1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <drm/drm_ioctl.h> 44 #include <kgd_kfd_interface.h> 45 #include <linux/swap.h> 46 47 #include "amd_shared.h" 48 49 #define KFD_MAX_RING_ENTRY_SIZE 8 50 51 #define KFD_SYSFS_FILE_MODE 0444 52 53 /* GPU ID hash width in bits */ 54 #define KFD_GPU_ID_HASH_WIDTH 16 55 56 /* Use upper bits of mmap offset to store KFD driver specific information. 57 * BITS[63:62] - Encode MMAP type 58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 59 * BITS[45:0] - MMAP offset value 60 * 61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 62 * defines are w.r.t to PAGE_SIZE 63 */ 64 #define KFD_MMAP_TYPE_SHIFT 62 65 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 66 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 70 71 #define KFD_MMAP_GPU_ID_SHIFT 46 72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 73 << KFD_MMAP_GPU_ID_SHIFT) 74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 75 & KFD_MMAP_GPU_ID_MASK) 76 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 77 >> KFD_MMAP_GPU_ID_SHIFT) 78 79 /* 80 * When working with cp scheduler we should assign the HIQ manually or via 81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 82 * definitions for Kaveri. In Kaveri only the first ME queues participates 83 * in the cp scheduling taking that in mind we set the HIQ slot in the 84 * second ME. 85 */ 86 #define KFD_CIK_HIQ_PIPE 4 87 #define KFD_CIK_HIQ_QUEUE 0 88 89 /* Macro for allocating structures */ 90 #define kfd_alloc_struct(ptr_to_struct) \ 91 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 92 93 #define KFD_MAX_NUM_OF_PROCESSES 512 94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 95 96 /* 97 * Size of the per-process TBA+TMA buffer: 2 pages 98 * 99 * The first page is the TBA used for the CWSR ISA code. The second 100 * page is used as TMA for daisy changing a user-mode trap handler. 101 */ 102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 104 105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 106 (KFD_MAX_NUM_OF_PROCESSES * \ 107 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 108 109 #define KFD_KERNEL_QUEUE_SIZE 2048 110 111 #define KFD_UNMAP_LATENCY_MS (4000) 112 113 /* 114 * 512 = 0x200 115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 120 */ 121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 122 123 124 /* 125 * Kernel module parameter to specify maximum number of supported queues per 126 * device 127 */ 128 extern int max_num_of_queues_per_device; 129 130 131 /* Kernel module parameter to specify the scheduling policy */ 132 extern int sched_policy; 133 134 /* 135 * Kernel module parameter to specify the maximum process 136 * number per HW scheduler 137 */ 138 extern int hws_max_conc_proc; 139 140 extern int cwsr_enable; 141 142 /* 143 * Kernel module parameter to specify whether to send sigterm to HSA process on 144 * unhandled exception 145 */ 146 extern int send_sigterm; 147 148 /* 149 * This kernel module is used to simulate large bar machine on non-large bar 150 * enabled machines. 151 */ 152 extern int debug_largebar; 153 154 /* 155 * Ignore CRAT table during KFD initialization, can be used to work around 156 * broken CRAT tables on some AMD systems 157 */ 158 extern int ignore_crat; 159 160 /* 161 * Set sh_mem_config.retry_disable on Vega10 162 */ 163 extern int amdgpu_noretry; 164 165 /* 166 * Halt if HWS hang is detected 167 */ 168 extern int halt_if_hws_hang; 169 170 /* 171 * Whether MEC FW support GWS barriers 172 */ 173 extern bool hws_gws_support; 174 175 /* 176 * Queue preemption timeout in ms 177 */ 178 extern int queue_preemption_timeout_ms; 179 180 enum cache_policy { 181 cache_policy_coherent, 182 cache_policy_noncoherent 183 }; 184 185 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 186 187 struct kfd_event_interrupt_class { 188 bool (*interrupt_isr)(struct kfd_dev *dev, 189 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 190 bool *patched_flag); 191 void (*interrupt_wq)(struct kfd_dev *dev, 192 const