1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/slab.h> 49 #include <linux/stacktrace.h> 50 51 #include <drm/drm_mm.h> 52 53 /** 54 * DOC: Overview 55 * 56 * drm_mm provides a simple range allocator. The drivers are free to use the 57 * resource allocator from the linux core if it suits them, the upside of drm_mm 58 * is that it's in the DRM core. Which means that it's easier to extend for 59 * some of the crazier special purpose needs of gpus. 60 * 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 62 * Drivers are free to embed either of them into their own suitable 63 * datastructures. drm_mm itself will not do any memory allocations of its own, 64 * so if drivers choose not to embed nodes they need to still allocate them 65 * themselves. 66 * 67 * The range allocator also supports reservation of preallocated blocks. This is 68 * useful for taking over initial mode setting configurations from the firmware, 69 * where an object needs to be created which exactly matches the firmware's 70 * scanout target. As long as the range is still free it can be inserted anytime 71 * after the allocator is initialized, which helps with avoiding looped 72 * dependencies in the driver load sequence. 73 * 74 * drm_mm maintains a stack of most recently freed holes, which of all 75 * simplistic datastructures seems to be a fairly decent approach to clustering 76 * allocations and avoiding too much fragmentation. This means free space 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports 78 * something better would be fairly complex and since gfx thrashing is a fairly 79 * steep cliff not a real concern. Removing a node again is O(1). 80 * 81 * drm_mm supports a few features: Alignment and range restrictions can be 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 83 * opaque unsigned long) which in conjunction with a driver callback can be used 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses 85 * this to implement guard pages between incompatible caching domains in the 86 * graphics TT. 87 * 88 * Two behaviors are supported for searching and allocating: bottom-up and 89 * top-down. The default is bottom-up. Top-down allocation can be used if the 90 * memory area has different restrictions, or just to reduce fragmentation. 91 * 92 * Finally iteration helpers to walk all nodes and all holes are provided as are 93 * some basic allocator dumpers for debugging. 94 * 95 * Note that this range allocator is not thread-safe, drivers need to protect 96 * modifications with their own locking. The idea behind this is that for a full 97 * memory manager additional data needs to be protected anyway, hence internal 98 * locking would be fully redundant. 99 */ 100 101 #ifdef CONFIG_DRM_DEBUG_MM 102 #include <linux/stackdepot.h> 103 104 #define STACKDEPTH 32 105 #define BUFSZ 4096 106 107 static noinline void save_stack(struct drm_mm_node *node) 108 { 109 unsigned long entries[STACKDEPTH]; 110 unsigned int n; 111 112 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 113 114 /* May be called under spinlock, so avoid sleeping */ 115 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 116 } 117 118 static void show_leaks(struct drm_mm *mm) 119 { 120 struct drm_mm_node *node; 121 unsigned long *entries; 122 unsigned int nr_entries; 123 char *buf; 124 125 buf = kmalloc(BUFSZ, GFP_KERNEL); 126 if (!buf) 127 return; 128 129 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 130 if (!node->stack) { 131 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 132 node->start, node->size); 133 continue; 134 } 135 136 nr_entries = stack_depot_fetch(node->stack, &entries); 137 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 138 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 139 node->start, node->size, buf); 140 } 141 142 kfree(buf); 143 } 144 145 #undef STACKDEPTH 146 #undef BUFSZ 147 #else 148 static void save_stack(struct drm_mm_node *node) { } 149 static void show_leaks(struct drm_mm *mm) { } 150 #endif 151 152 #define START(node) ((node)->start) 153 #define LAST(node) ((node)->start + (node)->size - 1) 154 155 #ifdef __linux__ 156 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 157 u64, __subtree_last, 158 START, LAST, static inline, drm_mm_interval_tree) 159 #else 160 static struct drm_mm_node * 161 drm_mm_interval_tree_iter_first(const struct rb_root_cached *root, 162 uint64_t start, uint64_t last) 163 { 164 struct drm_mm_node *node; 165 struct rb_node *rb; 166 167 for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) { 168 node = rb_entry(rb, typeof(*node), rb); 169 if (LAST(node) >= start && START(node) <= last) 170 return node; 171 } 172 return NULL; 173 } 174 175 static void 176 drm_mm_interval_tree_remove(struct drm_mm_node *node, 177 struct rb_root_cached *root) 178 { 179 rb_erase_cached(&node->rb, root); 180 } 181 #endif 182 183 struct drm_mm_node * 184 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 185 { 186 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 187 start, last) ?: (struct drm_mm_node *)&mm->head_node; 188 } 189 EXPORT_SYMBOL(__drm_mm_interval_first); 190 191 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 192 struct drm_mm_node *node) 193 { 194 struct drm_mm *mm = hole_node->mm; 195 struct rb_node **link, *rb; 196 struct drm_mm_node *parent; 197 bool leftmost; 198 199 node->__subtree_last = LAST(node); 200 201 if (drm_mm_node_allocated(hole_node)) { 202 rb = &hole_node->rb; 203 while (rb) { 204 parent = rb_entry(rb, struct drm_mm_node, rb); 205 if (parent->__subtree_last >= node->__subtree_last) 206 break; 207 208 parent->__subtree_last = node->__subtree_last; 209 rb = rb_parent(rb); 210 } 211 212 rb = &hole_node->rb; 213 link = &hole_node->rb.rb_right; 214 leftmost = false; 215 } else { 216 rb = NULL; 217 link = &mm->interval_tree.rb_root.rb_node; 218 leftmost = true; 219 } 220 221 while (*link) { 222 rb = *link; 223 parent = rb_entry(rb, struct drm_mm_node, rb); 224 if (parent->__subtree_last < node->__subtree_last) 225 parent->__subtree_last = node->__subtree_last; 226 if (node->start < parent->start) { 227 link = &parent->rb.rb_left; 228 } else { 229 link = &parent->rb.rb_right; 230 leftmost = false; 231 } 232 } 233 234 rb_link_node(&node->rb, rb, link); 235 #ifdef notyet 236 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 237 &drm_mm_interval_tree_augment); 238 #else 239 rb_insert_color_cached(&node->rb, &mm->interval_tree, leftmost); 240 #endif 241 } 242 243 #define DRM_RB_INSERT(root, member, expr) do { \ 244 struct rb_node **link = &root.rb_node, *rb = NULL; \ 245 u64 x = expr(node); \ 246 while (*link) { \ 247 rb = *link; \ 248 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ 249 link = &rb->rb_left; \ 250 else \ 251 link = &rb->rb_right; \ 252 } \ 253 rb_link_node(&node->member, rb, link); \ 254 rb_insert_color(&node->member, &root); \ 255 } while (0) 256 257 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 258 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 259 260 static u64 rb_to_hole_size(struct rb_node *rb) 261 { 262 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 263 } 264 265 static void insert_hole_size(struct rb_root_cached *root, 266 struct drm_mm_node *node) 267 { 268 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 269 u64 x = node->hole_size; 270 bool first = true; 271 272 while (*link) { 273 rb = *link; 274 if (x > rb_to_hole_size(rb)) { 275 link = &rb->rb_left; 276 } else { 277 link = &rb->rb_right; 278 first = false; 279 } 280 } 281 282 rb_link_node(&node->rb_hole_size, rb, link); 283 rb_insert_color_cached(&node->rb_hole_size, root, first); 284 } 285 286 static void add_hole(struct drm_mm_node *node) 287 { 288 struct drm_mm *mm = node->mm; 289 290 node->hole_size = 291 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 292 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 293 294 insert_hole_size(&mm->holes_size, node); 295 DRM_RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); 296 297 list_add(&node->hole_stack, &mm->hole_stack); 298 } 299 300 static void rm_hole(struct drm_mm_node *node) 301 { 302 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 303 304 list_del(&node->hole_stack); 305 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 306 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); 307 node->hole_size = 0; 308 309 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 310 } 311 312 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 313 { 314 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 315 } 316 317 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 