xref: /openbsd/sys/dev/pci/drm/i915/display/intel_dp.c (revision 5a38ef86)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_ddi.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_fifo_underrun.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdmi.h"
58 #include "intel_hotplug.h"
59 #include "intel_lspcon.h"
60 #include "intel_lvds.h"
61 #include "intel_panel.h"
62 #include "intel_psr.h"
63 #include "intel_sideband.h"
64 #include "intel_tc.h"
65 #include "intel_vdsc.h"
66 
67 #define DP_DPRX_ESI_LEN 14
68 
69 /* DP DSC throughput values used for slice count calculations KPixels/s */
70 #define DP_DSC_PEAK_PIXEL_RATE			2720000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
73 
74 /* DP DSC FEC Overhead factor = 1/(0.972261) */
75 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
76 
77 /* Compliance test status bits  */
78 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
79 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 
83 struct dp_link_dpll {
84 	int clock;
85 	struct dpll dpll;
86 };
87 
88 static const struct dp_link_dpll g4x_dpll[] = {
89 	{ 162000,
90 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91 	{ 270000,
92 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
93 };
94 
95 static const struct dp_link_dpll pch_dpll[] = {
96 	{ 162000,
97 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98 	{ 270000,
99 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
100 };
101 
102 static const struct dp_link_dpll vlv_dpll[] = {
103 	{ 162000,
104 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105 	{ 270000,
106 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
107 };
108 
109 /*
110  * CHV supports eDP 1.4 that have  more link rates.
111  * Below only provides the fixed rate but exclude variable rate.
112  */
113 static const struct dp_link_dpll chv_dpll[] = {
114 	/*
115 	 * CHV requires to program fractional division for m2.
116 	 * m2 is stored in fixed point format using formula below
117 	 * (m2_int << 22) | m2_fraction
118 	 */
119 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
120 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
122 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
123 };
124 
125 /* Constants for DP DSC configurations */
126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
127 
128 /* With Single pipe configuration, HW is capable of supporting maximum
129  * of 4 slices per line.
130  */
131 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
132 
133 /**
134  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135  * @intel_dp: DP struct
136  *
137  * If a CPU or PCH DP output is attached to an eDP panel, this function
138  * will return true, and false otherwise.
139  */
140 bool intel_dp_is_edp(struct intel_dp *intel_dp)
141 {
142 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
143 
144 	return dig_port->base.type == INTEL_OUTPUT_EDP;
145 }
146 
147 static void intel_dp_link_down(struct intel_encoder *encoder,
148 			       const struct intel_crtc_state *old_crtc_state);
149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
152 					   const struct intel_crtc_state *crtc_state);
153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
154 				      enum pipe pipe);
155 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
156 
157 static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp)
158 {
159 	intel_dp->sink_rates[0] = 162000;
160 	intel_dp->num_sink_rates = 1;
161 }
162 
163 /* update sink rates from dpcd */
164 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
165 {
166 	static const int dp_rates[] = {
167 		162000, 270000, 540000, 810000
168 	};
169 	int i, max_rate;
170 
171 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
172 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
173 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
174 		static const int quirk_rates[] = { 162000, 270000, 324000 };
175 
176 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
177 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
178 
179 		return;
180 	}
181 
182 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
183 
184 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
185 		if (dp_rates[i] > max_rate)
186 			break;
187 		intel_dp->sink_rates[i] = dp_rates[i];
188 	}
189 
190 	intel_dp->num_sink_rates = i;
191 }
192 
193 /* Get length of rates array potentially limited by max_rate. */
194 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
195 {
196 	int i;
197 
198 	/* Limit results by potentially reduced max rate */
199 	for (i = 0; i < len; i++) {
200 		if (rates[len - i - 1] <= max_rate)
201 			return len - i;
202 	}
203 
204 	return 0;
205 }
206 
207 /* Get length of common rates array potentially limited by max_rate. */
208 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
209 					  int max_rate)
210 {
211 	return intel_dp_rate_limit_len(intel_dp->common_rates,
212 				       intel_dp->num_common_rates, max_rate);
213 }
214 
215 /* Theoretical max between source and sink */
216 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
217 {
218 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
219 }
220 
221 /* Theoretical max between source and sink */
222 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
223 {
224 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
225 	int source_max = dig_port->max_lanes;
226 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
227 	int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
228 
229 	return min3(source_max, sink_max, fia_max);
230 }
231 
232 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
233 {
234 	return intel_dp->max_link_lane_count;
235 }
236 
237 int
238 intel_dp_link_required(int pixel_clock, int bpp)
239 {
240 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
241 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
242 }
243 
244 int
245 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
246 {
247 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
248 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
249 	 * is transmitted every LS_Clk per lane, there is no need to account for
250 	 * the channel encoding that is done in the PHY layer here.
251 	 */
252 
253 	return max_link_clock * max_lanes;
254 }
255 
256 static int cnl_max_source_rate(struct intel_dp *intel_dp)
257 {
258 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
259 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
260 	enum port port = dig_port->base.port;
261 
262 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
263 
264 	/* Low voltage SKUs are limited to max of 5.4G */
265 	if (voltage == VOLTAGE_INFO_0_85V)
266 		return 540000;
267 
268 	/* For this SKU 8.1G is supported in all ports */
269 	if (IS_CNL_WITH_PORT_F(dev_priv))
270 		return 810000;
271 
272 	/* For other SKUs, max rate on ports A and D is 5.4G */
273 	if (port == PORT_A || port == PORT_D)
274 		return 540000;
275 
276 	return 810000;
277 }
278 
279 static int icl_max_source_rate(struct intel_dp *intel_dp)
280 {
281 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
282 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
283 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
284 
285 	if (intel_phy_is_combo(dev_priv, phy) &&
286 	    !IS_ELKHARTLAKE(dev_priv) &&
287 	    !intel_dp_is_edp(intel_dp))
288 		return 540000;
289 
290 	return 810000;
291 }
292 
293 static void
294 intel_dp_set_source_rates(struct intel_dp *intel_dp)
295 {
296 	/* The values must be in increasing order */
297 	static const int cnl_rates[] = {
298 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
299 	};
300 	static const int bxt_rates[] = {
301 		162000, 216000, 243000, 270000, 324000, 432000, 540000
302 	};
303 	static const int skl_rates[] = {
304 		162000, 216000, 270000, 324000, 432000, 540000
305 	};
306 	static const int hsw_rates[] = {
307 		162000, 270000, 540000
308 	};
309 	static const int g4x_rates[] = {
310 		162000, 270000
311 	};
312 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
313 	struct intel_encoder *encoder = &dig_port->base;
314 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
315 	const int *source_rates;
316 	int size, max_rate = 0, vbt_max_rate;
317 
318 	/* This should only be done once */
319 	drm_WARN_ON(&dev_priv->drm,
320 		    intel_dp->source_rates || intel_dp->num_source_rates);
321 
322 	if (INTEL_GEN(dev_priv) >= 10) {
323 		source_rates = cnl_rates;
324 		size = ARRAY_SIZE(cnl_rates);
325 		if (IS_GEN(dev_priv, 10))
326 			max_rate = cnl_max_source_rate(intel_dp);
327 		else
328 			max_rate = icl_max_source_rate(intel_dp);
329 	} else if (IS_GEN9_LP(dev_priv)) {
330 		source_rates = bxt_rates;
331 		size = ARRAY_SIZE(bxt_rates);
332 	} else if (IS_GEN9_BC(dev_priv)) {
333 		source_rates = skl_rates;
334 		size = ARRAY_SIZE(skl_rates);
335 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
336 		   IS_BROADWELL(dev_priv)) {
337 		source_rates = hsw_rates;
338 		size = ARRAY_SIZE(hsw_rates);
339 	} else {
340 		source_rates = g4x_rates;
341 		size = ARRAY_SIZE(g4x_rates);
342 	}
343 
344 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
345 	if (max_rate && vbt_max_rate)
346 		max_rate = min(max_rate, vbt_max_rate);
347 	else if (vbt_max_rate)
348 		max_rate = vbt_max_rate;
349 
350 	if (max_rate)
351 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
352 
353 	intel_dp->source_rates = source_rates;
354 	intel_dp->num_source_rates = size;
355 }
356 
357 static int intersect_rates(const int *source_rates, int source_len,
358 			   const int *sink_rates, int sink_len,
359 			   int *common_rates)
360 {
361 	int i = 0, j = 0, k = 0;
362 
363 	while (i < source_len && j < sink_len) {
364 		if (source_rates[i] == sink_rates[j]) {
365 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
366 				return k;
367 			common_rates[k] = source_rates[i];
368 			++k;
369 			++i;
370 			++j;
371 		} else if (source_rates[i] < sink_rates[j]) {
372 			++i;
373 		} else {
374 			++j;
375 		}
376 	}
377 	return k;
378 }
379 
380 /* return index of rate in rates array, or -1 if not found */
381 static int intel_dp_rate_index(const int *rates, int len, int rate)
382 {
383 	int i;
384 
385 	for (i = 0; i < len; i++)
386 		if (rate == rates[i])
387 			return i;
388 
389 	return -1;
390 }
391 
392 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
393 {
394 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
395 
396 	drm_WARN_ON(&i915->drm,
397 		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
398 
399 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
400 						     intel_dp->num_source_rates,
401 						     intel_dp->sink_rates,
402 						     intel_dp->num_sink_rates,
403 						     intel_dp->common_rates);
404 
405 	/* Paranoia, there should always be something in common. */
406 	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
407 		intel_dp->common_rates[0] = 162000;
408 		intel_dp->num_common_rates = 1;
409 	}
410 }
411 
412 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
413 				       u8 lane_count)
414 {
415 	/*
416 	 * FIXME: we need to synchronize the current link parameters with
417 	 * hardware readout. Currently fast link training doesn't work on
418 	 * boot-up.
419 	 */
420 	if (link_rate == 0 ||
421 	    link_rate > intel_dp->max_link_rate)
422 		return false;
423 
424 	if (lane_count == 0 ||
425 	    lane_count > intel_dp_max_lane_count(intel_dp))
426 		return false;
427 
428 	return true;
429 }
430 
431 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
432 						     int link_rate,
433 						     u8 lane_count)
434 {
435 	const struct drm_display_mode *fixed_mode =
436 		intel_dp->attached_connector->panel.fixed_mode;
437 	int mode_rate, max_rate;
438 
439 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
440 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
441 	if (mode_rate > max_rate)
442 		return false;
443 
444 	return true;
445 }
446 
447 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
448 					    int link_rate, u8 lane_count)
449 {
450 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
451 	int index;
452 
453 	/*
454 	 * TODO: Enable fallback on MST links once MST link compute can handle
455 	 * the fallback params.
456 	 */
457 	if (intel_dp->is_mst) {
458 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
459 		return -1;
460 	}
461 
462 	index = intel_dp_rate_index(intel_dp->common_rates,
463 				    intel_dp->num_common_rates,
464 				    link_rate);
465 	if (index > 0) {
466 		if (intel_dp_is_edp(intel_dp) &&
467 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
468 							      intel_dp->common_rates[index - 1],
469 							      lane_count)) {
470 			drm_dbg_kms(&i915->drm,
471 				    "Retrying Link training for eDP with same parameters\n");
472 			return 0;
473 		}
474 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
475 		intel_dp->max_link_lane_count = lane_count;
476 	} else if (lane_count > 1) {
477 		if (intel_dp_is_edp(intel_dp) &&
478 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
479 							      intel_dp_max_common_rate(intel_dp),
480 							      lane_count >> 1)) {
481 			drm_dbg_kms(&i915->drm,
482 				    "Retrying Link training for eDP with same parameters\n");
483 			return 0;
484 		}
485 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
486 		intel_dp->max_link_lane_count = lane_count >> 1;
487 	} else {
488 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
489 		return -1;
490 	}
491 
492 	return 0;
493 }
494 
495 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
496 {
497 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
498 		       DP_DSC_FEC_OVERHEAD_FACTOR);
499 }
500 
501 static int
502 small_joiner_ram_size_bits(struct drm_i915_private *i915)
503 {
504 	if (INTEL_GEN(i915) >= 11)
505 		return 7680 * 8;
506 	else
507 		return 6144 * 8;
508 }
509 
510 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
511 				       u32 link_clock, u32 lane_count,
512 				       u32 mode_clock, u32 mode_hdisplay)
513 {
514 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
515 	int i;
516 
517 	/*
518 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
519 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
520 	 * for SST -> TimeSlotsPerMTP is 1,
521 	 * for MST -> TimeSlotsPerMTP has to be calculated
522 	 */
523 	bits_per_pixel = (link_clock * lane_count * 8) /
524 			 intel_dp_mode_to_fec_clock(mode_clock);
525 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
526 
527 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
528 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
529 		mode_hdisplay;
530 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
531 		    max_bpp_small_joiner_ram);
532 
533 	/*
534 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
535 	 * check, output bpp from small joiner RAM check)
536 	 */
537 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
538 
539 	/* Error out if the max bpp is less than smallest allowed valid bpp */
540 	if (bits_per_pixel < valid_dsc_bpp[0]) {
541 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
542 			    bits_per_pixel, valid_dsc_bpp[0]);
543 		return 0;
544 	}
545 
546 	/* Find the nearest match in the array of known BPPs from VESA */
547 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
548 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
549 			break;
550 	}
551 	bits_per_pixel = valid_dsc_bpp[i];
552 
553 	/*
554 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
555 	 * fractional part is 0
556 	 */
557 	return bits_per_pixel << 4;
558 }
559 
560 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
561 				       int mode_clock, int mode_hdisplay)
562 {
563 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
564 	u8 min_slice_count, i;
565 	int max_slice_width;
566 
567 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
568 		min_slice_count = DIV_ROUND_UP(mode_clock,
569 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
570 	else
571 		min_slice_count = DIV_ROUND_UP(mode_clock,
572 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
573 
574 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
575 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
576 		drm_dbg_kms(&i915->drm,
577 			    "Unsupported slice width %d by DP DSC Sink device\n",
578 			    max_slice_width);
579 		return 0;
580 	}
581 	/* Also take into account max slice width */
582 	min_slice_count = max_t(u8, min_slice_count,
583 				DIV_ROUND_UP(mode_hdisplay,
584 					     max_slice_width));
585 
586 	/* Find the closest match to the valid slice count values */
587 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
588 		if (valid_dsc_slicecount[i] >
589 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
590 						    false))
591 			break;
592 		if (min_slice_count  <= valid_dsc_slicecount[i])
593 			return valid_dsc_slicecount[i];
594 	}
595 
596 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
597 		    min_slice_count);
598 	return 0;
599 }
600 
601 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
602 				  int hdisplay)
603 {
604 	/*
605 	 * Older platforms don't like hdisplay==4096 with DP.
606 	 *
607 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
608 	 * and frame counter increment), but we don't get vblank interrupts,
609 	 * and the pipe underruns immediately. The link also doesn't seem
610 	 * to get trained properly.
611 	 *
612 	 * On CHV the vblank interrupts don't seem to disappear but
613 	 * otherwise the symptoms are similar.
614 	 *
615 	 * TODO: confirm the behaviour on HSW+
616 	 */
617 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
618 }
619 
620 static enum drm_mode_status
621 intel_dp_mode_valid_downstream(struct intel_connector *connector,
622 			       const struct drm_display_mode *mode,
623 			       int target_clock)
624 {
625 	struct intel_dp *intel_dp = intel_attached_dp(connector);
626 	const struct drm_display_info *info = &connector->base.display_info;
627 	int tmds_clock;
628 
629 	if (intel_dp->dfp.max_dotclock &&
630 	    target_clock > intel_dp->dfp.max_dotclock)
631 		return MODE_CLOCK_HIGH;
632 
633 	/* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
634 	tmds_clock = target_clock;
635 	if (drm_mode_is_420_only(info, mode))
636 		tmds_clock /= 2;
637 
638 	if (intel_dp->dfp.min_tmds_clock &&
639 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
640 		return MODE_CLOCK_LOW;
641 	if (intel_dp->dfp.max_tmds_clock &&
642 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
643 		return MODE_CLOCK_HIGH;
644 
645 	return MODE_OK;
646 }
647 
648 static enum drm_mode_status
649 intel_dp_mode_valid(struct drm_connector *connector,
650 		    struct drm_display_mode *mode)
651 {
652 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
653 	struct intel_connector *intel_connector = to_intel_connector(connector);
654 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
655 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
656 	int target_clock = mode->clock;
657 	int max_rate, mode_rate, max_lanes, max_link_clock;
658 	int max_dotclk = dev_priv->max_dotclk_freq;
659 	u16 dsc_max_output_bpp = 0;
660 	u8 dsc_slice_count = 0;
661 	enum drm_mode_status status;
662 
663 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
664 		return MODE_NO_DBLESCAN;
665 
666 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
667 		if (mode->hdisplay > fixed_mode->hdisplay)
668 			return MODE_PANEL;
669 
670 		if (mode->vdisplay > fixed_mode->vdisplay)
671 			return MODE_PANEL;
672 
673 		target_clock = fixed_mode->clock;
674 	}
675 
676 	max_link_clock = intel_dp_max_link_rate(intel_dp);
677 	max_lanes = intel_dp_max_lane_count(intel_dp);
678 
679 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
680 	mode_rate = intel_dp_link_required(target_clock, 18);
681 
682 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
683 		return MODE_H_ILLEGAL;
684 
685 	/*
686 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
687 	 * integer value since we support only integer values of bpp.
