t range_start;
215 	uint32_t range_end;
216 	uint64_t gpu_addr;
217 	uint32_t *cpu_ptr;
218 	void *gtt_mem;
219 };
220 
221 struct kfd_vmid_info {
222 	uint32_t first_vmid_kfd;
223 	uint32_t last_vmid_kfd;
224 	uint32_t vmid_num_kfd;
225 };
226 
227 struct kfd_dev {
228 	struct kgd_dev *kgd;
229 
230 	const struct kfd_device_info *device_info;
231 	struct pci_dev *pdev;
232 	struct drm_device *ddev;
233 
234 	unsigned int id;		/* topology stub index */
235 
236 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
237 					 * KFD. It is aligned for mapping
238 					 * into user mode
239 					 */
240 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
241 					 * doorbell BAR to the first KFD
242 					 * doorbell in dwords. GFX reserves
243 					 * the segment before this offset.
244 					 */
245 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
246 					   * page used by kernel queue
247 					   */
248 
249 	struct kgd2kfd_shared_resources shared_resources;
250 	struct kfd_vmid_info vm_info;
251 
252 	const struct kfd2kgd_calls *kfd2kgd;
253 	struct rwlock doorbell_mutex;
254 	DECLARE_BITMAP(doorbell_available_index,
255 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
256 
257 	void *gtt_mem;
258 	uint64_t gtt_start_gpu_addr;
259 	void *gtt_start_cpu_ptr;
260 	void *gtt_sa_bitmap;
261 	struct rwlock gtt_sa_lock;
262 	unsigned int gtt_sa_chunk_size;
263 	unsigned int gtt_sa_num_of_chunks;
264 
265 	/* Interrupts */
266 	struct kfifo ih_fifo;
267 	struct workqueue_struct *ih_wq;
268 	struct work_struct interrupt_work;
269 	spinlock_t interrupt_lock;
270 
271 	/* QCM Device instance */
272 	struct device_queue_manager *dqm;
273 
274 	bool init_complete;
275 	/*
276 	 * Interrupts of interest to KFD are copied
277 	 * from the HW ring into a SW ring.
278 	 */
279 	bool interrupts_active;
280 
281 	/* Debug manager */
282 	struct kfd_dbgmgr *dbgmgr;
283 
284 	/* Firmware versions */
285 	uint16_t mec_fw_version;
286 	uint16_t sdma_fw_version;
287 
288 	/* Maximum process number mapped to HW scheduler */
289 	unsigned int max_proc_per_quantum;
290 
291 	/* CWSR */
292 	bool cwsr_enabled;
293 	const void *cwsr_isa;
294 	unsigned int cwsr_isa_size;
295 
296 	/* xGMI */
297 	uint64_t hive_id;
298 
299 	/* UUID */
300 	uint64_t unique_id;
301 
302 	bool pci_atomic_requested;
303 
304 	/* SRAM ECC flag */
305 	atomic_t sram_ecc_flag;
306 
307 	/* Compute Profile ref. count */
308 	atomic_t compute_profile;
309 
310 	/* Global GWS resource shared b/t processes*/
311 	void *gws;
312 };
313 
314 enum kfd_mempool {
315 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
316 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
317 	KFD_MEMPOOL_FRAMEBUFFER = 3,
318 };
319 
320 /* Character device interface */
321 int kfd_chardev_init(void);
322 void kfd_chardev_exit(void);
323 struct device *kfd_chardev(void);
324 
325 /**
326  * enum kfd_unmap_queues_filter
327  *
328  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
329  *
330  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
331  *						running queues list.
332  *
333  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
334  *						specific process.
335  *
336  */
337 enum kfd_unmap_queues_filter {
338 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
339 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
340 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
341 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
342 };
343 
344 /**
345  * enum kfd_queue_type
346  *
347  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
348  *
349  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
350  *
351  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
352  *
353  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
354  */
355 enum kfd_queue_type  {
356 	KFD_QUEUE_TYPE_COMPUTE,
357 	KFD_QUEUE_TYPE_SDMA,
358 	KFD_QUEUE_TYPE_HIQ,
359 	KFD_QUEUE_TYPE_DIQ,
360 	KFD_QUEUE_TYPE_SDMA_XGMI
361 };
362 
363 enum kfd_queue_format {
364 	KFD_QUEUE_FORMAT_PM4,
365 	KFD_QUEUE_FORMAT_AQL
366 };
367 
368 enum KFD_QUEUE_PRIORITY {
369 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
370 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
371 };
372 
373 /**
374  * struct queue_properties
375  *
376  * @type: The queue type.