uint32_t *ih_ring_entry); 193 }; 194 195 struct kfd_device_info { 196 enum amd_asic_type asic_family; 197 const char *asic_name; 198 const struct kfd_event_interrupt_class *event_interrupt_class; 199 unsigned int max_pasid_bits; 200 unsigned int max_no_of_hqd; 201 unsigned int doorbell_size; 202 size_t ih_ring_entry_size; 203 uint8_t num_of_watch_points; 204 uint16_t mqd_size_aligned; 205 bool supports_cwsr; 206 bool needs_iommu_device; 207 bool needs_pci_atomics; 208 unsigned int num_sdma_engines; 209 unsigned int num_xgmi_sdma_engines; 210 unsigned int num_sdma_queues_per_engine; 211 }; 212 213 struct kfd_mem_obj { 214 uint32_t range_start; 215 uint32_t range_end; 216 uint64_t gpu_addr; 217 uint32_t *cpu_ptr; 218 void *gtt_mem; 219 }; 220 221 struct kfd_vmid_info { 222 uint32_t first_vmid_kfd; 223 uint32_t last_vmid_kfd; 224 uint32_t vmid_num_kfd; 225 }; 226 227 struct kfd_dev { 228 struct kgd_dev *kgd; 229 230 const struct kfd_device_info *device_info; 231 struct pci_dev *pdev; 232 struct drm_device *ddev; 233 234 unsigned int id; /* topology stub index */ 235 236 phys_addr_t doorbell_base; /* Start of actual doorbells used by 237 * KFD. It is aligned for mapping 238 * into user mode 239 */ 240 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 241 * doorbell BAR to the first KFD 242 * doorbell in dwords. GFX reserves 243 * the segment before this offset. 244 */ 245 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 246 * page used by kernel queue 247 */ 248 249 struct kgd2kfd_shared_resources shared_resources; 250 struct kfd_vmid_info vm_info; 251 252 const struct kfd2kgd_calls *kfd2kgd; 253 struct rwlock doorbell_mutex; 254 DECLARE_BITMAP(doorbell_available_index, 255 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 256 257 void *gtt_mem; 258 uint64_t gtt_start_gpu_addr; 259 void *gtt_start_cpu_ptr; 260 void *gtt_sa_bitmap; 261 struct rwlock gtt_sa_lock; 262 unsigned int gtt_sa_chunk_size; 263 unsigned int gtt_sa_num_of_chunks; 264 265 /* Interrupts */ 266 struct kfifo ih_fifo; 267 struct workqueue_struct *ih_wq; 268 struct work_struct interrupt_work; 269 spinlock_t interrupt_lock; 270 271 /* QCM Device instance */ 272 struct device_queue_manager *dqm; 273 274 bool init_complete; 275 /* 276 * Interrupts of interest to KFD are copied 277 * from the HW ring into a SW ring. 278 */ 279 bool interrupts_active; 280 281 /* Debug manager */ 282 struct kfd_dbgmgr *dbgmgr; 283 284 /* Firmware versions */ 285 uint16_t mec_fw_version; 286 uint16_t sdma_fw_version; 287 288 /* Maximum process number mapped to HW scheduler */ 289 unsigned int max_proc_per_quantum; 290 291 /* CWSR */ 292 bool cwsr_enabled; 293 const void *cwsr_isa; 294 unsigned int cwsr_isa_size; 295 296 /* xGMI */ 297 uint64_t hive_id; 298 299 /* UUID */ 300 uint64_t unique_id; 301 302 bool pci_atomic_requested; 303 304 /* SRAM ECC flag */ 305 atomic_t sram_ecc_flag; 306 307 /* Compute Profile ref. count */ 308 atomic_t compute_profile; 309 310 /* Global GWS resource shared b/t processes*/ 311 void *gws; 312 }; 313 314 enum kfd_mempool { 315 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 316 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 317 KFD_MEMPOOL_FRAMEBUFFER = 3, 318 }; 319 320 /* Character device interface */ 321 int kfd_chardev_init(void); 322 void kfd_chardev_exit(void); 323 struct device *kfd_chardev(void); 324 325 /** 326 * enum kfd_unmap_queues_filter 327 * 328 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 329 * 330 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 331 * running queues list. 332 * 333 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 334 * specific process. 