688 	 */
689 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
690 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
691 		if (intel_dp_is_edp(intel_dp)) {
692 			dsc_max_output_bpp =
693 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
694 			dsc_slice_count =
695 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
696 								true);
697 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
698 			dsc_max_output_bpp =
699 				intel_dp_dsc_get_output_bpp(dev_priv,
700 							    max_link_clock,
701 							    max_lanes,
702 							    target_clock,
703 							    mode->hdisplay) >> 4;
704 			dsc_slice_count =
705 				intel_dp_dsc_get_slice_count(intel_dp,
706 							     target_clock,
707 							     mode->hdisplay);
708 		}
709 	}
710 
711 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
712 	    target_clock > max_dotclk)
713 		return MODE_CLOCK_HIGH;
714 
715 	if (mode->clock < 10000)
716 		return MODE_CLOCK_LOW;
717 
718 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
719 		return MODE_H_ILLEGAL;
720 
721 	status = intel_dp_mode_valid_downstream(intel_connector,
722 						mode, target_clock);
723 	if (status != MODE_OK)
724 		return status;
725 
726 	return intel_mode_valid_max_plane_size(dev_priv, mode);
727 }
728 
729 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
730 {
731 	int i;
732 	u32 v = 0;
733 
734 	if (src_bytes > 4)
735 		src_bytes = 4;
736 	for (i = 0; i < src_bytes; i++)
737 		v |= ((u32)src[i]) << ((3 - i) * 8);
738 	return v;
739 }
740 
741 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
742 {
743 	int i;
744 	if (dst_bytes > 4)
745 		dst_bytes = 4;
746 	for (i = 0; i < dst_bytes; i++)
747 		dst[i] = src >> ((3-i) * 8);
748 }
749 
750 static void
751 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
752 static void
753 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
754 					      bool force_disable_vdd);
755 static void
756 intel_dp_pps_init(struct intel_dp *intel_dp);
757 
758 static intel_wakeref_t
759 pps_lock(struct intel_dp *intel_dp)
760 {
761 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
762 	intel_wakeref_t wakeref;
763 
764 	/*
765 	 * See intel_power_sequencer_reset() why we need
766 	 * a power domain reference here.
767 	 */
768 	wakeref = intel_display_power_get(dev_priv,
769 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
770 
771 	mutex_lock(&dev_priv->pps_mutex);
772 
773 	return wakeref;
774 }
775 
776 static intel_wakeref_t
777 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
778 {
779 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
780 
781 	mutex_unlock(&dev_priv->pps_mutex);
782 	intel_display_power_put(dev_priv,
783 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
784 				wakeref);
785 	return 0;
786 }
787 
788 #define with_pps_lock(dp, wf) \
789 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
790 
791 static void
792 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
793 {
794 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
795 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
796 	enum pipe pipe = intel_dp->pps_pipe;
797 	bool pll_enabled, release_cl_override = false;
798 	enum dpio_phy phy = DPIO_PHY(pipe);
799 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
800 	u32 DP;
801 
802 	if (drm_WARN(&dev_priv->drm,
803 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
804 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
805 		     pipe_name(pipe), dig_port->base.base.base.id,
806 		     dig_port->base.base.name))
807 		return;
808 
809 	drm_dbg_kms(&dev_priv->drm,
810 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
811 		    pipe_name(pipe), dig_port->base.base.base.id,
812 		    dig_port->base.base.name);
813 
814 	/* Preserve the BIOS-computed detected bit. This is
815 	 * supposed to be read-only.
816 	 */
817 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
818 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
819 	DP |= DP_PORT_WIDTH(1);
820 	DP |= DP_LINK_TRAIN_PAT_1;
821 
822 	if (IS_CHERRYVIEW(dev_priv))
823 		DP |= DP_PIPE_SEL_CHV(pipe);
824 	else
825 		DP |= DP_PIPE_SEL(pipe);
826 
827 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
828 
829 	/*
830 	 * The DPLL for the pipe must be enabled for this to work.
831 	 * So enable temporarily it if it's not already enabled.
832 	 */
833 	if (!pll_enabled) {
834 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
835 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
836 
837 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
838 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
839 			drm_err(&dev_priv->drm,
840 				"Failed to force on pll for pipe %c!\n",
841 				pipe_name(pipe));
842 			return;
843 		}
844 	}
845 
846 	/*
847 	 * Similar magic as in intel_dp_enable_port().
848 	 * We _must_ do this port enable + disable trick
849 	 * to make this power sequencer lock onto the port.
850 	 * Otherwise even VDD force bit won't work.
851 	 */
852 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
853 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
854 
855 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
856 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
857 
858 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
859 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
860 
861 	if (!pll_enabled) {
862 		vlv_force_pll_off(dev_priv, pipe);
863 
864 		if (release_cl_override)
865 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
866 	}
867 }
868 
869 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
870 {
871 	struct intel_encoder *encoder;
872 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
873 
874 	/*
875 	 * We don't have power sequencer currently.
876 	 * Pick one that's not used by other ports.
877 	 */
878 	for_each_intel_dp(&dev_priv->drm, encoder) {
879 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
880 
881 		if (encoder->type == INTEL_OUTPUT_EDP) {
882 			drm_WARN_ON(&dev_priv->drm,
883 				    intel_dp->active_pipe != INVALID_PIPE &&
884 				    intel_dp->active_pipe !=
885 				    intel_dp->pps_pipe);
886 
887 			if (intel_dp->pps_pipe != INVALID_PIPE)
888 				pipes &= ~(1 << intel_dp->pps_pipe);
889 		} else {
890 			drm_WARN_ON(&dev_priv->drm,
891 				    intel_dp->pps_pipe != INVALID_PIPE);
892 
893 			if (intel_dp->active_pipe != INVALID_PIPE)
894 				pipes &= ~(1 << intel_dp->active_pipe);
895 		}
896 	}
897 
898 	if (pipes == 0)
899 		return INVALID_PIPE;
900 
901 	return ffs(pipes) - 1;
902 }
903 
904 static enum pipe
905 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
906 {
907 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
908 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
909 	enum pipe pipe;
910 
911 	lockdep_assert_held(&dev_priv->pps_mutex);
912 
913 	/* We should never land here with regular DP ports */
914 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
915 
916 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
917 		    intel_dp->active_pipe != intel_dp->pps_pipe);
918 
919 	if (intel_dp->pps_pipe != INVALID_PIPE)
920 		return intel_dp->pps_pipe;
921 
922 	pipe = vlv_find_free_pps(dev_priv);
923 
924 	/*
925 	 * Didn't find one. This should not happen since there
926 	 * are two power sequencers and up to two eDP ports.
927 	 */
928 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
929 		pipe = PIPE_A;
930 
931 	vlv_steal_power_sequencer(dev_priv, pipe);
932 	intel_dp->pps_pipe = pipe;
933 
934 	drm_dbg_kms(&dev_priv->drm,
935 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
936 		    pipe_name(intel_dp->pps_pipe),
937 		    dig_port->base.base.base.id,
938 		    dig_port->base.base.name);
939 
940 	/* init power sequencer on this pipe and port */
941 	intel_dp_init_panel_power_sequencer(intel_dp);
942 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
943 
944 	/*
945 	 * Even vdd force doesn't work until we've made
946 	 * the power sequencer lock in on the port.
947 	 */
948 	vlv_power_sequencer_kick(intel_dp);
949 
950 	return intel_dp->pps_pipe;
951 }
952 
953 static int
954 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
955 {
956 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
957 	int backlight_controller = dev_priv->vbt.backlight.controller;
958 
959 	lockdep_assert_held(&dev_priv->pps_mutex);
960 
961 	/* We should never land here with regular DP ports */
962 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
963 
964 	if (!intel_dp->pps_reset)
965 		return backlight_controller;
966 
967 	intel_dp->pps_reset = false;
968 
969 	/*
970 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
971 	 * has been setup during connector init.
972 	 */
973 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
974 
975 	return backlight_controller;
976 }
977 
978 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
979 			       enum pipe pipe);
980 
981 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
982 			       enum pipe pipe)
983 {
984 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
985 }
986 
987 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
988 				enum pipe pipe)
989 {
990 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
991 }
992 
993 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
994 			 enum pipe pipe)
995 {
996 	return true;
997 }
998 
999 static enum pipe
1000 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
1001 		     enum port port,
1002 		     vlv_pipe_check pipe_check)
1003 {
1004 	enum pipe pipe;
1005 
1006 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1007 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1008 			PANEL_PORT_SELECT_MASK;
1009 
1010 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
1011 			continue;
1012 
1013 		if (!pipe_check(dev_priv, pipe))
1014 			continue;
1015 
1016 		return pipe;
1017 	}
1018 
1019 	return INVALID_PIPE;
1020 }
1021 
1022 static void
1023 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1024 {
1025 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1026 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1027 	enum port port = dig_port->base.port;
1028 
1029 	lockdep_assert_held(&dev_priv->pps_mutex);
1030 
1031 	/* try to find a pipe with this port selected */
1032 	/* first pick one where the panel is on */
1033 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1034 						  vlv_pipe_has_pp_on);
1035 	/* didn't find one? pick one where vdd is on */
1036 	if (intel_dp->pps_pipe == INVALID_PIPE)
1037 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1038 							  vlv_pipe_has_vdd_on);
1039 	/* didn't find one? pick one with just the correct port */
1040 	if (intel_dp->pps_pipe == INVALID_PIPE)
1041 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1042 							  vlv_pipe_any);
1043 
1044 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1045 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1046 		drm_dbg_kms(&dev_priv->drm,
1047 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1048 			    dig_port->base.base.base.id,
1049 			    dig_port->base.base.name);
1050 		return;
1051 	}
1052 
1053 	drm_dbg_kms(&dev_priv->drm,
1054 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1055 		    dig_port->base.base.base.id,
1056 		    dig_port->base.base.name,
1057 		    pipe_name(intel_dp->pps_pipe));
1058 
1059 	intel_dp_init_panel_power_sequencer(intel_dp);
1060 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1061 }
1062 
1063 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1064 {
1065 	struct intel_encoder *encoder;
1066 
1067 	if (drm_WARN_ON(&dev_priv->drm,
1068 			!(IS_VALLEYVIEW(dev_priv) ||
1069 			  IS_CHERRYVIEW(dev_priv) ||
1070 			  IS_GEN9_LP(dev_priv))))
1071 		return;
1072 
1073 	/*
1074 	 * We can't grab pps_mutex here due to deadlock with power_domain
1075 	 * mutex when power_domain functions are called while holding pps_mutex.
1076 	 * That also means that in order to use pps_pipe the code needs to
1077 	 * hold both a power domain reference and pps_mutex, and the power domain
1078 	 * reference get/put must be done while _not_ holding pps_mutex.
1079 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1080 	 * should use them always.
1081 	 */
1082 
1083 	for_each_intel_dp(&dev_priv->drm, encoder) {
1084 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1085 
1086 		drm_WARN_ON(&dev_priv->drm,
1087 			    intel_dp->active_pipe != INVALID_PIPE);
1088 
1089 		if (encoder->type != INTEL_OUTPUT_EDP)
1090 			continue;
1091 
1092 		if (IS_GEN9_LP(dev_priv))
1093 			intel_dp->pps_reset = true;
1094 		else
1095 			intel_dp->pps_pipe = INVALID_PIPE;
1096 	}
1097 }
1098 
1099 struct pps_registers {
1100 	i915_reg_t pp_ctrl;
1101 	i915_reg_t pp_stat;
1102 	i915_reg_t pp_on;
1103 	i915_reg_t pp_off;
1104 	i915_reg_t pp_div;
1105 };
1106 
1107 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1108 				    struct pps_registers *regs)
1109 {
1110 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1111 	int pps_idx = 0;
1112 
1113 	memset(regs, 0, sizeof(*regs));
1114 
1115 	if (IS_GEN9_LP(dev_priv))
1116 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1117 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1118 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1119 
1120 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1121 	regs->pp_stat = PP_STATUS(pps_idx);
1122 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1123 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1124 
1125 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1126 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1127 		regs->pp_div = INVALID_MMIO_REG;
1128 	else
1129 		regs->pp_div = PP_DIVISOR(pps_idx);
1130 }
1131 
1132 static i915_reg_t
1133 _pp_ctrl_reg(struct intel_dp *intel_dp)
1134 {
1135 	struct pps_registers regs;
1136 
1137 	intel_pps_get_registers(intel_dp, &regs);
1138 
1139 	return regs.pp_ctrl;
1140 }
1141 
1142 static i915_reg_t
1143 _pp_stat_reg(struct intel_dp *intel_dp)
1144 {
1145 	struct pps_registers regs;
1146 
1147 	intel_pps_get_registers(intel_dp, &regs);
1148 
1149 	return regs.pp_stat;
1150 }
1151 
1152 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1153    This function only applicable when panel PM state is not to be tracked */
1154 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1155 			      void *unused)
1156 {
1157 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1158 						 edp_notifier);
1159 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1160 	intel_wakeref_t wakeref;
1161 
1162 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1163 		return 0;
1164 
1165 	with_pps_lock(intel_dp, wakeref) {
1166 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1167 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1168 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1169 			u32 pp_div;
1170 
1171 			pp_ctrl_reg = PP_CONTROL(pipe);
1172 			pp_div_reg  = PP_DIVISOR(pipe);
1173 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1174 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1175 
1176 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1177 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1178 			intel_de_write(dev_priv, pp_ctrl_reg,
1179 				       PANEL_UNLOCK_REGS);
1180 			drm_msleep(intel_dp->panel_power_cycle_delay);
1181 		}
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1188 {
1189 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1190 
1191 	lockdep_assert_held(&dev_priv->pps_mutex);
1192 
1193 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1194 	    intel_dp->pps_pipe == INVALID_PIPE)
1195 		return false;
1196 
1197 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1198 }
1199 
1200 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1201 {
1202 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1203 
1204 	lockdep_assert_held(&dev_priv->pps_mutex);
1205 
1206 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1207 	    intel_dp->pps_pipe == INVALID_PIPE)
1208 		return false;
1209 
1210 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1211 }
1212 
1213 static void
1214 intel_dp_check_edp(struct intel_dp *intel_dp)
1215 {
1216 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1217 
1218 	if (!intel_dp_is_edp(intel_dp))
1219 		return;
1220 
1221 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1222 		drm_WARN(&dev_priv->drm, 1,
1223 			 "eDP powered off while attempting aux channel communication.\n");
1224 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1225 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1226 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1227 	}
1228 }
1229 
1230 static u32
1231 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1232 {
1233 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1234 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1235 	const unsigned int timeout_ms = 10;
1236 	u32 status;
1237 	bool done;
1238 
1239 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1240 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1241 				  msecs_to_jiffies_timeout(timeout_ms));
1242 
1243 	/* just trace the final value */
1244 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1245 
1246 	if (!done)
1247 		drm_err(&i915->drm,
1248 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1249 			intel_dp->aux.name, timeout_ms, status);
1250 #undef C
1251 
1252 	return status;
1253 }
1254 
1255 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1256 {
1257 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1258 
1259 	if (index)
1260 		return 0;
1261 
1262 	/*
1263 	 * The clock divider is based off the hrawclk, and would like to run at
1264 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1265 	 */
1266 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1267 }
1268 
1269 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1270 {
1271 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1272 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1273 	u32 freq;
1274 
1275 	if (index)
1276 		return 0;
1277 
1278 	/*
1279 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1280 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1281 	 * divide by 2000 and use that
1282 	 */
1283 	if (dig_port->aux_ch == AUX_CH_A)
1284 		freq = dev_priv->cdclk.hw.cdclk;
1285 	else
1286 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1287 	return DIV_ROUND_CLOSEST(freq, 2000);
1288 }
1289 
1290 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1291 {
1292 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1293 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1294 
1295 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1296 		/* Workaround for non-ULT HSW */
1297 		switch (index) {
1298 		case 0: return 63;
1299 		case 1: return 72;
1300 		default: return 0;
1301 		}
1302 	}
1303 
1304 	return ilk_get_aux_clock_divider(intel_dp, index);
1305 }
1306 
1307 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1308 {
1309 	/*
1310 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1311 	 * derive the clock from CDCLK automatically). We still implement the
1312 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1313 	 */
1314 	return index ? 0 : 1;
1315 }
1316 
1317 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1318 				int send_bytes,
1319 				u32 aux_clock_divider)
1320 {
1321 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1322 	struct drm_i915_private *dev_priv =
1323 			to_i915(dig_port->base.base.dev);
1324 	u32 precharge, timeout;
1325 
1326 	if (IS_GEN(dev_priv, 6))
1327 		precharge = 3;
1328 	else
1329 		precharge = 5;
1330 
1331 	if (IS_BROADWELL(dev_priv))
1332 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1333 	else
1334 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1335 
1336 	return DP_AUX_CH_CTL_SEND_BUSY |
1337 	       DP_AUX_CH_CTL_DONE |
1338 	       DP_AUX_CH_CTL_INTERRUPT |
1339 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1340 	       timeout |
1341 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1342 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1343 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1344 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1345 }
1346 
1347 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1348 				int send_bytes,
1349 				u32 unused)
1350 {
1351 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1352 	struct drm_i915_private *i915 =
1353 			to_i915(dig_port->base.base.dev);
1354 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1355 	u32 ret;
1356 
1357 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1358 	      DP_AUX_CH_CTL_DONE |
1359 	      DP_AUX_CH_CTL_INTERRUPT |
1360 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1361 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1362 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1363 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1364 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1365 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1366 
1367 	if (intel_phy_is_tc(i915, phy) &&
1368 	    dig_port->tc_mode == TC_PORT_TBT_ALT)
1369 		ret |= DP_AUX_CH_CTL_TBT_IO;
1370 
1371 	return ret;
1372 }
1373 
1374 static int
1375 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1376 		  const u8 *send, int send_bytes,
1377 		  u8 *recv, int recv_size,
1378 		  u32 aux_send_ctl_flags)
1379 {
1380 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1381 	struct drm_i915_private *i915 =
1382 			to_i915(dig_port->base.base.dev);
1383 	struct intel_uncore *uncore = &i915->uncore;
1384 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1385 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1386 	i915_reg_t ch_ctl, ch_data[5];
1387 	u32 aux_clock_divider;
1388 	enum intel_display_power_domain aux_domain;
1389 	intel_wakeref_t aux_wakeref;
1390 	intel_wakeref_t pps_wakeref;
1391 	int i, ret, recv_bytes;
1392 	int try, clock = 0;
1393 	u32 status;
1394 	bool vdd;
1395 
1396 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1397 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1398 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1399 
1400 	if (is_tc_port)
1401 		intel_tc_port_lock(dig_port);
1402 
1403 	aux_domain = intel_aux_power_domain(dig_port);
1404 
1405 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1406 	pps_wakeref = pps_lock(intel_dp);
1407 
1408 	/*
1409 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1410 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1411 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1412 	 * ourselves.