377  *
378  * @queue_id: Queue identifier.
379  *
380  * @queue_address: Queue ring buffer address.
381  *
382  * @queue_size: Queue ring buffer size.
383  *
384  * @priority: Defines the queue priority relative to other queues in the
385  * process.
386  * This is just an indication and HW scheduling may override the priority as
387  * necessary while keeping the relative prioritization.
388  * the priority granularity is from 0 to f which f is the highest priority.
389  * currently all queues are initialized with the highest priority.
390  *
391  * @queue_percent: This field is partially implemented and currently a zero in
392  * this field defines that the queue is non active.
393  *
394  * @read_ptr: User space address which points to the number of dwords the
395  * cp read from the ring buffer. This field updates automatically by the H/W.
396  *
397  * @write_ptr: Defines the number of dwords written to the ring buffer.
398  *
399  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
400  * the queue ring buffer. This field should be similar to write_ptr and the
401  * user should update this field after he updated the write_ptr.
402  *
403  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
404  *
405  * @is_interop: Defines if this is a interop queue. Interop queue means that
406  * the queue can access both graphics and compute resources.
407  *
408  * @is_evicted: Defines if the queue is evicted. Only active queues
409  * are evicted, rendering them inactive.
410  *
411  * @is_active: Defines if the queue is active or not. @is_active and
412  * @is_evicted are protected by the DQM lock.
413  *
414  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
415  * of the queue.
416  *
417  * This structure represents the queue properties for each queue no matter if
418  * it's user mode or kernel mode queue.
419  *
420  */
421 struct queue_properties {
422 	enum kfd_queue_type type;
423 	enum kfd_queue_format format;
424 	unsigned int queue_id;
425 	uint64_t queue_address;
426 	uint64_t  queue_size;
427 	uint32_t priority;
428 	uint32_t queue_percent;
429 	uint32_t *read_ptr;
430 	uint32_t *write_ptr;
431 	void __iomem *doorbell_ptr;
432 	uint32_t doorbell_off;
433 	bool is_interop;
434 	bool is_evicted;
435 	bool is_active;
436 	/* Not relevant for user mode queues in cp scheduling */
437 	unsigned int vmid;
438 	/* Relevant only for sdma queues*/
439 	uint32_t sdma_engine_id;
440 	uint32_t sdma_queue_id;
441 	uint32_t sdma_vm_addr;
442 	/* Relevant only for VI */
443 	uint64_t eop_ring_buffer_address;
444 	uint32_t eop_ring_buffer_size;
445 	uint64_t ctx_save_restore_area_address;
446 	uint32_t ctx_save_restore_area_size;
447 	uint32_t ctl_stack_size;
448 	uint64_t tba_addr;
449 	uint64_t tma_addr;
450 	/* Relevant for CU */
451 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
452 	uint32_t *cu_mask;
453 };
454 
455 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
456 			    (q).queue_address != 0 &&	\
457 			    (q).queue_percent > 0 &&	\
458 			    !(q).is_evicted)
459 
460 /**
461  * struct queue
462  *
463  * @list: Queue linked list.
464  *
465  * @mqd: The queue MQD.
466  *
467  * @mqd_mem_obj: The MQD local gpu memory object.
468  *
469  * @gart_mqd_addr: The MQD gart mc address.
470  *
471  * @properties: The queue properties.
472  *
473  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
474  *	 that the queue should be execute on.
475  *
476  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
477  *	  id.
478  *
479  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
480  *
481  * @process: The kfd process that created this queue.
482  *
483  * @device: The kfd device that created this queue.
484  *
485  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
486  * otherwise.
487  *
488  * This structure represents user mode compute queues.
489  * It contains all the necessary data to handle such queues.
490  *
491  */
492 
493 struct queue {
494 	struct list_head list;
495 	void *mqd;
496 	struct kfd_mem_obj *mqd_mem_obj;
497 	uint64_t gart_mqd_addr;
498 	struct queue_properties properties;
499 
500 	uint32_t mec;
501 	uint32_t pipe;
502 	uint32_t queue;
503 
504 	unsigned int sdma_id;
505 	unsigned int doorbell_id;
506 
507 	struct kfd_process	*process;
508 	struct kfd_dev		*device;
509 	void *gws;
510 
511 	/* procfs */
512 	struct kobject kobj;
513 };
514 
515 /*
516  * Please read the kfd_mqd_manager.h description.