335 * 336 */ 337 enum kfd_unmap_queues_filter { 338 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 339 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 340 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 341 KFD_UNMAP_QUEUES_FILTER_BY_PASID 342 }; 343 344 /** 345 * enum kfd_queue_type 346 * 347 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 348 * 349 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 350 * 351 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 352 * 353 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 354 */ 355 enum kfd_queue_type { 356 KFD_QUEUE_TYPE_COMPUTE, 357 KFD_QUEUE_TYPE_SDMA, 358 KFD_QUEUE_TYPE_HIQ, 359 KFD_QUEUE_TYPE_DIQ, 360 KFD_QUEUE_TYPE_SDMA_XGMI 361 }; 362 363 enum kfd_queue_format { 364 KFD_QUEUE_FORMAT_PM4, 365 KFD_QUEUE_FORMAT_AQL 366 }; 367 368 enum KFD_QUEUE_PRIORITY { 369 KFD_QUEUE_PRIORITY_MINIMUM = 0, 370 KFD_QUEUE_PRIORITY_MAXIMUM = 15 371 }; 372 373 /** 374 * struct queue_properties 375 * 376 * @type: The queue type. 377 * 378 * @queue_id: Queue identifier. 379 * 380 * @queue_address: Queue ring buffer address. 381 * 382 * @queue_size: Queue ring buffer size. 383 * 384 * @priority: Defines the queue priority relative to other queues in the 385 * process. 386 * This is just an indication and HW scheduling may override the priority as 387 * necessary while keeping the relative prioritization. 388 * the priority granularity is from 0 to f which f is the highest priority. 389 * currently all queues are initialized with the highest priority. 390 * 391 * @queue_percent: This field is partially implemented and currently a zero in 392 * this field defines that the queue is non active. 393 * 394 * @read_ptr: User space address which points to the number of dwords the 395 * cp read from the ring buffer. This field updates automatically by the H/W. 396 * 397 * @write_ptr: Defines the number of dwords written to the ring buffer. 398 * 399 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 400 * the queue ring buffer. This field should be similar to write_ptr and the 401 * user should update this field after he updated the write_ptr. 402 * 403 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 404 * 405 * @is_interop: Defines if this is a interop queue. Interop queue means that 406 * the queue can access both graphics and compute resources. 407 * 408 * @is_evicted: Defines if the queue is evicted. Only active queues 409 * are evicted, rendering them inactive. 410 * 411 * @is_active: Defines if the queue is active or not. @is_active and 412 * @is_evicted are protected by the DQM lock. 413 * 414 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 415 * of the queue. 416 * 417 * This structure represents the queue properties for each queue no matter if 418 * it's user mode or kernel mode queue. 419 * 420 */ 421 struct queue_properties { 422 enum kfd_queue_type type; 423 enum kfd_queue_format format; 424 unsigned int queue_id; 425 uint64_t queue_address; 426 uint64_t queue_size; 427 uint32_t priority; 428 uint32_t queue_percent; 429 uint32_t *read_ptr; 430 uint32_t *write_ptr; 431 void __iomem *doorbell_ptr; 432 uint32_t doorbell_off; 433 bool is_interop; 434 bool is_evicted; 435 bool is_active; 436 /* Not relevant for user mode queues in cp scheduling */ 437 unsigned int vmid; 438 /* Relevant only for sdma queues*/ 439 uint32_t sdma_engine_id; 440 uint32_t sdma_queue_id; 441 uint32_t sdma_vm_addr; 442 /* Relevant only for VI */ 443 uint64_t eop_ring_buffer_address; 444 uint32_t eop_ring_buffer_size; 445 uint64_t ctx_save_restore_area_address; 446 uint32_t ctx_save_restore_area_size; 447 uint32_t ctl_stack_size; 448 uint64_t tba_addr; 449 uint64_t tma_addr; 450 /* Relevant for CU */ 451 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 452 uint32_t *cu_mask; 453 }; 454 455 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 456 (q).queue_address != 0 && \ 457 (q).queue_percent > 0 && \ 458 !(q).is_evicted) 459 460 /** 461 * struct queue 462 * 463 * @list: Queue linked list. 464 * 465 * @mqd: The queue MQD. 466 * 467 * @mqd_mem_obj: The MQD local gpu memory object. 468 * 469 * @gart_mqd_addr: The MQD gart mc address. 470 * 471 * @properties: The queue properties. 472 * 473 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 474 * that the queue should be execute on. 475 * 476 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 477 * id. 478 * 479 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 480 * 481 * @process: The kfd process that created this queue. 