318 { 319 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 320 } 321 322 static inline u64 rb_hole_size(struct rb_node *rb) 323 { 324 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 325 } 326 327 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 328 { 329 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 330 struct drm_mm_node *best = NULL; 331 332 do { 333 struct drm_mm_node *node = 334 rb_entry(rb, struct drm_mm_node, rb_hole_size); 335 336 if (size <= node->hole_size) { 337 best = node; 338 rb = rb->rb_right; 339 } else { 340 rb = rb->rb_left; 341 } 342 } while (rb); 343 344 return best; 345 } 346 347 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 348 { 349 struct rb_node *rb = mm->holes_addr.rb_node; 350 struct drm_mm_node *node = NULL; 351 352 while (rb) { 353 u64 hole_start; 354 355 node = rb_hole_addr_to_node(rb); 356 hole_start = __drm_mm_hole_node_start(node); 357 358 if (addr < hole_start) 359 rb = node->rb_hole_addr.rb_left; 360 else if (addr > hole_start + node->hole_size) 361 rb = node->rb_hole_addr.rb_right; 362 else 363 break; 364 } 365 366 return node; 367 } 368 369 static struct drm_mm_node * 370 first_hole(struct drm_mm *mm, 371 u64 start, u64 end, u64 size, 372 enum drm_mm_insert_mode mode) 373 { 374 switch (mode) { 375 default: 376 case DRM_MM_INSERT_BEST: 377 return best_hole(mm, size); 378 379 case DRM_MM_INSERT_LOW: 380 return find_hole(mm, start); 381 382 case DRM_MM_INSERT_HIGH: 383 return find_hole(mm, end); 384 385 case DRM_MM_INSERT_EVICT: 386 return list_first_entry_or_null(&mm->hole_stack, 387 struct drm_mm_node, 388 hole_stack); 389 } 390 } 391 392 static struct drm_mm_node * 393 next_hole(struct drm_mm *mm, 394 struct drm_mm_node *node, 395 enum drm_mm_insert_mode mode) 396 { 397 switch (mode) { 398 default: 399 case DRM_MM_INSERT_BEST: 400 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 401 402 case DRM_MM_INSERT_LOW: 403 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); 404 405 case DRM_MM_INSERT_HIGH: 406 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); 407 408 case DRM_MM_INSERT_EVICT: 409 node = list_next_entry(node, hole_stack); 410 return &node->hole_stack == &mm->hole_stack ? NULL : node; 411 } 412 } 413 414 /** 415 * drm_mm_reserve_node - insert an pre-initialized node 416 * @mm: drm_mm allocator to insert @node into 417 * @node: drm_mm_node to insert 418 * 419 * This functions inserts an already set-up &drm_mm_node into the allocator, 420 * meaning that start, size and color must be set by the caller. All other 421 * fields must be cleared to 0. This is useful to initialize the allocator with 422 * preallocated objects which must be set-up before the range allocator can be 423 * set-up, e.g. when taking over a firmware framebuffer. 424 * 425 * Returns: 426 * 0 on success, -ENOSPC if there's no hole where @node is. 427 */ 428 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 429 { 430 struct drm_mm_node *hole; 431 u64 hole_start, hole_end; 432 u64 adj_start, adj_end; 433 u64 end; 434 435 end = node->start + node->size; 436 if (unlikely(end <= node->start)) 437 return -ENOSPC; 438 439 /* Find the relevant hole to add our node to */ 440 hole = find_hole(mm, node->start); 441 if (!hole) 442 return -ENOSPC; 443 444 adj_start = hole_start = __drm_mm_hole_node_start(hole); 445 adj_end = hole_end = hole_start + hole->hole_size; 446 447 if (mm->color_adjust) 448 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 449 450 if (adj_start > node->start || adj_end < end) 451 return -ENOSPC; 452 453 node->mm = mm; 454 455 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 456 list_add(&node->node_list, &hole->node_list); 457 drm_mm_interval_tree_add_node(hole, node); 458 node->hole_size = 0; 459 460 rm_hole(hole); 461 if (node->start > hole_start) 462 add_hole(hole); 463 if (end < hole_end) 464 add_hole(node); 465 466 save_stack(node); 467 return 0; 468 } 469 EXPORT_SYMBOL(drm_mm_reserve_node); 470 471 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 472 { 473 return rb ? rb_to_hole_size(rb) : 0; 474 } 475 476 /** 477 * drm_mm_insert_node_in_range - ranged search for space and insert @node 478 * @mm: drm_mm to allocate from 479 * @node: preallocate node to insert 480 * @size: size of the allocation 481 * @alignment: alignment of the allocation 482 * @color: opaque tag value to use for this node 483 * @range_start: start of the allowed range for this node 484 * @range_end: end of the allowed range for this node 485 * @mode: fine-tune the allocation search and placement 486 * 487 * The preallocated @node must be cleared to 0. 