517  */
518 enum KFD_MQD_TYPE {
519 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
520 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
521 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
522 	KFD_MQD_TYPE_DIQ,		/* for diq */
523 	KFD_MQD_TYPE_MAX
524 };
525 
526 enum KFD_PIPE_PRIORITY {
527 	KFD_PIPE_PRIORITY_CS_LOW = 0,
528 	KFD_PIPE_PRIORITY_CS_MEDIUM,
529 	KFD_PIPE_PRIORITY_CS_HIGH
530 };
531 
532 struct scheduling_resources {
533 	unsigned int vmid_mask;
534 	enum kfd_queue_type type;
535 	uint64_t queue_mask;
536 	uint64_t gws_mask;
537 	uint32_t oac_mask;
538 	uint32_t gds_heap_base;
539 	uint32_t gds_heap_size;
540 };
541 
542 struct process_queue_manager {
543 	/* data */
544 	struct kfd_process	*process;
545 	struct list_head	queues;
546 	unsigned long		*queue_slot_bitmap;
547 };
548 
549 struct qcm_process_device {
550 	/* The Device Queue Manager that owns this data */
551 	struct device_queue_manager *dqm;
552 	struct process_queue_manager *pqm;
553 	/* Queues list */
554 	struct list_head queues_list;
555 	struct list_head priv_queue_list;
556 
557 	unsigned int queue_count;
558 	unsigned int vmid;
559 	bool is_debug;
560 	unsigned int evicted; /* eviction counter, 0=active */
561 
562 	/* This flag tells if we should reset all wavefronts on
563 	 * process termination
564 	 */
565 	bool reset_wavefronts;
566 
567 	/*
568 	 * All the memory management data should be here too
569 	 */
570 	uint64_t gds_context_area;
571 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
572 	uint64_t page_table_base;
573 	uint32_t sh_mem_config;
574 	uint32_t sh_mem_bases;
575 	uint32_t sh_mem_ape1_base;
576 	uint32_t sh_mem_ape1_limit;
577 	uint32_t gds_size;
578 	uint32_t num_gws;
579 	uint32_t num_oac;
580 	uint32_t sh_hidden_private_base;
581 
582 	/* CWSR memory */
583 	void *cwsr_kaddr;
584 	uint64_t cwsr_base;
585 	uint64_t tba_addr;
586 	uint64_t tma_addr;
587 
588 	/* IB memory */
589 	uint64_t ib_base;
590 	void *ib_kaddr;
591 
592 	/* doorbell resources per process per device */
593 	unsigned long *doorbell_bitmap;
594 };
595 
596 /* KFD Memory Eviction */
597 
598 /* Approx. wait time before attempting to restore evicted BOs */
599 #define PROCESS_RESTORE_TIME_MS 100
600 /* Approx. back off time if restore fails due to lack of memory */
601 #define PROCESS_BACK_OFF_TIME_MS 100
602 /* Approx. time before evicting the process again */
603 #define PROCESS_ACTIVE_TIME_MS 10
604 
605 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
606  * idr_handle in the least significant 4 bytes
607  */
608 #define MAKE_HANDLE(gpu_id, idr_handle) \
609 	(((uint64_t)(gpu_id) << 32) + idr_handle)
610 #define GET_GPU_ID(handle) (handle >> 32)
611 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
612 
613 enum kfd_pdd_bound {
614 	PDD_UNBOUND = 0,
615 	PDD_BOUND,
616 	PDD_BOUND_SUSPENDED,
617 };
618 
619 /* Data that is per-process-per device. */
620 struct kfd_process_device {
621 	/*
622 	 * List of all per-device data for a process.
623 	 * Starts from kfd_process.per_device_data.
624 	 */
625 	struct list_head per_device_list;
626 
627 	/* The device that owns this data. */
628 	struct kfd_dev *dev;
629 
630 	/* The process that owns this kfd_process_device. */
631 	struct kfd_process *process;
632 
633 	/* per-process-per device QCM data structure */
634 	struct qcm_process_device qpd;
635 
636 	/*Apertures*/
637 	uint64_t lds_base;
638 	uint64_t lds_limit;
639 	uint64_t gpuvm_base;
640 	uint64_t gpuvm_limit;
641 	uint64_t scratch_base;
642 	uint64_t scratch_limit;
643 
644 	/* VM context for GPUVM allocations */
645 	struct file *drm_file;
646 	void *vm;
647 
648 	/* GPUVM allocations storage */
649 	struct idr alloc_idr;
650 
651 	/* Flag used to tell the pdd has dequeued from the dqm.