482 * 483 * @device: The kfd device that created this queue. 484 * 485 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 486 * otherwise. 487 * 488 * This structure represents user mode compute queues. 489 * It contains all the necessary data to handle such queues. 490 * 491 */ 492 493 struct queue { 494 struct list_head list; 495 void *mqd; 496 struct kfd_mem_obj *mqd_mem_obj; 497 uint64_t gart_mqd_addr; 498 struct queue_properties properties; 499 500 uint32_t mec; 501 uint32_t pipe; 502 uint32_t queue; 503 504 unsigned int sdma_id; 505 unsigned int doorbell_id; 506 507 struct kfd_process *process; 508 struct kfd_dev *device; 509 void *gws; 510 511 /* procfs */ 512 struct kobject kobj; 513 }; 514 515 /* 516 * Please read the kfd_mqd_manager.h description. 517 */ 518 enum KFD_MQD_TYPE { 519 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 520 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 521 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 522 KFD_MQD_TYPE_DIQ, /* for diq */ 523 KFD_MQD_TYPE_MAX 524 }; 525 526 enum KFD_PIPE_PRIORITY { 527 KFD_PIPE_PRIORITY_CS_LOW = 0, 528 KFD_PIPE_PRIORITY_CS_MEDIUM, 529 KFD_PIPE_PRIORITY_CS_HIGH 530 }; 531 532 struct scheduling_resources { 533 unsigned int vmid_mask; 534 enum kfd_queue_type type; 535 uint64_t queue_mask; 536 uint64_t gws_mask; 537 uint32_t oac_mask; 538 uint32_t gds_heap_base; 539 uint32_t gds_heap_size; 540 }; 541 542 struct process_queue_manager { 543 /* data */ 544 struct kfd_process *process; 545 struct list_head queues; 546 unsigned long *queue_slot_bitmap; 547 }; 548 549 struct qcm_process_device { 550 /* The Device Queue Manager that owns this data */ 551 struct device_queue_manager *dqm; 552 struct process_queue_manager *pqm; 553 /* Queues list */ 554 struct list_head queues_list; 555 struct list_head priv_queue_list; 556 557 unsigned int queue_count; 558 unsigned int vmid; 559 bool is_debug; 560 unsigned int evicted; /* eviction counter, 0=active */ 561 562 /* This flag tells if we should reset all wavefronts on 563 * process termination 564 */ 565 bool reset_wavefronts; 566 567 /* 568 * All the memory management data should be here too 569 */ 570 uint64_t gds_context_area; 571 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 572 uint64_t page_table_base; 573 uint32_t sh_mem_config; 574 uint32_t sh_mem_bases; 575 uint32_t sh_mem_ape1_base; 576 uint32_t sh_mem_ape1_limit; 577 uint32_t gds_size; 578 uint32_t num_gws; 579 uint32_t num_oac; 580 uint32_t sh_hidden_private_base; 581 582 /* CWSR memory */ 583 void *cwsr_kaddr; 584 uint64_t cwsr_base; 585 uint64_t tba_addr; 586 uint64_t tma_addr; 587 588 /* IB memory */ 589 uint64_t ib_base; 590 void *ib_kaddr; 591 592 /* doorbell resources per process per device */ 593 unsigned long *doorbell_bitmap; 594 }; 595 596 /* KFD Memory Eviction */ 597 598 /* Approx. wait time before attempting to restore evicted BOs */ 599 #define PROCESS_RESTORE_TIME_MS 100 600 /* Approx. back off time if restore fails due to lack of memory */ 601 #define PROCESS_BACK_OFF_TIME_MS 100 602 /* Approx. time before evicting the process again */ 603 #define PROCESS_ACTIVE_TIME_MS 10 604 605 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 606 * idr_handle in the least significant 4 bytes 607 */ 608 #define MAKE_HANDLE(gpu_id, idr_handle) \ 609 (((uint64_t)(gpu_id) << 32) + idr_handle) 610 #define GET_GPU_ID(handle) (handle >> 32) 611 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 612 613 enum kfd_pdd_bound { 614 PDD_UNBOUND = 0, 615 PDD_BOUND, 616 PDD_BOUND_SUSPENDED, 617 }; 618 619 /* Data that is per-process-per device. */ 620 struct kfd_process_device { 621 /* 622 * List of all per-device data for a process. 