488 * 489 * Returns: 490 * 0 on success, -ENOSPC if there's no suitable hole. 491 */ 492 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 493 struct drm_mm_node * const node, 494 u64 size, u64 alignment, 495 unsigned long color, 496 u64 range_start, u64 range_end, 497 enum drm_mm_insert_mode mode) 498 { 499 struct drm_mm_node *hole; 500 u64 remainder_mask; 501 bool once; 502 503 DRM_MM_BUG_ON(range_start > range_end); 504 505 if (unlikely(size == 0 || range_end - range_start < size)) 506 return -ENOSPC; 507 508 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 509 return -ENOSPC; 510 511 if (alignment <= 1) 512 alignment = 0; 513 514 once = mode & DRM_MM_INSERT_ONCE; 515 mode &= ~DRM_MM_INSERT_ONCE; 516 517 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 518 for (hole = first_hole(mm, range_start, range_end, size, mode); 519 hole; 520 hole = once ? NULL : next_hole(mm, hole, mode)) { 521 u64 hole_start = __drm_mm_hole_node_start(hole); 522 u64 hole_end = hole_start + hole->hole_size; 523 u64 adj_start, adj_end; 524 u64 col_start, col_end; 525 526 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 527 break; 528 529 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 530 break; 531 532 col_start = hole_start; 533 col_end = hole_end; 534 if (mm->color_adjust) 535 mm->color_adjust(hole, color, &col_start, &col_end); 536 537 adj_start = max(col_start, range_start); 538 adj_end = min(col_end, range_end); 539 540 if (adj_end <= adj_start || adj_end - adj_start < size) 541 continue; 542 543 if (mode == DRM_MM_INSERT_HIGH) 544 adj_start = adj_end - size; 545 546 if (alignment) { 547 u64 rem; 548 549 if (likely(remainder_mask)) 550 rem = adj_start & remainder_mask; 551 else 552 div64_u64_rem(adj_start, alignment, &rem); 553 if (rem) { 554 adj_start -= rem; 555 if (mode != DRM_MM_INSERT_HIGH) 556 adj_start += alignment; 557 558 if (adj_start < max(col_start, range_start) || 559 min(col_end, range_end) - adj_start < size) 560 continue; 561 562 if (adj_end <= adj_start || 563 adj_end - adj_start < size) 564 continue; 565 } 566 } 567 568 node->mm = mm; 569 node->size = size; 570 node->start = adj_start; 571 node->color = color; 572 node->hole_size = 0; 573 574 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 575 list_add(&node->node_list, &hole->node_list); 576 drm_mm_interval_tree_add_node(hole, node); 577 578 rm_hole(hole); 579 if (adj_start > hole_start) 580 add_hole(hole); 581 if (adj_start + size < hole_end) 582 add_hole(node); 583 584 save_stack(node); 585 return 0; 586 } 587 588 return -ENOSPC; 589 } 590 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 591 592 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) 593 { 594 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 595 } 596 597 /** 598 * drm_mm_remove_node - Remove a memory node from the allocator. 599 * @node: drm_mm_node to remove 600 * 601 * This just removes a node from its drm_mm allocator. The node does not need to 602 * be cleared again before it can be re-inserted into this or any other drm_mm 603 * allocator. It is a bug to call this function on a unallocated node. 604 */ 605 void drm_mm_remove_node(struct drm_mm_node *node) 606 { 607 struct drm_mm *mm = node->mm; 608 struct drm_mm_node *prev_node; 609 610 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 611 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 612 613 prev_node = list_prev_entry(node, node_list); 614 615 if (drm_mm_hole_follows(node)) 616 rm_hole(node); 617 618 drm_mm_interval_tree_remove(node, &mm->interval_tree); 619 list_del(&node->node_list); 620 621 if (drm_mm_hole_follows(prev_node)) 622 rm_hole(prev_node); 623 add_hole(prev_node); 624 625 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 626 } 627 EXPORT_SYMBOL(drm_mm_remove_node); 628 629 /** 630 * drm_mm_replace_node - move an allocation from @old to @new 631 * @old: drm_mm_node to remove from the allocator 632 * @new: drm_mm_node which should inherit @old's allocation 633 * 634 * This is useful for when drivers embed the drm_mm_node structure and hence 635 * can't move allocations by reassigning pointers. It's a combination of remove 636 * and insert with the guarantee that the allocation start will match. 