652 	 * This is used to prevent dev->dqm->ops.process_termination() from
653 	 * being called twice when it is already called in IOMMU callback
654 	 * function.
655 	 */
656 	bool already_dequeued;
657 	bool runtime_inuse;
658 
659 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
660 	enum kfd_pdd_bound bound;
661 };
662 
663 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
664 
665 /* Process data */
666 struct kfd_process {
667 	/*
668 	 * kfd_process are stored in an mm_struct*->kfd_process*
669 	 * hash table (kfd_processes in kfd_process.c)
670 	 */
671 	struct hlist_node kfd_processes;
672 
673 	/*
674 	 * Opaque pointer to mm_struct. We don't hold a reference to
675 	 * it so it should never be dereferenced from here. This is
676 	 * only used for looking up processes by their mm.
677 	 */
678 	void *mm;
679 
680 	struct kref ref;
681 	struct work_struct release_work;
682 
683 	struct rwlock mutex;
684 
685 	/*
686 	 * In any process, the thread that started main() is the lead
687 	 * thread and outlives the rest.
688 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
689 	 * It can also be used for safely getting a reference to the
690 	 * mm_struct of the process.
691 	 */
692 	struct task_struct *lead_thread;
693 
694 	/* We want to receive a notification when the mm_struct is destroyed */
695 	struct mmu_notifier mmu_notifier;
696 
697 	uint16_t pasid;
698 	unsigned int doorbell_index;
699 
700 	/*
701 	 * List of kfd_process_device structures,
702 	 * one for each device the process is using.
703 	 */
704 	struct list_head per_device_data;
705 
706 	struct process_queue_manager pqm;
707 
708 	/*Is the user space process 32 bit?*/
709 	bool is_32bit_user_mode;
710 
711 	/* Event-related data */
712 	struct rwlock event_mutex;
713 	/* Event ID allocator and lookup */
714 	struct idr event_idr;
715 	/* Event page */
716 	struct kfd_signal_page *signal_page;
717 	size_t signal_mapped_size;
718 	size_t signal_event_count;
719 	bool signal_event_limit_reached;
720 
721 	/* Information used for memory eviction */
722 	void *kgd_process_info;
723 	/* Eviction fence that is attached to all the BOs of this process. The
724 	 * fence will be triggered during eviction and new one will be created
725 	 * during restore
726 	 */
727 	struct dma_fence *ef;
728 
729 	/* Work items for evicting and restoring BOs */
730 	struct delayed_work eviction_work;
731 	struct delayed_work restore_work;
732 	/* seqno of the last scheduled eviction */
733 	unsigned int last_eviction_seqno;
734 	/* Approx. the last timestamp (in jiffies) when the process was
735 	 * restored after an eviction
736 	 */
737 	unsigned long last_restore_timestamp;
738 
739 	/* Kobj for our procfs */
740 	struct kobject *kobj;
741 	struct kobject *kobj_queues;
742 	struct attribute attr_pasid;
743 };
744 
745 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
746 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
747 extern struct srcu_struct kfd_processes_srcu;
748 
749 /**
750  * Ioctl function type.
751  *
752  * \param filep pointer to file structure.
753  * \param p amdkfd process pointer.
754  * \param data pointer to arg that was copied from user.