623 * Starts from kfd_process.per_device_data. 624 */ 625 struct list_head per_device_list; 626 627 /* The device that owns this data. */ 628 struct kfd_dev *dev; 629 630 /* The process that owns this kfd_process_device. */ 631 struct kfd_process *process; 632 633 /* per-process-per device QCM data structure */ 634 struct qcm_process_device qpd; 635 636 /*Apertures*/ 637 uint64_t lds_base; 638 uint64_t lds_limit; 639 uint64_t gpuvm_base; 640 uint64_t gpuvm_limit; 641 uint64_t scratch_base; 642 uint64_t scratch_limit; 643 644 /* VM context for GPUVM allocations */ 645 struct file *drm_file; 646 void *vm; 647 648 /* GPUVM allocations storage */ 649 struct idr alloc_idr; 650 651 /* Flag used to tell the pdd has dequeued from the dqm. 652 * This is used to prevent dev->dqm->ops.process_termination() from 653 * being called twice when it is already called in IOMMU callback 654 * function. 655 */ 656 bool already_dequeued; 657 bool runtime_inuse; 658 659 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 660 enum kfd_pdd_bound bound; 661 }; 662 663 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 664 665 /* Process data */ 666 struct kfd_process { 667 /* 668 * kfd_process are stored in an mm_struct*->kfd_process* 669 * hash table (kfd_processes in kfd_process.c) 670 */ 671 struct hlist_node kfd_processes; 672 673 /* 674 * Opaque pointer to mm_struct. We don't hold a reference to 675 * it so it should never be dereferenced from here. This is 676 * only used for looking up processes by their mm. 677 */ 678 void *mm; 679 680 struct kref ref; 681 struct work_struct release_work; 682 683 struct rwlock mutex; 684 685 /* 686 * In any process, the thread that started main() is the lead 687 * thread and outlives the rest. 688 * It is here because amd_iommu_bind_pasid wants a task_struct. 689 * It can also be used for safely getting a reference to the 690 * mm_struct of the process. 691 */ 692 struct task_struct *lead_thread; 693 694 /* We want to receive a notification when the mm_struct is destroyed */ 695 struct mmu_notifier mmu_notifier; 696 697 uint16_t pasid; 698 unsigned int doorbell_index; 699 700 /* 701 * List of kfd_process_device structures, 702 * one for each device the process is using. 703 */ 704 struct list_head per_device_data; 705 706 struct process_queue_manager pqm; 707 708 /*Is the user space process 32 bit?*/ 709 bool is_32bit_user_mode; 710 711 /* Event-related data */ 712 struct rwlock event_mutex; 713 /* Event ID allocator and lookup */ 714 struct idr event_idr; 715 /* Event page */ 716 struct kfd_signal_page *signal_page; 717 size_t signal_mapped_size; 718 size_t signal_event_count; 719 bool signal_event_limit_reached; 720 721 /* Information used for memory eviction */ 722 void *kgd_process_info; 723 /* Eviction fence that is attached to all the BOs of this process. The 724 * fence will be triggered during eviction and new one will be created 725 * during restore 726 */ 727 struct dma_fence *ef; 728 729 /* Work items for evicting and restoring BOs */ 730 struct delayed_work eviction_work; 731 struct delayed_work restore_work; 732 /* seqno of the last scheduled eviction */ 733 unsigned int last_eviction_seqno; 734 /* Approx. the last timestamp (in jiffies) when the process was 735 * restored after an eviction 736 */ 737 unsigned long last_restore_timestamp; 738 739 /* Kobj for our procfs */ 740 struct kobject *kobj; 741 struct kobject *kobj_queues; 742 struct attribute attr_pasid; 743 }; 744 745 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 746 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 747 extern struct srcu_struct kfd_processes_srcu; 748 749 /** 750 * Ioctl function type. 751 * 752 * \param filep pointer to file structure. 753 * \param p amdkfd process pointer. 