1413 	 */
1414 	vdd = edp_panel_vdd_on(intel_dp);
1415 
1416 	/* dp aux is extremely sensitive to irq latency, hence request the
1417 	 * lowest possible wakeup latency and so prevent the cpu from going into
1418 	 * deep sleep states.
1419 	 */
1420 	cpu_latency_qos_update_request(&intel_dp->pm_qos, 0);
1421 
1422 	intel_dp_check_edp(intel_dp);
1423 
1424 	/* Try to wait for any previous AUX channel activity */
1425 	for (try = 0; try < 3; try++) {
1426 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1427 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1428 			break;
1429 		drm_msleep(1);
1430 	}
1431 	/* just trace the final value */
1432 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1433 
1434 	if (try == 3) {
1435 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1436 
1437 		if (status != intel_dp->aux_busy_last_status) {
1438 			drm_WARN(&i915->drm, 1,
1439 				 "%s: not started (status 0x%08x)\n",
1440 				 intel_dp->aux.name, status);
1441 			intel_dp->aux_busy_last_status = status;
1442 		}
1443 
1444 		ret = -EBUSY;
1445 		goto out;
1446 	}
1447 
1448 	/* Only 5 data registers! */
1449 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1450 		ret = -E2BIG;
1451 		goto out;
1452 	}
1453 
1454 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1455 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1456 							  send_bytes,
1457 							  aux_clock_divider);
1458 
1459 		send_ctl |= aux_send_ctl_flags;
1460 
1461 		/* Must try at least 3 times according to DP spec */
1462 		for (try = 0; try < 5; try++) {
1463 			/* Load the send data into the aux channel data registers */
1464 			for (i = 0; i < send_bytes; i += 4)
1465 				intel_uncore_write(uncore,
1466 						   ch_data[i >> 2],
1467 						   intel_dp_pack_aux(send + i,
1468 								     send_bytes - i));
1469 
1470 			/* Send the command and wait for it to complete */
1471 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1472 
1473 			status = intel_dp_aux_wait_done(intel_dp);
1474 
1475 			/* Clear done status and any errors */
1476 			intel_uncore_write(uncore,
1477 					   ch_ctl,
1478 					   status |
1479 					   DP_AUX_CH_CTL_DONE |
1480 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1481 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1482 
1483 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1484 			 *   400us delay required for errors and timeouts
1485 			 *   Timeout errors from the HW already meet this
1486 			 *   requirement so skip to next iteration
1487 			 */
1488 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1489 				continue;
1490 
1491 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1492 				usleep_range(400, 500);
1493 				continue;
1494 			}
1495 			if (status & DP_AUX_CH_CTL_DONE)
1496 				goto done;
1497 		}
1498 	}
1499 
1500 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1501 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1502 			intel_dp->aux.name, status);
1503 		ret = -EBUSY;
1504 		goto out;
1505 	}
1506 
1507 done:
1508 	/* Check for timeout or receive error.
1509 	 * Timeouts occur when the sink is not connected
1510 	 */
1511 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1512 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1513 			intel_dp->aux.name, status);
1514 		ret = -EIO;
1515 		goto out;
1516 	}
1517 
1518 	/* Timeouts occur when the device isn't connected, so they're
1519 	 * "normal" -- don't fill the kernel log with these */
1520 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1521 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1522 			    intel_dp->aux.name, status);
1523 		ret = -ETIMEDOUT;
1524 		goto out;
1525 	}
1526 
1527 	/* Unload any bytes sent back from the other side */
1528 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1529 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1530 
1531 	/*
1532 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1533 	 * We have no idea of what happened so we return -EBUSY so
1534 	 * drm layer takes care for the necessary retries.
1535 	 */
1536 	if (recv_bytes == 0 || recv_bytes > 20) {
1537 		drm_dbg_kms(&i915->drm,
1538 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1539 			    intel_dp->aux.name, recv_bytes);
1540 		ret = -EBUSY;
1541 		goto out;
1542 	}
1543 
1544 	if (recv_bytes > recv_size)
1545 		recv_bytes = recv_size;
1546 
1547 	for (i = 0; i < recv_bytes; i += 4)
1548 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1549 				    recv + i, recv_bytes - i);
1550 
1551 	ret = recv_bytes;
1552 out:
1553 	cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1554 
1555 	if (vdd)
1556 		edp_panel_vdd_off(intel_dp, false);
1557 
1558 	pps_unlock(intel_dp, pps_wakeref);
1559 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1560 
1561 	if (is_tc_port)
1562 		intel_tc_port_unlock(dig_port);
1563 
1564 	return ret;
1565 }
1566 
1567 #define BARE_ADDRESS_SIZE	3
1568 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1569 
1570 static void
1571 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1572 		    const struct drm_dp_aux_msg *msg)
1573 {
1574 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1575 	txbuf[1] = (msg->address >> 8) & 0xff;
1576 	txbuf[2] = msg->address & 0xff;
1577 	txbuf[3] = msg->size - 1;
1578 }
1579 
1580 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1581 {
1582 	/*
1583 	 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1584 	 * select bit to inform the hardware to send the Aksv after our header
1585 	 * since we can't access that data from software.
1586 	 */
1587 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1588 	    msg->address == DP_AUX_HDCP_AKSV)
1589 		return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1590 
1591 	return 0;
1592 }
1593 
1594 static ssize_t
1595 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1596 {
1597 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1598 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1599 	u8 txbuf[20], rxbuf[20];
1600 	size_t txsize, rxsize;
1601 	u32 flags = intel_dp_aux_xfer_flags(msg);
1602 	int ret;
1603 
1604 	intel_dp_aux_header(txbuf, msg);
1605 
1606 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1607 	case DP_AUX_NATIVE_WRITE:
1608 	case DP_AUX_I2C_WRITE:
1609 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1610 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1611 		rxsize = 2; /* 0 or 1 data bytes */
1612 
1613 		if (drm_WARN_ON(&i915->drm, txsize > 20))
1614 			return -E2BIG;
1615 
1616 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1617 
1618 		if (msg->buffer)
1619 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1620 
1621 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1622 					rxbuf, rxsize, flags);
1623 		if (ret > 0) {
1624 			msg->reply = rxbuf[0] >> 4;
1625 
1626 			if (ret > 1) {
1627 				/* Number of bytes written in a short write. */
1628 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1629 			} else {
1630 				/* Return payload size. */
1631 				ret = msg->size;
1632 			}
1633 		}
1634 		break;
1635 
1636 	case DP_AUX_NATIVE_READ:
1637 	case DP_AUX_I2C_READ:
1638 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1639 		rxsize = msg->size + 1;
1640 
1641 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1642 			return -E2BIG;
1643 
1644 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1645 					rxbuf, rxsize, flags);
1646 		if (ret > 0) {
1647 			msg->reply = rxbuf[0] >> 4;
1648 			/*
1649 			 * Assume happy day, and copy the data. The caller is
1650 			 * expected to check msg->reply before touching it.
1651 			 *
1652 			 * Return payload size.
1653 			 */
1654 			ret--;
1655 			memcpy(msg->buffer, rxbuf + 1, ret);
1656 		}
1657 		break;
1658 
1659 	default:
1660 		ret = -EINVAL;
1661 		break;
1662 	}
1663 
1664 	return ret;
1665 }
1666 
1667 
1668 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1669 {
1670 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1671 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1672 	enum aux_ch aux_ch = dig_port->aux_ch;
1673 
1674 	switch (aux_ch) {
1675 	case AUX_CH_B:
1676 	case AUX_CH_C:
1677 	case AUX_CH_D:
1678 		return DP_AUX_CH_CTL(aux_ch);
1679 	default:
1680 		MISSING_CASE(aux_ch);
1681 		return DP_AUX_CH_CTL(AUX_CH_B);
1682 	}
1683 }
1684 
1685 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1686 {
1687 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1688 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1689 	enum aux_ch aux_ch = dig_port->aux_ch;
1690 
1691 	switch (aux_ch) {
1692 	case AUX_CH_B:
1693 	case AUX_CH_C:
1694 	case AUX_CH_D:
1695 		return DP_AUX_CH_DATA(aux_ch, index);
1696 	default:
1697 		MISSING_CASE(aux_ch);
1698 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1699 	}
1700 }
1701 
1702 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1703 {
1704 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706 	enum aux_ch aux_ch = dig_port->aux_ch;
1707 
1708 	switch (aux_ch) {
1709 	case AUX_CH_A:
1710 		return DP_AUX_CH_CTL(aux_ch);
1711 	case AUX_CH_B:
1712 	case AUX_CH_C:
1713 	case AUX_CH_D:
1714 		return PCH_DP_AUX_CH_CTL(aux_ch);
1715 	default:
1716 		MISSING_CASE(aux_ch);
1717 		return DP_AUX_CH_CTL(AUX_CH_A);
1718 	}
1719 }
1720 
1721 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1722 {
1723 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1724 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1725 	enum aux_ch aux_ch = dig_port->aux_ch;
1726 
1727 	switch (aux_ch) {
1728 	case AUX_CH_A:
1729 		return DP_AUX_CH_DATA(aux_ch, index);
1730 	case AUX_CH_B:
1731 	case AUX_CH_C:
1732 	case AUX_CH_D:
1733 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1734 	default:
1735 		MISSING_CASE(aux_ch);
1736 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1737 	}
1738 }
1739 
1740 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1741 {
1742 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1743 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1744 	enum aux_ch aux_ch = dig_port->aux_ch;
1745 
1746 	switch (aux_ch) {
1747 	case AUX_CH_A:
1748 	case AUX_CH_B:
1749 	case AUX_CH_C:
1750 	case AUX_CH_D:
1751 	case AUX_CH_E:
1752 	case AUX_CH_F:
1753 	case AUX_CH_G:
1754 		return DP_AUX_CH_CTL(aux_ch);
1755 	default:
1756 		MISSING_CASE(aux_ch);
1757 		return DP_AUX_CH_CTL(AUX_CH_A);
1758 	}
1759 }
1760 
1761 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1762 {
1763 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1764 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1765 	enum aux_ch aux_ch = dig_port->aux_ch;
1766 
1767 	switch (aux_ch) {
1768 	case AUX_CH_A:
1769 	case AUX_CH_B:
1770 	case AUX_CH_C:
1771 	case AUX_CH_D:
1772 	case AUX_CH_E:
1773 	case AUX_CH_F:
1774 	case AUX_CH_G:
1775 		return DP_AUX_CH_DATA(aux_ch, index);
1776 	default:
1777 		MISSING_CASE(aux_ch);
1778 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1779 	}
1780 }
1781 
1782 static void
1783 intel_dp_aux_fini(struct intel_dp *intel_dp)
1784 {
1785 	if (cpu_latency_qos_request_active(&intel_dp->pm_qos))
1786 		cpu_latency_qos_remove_request(&intel_dp->pm_qos);
1787 
1788 	kfree(intel_dp->aux.name);
1789 }
1790 
1791 static void
1792 intel_dp_aux_init(struct intel_dp *intel_dp)
1793 {
1794 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1795 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1796 	struct intel_encoder *encoder = &dig_port->base;
1797 
1798 	if (INTEL_GEN(dev_priv) >= 9) {
1799 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1800 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1801 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1802 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1803 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1804 	} else {
1805 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1806 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1807 	}
1808 
1809 	if (INTEL_GEN(dev_priv) >= 9)
1810 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1811 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1812 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1813 	else if (HAS_PCH_SPLIT(dev_priv))
1814 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1815 	else
1816 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1817 
1818 	if (INTEL_GEN(dev_priv) >= 9)
1819 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1820 	else
1821 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1822 
1823 	drm_dp_aux_init(&intel_dp->aux);
1824 
1825 	/* Failure to allocate our preferred name is not critical */
1826 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1827 				       aux_ch_name(dig_port->aux_ch),
1828 				       port_name(encoder->port));
1829 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1830 	cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1831 }
1832 
1833 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1834 {
1835 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1836 
1837 	return max_rate >= 540000;
1838 }
1839 
1840 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1841 {
1842 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1843 
1844 	return max_rate >= 810000;
1845 }
1846 
1847 static void
1848 intel_dp_set_clock(struct intel_encoder *encoder,
1849 		   struct intel_crtc_state *pipe_config)
1850 {
1851 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1852 	const struct dp_link_dpll *divisor = NULL;
1853 	int i, count = 0;
1854 
1855 	if (IS_G4X(dev_priv)) {
1856 		divisor = g4x_dpll;
1857 		count = ARRAY_SIZE(g4x_dpll);
1858 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1859 		divisor = pch_dpll;
1860 		count = ARRAY_SIZE(pch_dpll);
1861 	} else if (IS_CHERRYVIEW(dev_priv)) {
1862 		divisor = chv_dpll;
1863 		count = ARRAY_SIZE(chv_dpll);
1864 	} else if (IS_VALLEYVIEW(dev_priv)) {
1865 		divisor = vlv_dpll;
1866 		count = ARRAY_SIZE(vlv_dpll);
1867 	}
1868 
1869 	if (divisor && count) {
1870 		for (i = 0; i < count; i++) {
1871 			if (pipe_config->port_clock == divisor[i].clock) {
1872 				pipe_config->dpll = divisor[i].dpll;
1873 				pipe_config->clock_set = true;
1874 				break;
1875 			}
1876 		}
1877 	}
1878 }
1879 
1880 static void snprintf_int_array(char *str, size_t len,
1881 			       const int *array, int nelem)
1882 {
1883 	int i;
1884 
1885 	str[0] = '\0';
1886 
1887 	for (i = 0; i < nelem; i++) {
1888 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1889 		if (r >= len)
1890 			return;
1891 		str += r;
1892 		len -= r;
1893 	}
1894 }
1895 
1896 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1897 {
1898 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1899 	char str[128]; /* FIXME: too big for stack? */
1900 
1901 	if (!drm_debug_enabled(DRM_UT_KMS))
1902 		return;
1903 
1904 	snprintf_int_array(str, sizeof(str),
1905 			   intel_dp->source_rates, intel_dp->num_source_rates);
1906 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1907 
1908 	snprintf_int_array(str, sizeof(str),
1909 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1910 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1911 
1912 	snprintf_int_array(str, sizeof(str),
1913 			   intel_dp->common_rates, intel_dp->num_common_rates);
1914 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1915 }
1916 
1917 int
1918 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1919 {
1920 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1921 	int len;
1922 
1923 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1924 	if (drm_WARN_ON(&i915->drm, len <= 0))
1925 		return 162000;
1926 
1927 	return intel_dp->common_rates[len - 1];
1928 }
1929 
1930 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1931 {
1932 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1933 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1934 				    intel_dp->num_sink_rates, rate);
1935 
1936 	if (drm_WARN_ON(&i915->drm, i < 0))
1937 		i = 0;
1938 
1939 	return i;
1940 }
1941 
1942 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1943 			   u8 *link_bw, u8 *rate_select)
1944 {
1945 	/* eDP 1.4 rate select method. */
1946 	if (intel_dp->use_rate_select) {
1947 		*link_bw = 0;
1948 		*rate_select =
1949 			intel_dp_rate_select(intel_dp, port_clock);
1950 	} else {
1951 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1952 		*rate_select = 0;
1953 	}
1954 }
1955 
1956 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1957 					 const struct intel_crtc_state *pipe_config)
1958 {
1959 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1960 
1961 	/* On TGL, FEC is supported on all Pipes */
1962 	if (INTEL_GEN(dev_priv) >= 12)
1963 		return true;
1964 
1965 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1966 		return true;
1967 
1968 	return false;
1969 }
1970 
1971 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1972 				  const struct intel_crtc_state *pipe_config)
1973 {
1974 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1975 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1976 }
1977 
1978 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1979 				  const struct intel_crtc_state *crtc_state)