637 */ 638 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 639 { 640 struct drm_mm *mm = old->mm; 641 642 DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); 643 644 *new = *old; 645 646 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); 647 list_replace(&old->node_list, &new->node_list); 648 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 649 650 if (drm_mm_hole_follows(old)) { 651 list_replace(&old->hole_stack, &new->hole_stack); 652 rb_replace_node_cached(&old->rb_hole_size, 653 &new->rb_hole_size, 654 &mm->holes_size); 655 rb_replace_node(&old->rb_hole_addr, 656 &new->rb_hole_addr, 657 &mm->holes_addr); 658 } 659 660 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); 661 } 662 EXPORT_SYMBOL(drm_mm_replace_node); 663 664 /** 665 * DOC: lru scan roster 666 * 667 * Very often GPUs need to have continuous allocations for a given object. When 668 * evicting objects to make space for a new one it is therefore not most 669 * efficient when we simply start to select all objects from the tail of an LRU 670 * until there's a suitable hole: Especially for big objects or nodes that 671 * otherwise have special allocation constraints there's a good chance we evict 672 * lots of (smaller) objects unnecessarily. 673 * 674 * The DRM range allocator supports this use-case through the scanning 675 * interfaces. First a scan operation needs to be initialized with 676 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 677 * objects to the roster, probably by walking an LRU list, but this can be 678 * freely implemented. Eviction candiates are added using 679 * drm_mm_scan_add_block() until a suitable hole is found or there are no 680 * further evictable objects. Eviction roster metadata is tracked in &struct 681 * drm_mm_scan. 682 * 683 * The driver must walk through all objects again in exactly the reverse 684 * order to restore the allocator state. Note that while the allocator is used 685 * in the scan mode no other operation is allowed. 686 * 687 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 688 * reported true) in the scan, and any overlapping nodes after color adjustment 689 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 690 * since freeing a node is also O(1) the overall complexity is 691 * O(scanned_objects). So like the free stack which needs to be walked before a 692 * scan operation even begins this is linear in the number of objects. It 693 * doesn't seem to hurt too badly. 694 */ 695 696 /** 697 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 698 * @scan: scan state 699 * @mm: drm_mm to scan 700 * @size: size of the allocation 701 * @alignment: alignment of the allocation 702 * @color: opaque tag value to use for the allocation 703 * @start: start of the allowed range for the allocation 704 * @end: end of the allowed range for the allocation 705 * @mode: fine-tune the allocation search and placement 706 * 707 * This simply sets up the scanning routines with the parameters for the desired 708 * hole. 709 * 710 * Warning: 711 * As long as the scan list is non-empty, no other operations than 712 * adding/removing nodes to/from the scan list are allowed. 713 */ 714 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 715 struct drm_mm *mm, 716 u64 size, 717 u64 alignment, 718 unsigned long color, 719 u64 start, 720 u64 end, 721 enum drm_mm_insert_mode mode) 722 { 723 DRM_MM_BUG_ON(start >= end); 724 DRM_MM_BUG_ON(!size || size > end - start); 725 DRM_MM_BUG_ON(mm->scan_active); 726 727 scan->mm = mm; 728 729 if (alignment <= 1) 730 alignment = 0; 731 732 scan->color = color; 733 scan->alignment = alignment; 734 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 735 scan->size = size; 736 scan->mode = mode; 737 738 DRM_MM_BUG_ON(end <= start); 739 scan->range_start = start; 740 scan->range_end = end; 741 742 scan->hit_start = U64_MAX; 743 scan->hit_end = 0; 744 } 745 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 746 747 /** 748 * drm_mm_scan_add_block - add a node to the scan list 749 * @scan: the active drm_mm scanner 750 * @node: drm_mm_node to add 751 * 752 * Add a node to the scan list that might be freed to make space for the desired 753 * hole. 754 * 755 * Returns: 756 * True if a hole has been found, false otherwise. 