754 * \param data pointer to arg that was copied from user. 755 */ 756 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 757 void *data); 758 759 struct amdkfd_ioctl_desc { 760 unsigned int cmd; 761 int flags; 762 amdkfd_ioctl_t *func; 763 unsigned int cmd_drv; 764 const char *name; 765 }; 766 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 767 768 int kfd_process_create_wq(void); 769 void kfd_process_destroy_wq(void); 770 struct kfd_process *kfd_create_process(struct file *filep); 771 struct kfd_process *kfd_get_process(const struct task_struct *); 772 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 773 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 774 void kfd_unref_process(struct kfd_process *p); 775 int kfd_process_evict_queues(struct kfd_process *p); 776 int kfd_process_restore_queues(struct kfd_process *p); 777 void kfd_suspend_all_processes(void); 778 int kfd_resume_all_processes(void); 779 780 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 781 struct file *drm_file); 782 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 783 struct kfd_process *p); 784 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 785 struct kfd_process *p); 786 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 787 struct kfd_process *p); 788 789 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 790 struct vm_area_struct *vma); 791 792 /* KFD process API for creating and translating handles */ 793 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 794 void *mem); 795 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 796 int handle); 797 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 798 int handle); 799 800 /* Process device data iterator */ 801 struct kfd_process_device *kfd_get_first_process_device_data( 802 struct kfd_process *p); 803 struct kfd_process_device *kfd_get_next_process_device_data( 804 struct kfd_process *p, 805 struct kfd_process_device *pdd); 806 bool kfd_has_process_device_data(struct kfd_process *p); 807 808 /* PASIDs */ 809 int kfd_pasid_init(void); 810 void kfd_pasid_exit(void); 811 bool kfd_set_pasid_limit(unsigned int new_limit); 812 unsigned int kfd_get_pasid_limit(void); 813 unsigned int kfd_pasid_alloc(void); 814 void kfd_pasid_free(unsigned int pasid); 815 816 /* Doorbells */ 817 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 818 int kfd_doorbell_init(struct kfd_dev *kfd); 819 void kfd_doorbell_fini(struct kfd_dev *kfd); 820 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 821 struct vm_area_struct *vma); 822 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 823 unsigned int *doorbell_off); 824 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 825 u32 read_kernel_doorbell(u32 __iomem *db); 826 void write_kernel_doorbell(void __iomem *db, u32 value); 827 void write_kernel_doorbell64(void __iomem *db, u64 value); 828 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 829 struct kfd_process *process, 830 unsigned int doorbell_id); 831 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 832 struct kfd_process *process); 833 int kfd_alloc_process_doorbells(struct kfd_process *process); 834 void kfd_free_process_doorbells(struct kfd_process *process); 835 836 /* GTT Sub-Allocator */ 837 838 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 839 struct kfd_mem_obj **mem_obj); 840 841 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 842 843 extern struct device *kfd_device; 844 845 /* KFD's procfs */ 846 void kfd_procfs_init(void); 847 void kfd_procfs_shutdown(void); 848 int kfd_procfs_add_queue(struct queue *q); 849 void kfd_procfs_del_queue(struct queue *q); 850 851 /* Topology */ 852 int kfd_topology_init(void); 853 void kfd_topology_shutdown(void); 854 int kfd_topology_add_device(struct kfd_dev *gpu); 855 int kfd_topology_remove_device(struct kfd_dev *gpu); 856 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 857 uint32_t proximity_domain); 858 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 859 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 860 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 861 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 862 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 863 int kfd_numa_node_to_apic_id(int numa_node_id); 864 865 /* Interrupts */ 866 int kfd_interrupt_init(struct kfd_dev *dev); 867 void kfd_interrupt_exit(struct kfd_dev *dev); 868 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 869 bool interrupt_is_wanted(struct kfd_dev *dev, 