1980 {
1981 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1982 
1983 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1984 		return false;
1985 
1986 	return intel_dsc_source_support(encoder, crtc_state) &&
1987 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1988 }
1989 
1990 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
1991 				   const struct intel_crtc_state *crtc_state)
1992 {
1993 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
1994 		(crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
1995 		 intel_dp->dfp.ycbcr_444_to_420);
1996 }
1997 
1998 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
1999 				    const struct intel_crtc_state *crtc_state, int bpc)
2000 {
2001 	int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
2002 
2003 	if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
2004 		clock /= 2;
2005 
2006 	return clock;
2007 }
2008 
2009 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2010 					   const struct intel_crtc_state *crtc_state, int bpc)
2011 {
2012 	int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2013 
2014 	if (intel_dp->dfp.min_tmds_clock &&
2015 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
2016 		return false;
2017 
2018 	if (intel_dp->dfp.max_tmds_clock &&
2019 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
2020 		return false;
2021 
2022 	return true;
2023 }
2024 
2025 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2026 					      const struct intel_crtc_state *crtc_state,
2027 					      int bpc)
2028 {
2029 
2030 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2031 					      intel_dp->has_hdmi_sink,
2032 					      intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2033 		intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2034 }
2035 
2036 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2037 			    const struct intel_crtc_state *crtc_state)
2038 {
2039 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2040 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2041 	int bpp, bpc;
2042 
2043 	bpc = crtc_state->pipe_bpp / 3;
2044 
2045 	if (intel_dp->dfp.max_bpc)
2046 		bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2047 
2048 	if (intel_dp->dfp.min_tmds_clock) {
2049 		for (; bpc >= 10; bpc -= 2) {
2050 			if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2051 				break;
2052 		}
2053 	}
2054 
2055 	bpp = bpc * 3;
2056 	if (intel_dp_is_edp(intel_dp)) {
2057 		/* Get bpp from vbt only for panels that dont have bpp in edid */
2058 		if (intel_connector->base.display_info.bpc == 0 &&
2059 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2060 			drm_dbg_kms(&dev_priv->drm,
2061 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
2062 				    dev_priv->vbt.edp.bpp);
2063 			bpp = dev_priv->vbt.edp.bpp;
2064 		}
2065 	}
2066 
2067 	return bpp;
2068 }
2069 
2070 /* Adjust link config limits based on compliance test requests. */
2071 void
2072 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2073 				  struct intel_crtc_state *pipe_config,
2074 				  struct link_config_limits *limits)
2075 {
2076 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2077 
2078 	/* For DP Compliance we override the computed bpp for the pipe */
2079 	if (intel_dp->compliance.test_data.bpc != 0) {
2080 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
2081 
2082 		limits->min_bpp = limits->max_bpp = bpp;
2083 		pipe_config->dither_force_disable = bpp == 6 * 3;
2084 
2085 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2086 	}
2087 
2088 	/* Use values requested by Compliance Test Request */
2089 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2090 		int index;
2091 
2092 		/* Validate the compliance test data since max values
2093 		 * might have changed due to link train fallback.
2094 		 */
2095 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2096 					       intel_dp->compliance.test_lane_count)) {
2097 			index = intel_dp_rate_index(intel_dp->common_rates,
2098 						    intel_dp->num_common_rates,
2099 						    intel_dp->compliance.test_link_rate);
2100 			if (index >= 0)
2101 				limits->min_clock = limits->max_clock = index;
2102 			limits->min_lane_count = limits->max_lane_count =
2103 				intel_dp->compliance.test_lane_count;
2104 		}
2105 	}
2106 }
2107 
2108 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2109 {
2110 	/*
2111 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2112 	 * format of the number of bytes per pixel will be half the number
2113 	 * of bytes of RGB pixel.
2114 	 */
2115 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2116 		bpp /= 2;
2117 
2118 	return bpp;
2119 }
2120 
2121 /* Optimize link config in order: max bpp, min clock, min lanes */
2122 static int
2123 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2124 				  struct intel_crtc_state *pipe_config,
2125 				  const struct link_config_limits *limits)
2126 {
2127 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2128 	int bpp, clock, lane_count;
2129 	int mode_rate, link_clock, link_avail;
2130 
2131 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2132 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2133 
2134 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2135 						   output_bpp);
2136 
2137 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2138 			for (lane_count = limits->min_lane_count;
2139 			     lane_count <= limits->max_lane_count;
2140 			     lane_count <<= 1) {
2141 				link_clock = intel_dp->common_rates[clock];
2142 				link_avail = intel_dp_max_data_rate(link_clock,
2143 								    lane_count);
2144 
2145 				if (mode_rate <= link_avail) {
2146 					pipe_config->lane_count = lane_count;
2147 					pipe_config->pipe_bpp = bpp;
2148 					pipe_config->port_clock = link_clock;
2149 
2150 					return 0;
2151 				}
2152 			}
2153 		}
2154 	}
2155 
2156 	return -EINVAL;
2157 }
2158 
2159 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2160 {
2161 	int i, num_bpc;
2162 	u8 dsc_bpc[3] = {0};
2163 
2164 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2165 						       dsc_bpc);
2166 	for (i = 0; i < num_bpc; i++) {
2167 		if (dsc_max_bpc >= dsc_bpc[i])
2168 			return dsc_bpc[i] * 3;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 #define DSC_SUPPORTED_VERSION_MIN		1
2175 
2176 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2177 				       struct intel_crtc_state *crtc_state)
2178 {
2179 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2180 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2181 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2182 	u8 line_buf_depth;
2183 	int ret;
2184 
2185 	ret = intel_dsc_compute_params(encoder, crtc_state);
2186 	if (ret)
2187 		return ret;
2188 
2189 	/*
2190 	 * Slice Height of 8 works for all currently available panels. So start
2191 	 * with that if pic_height is an integral multiple of 8. Eventually add
2192 	 * logic to try multiple slice heights.
2193 	 */
2194 	if (vdsc_cfg->pic_height % 8 == 0)
2195 		vdsc_cfg->slice_height = 8;
2196 	else if (vdsc_cfg->pic_height % 4 == 0)
2197 		vdsc_cfg->slice_height = 4;
2198 	else
2199 		vdsc_cfg->slice_height = 2;
2200 
2201 	vdsc_cfg->dsc_version_major =
2202 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2203 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2204 	vdsc_cfg->dsc_version_minor =
2205 		min(DSC_SUPPORTED_VERSION_MIN,
2206 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2207 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2208 
2209 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2210 		DP_DSC_RGB;
2211 
2212 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2213 	if (!line_buf_depth) {
2214 		drm_dbg_kms(&i915->drm,
2215 			    "DSC Sink Line Buffer Depth invalid\n");
2216 		return -EINVAL;
2217 	}
2218 
2219 	if (vdsc_cfg->dsc_version_minor == 2)
2220 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2221 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2222 	else
2223 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2224 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2225 
2226 	vdsc_cfg->block_pred_enable =
2227 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2228 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2229 
2230 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2231 }
2232 
2233 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2234 				       struct intel_crtc_state *pipe_config,
2235 				       struct drm_connector_state *conn_state,
2236 				       struct link_config_limits *limits)
2237 {
2238 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2239 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2240 	const struct drm_display_mode *adjusted_mode =
2241 		&pipe_config->hw.adjusted_mode;
2242 	u8 dsc_max_bpc;
2243 	int pipe_bpp;
2244 	int ret;
2245 
2246 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2247 		intel_dp_supports_fec(intel_dp, pipe_config);
2248 
2249 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2250 		return -EINVAL;
2251 
2252 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2253 	if (INTEL_GEN(dev_priv) >= 12)
2254 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2255 	else
2256 		dsc_max_bpc = min_t(u8, 10,
2257 				    conn_state->max_requested_bpc);
2258 
2259 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2260 
2261 	/* Min Input BPC for ICL+ is 8 */
2262 	if (pipe_bpp < 8 * 3) {
2263 		drm_dbg_kms(&dev_priv->drm,
2264 			    "No DSC support for less than 8bpc\n");
2265 		return -EINVAL;
2266 	}
2267 
2268 	/*
2269 	 * For now enable DSC for max bpp, max link rate, max lane count.
2270 	 * Optimize this later for the minimum possible link rate/lane count
2271 	 * with DSC enabled for the requested mode.
2272 	 */
2273 	pipe_config->pipe_bpp = pipe_bpp;
2274 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2275 	pipe_config->lane_count = limits->max_lane_count;
2276 
2277 	if (intel_dp_is_edp(intel_dp)) {
2278 		pipe_config->dsc.compressed_bpp =
2279 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2280 			      pipe_config->pipe_bpp);
2281 		pipe_config->dsc.slice_count =
2282 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2283 							true);
2284 	} else {
2285 		u16 dsc_max_output_bpp;
2286 		u8 dsc_dp_slice_count;
2287 
2288 		dsc_max_output_bpp =
2289 			intel_dp_dsc_get_output_bpp(dev_priv,
2290 						    pipe_config->port_clock,
2291 						    pipe_config->lane_count,
2292 						    adjusted_mode->crtc_clock,
2293 						    adjusted_mode->crtc_hdisplay);
2294 		dsc_dp_slice_count =
2295 			intel_dp_dsc_get_slice_count(intel_dp,
2296 						     adjusted_mode->crtc_clock,
2297 						     adjusted_mode->crtc_hdisplay);
2298 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2299 			drm_dbg_kms(&dev_priv->drm,
2300 				    "Compressed BPP/Slice Count not supported\n");
2301 			return -EINVAL;
2302 		}
2303 		pipe_config->dsc.compressed_bpp = min_t(u16,
2304 							       dsc_max_output_bpp >> 4,
2305 							       pipe_config->pipe_bpp);
2306 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2307 	}
2308 	/*
2309 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2310 	 * is greater than the maximum Cdclock and if slice count is even
2311 	 * then we need to use 2 VDSC instances.
2312 	 */
2313 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2314 		if (pipe_config->dsc.slice_count > 1) {
2315 			pipe_config->dsc.dsc_split = true;
2316 		} else {
2317 			drm_dbg_kms(&dev_priv->drm,
2318 				    "Cannot split stream to use 2 VDSC instances\n");
2319 			return -EINVAL;
2320 		}
2321 	}
2322 
2323 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2324 	if (ret < 0) {
2325 		drm_dbg_kms(&dev_priv->drm,
2326 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2327 			    "Compressed BPP = %d\n",
2328 			    pipe_config->pipe_bpp,
2329 			    pipe_config->dsc.compressed_bpp);
2330 		return ret;
2331 	}
2332 
2333 	pipe_config->dsc.compression_enable = true;
2334 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2335 		    "Compressed Bpp = %d Slice Count = %d\n",
2336 		    pipe_config->pipe_bpp,
2337 		    pipe_config->dsc.compressed_bpp,
2338 		    pipe_config->dsc.slice_count);
2339 
2340 	return 0;
2341 }
2342 
2343 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2344 {
2345 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2346 		return 6 * 3;
2347 	else
2348 		return 8 * 3;
2349 }
2350 
2351 static int
2352 intel_dp_compute_link_config(struct intel_encoder *encoder,
2353 			     struct intel_crtc_state *pipe_config,
2354 			     struct drm_connector_state *conn_state)
2355 {
2356 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2357 	const struct drm_display_mode *adjusted_mode =
2358 		&pipe_config->hw.adjusted_mode;
2359 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2360 	struct link_config_limits limits;
2361 	int common_len;
2362 	int ret;
2363 
2364 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2365 						    intel_dp->max_link_rate);
2366 
2367 	/* No common link rates between source and sink */
2368 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2369 
2370 	limits.min_clock = 0;
2371 	limits.max_clock = common_len - 1;
2372 
2373 	limits.min_lane_count = 1;
2374 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2375 
2376 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2377 	limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2378 
2379 	if (intel_dp_is_edp(intel_dp)) {
2380 		/*
2381 		 * Use the maximum clock and number of lanes the eDP panel
2382 		 * advertizes being capable of. The panels are generally
2383 		 * designed to support only a single clock and lane
2384 		 * configuration, and typically these values correspond to the
2385 		 * native resolution of the panel.
2386 		 */
2387 		limits.min_lane_count = limits.max_lane_count;
2388 		limits.min_clock = limits.max_clock;
2389 	}
2390 
2391 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2392 
2393 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2394 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2395 		    limits.max_lane_count,
2396 		    intel_dp->common_rates[limits.max_clock],
2397 		    limits.max_bpp, adjusted_mode->crtc_clock);
2398 
2399 	/*
2400 	 * Optimize for slow and wide. This is the place to add alternative
2401 	 * optimization policy.
2402 	 */
2403 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2404 
2405 	/* enable compression if the mode doesn't fit available BW */
2406 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2407 	if (ret || intel_dp->force_dsc_en) {
2408 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2409 						  conn_state, &limits);
2410 		if (ret < 0)
2411 			return ret;
2412 	}
2413 
2414 	if (pipe_config->dsc.compression_enable) {
2415 		drm_dbg_kms(&i915->drm,
2416 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2417 			    pipe_config->lane_count, pipe_config->port_clock,
2418 			    pipe_config->pipe_bpp,
2419 			    pipe_config->dsc.compressed_bpp);
2420 
2421 		drm_dbg_kms(&i915->drm,
2422 			    "DP link rate required %i available %i\n",
2423 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2424 						   pipe_config->dsc.compressed_bpp),
2425 			    intel_dp_max_data_rate(pipe_config->port_clock,
2426 						   pipe_config->lane_count));
2427 	} else {
2428 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2429 			    pipe_config->lane_count, pipe_config->port_clock,
2430 			    pipe_config->pipe_bpp);
2431 
2432 		drm_dbg_kms(&i915->drm,
2433 			    "DP link rate required %i available %i\n",
2434 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2435 						   pipe_config->pipe_bpp),
2436 			    intel_dp_max_data_rate(pipe_config->port_clock,
2437 						   pipe_config->lane_count));
2438 	}
2439 	return 0;
2440 }
2441 
2442 static int
2443 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2444 			 struct intel_crtc_state *crtc_state,
2445 			 const struct drm_connector_state *conn_state)
2446 {
2447 	struct drm_connector *connector = conn_state->connector;
2448 	const struct drm_display_info *info = &connector->display_info;
2449 	const struct drm_display_mode *adjusted_mode =
2450 		&crtc_state->hw.adjusted_mode;
2451 
2452 	if (!connector->ycbcr_420_allowed)
2453 		return 0;
2454 
2455 	if (!drm_mode_is_420_only(info, adjusted_mode))
2456 		return 0;
2457 
2458 	if (intel_dp->dfp.ycbcr_444_to_420) {
2459 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
2460 		return 0;
2461 	}
2462 
2463 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2464 
2465 	return intel_pch_panel_fitting(crtc_state, conn_state);
2466 }
2467 
2468 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2469 				  const struct drm_connector_state *conn_state)
2470 {
2471 	const struct intel_digital_connector_state *intel_conn_state =
2472 		to_intel_digital_connector_state(conn_state);
2473 	const struct drm_display_mode *adjusted_mode =
2474 		&crtc_state->hw.adjusted_mode;
2475 
2476 	/*
2477 	 * Our YCbCr output is always limited range.