755  */
756 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
757 				void *data);
758 
759 struct amdkfd_ioctl_desc {
760 	unsigned int cmd;
761 	int flags;
762 	amdkfd_ioctl_t *func;
763 	unsigned int cmd_drv;
764 	const char *name;
765 };
766 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
767 
768 int kfd_process_create_wq(void);
769 void kfd_process_destroy_wq(void);
770 struct kfd_process *kfd_create_process(struct file *filep);
771 struct kfd_process *kfd_get_process(const struct task_struct *);
772 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
773 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
774 void kfd_unref_process(struct kfd_process *p);
775 int kfd_process_evict_queues(struct kfd_process *p);
776 int kfd_process_restore_queues(struct kfd_process *p);
777 void kfd_suspend_all_processes(void);
778 int kfd_resume_all_processes(void);
779 
780 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
781 			       struct file *drm_file);
782 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
783 						struct kfd_process *p);
784 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
785 							struct kfd_process *p);
786 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
787 							struct kfd_process *p);
788 
789 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
790 			  struct vm_area_struct *vma);
791 
792 /* KFD process API for creating and translating handles */
793 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
794 					void *mem);
795 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
796 					int handle);
797 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
798 					int handle);
799 
800 /* Process device data iterator */
801 struct kfd_process_device *kfd_get_first_process_device_data(
802 							struct kfd_process *p);
803 struct kfd_process_device *kfd_get_next_process_device_data(
804 						struct kfd_process *p,
805 						struct kfd_process_device *pdd);
806 bool kfd_has_process_device_data(struct kfd_process *p);
807 
808 /* PASIDs */
809 int kfd_pasid_init(void);
810 void kfd_pasid_exit(void);
811 bool kfd_set_pasid_limit(unsigned int new_limit);
812 unsigned int kfd_get_pasid_limit(void);
813 unsigned int kfd_pasid_alloc(void);
814 void kfd_pasid_free(unsigned int pasid);
815 
816 /* Doorbells */
817 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
818 int kfd_doorbell_init(struct kfd_dev *kfd);
819 void kfd_doorbell_fini(struct kfd_dev *kfd);
820 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
821 		      struct vm_area_struct *vma);
822 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
823 					unsigned int *doorbell_off);
824 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
825 u32 read_kernel_doorbell(u32 __iomem *db);
826 void write_kernel_doorbell(void __iomem *db, u32 value);
827 void write_kernel_doorbell64(void __iomem *db, u64 value);
828 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
829 					struct kfd_process *process,
830 					unsigned int doorbell_id);
831 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
832 					struct kfd_process *process);
833 int kfd_alloc_process_doorbells(struct kfd_process *process);
834 void kfd_free_process_doorbells(struct kfd_process *process);
835 
836 /* GTT Sub-Allocator */
837 
838 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
839 			struct kfd_mem_obj **mem_obj);
840 
841 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
842 
843 extern struct device *kfd_device;
844 
845 /* KFD's procfs */
846 void kfd_procfs_init(void);
847 void kfd_procfs_shutdown(void);
848 int kfd_procfs_add_queue(struct queue *q);
849 void kfd_procfs_del_queue(struct queue *q);
850 
851 /* Topology */
852 int kfd_topology_init(void);
853 void kfd_topology_shutdown(void);
854 int kfd_topology_add_device(struct kfd_dev *gpu);
855 int kfd_topology_remove_device(struct kfd_dev *gpu);
856 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
857 						uint32_t proximity_domain);
858 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
859 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
860 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
861 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
862 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
863 int kfd_numa_node_to_apic_id(int numa_node_id);
864 
865 /* Interrupts */
866 int kfd_interrupt_init(struct kfd_dev *dev);
867 void kfd_interrupt_exit(struct kfd_dev *dev);
868 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
869 bool interrupt_is_wanted(struct kfd_dev *dev,
870 				const uint32_t *ih_ring_entry,
871 				uint32_t *patched_ihre, bool *flag);
872 
873 /* amdkfd Apertures */
874 int kfd_init_apertures(struct kfd_process *process);
875 
876 /* Queue Context Management */
877 int init_queue(struct queue **q, const struct queue_properties *properties);
878 void uninit_queue(struct queue *q);
879 void print_queue_properties(struct queue_properties *q);
880 void print_queue(struct queue *q);
881 
882 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
883 		struct kfd_dev *dev);
884 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
885 		struct kfd_dev *dev);
886 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
887 		struct kfd_dev *dev);
888 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
889 		struct kfd_dev *dev);
890 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
891 		struct kfd_dev *dev);
892 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
893 		struct kfd_dev *dev);
894 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
895 void device_queue_manager_uninit(struct device_queue_manager *dqm);
896 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
897 					enum kfd_queue_type type);
898 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
899 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
900 
901 /* Process Queue Manager */
902 struct process_queue_node {
903 	struct queue *q;
904 	struct kernel_queue *kq;
905 	struct list_head process_queue_list;
906 };
907 
908 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
909 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
910 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
911 void pqm_uninit(struct process_queue_manager *pqm);
912 int pqm_create_queue(struct process_queue_manager *pqm,
913 			    struct kfd_dev *dev,
914 			    struct file *f,
915 			    struct queue_properties *properties,
916 			    unsigned int *qid,