870 const uint32_t *ih_ring_entry, 871 uint32_t *patched_ihre, bool *flag); 872 873 /* amdkfd Apertures */ 874 int kfd_init_apertures(struct kfd_process *process); 875 876 /* Queue Context Management */ 877 int init_queue(struct queue **q, const struct queue_properties *properties); 878 void uninit_queue(struct queue *q); 879 void print_queue_properties(struct queue_properties *q); 880 void print_queue(struct queue *q); 881 882 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 883 struct kfd_dev *dev); 884 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 885 struct kfd_dev *dev); 886 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 887 struct kfd_dev *dev); 888 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 889 struct kfd_dev *dev); 890 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 891 struct kfd_dev *dev); 892 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 893 struct kfd_dev *dev); 894 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 895 void device_queue_manager_uninit(struct device_queue_manager *dqm); 896 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 897 enum kfd_queue_type type); 898 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 899 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid); 900 901 /* Process Queue Manager */ 902 struct process_queue_node { 903 struct queue *q; 904 struct kernel_queue *kq; 905 struct list_head process_queue_list; 906 }; 907 908 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 909 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 910 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 911 void pqm_uninit(struct process_queue_manager *pqm); 912 int pqm_create_queue(struct process_queue_manager *pqm, 913 struct kfd_dev *dev, 914 struct file *f, 915 struct queue_properties *properties, 916 unsigned int *qid, 917 uint32_t *p_doorbell_offset_in_process); 918 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 919 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 920 struct queue_properties *p); 921 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 922 struct queue_properties *p); 923 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 924 void *gws); 925 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 926 unsigned int qid); 927 int pqm_get_wave_state(struct process_queue_manager *pqm, 928 unsigned int qid, 929 void __user *ctl_stack, 930 u32 *ctl_stack_used_size, 931 u32 *save_area_used_size); 932 933 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 934 unsigned int fence_value, 935 unsigned int timeout_ms); 936 937 /* Packet Manager */ 938 939 #define KFD_FENCE_COMPLETED (100) 940 #define KFD_FENCE_INIT (10) 941 942 struct packet_manager { 943 struct device_queue_manager *dqm; 944 struct kernel_queue *priv_queue; 945 struct rwlock lock; 946 bool allocated; 947 struct kfd_mem_obj *ib_buffer_obj; 948 unsigned int ib_size_bytes; 949 bool is_over_subscription; 950 951 const struct packet_manager_funcs *pmf; 952 }; 953 954 struct packet_manager_funcs { 955 /* Support ASIC-specific packet formats for PM4 packets */ 956 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 957 struct qcm_process_device *qpd); 958 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 959 uint64_t ib, size_t ib_size_in_dwords, bool chain); 960 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 961 struct scheduling_resources *res); 962 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 963 struct queue *q, bool is_static); 964 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 965 enum kfd_queue_type type, 966 enum kfd_unmap_queues_filter mode, 967 uint32_t filter_param, bool reset, 968 unsigned int sdma_engine); 969 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 970 uint64_t fence_address, uint32_t fence_value); 971 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 972 973 /* Packet sizes */ 974 int map_process_size; 975 int runlist_size; 976 int set_resources_size; 977 int map_queues_size; 978 int unmap_queues_size; 979 int