2478 	 * crtc_state->limited_color_range only applies to RGB,
2479 	 * and it must never be set for YCbCr or we risk setting
2480 	 * some conflicting bits in PIPECONF which will mess up
2481 	 * the colors on the monitor.
2482 	 */
2483 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2484 		return false;
2485 
2486 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2487 		/*
2488 		 * See:
2489 		 * CEA-861-E - 5.1 Default Encoding Parameters
2490 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2491 		 */
2492 		return crtc_state->pipe_bpp != 18 &&
2493 			drm_default_rgb_quant_range(adjusted_mode) ==
2494 			HDMI_QUANTIZATION_RANGE_LIMITED;
2495 	} else {
2496 		return intel_conn_state->broadcast_rgb ==
2497 			INTEL_BROADCAST_RGB_LIMITED;
2498 	}
2499 }
2500 
2501 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2502 				    enum port port)
2503 {
2504 	if (IS_G4X(dev_priv))
2505 		return false;
2506 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2507 		return false;
2508 
2509 	return true;
2510 }
2511 
2512 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2513 					     const struct drm_connector_state *conn_state,
2514 					     struct drm_dp_vsc_sdp *vsc)
2515 {
2516 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2517 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2518 
2519 	/*
2520 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2521 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2522 	 * Colorimetry Format indication.
2523 	 */
2524 	vsc->revision = 0x5;
2525 	vsc->length = 0x13;
2526 
2527 	/* DP 1.4a spec, Table 2-120 */
2528 	switch (crtc_state->output_format) {
2529 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2530 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2531 		break;
2532 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2533 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2534 		break;
2535 	case INTEL_OUTPUT_FORMAT_RGB:
2536 	default:
2537 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2538 	}
2539 
2540 	switch (conn_state->colorspace) {
2541 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2542 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2543 		break;
2544 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2545 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2546 		break;
2547 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2548 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2549 		break;
2550 	case DRM_MODE_COLORIMETRY_SYCC_601:
2551 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2552 		break;
2553 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2554 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2555 		break;
2556 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2557 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2558 		break;
2559 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2560 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2561 		break;
2562 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2563 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2564 		break;
2565 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2566 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2567 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2568 		break;
2569 	default:
2570 		/*
2571 		 * RGB->YCBCR color conversion uses the BT.709
2572 		 * color space.
2573 		 */
2574 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2575 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2576 		else
2577 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2578 		break;
2579 	}
2580 
2581 	vsc->bpc = crtc_state->pipe_bpp / 3;
2582 
2583 	/* only RGB pixelformat supports 6 bpc */
2584 	drm_WARN_ON(&dev_priv->drm,
2585 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2586 
2587 	/* all YCbCr are always limited range */
2588 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2589 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2590 }
2591 
2592 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2593 				     struct intel_crtc_state *crtc_state,
2594 				     const struct drm_connector_state *conn_state)
2595 {
2596 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2597 
2598 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2599 	if (crtc_state->has_psr)
2600 		return;
2601 
2602 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2603 		return;
2604 
2605 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2606 	vsc->sdp_type = DP_SDP_VSC;
2607 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2608 					 &crtc_state->infoframes.vsc);
2609 }
2610 
2611 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2612 				  const struct intel_crtc_state *crtc_state,
2613 				  const struct drm_connector_state *conn_state,
2614 				  struct drm_dp_vsc_sdp *vsc)
2615 {
2616 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2617 
2618 	vsc->sdp_type = DP_SDP_VSC;
2619 
2620 	if (dev_priv->psr.psr2_enabled) {
2621 		if (dev_priv->psr.colorimetry_support &&
2622 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2623 			/* [PSR2, +Colorimetry] */
2624 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2625 							 vsc);
2626 		} else {
2627 			/*
2628 			 * [PSR2, -Colorimetry]
2629 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2630 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2631 			 */
2632 			vsc->revision = 0x4;
2633 			vsc->length = 0xe;
2634 		}
2635 	} else {
2636 		/*
2637 		 * [PSR1]
2638 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2639 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2640 		 * higher).
2641 		 */
2642 		vsc->revision = 0x2;
2643 		vsc->length = 0x8;
2644 	}
2645 }
2646 
2647 static void
2648 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2649 					    struct intel_crtc_state *crtc_state,
2650 					    const struct drm_connector_state *conn_state)
2651 {
2652 	int ret;
2653 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2654 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2655 
2656 	if (!conn_state->hdr_output_metadata)
2657 		return;
2658 
2659 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2660 
2661 	if (ret) {
2662 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2663 		return;
2664 	}
2665 
2666 	crtc_state->infoframes.enable |=
2667 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2668 }
2669 
2670 static void
2671 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2672 			     struct intel_crtc_state *pipe_config,
2673 			     int output_bpp, bool constant_n)
2674 {
2675 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2676 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2677 
2678 	/*
2679 	 * DRRS and PSR can't be enable together, so giving preference to PSR
2680 	 * as it allows more power-savings by complete shutting down display,
2681 	 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2682 	 * after intel_psr_compute_config().
2683 	 */
2684 	if (pipe_config->has_psr)
2685 		return;
2686 
2687 	if (!intel_connector->panel.downclock_mode ||
2688 	    dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2689 		return;
2690 
2691 	pipe_config->has_drrs = true;
2692 	intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2693 			       intel_connector->panel.downclock_mode->clock,
2694 			       pipe_config->port_clock, &pipe_config->dp_m2_n2,
2695 			       constant_n, pipe_config->fec_enable);
2696 }
2697 
2698 int
2699 intel_dp_compute_config(struct intel_encoder *encoder,
2700 			struct intel_crtc_state *pipe_config,
2701 			struct drm_connector_state *conn_state)
2702 {
2703 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2704 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2705 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2706 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2707 	enum port port = encoder->port;
2708 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2709 	struct intel_digital_connector_state *intel_conn_state =
2710 		to_intel_digital_connector_state(conn_state);
2711 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2712 					   DP_DPCD_QUIRK_CONSTANT_N);
2713 	int ret = 0, output_bpp;
2714 
2715 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2716 		pipe_config->has_pch_encoder = true;
2717 
2718 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2719 
2720 	if (lspcon->active)
2721 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2722 	else
2723 		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2724 					       conn_state);
2725 	if (ret)
2726 		return ret;
2727 
2728 	if (!intel_dp_port_has_audio(dev_priv, port))
2729 		pipe_config->has_audio = false;
2730 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2731 		pipe_config->has_audio = intel_dp->has_audio;
2732 	else
2733 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2734 
2735 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2736 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2737 				       adjusted_mode);
2738 
2739 		if (HAS_GMCH(dev_priv))
2740 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2741 		else
2742 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2743 		if (ret)
2744 			return ret;
2745 	}
2746 
2747 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2748 		return -EINVAL;
2749 
2750 	if (HAS_GMCH(dev_priv) &&
2751 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2752 		return -EINVAL;
2753 
2754 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2755 		return -EINVAL;
2756 
2757 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2758 		return -EINVAL;
2759 
2760 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2761 	if (ret < 0)
2762 		return ret;
2763 
2764 	pipe_config->limited_color_range =
2765 		intel_dp_limited_color_range(pipe_config, conn_state);
2766 
2767 	if (pipe_config->dsc.compression_enable)
2768 		output_bpp = pipe_config->dsc.compressed_bpp;
2769 	else
2770 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2771 
2772 	intel_link_compute_m_n(output_bpp,
2773 			       pipe_config->lane_count,
2774 			       adjusted_mode->crtc_clock,
2775 			       pipe_config->port_clock,
2776 			       &pipe_config->dp_m_n,
2777 			       constant_n, pipe_config->fec_enable);
2778 
2779 	if (!HAS_DDI(dev_priv))
2780 		intel_dp_set_clock(encoder, pipe_config);
2781 
2782 	intel_psr_compute_config(intel_dp, pipe_config);
2783 	intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2784 				     constant_n);
2785 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2786 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2787 
2788 	return 0;
2789 }
2790 
2791 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2792 			      int link_rate, u8 lane_count,
2793 			      bool link_mst)
2794 {
2795 	intel_dp->link_trained = false;
2796 	intel_dp->link_rate = link_rate;
2797 	intel_dp->lane_count = lane_count;
2798 	intel_dp->link_mst = link_mst;
2799 }
2800 
2801 static void intel_dp_prepare(struct intel_encoder *encoder,
2802 			     const struct intel_crtc_state *pipe_config)
2803 {
2804 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2805 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2806 	enum port port = encoder->port;
2807 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2808 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2809 
2810 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2811 				 pipe_config->lane_count,
2812 				 intel_crtc_has_type(pipe_config,
2813 						     INTEL_OUTPUT_DP_MST));
2814 
2815 	/*
2816 	 * There are four kinds of DP registers:
2817 	 *
2818 	 * 	IBX PCH
2819 	 * 	SNB CPU
2820 	 *	IVB CPU
2821 	 * 	CPT PCH
2822 	 *
2823 	 * IBX PCH and CPU are the same for almost everything,
2824 	 * except that the CPU DP PLL is configured in this
2825 	 * register
2826 	 *
2827 	 * CPT PCH is quite different, having many bits moved
2828 	 * to the TRANS_DP_CTL register instead. That
2829 	 * configuration happens (oddly) in ilk_pch_enable
2830 	 */
2831 
2832 	/* Preserve the BIOS-computed detected bit. This is
2833 	 * supposed to be read-only.
2834 	 */
2835 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2836 
2837 	/* Handle DP bits in common between all three register formats */
2838 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2839 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2840 
2841 	/* Split out the IBX/CPU vs CPT settings */
2842 
2843 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2844 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2845 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2846 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2847 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2848 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2849 
2850 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2851 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2852 
2853 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2854 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2855 		u32 trans_dp;
2856 
2857 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2858 
2859 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2860 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2861 			trans_dp |= TRANS_DP_ENH_FRAMING;
2862 		else
2863 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2864 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2865 	} else {
2866 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2867 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2868 
2869 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2870 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2871 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2872 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2873 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2874 
2875 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2876 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2877 
2878 		if (IS_CHERRYVIEW(dev_priv))
2879 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2880 		else
2881 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2882 	}
2883 }
2884 
2885 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2886 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2887 
2888 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2889 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2890 
2891 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2892 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2893 
2894 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2895 
2896 static void wait_panel_status(struct intel_dp *intel_dp,
2897 				       u32 mask,
2898 				       u32 value)
2899 {
2900 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2901 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2902 
2903 	lockdep_assert_held(&dev_priv->pps_mutex);
2904 
2905 	intel_pps_verify_state(intel_dp);
2906 
2907 	pp_stat_reg = _pp_stat_reg(intel_dp);
2908 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2909 
2910 	drm_dbg_kms(&dev_priv->drm,
2911 		    "mask %08x value %08x status %08x control %08x\n",
2912 		    mask, value,
2913 		    intel_de_read(dev_priv, pp_stat_reg),
2914 		    intel_de_read(dev_priv, pp_ctrl_reg));
2915 
2916 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2917 				       mask, value, 5000))
2918 		drm_err(&dev_priv->drm,
2919 			"Panel status timeout: status %08x control %08x\n",
2920 			intel_de_read(dev_priv, pp_stat_reg),
2921 			intel_de_read(dev_priv, pp_ctrl_reg));
2922 
2923 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2924 }
2925 
2926 static void wait_panel_on(struct intel_dp *intel_dp)
2927 {
2928 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2929 
2930 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2931 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2932 }
2933 
2934 static void wait_panel_off(struct intel_dp *intel_dp)
2935 {
2936 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2937 
2938 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2939 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2940 }
2941 
2942 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2943 {
2944 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2945 	ktime_t panel_power_on_time;
2946 	s64 panel_power_off_duration;
2947 
2948 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2949 
2950 	/* take the difference of currrent time and panel power off time
2951 	 * and then make panel wait for t11_t12 if needed. */
2952 	panel_power_on_time = ktime_get_boottime();
2953 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2954 
2955 	/* When we disable the VDD override bit last we have to do the manual
2956 	 * wait. */
2957 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2958 		wait_remaining_ms_from_jiffies(jiffies,
2959 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2960 
2961 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2962 }
2963 
2964 static void wait_backlight_on(struct intel_dp *intel_dp)
2965 {
2966 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2967 				       intel_dp->backlight_on_delay);
2968 }
2969 
2970 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2971 {
2972 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2973 				       intel_dp->backlight_off_delay);
2974 }
2975 
2976 /* Read the current pp_control value, unlocking the register if it
2977  * is locked
2978  */
2979 
2980 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2981 {
2982 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2983 	u32 control;
2984 
2985 	lockdep_assert_held(&dev_priv->pps_mutex);
2986 
2987 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2988 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2989 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2990 		control &= ~PANEL_UNLOCK_MASK;
2991 		control |= PANEL_UNLOCK_REGS;
2992 	}
2993 	return control;
2994 }
2995 
2996 /*
2997  * Must be paired with edp_panel_vdd_off().
2998  * Must hold pps_mutex around the whole on/off sequence.
2999  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3000  */
3001 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
3002 {
3003 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3004 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3005 	u32 pp;
3006 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
3007 	bool need_to_disable = !intel_dp->want_panel_vdd;
3008 
3009 	lockdep_assert_held(&dev_priv->pps_mutex);
3010 
3011 	if (!intel_dp_is_edp(intel_dp))
3012 		return false;
3013 
3014 	cancel_delayed_work(&intel_dp->panel_vdd_work);
3015 	intel_dp->want_panel_vdd = true;
3016 
3017 	if (edp_have_panel_vdd(intel_dp))
3018 		return need_to_disable;
3019 
3020 	intel_display_power_get(dev_priv,
3021 				intel_aux_power_domain(dig_port));
3022 
3023 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3024 		    dig_port->base.base.base.id,
3025 		    dig_port->base.base.name);
3026 
3027 	if (!edp_have_panel_power(intel_dp))
3028 		wait_panel_power_cycle(intel_dp);
3029 
3030 	pp = ilk_get_pp_control(intel_dp);
3031 	pp |= EDP_FORCE_VDD;
3032 
3033 	pp_stat_reg = _pp_stat_reg(intel_dp);
3034 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3035 
3036 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3037 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3038 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3039 		    intel_de_read(dev_priv, pp_stat_reg),
3040 		    intel_de_read(dev_priv, pp_ctrl_reg));
3041 	/*
3042 	 * If the panel wasn't on, delay before accessing aux channel
3043 	 */
3044 	if (!edp_have_panel_power(intel_dp)) {
3045 		drm_dbg_kms(&dev_priv->drm,
3046 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
3047 			    dig_port->base.base.base.id,
3048 			    dig_port->base.base.name);
3049 		drm_msleep(intel_dp->panel_power_up_delay);
3050 	}
3051 
3052 	return need_to_disable;
3053 }
3054 
3055 /*
3056  * Must be paired with intel_edp_panel_vdd_off() or
3057  * intel_edp_panel_off().
3058  * Nested calls to these functions are not allowed since
3059  * we drop the lock. Caller must use some higher level
3060  * locking to prevent nested calls from other threads.