917 			    uint32_t *p_doorbell_offset_in_process);
918 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
919 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
920 			struct queue_properties *p);
921 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
922 			struct queue_properties *p);
923 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
924 			void *gws);
925 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
926 						unsigned int qid);
927 int pqm_get_wave_state(struct process_queue_manager *pqm,
928 		       unsigned int qid,
929 		       void __user *ctl_stack,
930 		       u32 *ctl_stack_used_size,
931 		       u32 *save_area_used_size);
932 
933 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
934 			      unsigned int fence_value,
935 			      unsigned int timeout_ms);
936 
937 /* Packet Manager */
938 
939 #define KFD_FENCE_COMPLETED (100)
940 #define KFD_FENCE_INIT   (10)
941 
942 struct packet_manager {
943 	struct device_queue_manager *dqm;
944 	struct kernel_queue *priv_queue;
945 	struct rwlock lock;
946 	bool allocated;
947 	struct kfd_mem_obj *ib_buffer_obj;
948 	unsigned int ib_size_bytes;
949 	bool is_over_subscription;
950 
951 	const struct packet_manager_funcs *pmf;
952 };
953 
954 struct packet_manager_funcs {
955 	/* Support ASIC-specific packet formats for PM4 packets */
956 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
957 			struct qcm_process_device *qpd);
958 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
959 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
960 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
961 			struct scheduling_resources *res);
962 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
963 			struct queue *q, bool is_static);
964 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
965 			enum kfd_queue_type type,
966 			enum kfd_unmap_queues_filter mode,
967 			uint32_t filter_param, bool reset,
968 			unsigned int sdma_engine);
969 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
970 			uint64_t fence_address,	uint32_t fence_value);
971 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
972 
973 	/* Packet sizes */
974 	int map_process_size;
975 	int runlist_size;
976 	int set_resources_size;
977 	int map_queues_size;
978 	int unmap_queues_size;
979 	int query_status_size;
980 	int release_mem_size;
981 };
982 
983 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
984 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
985 
986 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
987 void pm_uninit(struct packet_manager *pm, bool hanging);
988 int pm_send_set_resources(struct packet_manager *pm,
989 				struct scheduling_resources *res);
990 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
991 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
992 				uint32_t fence_value);
993 
994 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
995 			enum kfd_unmap_queues_filter mode,
996 			uint32_t filter_param, bool reset,
997 			unsigned int sdma_engine);
998 
999 void pm_release_ib(struct packet_manager *pm);
1000 
1001 /* Following PM funcs can be shared among VI and AI */
1002 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1003 
1004 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1005 
1006 /* Events */
1007 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1008 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1009 
1010 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1011 
1012 void kfd_event_init_process(struct kfd_process *p);
1013 void kfd_event_free_process(struct kfd_process *p);
1014 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1015 int kfd_wait_on_events(struct kfd_process *p,
1016 		       uint32_t num_events, void __user *data,
1017 		       bool all, uint32_t user_timeout_ms,
1018 		       uint32_t *wait_result);
1019 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1020 				uint32_t valid_id_bits);
1021 void kfd_signal_iommu_event(struct kfd_dev *dev,
1022 		unsigned int pasid, unsigned long address,
1023 		bool is_write_requested, bool is_execute_requested);
1024 void kfd_signal_hw_exception_event(unsigned int pasid);
1025 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1026 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1027 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1028 		       uint64_t size);
1029 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1030 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1031 		     uint32_t *event_id, uint32_t *event_trigger_data,
1032 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1033 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1034 
1035 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1036 				struct kfd_vm_fault_info *info);
1037 
1038 void kfd_signal_reset_event(struct kfd_dev *dev);
1039 
1040 void kfd_flush_tlb(struct kfd_process_device *pdd);
1041 
1042 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1043 
1044 bool kfd_is_locked(void);
1045 
1046 /* Compute profile */
1047 void kfd_inc_compute_active(struct kfd_dev *dev);
1048 void kfd_dec_compute_active(struct kfd_dev *dev);
1049 
1050 /* Cgroup Support */
1051 /* Check with device cgroup if @kfd device is accessible */
1052 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1053 {
1054 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1055 	struct drm_device *ddev = kfd->ddev;
1056 
1057 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1058 					  ddev->render->index,
1059 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1060 #else
1061 	return 0;
1062 #endif
1063 }
1064 
1065 /* Debugfs */
1066 #if defined(CONFIG_DEBUG_FS)
1067 
1068 void kfd_debugfs_init(void);
1069 void kfd_debugfs_fini(void);
1070 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1071 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1072 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1073 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1074 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1075 int pm_debugfs_runlist(struct seq_file *m, void *data);
1076 
1077 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1078 int pm_debugfs_hang_hws(struct packet_manager *pm);
1079 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1080 
1081 #else
1082 
1083 static inline void kfd_debugfs_init(void) {}
1084 static inline void kfd_debugfs_fini(void) {}
1085 
1086 #endif
1087 
1088 #endif
1089