757 */ 758 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 759 struct drm_mm_node *node) 760 { 761 struct drm_mm *mm = scan->mm; 762 struct drm_mm_node *hole; 763 u64 hole_start, hole_end; 764 u64 col_start, col_end; 765 u64 adj_start, adj_end; 766 767 DRM_MM_BUG_ON(node->mm != mm); 768 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 769 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 770 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 771 mm->scan_active++; 772 773 /* Remove this block from the node_list so that we enlarge the hole 774 * (distance between the end of our previous node and the start of 775 * or next), without poisoning the link so that we can restore it 776 * later in drm_mm_scan_remove_block(). 777 */ 778 hole = list_prev_entry(node, node_list); 779 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 780 __list_del_entry(&node->node_list); 781 782 hole_start = __drm_mm_hole_node_start(hole); 783 hole_end = __drm_mm_hole_node_end(hole); 784 785 col_start = hole_start; 786 col_end = hole_end; 787 if (mm->color_adjust) 788 mm->color_adjust(hole, scan->color, &col_start, &col_end); 789 790 adj_start = max(col_start, scan->range_start); 791 adj_end = min(col_end, scan->range_end); 792 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 793 return false; 794 795 if (scan->mode == DRM_MM_INSERT_HIGH) 796 adj_start = adj_end - scan->size; 797 798 if (scan->alignment) { 799 u64 rem; 800 801 if (likely(scan->remainder_mask)) 802 rem = adj_start & scan->remainder_mask; 803 else 804 div64_u64_rem(adj_start, scan->alignment, &rem); 805 if (rem) { 806 adj_start -= rem; 807 if (scan->mode != DRM_MM_INSERT_HIGH) 808 adj_start += scan->alignment; 809 if (adj_start < max(col_start, scan->range_start) || 810 min(col_end, scan->range_end) - adj_start < scan->size) 811 return false; 812 813 if (adj_end <= adj_start || 814 adj_end - adj_start < scan->size) 815 return false; 816 } 817 } 818 819 scan->hit_start = adj_start; 820 scan->hit_end = adj_start + scan->size; 821 822 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 823 DRM_MM_BUG_ON(scan->hit_start < hole_start); 824 DRM_MM_BUG_ON(scan->hit_end > hole_end); 825 826 return true; 827 } 828 EXPORT_SYMBOL(drm_mm_scan_add_block); 829 830 /** 831 * drm_mm_scan_remove_block - remove a node from the scan list 832 * @scan: the active drm_mm scanner 833 * @node: drm_mm_node to remove 834 * 835 * Nodes **must** be removed in exactly the reverse order from the scan list as 836 * they have been added (e.g. using list_add() as they are added and then 837 * list_for_each() over that eviction list to remove), otherwise the internal 838 * state of the memory manager will be corrupted. 839 * 840 * When the scan list is empty, the selected memory nodes can be freed. An 841 * immediately following drm_mm_insert_node_in_range_generic() or one of the 842 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 843 * the just freed block (because it's at the top of the free_stack list). 844 * 845 * Returns: 846 * True if this block should be evicted, false otherwise. Will always 847 * return false when no hole has been found. 848 */ 849 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 850 struct drm_mm_node *node) 851 { 852 struct drm_mm_node *prev_node; 853 854 DRM_MM_BUG_ON(node->mm != scan->mm); 855 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); 856 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 857 858 DRM_MM_BUG_ON(!node->mm->scan_active); 859 node->mm->scan_active--; 860 861 /* During drm_mm_scan_add_block() we decoupled this node leaving 862 * its pointers intact. Now that the caller is walking back along 863 * the eviction list we can restore this block into its rightful 864 * place on the full node_list. To confirm that the caller is walking 865 * backwards correctly we check that prev_node->next == node->next, 866 * i.e. both believe the same node should be on the other side of the 867 * hole. 868 */ 869 prev_node = list_prev_entry(node, node_list); 870 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 871 list_next_entry(node, node_list)); 872 list_add(&node->node_list, &prev_node->node_list); 873 874 return (node->start + node->size > scan->hit_start && 875 node->start < scan->hit_end); 876 } 877 EXPORT_SYMBOL(drm_mm_scan_remove_block); 878 879 /** 880 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 881 * @scan: drm_mm scan with target hole 882 * 883 * After completing an eviction scan and removing the selected nodes, we may 884 * need to remove a few more nodes from either side of the target hole if 885 * mm.color_adjust is being used. 886 * 887 * Returns: 888 * A node to evict, or NULL if there are no overlapping nodes. 