3061  */
3062 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3063 {
3064 	intel_wakeref_t wakeref;
3065 	bool vdd;
3066 
3067 	if (!intel_dp_is_edp(intel_dp))
3068 		return;
3069 
3070 	vdd = false;
3071 	with_pps_lock(intel_dp, wakeref)
3072 		vdd = edp_panel_vdd_on(intel_dp);
3073 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3074 			dp_to_dig_port(intel_dp)->base.base.base.id,
3075 			dp_to_dig_port(intel_dp)->base.base.name);
3076 }
3077 
3078 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3079 {
3080 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3081 	struct intel_digital_port *dig_port =
3082 		dp_to_dig_port(intel_dp);
3083 	u32 pp;
3084 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
3085 
3086 	lockdep_assert_held(&dev_priv->pps_mutex);
3087 
3088 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3089 
3090 	if (!edp_have_panel_vdd(intel_dp))
3091 		return;
3092 
3093 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3094 		    dig_port->base.base.base.id,
3095 		    dig_port->base.base.name);
3096 
3097 	pp = ilk_get_pp_control(intel_dp);
3098 	pp &= ~EDP_FORCE_VDD;
3099 
3100 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3101 	pp_stat_reg = _pp_stat_reg(intel_dp);
3102 
3103 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3104 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3105 
3106 	/* Make sure sequencer is idle before allowing subsequent activity */
3107 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3108 		    intel_de_read(dev_priv, pp_stat_reg),
3109 		    intel_de_read(dev_priv, pp_ctrl_reg));
3110 
3111 	if ((pp & PANEL_POWER_ON) == 0)
3112 		intel_dp->panel_power_off_time = ktime_get_boottime();
3113 
3114 	intel_display_power_put_unchecked(dev_priv,
3115 					  intel_aux_power_domain(dig_port));
3116 }
3117 
3118 static void edp_panel_vdd_work(struct work_struct *__work)
3119 {
3120 	struct intel_dp *intel_dp =
3121 		container_of(to_delayed_work(__work),
3122 			     struct intel_dp, panel_vdd_work);
3123 	intel_wakeref_t wakeref;
3124 
3125 	with_pps_lock(intel_dp, wakeref) {
3126 		if (!intel_dp->want_panel_vdd)
3127 			edp_panel_vdd_off_sync(intel_dp);
3128 	}
3129 }
3130 
3131 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3132 {
3133 	unsigned long delay;
3134 
3135 	/*
3136 	 * Queue the timer to fire a long time from now (relative to the power
3137 	 * down delay) to keep the panel power up across a sequence of
3138 	 * operations.
3139 	 */
3140 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3141 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3142 }
3143 
3144 /*
3145  * Must be paired with edp_panel_vdd_on().
3146  * Must hold pps_mutex around the whole on/off sequence.
3147  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3148  */
3149 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3150 {
3151 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3152 
3153 	lockdep_assert_held(&dev_priv->pps_mutex);
3154 
3155 	if (!intel_dp_is_edp(intel_dp))
3156 		return;
3157 
3158 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3159 			dp_to_dig_port(intel_dp)->base.base.base.id,
3160 			dp_to_dig_port(intel_dp)->base.base.name);
3161 
3162 	intel_dp->want_panel_vdd = false;
3163 
3164 	if (sync)
3165 		edp_panel_vdd_off_sync(intel_dp);
3166 	else
3167 		edp_panel_vdd_schedule_off(intel_dp);
3168 }
3169 
3170 static void edp_panel_on(struct intel_dp *intel_dp)
3171 {
3172 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3173 	u32 pp;
3174 	i915_reg_t pp_ctrl_reg;
3175 
3176 	lockdep_assert_held(&dev_priv->pps_mutex);
3177 
3178 	if (!intel_dp_is_edp(intel_dp))
3179 		return;
3180 
3181 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3182 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3183 		    dp_to_dig_port(intel_dp)->base.base.name);
3184 
3185 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3186 		     "[ENCODER:%d:%s] panel power already on\n",
3187 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3188 		     dp_to_dig_port(intel_dp)->base.base.name))
3189 		return;
3190 
3191 	wait_panel_power_cycle(intel_dp);
3192 
3193 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3194 	pp = ilk_get_pp_control(intel_dp);
3195 	if (IS_GEN(dev_priv, 5)) {
3196 		/* ILK workaround: disable reset around power sequence */
3197 		pp &= ~PANEL_POWER_RESET;
3198 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3199 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3200 	}
3201 
3202 	pp |= PANEL_POWER_ON;
3203 	if (!IS_GEN(dev_priv, 5))
3204 		pp |= PANEL_POWER_RESET;
3205 
3206 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3207 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3208 
3209 	wait_panel_on(intel_dp);
3210 	intel_dp->last_power_on = jiffies;
3211 
3212 	if (IS_GEN(dev_priv, 5)) {
3213 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3214 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3215 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3216 	}
3217 }
3218 
3219 void intel_edp_panel_on(struct intel_dp *intel_dp)
3220 {
3221 	intel_wakeref_t wakeref;
3222 
3223 	if (!intel_dp_is_edp(intel_dp))
3224 		return;
3225 
3226 	with_pps_lock(intel_dp, wakeref)
3227 		edp_panel_on(intel_dp);
3228 }
3229 
3230 
3231 static void edp_panel_off(struct intel_dp *intel_dp)
3232 {
3233 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3234 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3235 	u32 pp;
3236 	i915_reg_t pp_ctrl_reg;
3237 
3238 	lockdep_assert_held(&dev_priv->pps_mutex);
3239 
3240 	if (!intel_dp_is_edp(intel_dp))
3241 		return;
3242 
3243 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3244 		    dig_port->base.base.base.id, dig_port->base.base.name);
3245 
3246 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3247 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3248 		 dig_port->base.base.base.id, dig_port->base.base.name);
3249 
3250 	pp = ilk_get_pp_control(intel_dp);
3251 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3252 	 * panels get very unhappy and cease to work. */
3253 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3254 		EDP_BLC_ENABLE);
3255 
3256 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3257 
3258 	intel_dp->want_panel_vdd = false;
3259 
3260 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3261 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3262 
3263 	wait_panel_off(intel_dp);
3264 	intel_dp->panel_power_off_time = ktime_get_boottime();
3265 
3266 	/* We got a reference when we enabled the VDD. */
3267 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3268 }
3269 
3270 void intel_edp_panel_off(struct intel_dp *intel_dp)
3271 {
3272 	intel_wakeref_t wakeref;
3273 
3274 	if (!intel_dp_is_edp(intel_dp))
3275 		return;
3276 
3277 	with_pps_lock(intel_dp, wakeref)
3278 		edp_panel_off(intel_dp);
3279 }
3280 
3281 /* Enable backlight in the panel power control. */
3282 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3283 {
3284 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3285 	intel_wakeref_t wakeref;
3286 
3287 	/*
3288 	 * If we enable the backlight right away following a panel power
3289 	 * on, we may see slight flicker as the panel syncs with the eDP
3290 	 * link.  So delay a bit to make sure the image is solid before
3291 	 * allowing it to appear.
3292 	 */
3293 	wait_backlight_on(intel_dp);
3294 
3295 	with_pps_lock(intel_dp, wakeref) {
3296 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3297 		u32 pp;
3298 
3299 		pp = ilk_get_pp_control(intel_dp);
3300 		pp |= EDP_BLC_ENABLE;
3301 
3302 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3303 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3304 	}
3305 }
3306 
3307 /* Enable backlight PWM and backlight PP control. */
3308 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3309 			    const struct drm_connector_state *conn_state)
3310 {
3311 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3312 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3313 
3314 	if (!intel_dp_is_edp(intel_dp))
3315 		return;
3316 
3317 	drm_dbg_kms(&i915->drm, "\n");
3318 
3319 	intel_panel_enable_backlight(crtc_state, conn_state);
3320 	_intel_edp_backlight_on(intel_dp);
3321 }
3322 
3323 /* Disable backlight in the panel power control. */
3324 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3325 {
3326 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3327 	intel_wakeref_t wakeref;
3328 
3329 	if (!intel_dp_is_edp(intel_dp))
3330 		return;
3331 
3332 	with_pps_lock(intel_dp, wakeref) {
3333 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3334 		u32 pp;
3335 
3336 		pp = ilk_get_pp_control(intel_dp);
3337 		pp &= ~EDP_BLC_ENABLE;
3338 
3339 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3340 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3341 	}
3342 
3343 	intel_dp->last_backlight_off = jiffies;
3344 	edp_wait_backlight_off(intel_dp);
3345 }
3346 
3347 /* Disable backlight PP control and backlight PWM. */
3348 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3349 {
3350 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3351 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3352 
3353 	if (!intel_dp_is_edp(intel_dp))
3354 		return;
3355 
3356 	drm_dbg_kms(&i915->drm, "\n");
3357 
3358 	_intel_edp_backlight_off(intel_dp);
3359 	intel_panel_disable_backlight(old_conn_state);
3360 }
3361 
3362 /*
3363  * Hook for controlling the panel power control backlight through the bl_power
3364  * sysfs attribute. Take care to handle multiple calls.
3365  */
3366 static void intel_edp_backlight_power(struct intel_connector *connector,
3367 				      bool enable)
3368 {
3369 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3370 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3371 	intel_wakeref_t wakeref;
3372 	bool is_enabled;
3373 
3374 	is_enabled = false;
3375 	with_pps_lock(intel_dp, wakeref)
3376 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3377 	if (is_enabled == enable)
3378 		return;
3379 
3380 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3381 		    enable ? "enable" : "disable");
3382 
3383 	if (enable)
3384 		_intel_edp_backlight_on(intel_dp);
3385 	else
3386 		_intel_edp_backlight_off(intel_dp);
3387 }
3388 
3389 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3390 {
3391 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3392 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3393 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3394 
3395 	I915_STATE_WARN(cur_state != state,
3396 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3397 			dig_port->base.base.base.id, dig_port->base.base.name,
3398 			onoff(state), onoff(cur_state));
3399 }
3400 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3401 
3402 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3403 {
3404 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3405 
3406 	I915_STATE_WARN(cur_state != state,
3407 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3408 			onoff(state), onoff(cur_state));
3409 }
3410 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3411 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3412 
3413 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3414 			   const struct intel_crtc_state *pipe_config)
3415 {
3416 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3417 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3418 
3419 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3420 	assert_dp_port_disabled(intel_dp);
3421 	assert_edp_pll_disabled(dev_priv);
3422 
3423 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3424 		    pipe_config->port_clock);
3425 
3426 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3427 
3428 	if (pipe_config->port_clock == 162000)
3429 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3430 	else
3431 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3432 
3433 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3434 	intel_de_posting_read(dev_priv, DP_A);
3435 	udelay(500);
3436 
3437 	/*
3438 	 * [DevILK] Work around required when enabling DP PLL
3439 	 * while a pipe is enabled going to FDI:
3440 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3441 	 * 2. Program DP PLL enable
3442 	 */
3443 	if (IS_GEN(dev_priv, 5))
3444 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3445 
3446 	intel_dp->DP |= DP_PLL_ENABLE;
3447 
3448 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3449 	intel_de_posting_read(dev_priv, DP_A);
3450 	udelay(200);
3451 }
3452 
3453 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3454 			    const struct intel_crtc_state *old_crtc_state)
3455 {
3456 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3457 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3458 
3459 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3460 	assert_dp_port_disabled(intel_dp);
3461 	assert_edp_pll_enabled(dev_priv);
3462 
3463 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3464 
3465 	intel_dp->DP &= ~DP_PLL_ENABLE;
3466 
3467 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3468 	intel_de_posting_read(dev_priv, DP_A);
3469 	udelay(200);
3470 }
3471 
3472 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3473 {
3474 	/*
3475 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3476 	 * be capable of signalling downstream hpd with a long pulse.
3477 	 * Whether or not that means D3 is safe to use is not clear,
3478 	 * but let's assume so until proven otherwise.
3479 	 *
3480 	 * FIXME should really check all downstream ports...
3481 	 */
3482 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3483 		drm_dp_is_branch(intel_dp->dpcd) &&
3484 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3485 }
3486 
3487 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3488 					   const struct intel_crtc_state *crtc_state,
3489 					   bool enable)
3490 {
3491 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3492 	int ret;
3493 
3494 	if (!crtc_state->dsc.compression_enable)
3495 		return;
3496 
3497 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3498 				 enable ? DP_DECOMPRESSION_EN : 0);
3499 	if (ret < 0)
3500 		drm_dbg_kms(&i915->drm,
3501 			    "Failed to %s sink decompression state\n",
3502 			    enable ? "enable" : "disable");
3503 }
3504 
3505 /* If the device supports it, try to set the power state appropriately */
3506 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode)
3507 {
3508 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3509 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3510 	int ret, i;
3511 
3512 	/* Should have a valid DPCD by this point */
3513 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3514 		return;
3515 
3516 	if (mode != DP_SET_POWER_D0) {
3517 		if (downstream_hpd_needs_d0(intel_dp))
3518 			return;
3519 
3520 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3521 	} else {
3522 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3523 
3524 		/*
3525 		 * When turning on, we need to retry for 1ms to give the sink
3526 		 * time to wake up.
3527 		 */
3528 		for (i = 0; i < 3; i++) {
3529 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3530 			if (ret == 1)
3531 				break;
3532 			drm_msleep(1);
3533 		}
3534 
3535 		if (ret == 1 && lspcon->active)
3536 			lspcon_wait_pcon_mode(lspcon);
3537 	}
3538 
3539 	if (ret != 1)
3540 		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n",
3541 			    encoder->base.base.id, encoder->base.name,
3542 			    mode == DP_SET_POWER_D0 ? "D0" : "D3");
3543 }
3544 
3545 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3546 				 enum port port, enum pipe *pipe)
3547 {
3548 	enum pipe p;
3549 
3550 	for_each_pipe(dev_priv, p) {
3551 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3552 
3553 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3554 			*pipe = p;
3555 			return true;
3556 		}
3557 	}
3558 
3559 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3560 		    port_name(port));
3561 
3562 	/* must initialize pipe to something for the asserts */
3563 	*pipe = PIPE_A;
3564 
3565 	return false;
3566 }
3567 
3568 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3569 			   i915_reg_t dp_reg, enum port port,
3570 			   enum pipe *pipe)
3571 {
3572 	bool ret;
3573 	u32 val;
3574 
3575 	val = intel_de_read(dev_priv, dp_reg);
3576 
3577 	ret = val & DP_PORT_EN;
3578 
3579 	/* asserts want to know the pipe even if the port is disabled */
3580 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3581 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3582 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3583 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3584 	else if (IS_CHERRYVIEW(dev_priv))
3585 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3586 	else
3587 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3588 
3589 	return ret;
3590 }
3591 
3592 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3593 				  enum pipe *pipe)
3594 {
3595 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3596 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3597 	intel_wakeref_t wakeref;
3598 	bool ret;
3599 
3600 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3601 						     encoder->power_domain);
3602 	if (!wakeref)
3603 		return false;
3604 
3605 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3606 				    encoder->port, pipe);
3607 
3608 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3609 
3610 	return ret;
3611 }
3612 
3613 static void intel_dp_get_config(struct intel_encoder *encoder,
3614 				struct intel_crtc_state *pipe_config)
3615 {
3616 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3617 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3618 	u32 tmp, flags = 0;
3619 	enum port port = encoder->port;
3620 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3621 
3622 	if (encoder->type == INTEL_OUTPUT_EDP)
3623 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3624 	else
3625 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3626 
3627 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3628 
3629 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3630 
3631 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3632 		u32 trans_dp = intel_de_read(dev_priv,
3633 					     TRANS_DP_CTL(crtc->pipe));
3634 
3635 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3636 			flags |= DRM_MODE_FLAG_PHSYNC;
3637 		else
3638 			flags |= DRM_MODE_FLAG_NHSYNC;
3639 
3640 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3641 			flags |= DRM_MODE_FLAG_PVSYNC;
3642 		else
3643 			flags |= DRM_MODE_FLAG_NVSYNC;
3644 	} else {
3645 		if (tmp & DP_SYNC_HS_HIGH)
3646 			flags |= DRM_MODE_FLAG_PHSYNC;
3647 		else
3648 			flags |= DRM_MODE_FLAG_NHSYNC;
3649 
3650 		if (tmp & DP_SYNC_VS_HIGH)
3651 			flags |= DRM_MODE_FLAG_PVSYNC;
3652 		else
3653 			flags |= DRM_MODE_FLAG_NVSYNC;
3654 	}
3655 
3656 	pipe_config->hw.adjusted_mode.flags |= flags;
3657 
3658 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3659 		pipe_config->limited_color_range = true;
3660 
3661 	pipe_config->lane_count =
3662 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3663 
3664 	intel_dp_get_m_n(crtc, pipe_config);
3665 
3666 	if (port == PORT_A) {
3667 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3668 			pipe_config->port_clock = 162000;
3669 		else
3670 			pipe_config->port_clock = 270000;
3671 	}
3672 
3673 	pipe_config->hw.adjusted_mode.crtc_clock =
3674 		intel_dotclock_calculate(pipe_config->port_clock,
3675 					 &pipe_config->dp_m_n);
3676 
3677 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3678 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3679 		/*
3680 		 * This is a big fat ugly hack.