query_status_size; 980 int release_mem_size; 981 }; 982 983 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 984 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 985 986 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 987 void pm_uninit(struct packet_manager *pm, bool hanging); 988 int pm_send_set_resources(struct packet_manager *pm, 989 struct scheduling_resources *res); 990 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 991 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 992 uint32_t fence_value); 993 994 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 995 enum kfd_unmap_queues_filter mode, 996 uint32_t filter_param, bool reset, 997 unsigned int sdma_engine); 998 999 void pm_release_ib(struct packet_manager *pm); 1000 1001 /* Following PM funcs can be shared among VI and AI */ 1002 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1003 1004 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1005 1006 /* Events */ 1007 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1008 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1009 1010 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1011 1012 void kfd_event_init_process(struct kfd_process *p); 1013 void kfd_event_free_process(struct kfd_process *p); 1014 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1015 int kfd_wait_on_events(struct kfd_process *p, 1016 uint32_t num_events, void __user *data, 1017 bool all, uint32_t user_timeout_ms, 1018 uint32_t *wait_result); 1019 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 1020 uint32_t valid_id_bits); 1021 void kfd_signal_iommu_event(struct kfd_dev *dev, 1022 unsigned int pasid, unsigned long address, 1023 bool is_write_requested, bool is_execute_requested); 1024 void kfd_signal_hw_exception_event(unsigned int pasid); 1025 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1026 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1027 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1028 uint64_t size); 1029 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1030 uint32_t event_type, bool auto_reset, uint32_t node_id, 1031 uint32_t *event_id, uint32_t *event_trigger_data, 1032 uint64_t *event_page_offset, uint32_t *event_slot_index); 1033 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1034 1035 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 1036 struct kfd_vm_fault_info *info); 1037 1038 void kfd_signal_reset_event(struct kfd_dev *dev); 1039 1040 void kfd_flush_tlb(struct kfd_process_device *pdd); 1041 1042 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1043 1044 bool kfd_is_locked(void); 1045 1046 /* Compute profile */ 1047 void kfd_inc_compute_active(struct kfd_dev *dev); 1048 void kfd_dec_compute_active(struct kfd_dev *dev); 1049 1050 /* Cgroup Support */ 1051 /* Check with device cgroup if @kfd device is accessible */ 1052 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1053 { 1054 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1055 struct drm_device *ddev = kfd->ddev; 1056 1057 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1058 ddev->render->index, 1059 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1060 #else 1061 return 0; 1062 #endif 1063 } 1064 1065 /* Debugfs */ 1066 #if defined(CONFIG_DEBUG_FS) 1067 1068 void kfd_debugfs_init(void); 1069 void kfd_debugfs_fini(void); 1070 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1071 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1072 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1073 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1074 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1075 int pm_debugfs_runlist(struct seq_file *m, void *data); 1076 1077 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1078 int pm_debugfs_hang_hws(struct packet_manager *pm); 1079 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1080 1081 #else 1082 1083 static inline void kfd_debugfs_init(void) {} 1084 static inline void kfd_debugfs_fini(void) {} 1085 1086 #endif 1087 1088 #endif 1089