889 */ 890 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 891 { 892 struct drm_mm *mm = scan->mm; 893 struct drm_mm_node *hole; 894 u64 hole_start, hole_end; 895 896 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 897 898 if (!mm->color_adjust) 899 return NULL; 900 901 /* 902 * The hole found during scanning should ideally be the first element 903 * in the hole_stack list, but due to side-effects in the driver it 904 * may not be. 905 */ 906 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 907 hole_start = __drm_mm_hole_node_start(hole); 908 hole_end = hole_start + hole->hole_size; 909 910 if (hole_start <= scan->hit_start && 911 hole_end >= scan->hit_end) 912 break; 913 } 914 915 /* We should only be called after we found the hole previously */ 916 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 917 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 918 return NULL; 919 920 DRM_MM_BUG_ON(hole_start > scan->hit_start); 921 DRM_MM_BUG_ON(hole_end < scan->hit_end); 922 923 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 924 if (hole_start > scan->hit_start) 925 return hole; 926 if (hole_end < scan->hit_end) 927 return list_next_entry(hole, node_list); 928 929 return NULL; 930 } 931 EXPORT_SYMBOL(drm_mm_scan_color_evict); 932 933 /** 934 * drm_mm_init - initialize a drm-mm allocator 935 * @mm: the drm_mm structure to initialize 936 * @start: start of the range managed by @mm 937 * @size: end of the range managed by @mm 938 * 939 * Note that @mm must be cleared to 0 before calling this function. 940 */ 941 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 942 { 943 DRM_MM_BUG_ON(start + size <= start); 944 945 mm->color_adjust = NULL; 946 947 INIT_LIST_HEAD(&mm->hole_stack); 948 mm->interval_tree = RB_ROOT_CACHED; 949 mm->holes_size = RB_ROOT_CACHED; 950 mm->holes_addr = RB_ROOT; 951 952 /* Clever trick to avoid a special case in the free hole tracking. */ 953 INIT_LIST_HEAD(&mm->head_node.node_list); 954 mm->head_node.flags = 0; 955 mm->head_node.mm = mm; 956 mm->head_node.start = start + size; 957 mm->head_node.size = -size; 958 add_hole(&mm->head_node); 959 960 mm->scan_active = 0; 961 } 962 EXPORT_SYMBOL(drm_mm_init); 963 964 /** 965 * drm_mm_takedown - clean up a drm_mm allocator 966 * @mm: drm_mm allocator to clean up 967 * 968 * Note that it is a bug to call this function on an allocator which is not 969 * clean. 970 */ 971 void drm_mm_takedown(struct drm_mm *mm) 972 { 973 if (WARN(!drm_mm_clean(mm), 974 "Memory manager not clean during takedown.\n")) 975 show_leaks(mm); 976 } 977 EXPORT_SYMBOL(drm_mm_takedown); 978 979 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 980 { 981 u64 start, size; 982 983 size = entry->hole_size; 984 if (size) { 985 start = drm_mm_hole_node_start(entry); 986 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 987 start, start + size, size); 988 } 989 990 return size; 991 } 992 /** 993 * drm_mm_print - print allocator state 994 * @mm: drm_mm allocator to print 995 * @p: DRM printer to use 996 */ 997 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 998 { 999 const struct drm_mm_node *entry; 1000 u64 total_used = 0, total_free = 0, total = 0; 1001 1002 total_free += drm_mm_dump_hole(p, &mm->head_node); 1003 1004 drm_mm_for_each_node(entry, mm) { 1005 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 1006 entry->start + entry->size, entry->size); 1007 total_used += entry->size; 1008 total_free += drm_mm_dump_hole(p, entry); 1009 } 1010 total = total_free + total_used; 1011 1012 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 1013 total_used, total_free); 1014 } 1015 EXPORT_SYMBOL(drm_mm_print); 1016