3681 		 *
3682 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3683 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3684 		 * unknown we fail to light up. Yet the same BIOS boots up with
3685 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3686 		 * max, not what it tells us to use.
3687 		 *
3688 		 * Note: This will still be broken if the eDP panel is not lit
3689 		 * up by the BIOS, and thus we can't get the mode at module
3690 		 * load.
3691 		 */
3692 		drm_dbg_kms(&dev_priv->drm,
3693 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3694 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3695 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3696 	}
3697 }
3698 
3699 static void intel_disable_dp(struct intel_atomic_state *state,
3700 			     struct intel_encoder *encoder,
3701 			     const struct intel_crtc_state *old_crtc_state,
3702 			     const struct drm_connector_state *old_conn_state)
3703 {
3704 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3705 
3706 	intel_dp->link_trained = false;
3707 
3708 	if (old_crtc_state->has_audio)
3709 		intel_audio_codec_disable(encoder,
3710 					  old_crtc_state, old_conn_state);
3711 
3712 	/* Make sure the panel is off before trying to change the mode. But also
3713 	 * ensure that we have vdd while we switch off the panel. */
3714 	intel_edp_panel_vdd_on(intel_dp);
3715 	intel_edp_backlight_off(old_conn_state);
3716 	intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
3717 	intel_edp_panel_off(intel_dp);
3718 }
3719 
3720 static void g4x_disable_dp(struct intel_atomic_state *state,
3721 			   struct intel_encoder *encoder,
3722 			   const struct intel_crtc_state *old_crtc_state,
3723 			   const struct drm_connector_state *old_conn_state)
3724 {
3725 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3726 }
3727 
3728 static void vlv_disable_dp(struct intel_atomic_state *state,
3729 			   struct intel_encoder *encoder,
3730 			   const struct intel_crtc_state *old_crtc_state,
3731 			   const struct drm_connector_state *old_conn_state)
3732 {
3733 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3734 }
3735 
3736 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3737 				struct intel_encoder *encoder,
3738 				const struct intel_crtc_state *old_crtc_state,
3739 				const struct drm_connector_state *old_conn_state)
3740 {
3741 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3742 	enum port port = encoder->port;
3743 
3744 	/*
3745 	 * Bspec does not list a specific disable sequence for g4x DP.
3746 	 * Follow the ilk+ sequence (disable pipe before the port) for
3747 	 * g4x DP as it does not suffer from underruns like the normal
3748 	 * g4x modeset sequence (disable pipe after the port).
3749 	 */
3750 	intel_dp_link_down(encoder, old_crtc_state);
3751 
3752 	/* Only ilk+ has port A */
3753 	if (port == PORT_A)
3754 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3755 }
3756 
3757 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3758 				struct intel_encoder *encoder,
3759 				const struct intel_crtc_state *old_crtc_state,
3760 				const struct drm_connector_state *old_conn_state)
3761 {
3762 	intel_dp_link_down(encoder, old_crtc_state);
3763 }
3764 
3765 static void chv_post_disable_dp(struct intel_atomic_state *state,
3766 				struct intel_encoder *encoder,
3767 				const struct intel_crtc_state *old_crtc_state,
3768 				const struct drm_connector_state *old_conn_state)
3769 {
3770 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3771 
3772 	intel_dp_link_down(encoder, old_crtc_state);
3773 
3774 	vlv_dpio_get(dev_priv);
3775 
3776 	/* Assert data lane reset */
3777 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3778 
3779 	vlv_dpio_put(dev_priv);
3780 }
3781 
3782 static void
3783 cpt_set_link_train(struct intel_dp *intel_dp,
3784 		   u8 dp_train_pat)
3785 {
3786 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3787 	u32 *DP = &intel_dp->DP;
3788 
3789 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3790 
3791 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3792 	case DP_TRAINING_PATTERN_DISABLE:
3793 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3794 		break;
3795 	case DP_TRAINING_PATTERN_1:
3796 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3797 		break;
3798 	case DP_TRAINING_PATTERN_2:
3799 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3800 		break;
3801 	case DP_TRAINING_PATTERN_3:
3802 		drm_dbg_kms(&dev_priv->drm,
3803 			    "TPS3 not supported, using TPS2 instead\n");
3804 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3805 		break;
3806 	}
3807 
3808 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3809 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3810 }
3811 
3812 static void
3813 g4x_set_link_train(struct intel_dp *intel_dp,
3814 		   u8 dp_train_pat)
3815 {
3816 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3817 	u32 *DP = &intel_dp->DP;
3818 
3819 	*DP &= ~DP_LINK_TRAIN_MASK;
3820 
3821 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3822 	case DP_TRAINING_PATTERN_DISABLE:
3823 		*DP |= DP_LINK_TRAIN_OFF;
3824 		break;
3825 	case DP_TRAINING_PATTERN_1:
3826 		*DP |= DP_LINK_TRAIN_PAT_1;
3827 		break;
3828 	case DP_TRAINING_PATTERN_2:
3829 		*DP |= DP_LINK_TRAIN_PAT_2;
3830 		break;
3831 	case DP_TRAINING_PATTERN_3:
3832 		drm_dbg_kms(&dev_priv->drm,
3833 			    "TPS3 not supported, using TPS2 instead\n");
3834 		*DP |= DP_LINK_TRAIN_PAT_2;
3835 		break;
3836 	}
3837 
3838 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3839 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3840 }
3841 
3842 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3843 				 const struct intel_crtc_state *old_crtc_state)
3844 {
3845 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3846 
3847 	/* enable with pattern 1 (as per spec) */
3848 
3849 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3850 
3851 	/*
3852 	 * Magic for VLV/CHV. We _must_ first set up the register
3853 	 * without actually enabling the port, and then do another
3854 	 * write to enable the port. Otherwise link training will
3855 	 * fail when the power sequencer is freshly used for this port.
3856 	 */
3857 	intel_dp->DP |= DP_PORT_EN;
3858 	if (old_crtc_state->has_audio)
3859 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3860 
3861 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3862 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3863 }
3864 
3865 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp,
3866 					   const struct intel_crtc_state *crtc_state)
3867 {
3868 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3869 	u8 tmp;
3870 
3871 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
3872 		return;
3873 
3874 	if (!drm_dp_is_branch(intel_dp->dpcd))
3875 		return;
3876 
3877 	tmp = intel_dp->has_hdmi_sink ?
3878 		DP_HDMI_DVI_OUTPUT_CONFIG : 0;
3879 
3880 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3881 			       DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
3882 		drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
3883 			    enableddisabled(intel_dp->has_hdmi_sink));
3884 
3885 	tmp = crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
3886 		intel_dp->dfp.ycbcr_444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
3887 
3888 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3889 			       DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
3890 		drm_dbg_kms(&i915->drm,
3891 			    "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
3892 			    enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
3893 
3894 	tmp = 0;
3895 
3896 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3897 			       DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
3898 		drm_dbg_kms(&i915->drm,
3899 			    "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
3900 			    enableddisabled(false));
3901 }
3902 
3903 static void intel_enable_dp(struct intel_atomic_state *state,
3904 			    struct intel_encoder *encoder,
3905 			    const struct intel_crtc_state *pipe_config,
3906 			    const struct drm_connector_state *conn_state)
3907 {
3908 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3909 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3910 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3911 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3912 	enum pipe pipe = crtc->pipe;
3913 	intel_wakeref_t wakeref;
3914 
3915 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3916 		return;
3917 
3918 	with_pps_lock(intel_dp, wakeref) {
3919 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3920 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3921 
3922 		intel_dp_enable_port(intel_dp, pipe_config);
3923 
3924 		edp_panel_vdd_on(intel_dp);
3925 		edp_panel_on(intel_dp);
3926 		edp_panel_vdd_off(intel_dp, true);
3927 	}
3928 
3929 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3930 		unsigned int lane_mask = 0x0;
3931 
3932 		if (IS_CHERRYVIEW(dev_priv))
3933 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3934 
3935 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3936 				    lane_mask);
3937 	}
3938 
3939 	intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
3940 	intel_dp_configure_protocol_converter(intel_dp, pipe_config);
3941 	intel_dp_start_link_train(intel_dp);
3942 	intel_dp_stop_link_train(intel_dp);
3943 
3944 	if (pipe_config->has_audio) {
3945 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3946 			pipe_name(pipe));
3947 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3948 	}
3949 }
3950 
3951 static void g4x_enable_dp(struct intel_atomic_state *state,
3952 			  struct intel_encoder *encoder,
3953 			  const struct intel_crtc_state *pipe_config,
3954 			  const struct drm_connector_state *conn_state)
3955 {
3956 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3957 	intel_edp_backlight_on(pipe_config, conn_state);
3958 }
3959 
3960 static void vlv_enable_dp(struct intel_atomic_state *state,
3961 			  struct intel_encoder *encoder,
3962 			  const struct intel_crtc_state *pipe_config,
3963 			  const struct drm_connector_state *conn_state)
3964 {
3965 	intel_edp_backlight_on(pipe_config, conn_state);
3966 }
3967 
3968 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3969 			      struct intel_encoder *encoder,
3970 			      const struct intel_crtc_state *pipe_config,
3971 			      const struct drm_connector_state *conn_state)
3972 {
3973 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3974 	enum port port = encoder->port;
3975 
3976 	intel_dp_prepare(encoder, pipe_config);
3977 
3978 	/* Only ilk+ has port A */
3979 	if (port == PORT_A)
3980 		ilk_edp_pll_on(intel_dp, pipe_config);
3981 }
3982 
3983 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3984 {
3985 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3986 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3987 	enum pipe pipe = intel_dp->pps_pipe;
3988 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3989 
3990 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3991 
3992 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3993 		return;
3994 
3995 	edp_panel_vdd_off_sync(intel_dp);
3996 
3997 	/*
3998 	 * VLV seems to get confused when multiple power sequencers
3999 	 * have the same port selected (even if only one has power/vdd
4000 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
4001 	 * CHV on the other hand doesn't seem to mind having the same port
4002 	 * selected in multiple power sequencers, but let's clear the
4003 	 * port select always when logically disconnecting a power sequencer
4004 	 * from a port.
4005 	 */
4006 	drm_dbg_kms(&dev_priv->drm,
4007 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
4008 		    pipe_name(pipe), dig_port->base.base.base.id,
4009 		    dig_port->base.base.name);
4010 	intel_de_write(dev_priv, pp_on_reg, 0);
4011 	intel_de_posting_read(dev_priv, pp_on_reg);
4012 
4013 	intel_dp->pps_pipe = INVALID_PIPE;
4014 }
4015 
4016 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4017 				      enum pipe pipe)
4018 {
4019 	struct intel_encoder *encoder;
4020 
4021 	lockdep_assert_held(&dev_priv->pps_mutex);
4022 
4023 	for_each_intel_dp(&dev_priv->drm, encoder) {
4024 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4025 
4026 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4027 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4028 			 pipe_name(pipe), encoder->base.base.id,
4029 			 encoder->base.name);
4030 
4031 		if (intel_dp->pps_pipe != pipe)
4032 			continue;
4033 
4034 		drm_dbg_kms(&dev_priv->drm,
4035 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4036 			    pipe_name(pipe), encoder->base.base.id,
4037 			    encoder->base.name);
4038 
4039 		/* make sure vdd is off before we steal it */
4040 		vlv_detach_power_sequencer(intel_dp);
4041 	}
4042 }
4043 
4044 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4045 					   const struct intel_crtc_state *crtc_state)
4046 {
4047 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4048 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4049 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4050 
4051 	lockdep_assert_held(&dev_priv->pps_mutex);
4052 
4053 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4054 
4055 	if (intel_dp->pps_pipe != INVALID_PIPE &&
4056 	    intel_dp->pps_pipe != crtc->pipe) {
4057 		/*
4058 		 * If another power sequencer was being used on this
4059 		 * port previously make sure to turn off vdd there while
4060 		 * we still have control of it.
4061 		 */
4062 		vlv_detach_power_sequencer(intel_dp);
4063 	}
4064 
4065 	/*
4066 	 * We may be stealing the power
4067 	 * sequencer from another port.
4068 	 */
4069 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4070 
4071 	intel_dp->active_pipe = crtc->pipe;
4072 
4073 	if (!intel_dp_is_edp(intel_dp))
4074 		return;
4075 
4076 	/* now it's all ours */
4077 	intel_dp->pps_pipe = crtc->pipe;
4078 
4079 	drm_dbg_kms(&dev_priv->drm,
4080 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4081 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4082 		    encoder->base.name);
4083 
4084 	/* init power sequencer on this pipe and port */
4085 	intel_dp_init_panel_power_sequencer(intel_dp);
4086 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4087 }
4088 
4089 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4090 			      struct intel_encoder *encoder,
4091 			      const struct intel_crtc_state *pipe_config,
4092 			      const struct drm_connector_state *conn_state)
4093 {
4094 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
4095 
4096 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4097 }
4098 
4099 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4100 				  struct intel_encoder *encoder,
4101 				  const struct intel_crtc_state *pipe_config,
4102 				  const struct drm_connector_state *conn_state)
4103 {
4104 	intel_dp_prepare(encoder, pipe_config);
4105 
4106 	vlv_phy_pre_pll_enable(encoder, pipe_config);
4107 }
4108 
4109 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4110 			      struct intel_encoder *encoder,
4111 			      const struct intel_crtc_state *pipe_config,
4112 			      const struct drm_connector_state *conn_state)
4113 {
4114 	chv_phy_pre_encoder_enable(encoder, pipe_config);
4115 
4116 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4117 
4118 	/* Second common lane will stay alive on its own now */
4119 	chv_phy_release_cl2_override(encoder);
4120 }
4121 
4122 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4123 				  struct intel_encoder *encoder,
4124 				  const struct intel_crtc_state *pipe_config,
4125 				  const struct drm_connector_state *conn_state)
4126 {
4127 	intel_dp_prepare(encoder, pipe_config);
4128 
4129 	chv_phy_pre_pll_enable(encoder, pipe_config);
4130 }
4131 
4132 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4133 				    struct intel_encoder *encoder,
4134 				    const struct intel_crtc_state *old_crtc_state,
4135 				    const struct drm_connector_state *old_conn_state)
4136 {
4137 	chv_phy_post_pll_disable(encoder, old_crtc_state);
4138 }
4139 
4140 /*
4141  * Fetch AUX CH registers 0x202 - 0x207 which contain
4142  * link status information
4143  */
4144 bool
4145 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 *link_status)
4146 {
4147 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4148 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4149 }
4150 
4151 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4152 {
4153 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4154 }
4155 
4156 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4157 {
4158 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4159 }
4160 
4161 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4162 {
4163 	return DP_TRAIN_PRE_EMPH_LEVEL_2;
4164 }
4165 
4166 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4167 {
4168 	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4169 }
4170 
4171 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4172 {
4173 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4174 	unsigned long demph_reg_value, preemph_reg_value,
4175 		uniqtranscale_reg_value;
4176 	u8 train_set = intel_dp->train_set[0];
4177 
4178 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4179 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4180 		preemph_reg_value = 0x0004000;
4181 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4182 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4183 			demph_reg_value = 0x2B405555;
4184 			uniqtranscale_reg_value = 0x552AB83A;
4185 			break;
4186 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4187 			demph_reg_value = 0x2B404040;
4188 			uniqtranscale_reg_value = 0x5548B83A;
4189 			break;
4190 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4191 			demph_reg_value = 0x2B245555;
4192 			uniqtranscale_reg_value = 0x5560B83A;
4193 			break;
4194 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4195 			demph_reg_value = 0x2B405555;
4196 			uniqtranscale_reg_value = 0x5598DA3A;
4197 			break;
4198 		default:
4199 			return;
4200 		}
4201 		break;
4202 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4203 		preemph_reg_value = 0x0002000;
4204 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4205 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4206 			demph_reg_value = 0x2B404040;
4207 			uniqtranscale_reg_value = 0x5552B83A;
4208 			break;
4209 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4210 			demph_reg_value = 0x2B404848;
4211 			uniqtranscale_reg_value = 0x5580B83A;
4212 			break;
4213 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4214 			demph_reg_value = 0x2B404040;
4215 			uniqtranscale_reg_value = 0x55ADDA3A;
4216 			break;
4217 		default:
4218 			return;
4219 		}
4220 		break;
4221 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4222 		preemph_reg_value = 0x0000000;
4223 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4224 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4225 			demph_reg_value = 0x2B305555;
4226 			uniqtranscale_reg_value = 0x5570B83A;
4227 			break;
4228 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4229 			demph_reg_value = 0x2B2B4040;
4230 			uniqtranscale_reg_value = 0x55ADDA3A;
4231 			break;
4232 		default:
4233 			return;
4234 		}
4235 		break;
4236 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4237 		preemph_reg_value = 0x0006000;
4238 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4239 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4240 			demph_reg_value = 0x1B405555;
4241 			uniqtranscale_reg_value = 0x55ADDA3A;
4242 			break;
4243 		default:
4244 			return;
4245 		}
4246 		break;
4247 	default:
4248 		return;
4249 	}
4250 
4251 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4252 				 uniqtranscale_reg_value, 0);
4253 }
4254 
4255 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4256 {
4257 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4258 	u32 deemph_reg_value, margin_reg_value;
4259 	bool uniq_trans_scale = false;
4260 	u8 train_set = intel_dp->train_set[0];
4261 
4262 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4263 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4264 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4265 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4266 			deemph_reg_value = 128;
4267 			margin_reg_value = 52;
4268 			break;
4269 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4270 			deemph_reg_value = 128;
4271 			margin_reg_value = 77;
4272 			break;
4273 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4274 			deemph_reg_value = 128;
4275 			margin_reg_value = 102;
4276 			break;
4277 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4278 			deemph_reg_value = 128;
4279 			margin_reg_value = 154;
4280 			uniq_trans_scale = true;
4281 			break;
4282 		default:
4283 			return;
4284 		}
4285 		break;
4286 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4287 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4288 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4289 			deemph_reg_value = 85;
4290 			margin_reg_value = 78;
4291 			break;
4292 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4293 			deemph_reg_value = 85;
4294 			margin_reg_value = 116;
4295 			break;
4296 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4297 			deemph_reg_value = 85;
4298 			margin_reg_value = 154;
4299 			break;
4300 		default:
4301 			return;
4302 		}
4303 		break;
4304 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4305 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4306 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4307 			deemph_reg_value = 64;
4308 			margin_reg_value = 104;
4309 			break;
4310 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4311 			deemph_reg_value = 64;
4312 			margin_reg_value = 154;
4313 			break;
4314 		default:
4315 			return;
4316 		}
4317 		break;
4318 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4319 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4320 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4321 			deemph_reg_value = 43;
4322 			margin_reg_value = 154;
4323 			break;
4324 		default:
4325 			return;
4326 		}
4327 		break;
4328 	default:
4329 		return;
4330 	}
4331 
4332 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4333 				 margin_reg_value, uniq_trans_scale);
4334 }
4335 
4336 static u32 g4x_signal_levels(u8 train_set)
4337 {
4338 	u32 signal_levels = 0;
4339 
4340 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4341 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4342 	default:
4343 		signal_levels |= DP_VOLTAGE_0_4;
4344 		break;
4345 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4346 		signal_levels |= DP_VOLTAGE_0_6;
4347 		break;
4348 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4349 		signal_levels |= DP_VOLTAGE_0_8;
4350 		break;
4351 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4352 		signal_levels |= DP_VOLTAGE_1_2;
4353 		break;
4354 	}
4355 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4356 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4357 	default:
4358 		signal_levels |= DP_PRE_EMPHASIS_0;
4359 		break;
4360 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4361 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4362 		break;
4363 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4364 		signal_levels |= DP_PRE_EMPHASIS_6;
4365 		break;
4366 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4367 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4368 		break;
4369 	}
4370 	return signal_levels;
4371 }
4372 
4373 static void
4374 g4x_set_signal_levels(struct intel_dp *intel_dp)
4375 {
4376 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4377 	u8 train_set = intel_dp->train_set[0];
4378 	u32 signal_levels;
4379 
4380 	signal_levels = g4x_signal_levels(train_set);
4381 
4382 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4383 		    signal_levels);
4384 
4385 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4386 	intel_dp->DP |= signal_levels;
4387 
4388 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4389 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4390 }
4391 
4392 /* SNB CPU eDP voltage swing and pre-emphasis control */
4393 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4394 {
4395 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4396 					DP_TRAIN_PRE_EMPHASIS_MASK);
4397 
4398 	switch (signal_levels) {
4399 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4400 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4401 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4402 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4403 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4404 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4405 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4406 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4407 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4408 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4409 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4410 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4411 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4412 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4413 	default:
4414 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4415 			      "0x%x\n", signal_levels);
4416 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4417 	}
4418 }
4419 
4420 static void
4421 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4422 {
4423 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4424 	u8 train_set = intel_dp->train_set[0];
4425 	u32 signal_levels;
4426 
4427 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4428 
4429 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4430 		    signal_levels);
4431 
4432 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4433 	intel_dp->DP |= signal_levels;
4434 
4435 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4436 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4437 }
4438 
4439 /* IVB CPU eDP voltage swing and pre-emphasis control */
4440 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4441 {
4442 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4443 					DP_TRAIN_PRE_EMPHASIS_MASK);
4444 
4445 	switch (signal_levels) {
4446 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4447 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4448 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4449 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4450 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4451 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4452 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4453 
4454 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4455 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4456 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4457 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4458 
4459 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4460 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4461 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4462 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4463 
4464 	default:
4465 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4466 			      "0x%x\n", signal_levels);
4467 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4468 	}
4469 }
4470 
4471 static void
4472 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4473 {
4474 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4475 	u8 train_set = intel_dp->train_set[0];
4476 	u32 signal_levels;
4477 
4478 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4479 
4480 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4481 		    signal_levels);
4482 
4483 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4484 	intel_dp->DP |= signal_levels;
4485 
4486 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4487 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4488 }
4489 
4490 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4491 {
4492 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4493 	u8 train_set = intel_dp->train_set[0];
4494 
4495 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4496 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4497 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4498 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4499 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4500 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4501 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4502 		    " (max)" : "");
4503 
4504 	intel_dp->set_signal_levels(intel_dp);
4505 }
4506 
4507 void
4508 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4509 				       u8 dp_train_pat)
4510 {
4511 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4512 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4513 
4514 	if (dp_train_pat & train_pat_mask)
4515 		drm_dbg_kms(&dev_priv->drm,
4516 			    "Using DP training pattern TPS%d\n",
4517 			    dp_train_pat & train_pat_mask);
4518 
4519 	intel_dp->set_link_train(intel_dp, dp_train_pat);
4520 }
4521 
4522 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4523 {
4524 	if (intel_dp->set_idle_link_train)
4525 		intel_dp->set_idle_link_train(intel_dp);
4526 }
4527 
4528 static void
4529 intel_dp_link_down(struct intel_encoder *encoder,
4530 		   const struct intel_crtc_state *old_crtc_state)
4531 {
4532 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4533 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4534 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4535 	enum port port = encoder->port;
4536 	u32 DP = intel_dp->DP;
4537 
4538 	if (drm_WARN_ON(&dev_priv->drm,
4539 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4540 			 DP_PORT_EN) == 0))
4541 		return;
4542 
4543 	drm_dbg_kms(&dev_priv->drm, "\n");
4544 
4545 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4546 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4547 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4548 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4549 	} else {
4550 		DP &= ~DP_LINK_TRAIN_MASK;
4551 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4552 	}
4553 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4554 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4555 
4556 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4557 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4558 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4559 
4560 	/*
4561 	 * HW workaround for IBX, we need to move the port
4562 	 * to transcoder A after disabling it to allow the
4563 	 * matching HDMI port to be enabled on transcoder A.
4564 	 */
4565 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4566 		/*
4567 		 * We get CPU/PCH FIFO underruns on the other pipe when
4568 		 * doing the workaround. Sweep them under the rug.
4569 		 */
4570 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4571 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4572 
4573 		/* always enable with pattern 1 (as per spec) */
4574 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4575 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4576 			DP_LINK_TRAIN_PAT_1;
4577 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4578 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4579 
4580 		DP &= ~DP_PORT_EN;
4581 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4582 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4583 
4584 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4585 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4586 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4587 	}
4588 
4589 	drm_msleep(intel_dp->panel_power_down_delay);
4590 
4591 	intel_dp->DP = DP;
4592 
4593 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4594 		intel_wakeref_t wakeref;
4595 
4596 		with_pps_lock(intel_dp, wakeref)
4597 			intel_dp->active_pipe = INVALID_PIPE;
4598 	}
4599 }
4600 
4601 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4602 {
4603 	u8 dprx = 0;
4604 
4605 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4606 			      &dprx) != 1)
4607 		return false;
4608 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4609 }
4610 
4611 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4612 {
4613 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4614 
4615 	/*
4616 	 * Clear the cached register set to avoid using stale values
4617 	 * for the sinks that do not support DSC.
4618 	 */
4619 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4620 
4621 	/* Clear fec_capable to avoid using stale values */
4622 	intel_dp->fec_capable = 0;
4623 
4624 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4625 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4626 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4627 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4628 				     intel_dp->dsc_dpcd,
4629 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4630 			drm_err(&i915->drm,
4631 				"Failed to read DPCD register 0x%x\n",
4632 				DP_DSC_SUPPORT);
4633 
4634 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4635 			    (int)sizeof(intel_dp->dsc_dpcd),
4636 			    intel_dp->dsc_dpcd);
4637 
4638 		/* FEC is supported only on DP 1.4 */
4639 		if (!intel_dp_is_edp(intel_dp) &&
4640 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4641 				      &intel_dp->fec_capable) < 0)
4642 			drm_err(&i915->drm,
4643 				"Failed to read FEC DPCD register\n");
4644 
4645 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4646 			    intel_dp->fec_capable);
4647 	}
4648 }
4649 
4650 static bool
4651 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4652 {
4653 	struct drm_i915_private *dev_priv =
4654 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4655 
4656 	/* this function is meant to be called only once */
4657 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4658 
4659 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4660 		return false;
4661 
4662 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4663 			 drm_dp_is_branch(intel_dp->dpcd));
4664 
4665 	/*
4666 	 * Read the eDP display control registers.
4667 	 *
4668 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4669 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4670 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4671 	 * method). The display control registers should read zero if they're
4672 	 * not supported anyway.
4673 	 */
4674 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4675 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4676 			     sizeof(intel_dp->edp_dpcd))
4677 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4678 			    (int)sizeof(intel_dp->edp_dpcd),
4679 			    intel_dp->edp_dpcd);
4680 
4681 	/*
4682 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4683 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4684 	 */
4685 	intel_psr_init_dpcd(intel_dp);
4686 
4687 	/* Clear the default sink rates */
4688 	intel_dp->num_sink_rates = 0;
4689 
4690 	/* Read the eDP 1.4+ supported link rates. */
4691 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4692 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4693 		int i;
4694 
4695 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4696 				sink_rates, sizeof(sink_rates));
4697 
4698 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4699 			int val = le16_to_cpu(sink_rates[i]);
4700 
4701 			if (val == 0)
4702 				break;
4703 
4704 			/* Value read multiplied by 200kHz gives the per-lane
4705 			 * link rate in kHz. The source rates are, however,
4706 			 * stored in terms of LS_Clk kHz. The full conversion
4707 			 * back to symbols is
4708 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4709 			 */
4710 			intel_dp->sink_rates[i] = (val * 200) / 10;
4711 		}
4712 		intel_dp->num_sink_rates = i;
4713 	}
4714 
4715 	/*
4716 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4717 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4718 	 */
4719 	if (intel_dp->num_sink_rates)
4720 		intel_dp->use_rate_select = true;
4721 	else
4722 		intel_dp_set_sink_rates(intel_dp);
4723 
4724 	intel_dp_set_common_rates(intel_dp);
4725 
4726 	/* Read the eDP DSC DPCD registers */
4727 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4728 		intel_dp_get_dsc_sink_cap(intel_dp);
4729 
4730 	return true;
4731 }
4732 
4733 static bool
4734 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4735 {
4736 	if (!intel_dp->attached_connector)
4737 		return false;
4738 
4739 	return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4740 					  intel_dp->dpcd,
4741 					  &intel_dp->desc);
4742 }
4743 
4744 static bool
4745 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4746 {
4747 	int ret;
4748 
4749 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4750 		return false;
4751 
4752 	/*
4753 	 * Don't clobber cached eDP rates. Also skip re-reading
4754 	 * the OUI/ID since we know it won't change.
4755 	 */
4756 	if (!intel_dp_is_edp(intel_dp)) {
4757 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4758 				 drm_dp_is_branch(intel_dp->dpcd));
4759 
4760 		intel_dp_set_sink_rates(intel_dp);
4761 		intel_dp_set_common_rates(intel_dp);
4762 	}
4763 
4764 	if (intel_dp_has_sink_count(intel_dp)) {
4765 		ret = drm_dp_read_sink_count(&intel_dp->aux);
4766 		if (ret < 0)
4767 			return false;
4768 
4769 		/*
4770 		 * Sink count can change between short pulse hpd hence
4771 		 * a member variable in intel_dp will track any changes
4772 		 * between short pulse interrupts.
4773 		 */
4774 		intel_dp->sink_count = ret;
4775 
4776 		/*
4777 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4778 		 * a dongle is present but no display. Unless we require to know
4779 		 * if a dongle is present or not, we don't need to update
4780 		 * downstream port information. So, an early return here saves
4781 		 * time from performing other operations which are not required.
4782 		 */
4783 		if (!intel_dp->sink_count)
4784 			return false;
4785 	}
4786 
4787 	return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4788 					   intel_dp->downstream_ports) == 0;
4789 }
4790 
4791 static bool
4792 intel_dp_can_mst(struct intel_dp *intel_dp)
4793 {
4794 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4795 
4796 	return i915->params.enable_dp_mst &&
4797 		intel_dp->can_mst &&
4798 		drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4799 }
4800 
4801 static void
4802 intel_dp_configure_mst(struct intel_dp *intel_dp)
4803 {
4804 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4805 	struct intel_encoder *encoder =
4806 		&dp_to_dig_port(intel_dp)->base;
4807 	bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4808 
4809 	drm_dbg_kms(&i915->drm,
4810 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4811 		    encoder->base.base.id, encoder->base.name,
4812 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4813 		    yesno(i915->params.enable_dp_mst));
4814 
4815 	if (!intel_dp->can_mst)
4816 		return;
4817 
4818 	intel_dp->is_mst = sink_can_mst &&
4819 		i915->params.enable_dp_mst;
4820 
4821 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4822 					intel_dp->is_mst);
4823 }
4824 
4825 static bool
4826 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4827 {
4828 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4829 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4830 		DP_DPRX_ESI_LEN;
4831 }
4832 
4833 bool
4834 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4835 		       const struct drm_connector_state *conn_state)
4836 {
4837 	/*
4838 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4839 	 * of Color Encoding Format and Content Color Gamut], in order to
4840 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4841 	 */
4842 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4843 		return true;
4844 
4845 	switch (conn_state->colorspace) {
4846 	case DRM_MODE_COLORIMETRY_SYCC_601:
4847 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4848 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4849 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4850 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4851 		return true;
4852 	default:
4853 		break;
4854 	}
4855 
4856 	return false;
4857 }
4858 
4859 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4860 				     struct dp_sdp *sdp, size_t size)
4861 {
4862 	size_t length = sizeof(struct dp_sdp);
4863 
4864 	if (size < length)
4865 		return -ENOSPC;
4866 
4867 	memset(sdp, 0, size);
4868 
4869 	/*
4870 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4871 	 * VSC SDP Header Bytes
4872 	 */
4873 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4874 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4875 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4876 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4877 
4878 	/*
4879 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4880 	 * per DP 1.4a spec.
4881 	 */
4882 	if (vsc->revision != 0x5)
4883 		goto out;
4884 
4885 	/* VSC SDP Payload for DB16 through DB18 */
4886 	/* Pixel Encoding and Colorimetry Formats  */
4887 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4888 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4889 
4890 	switch (vsc->bpc) {
4891 	case 6:
4892 		/* 6bpc: 0x0 */
4893 		break;
4894 	case 8:
4895 		sdp->db[17] = 0x1; /* DB17[3:0] */
4896 		break;
4897 	case 10:
4898 		sdp->db[17] = 0x2;
4899 		break;
4900 	case 12:
4901 		sdp->db[17] = 0x3;
4902 		break;
4903 	case 16:
4904 		sdp->db[17] = 0x4;
4905 		break;
4906 	default:
4907 		MISSING_CASE(vsc->bpc);
4908 		break;
4909 	}
4910 	/* Dynamic Range and Component Bit Depth */
4911 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4912 		sdp->db[17] |= 0x80;  /* DB17[7] */
4913 
4914 	/* Content Type */
4915 	sdp->db[18] = vsc->content_type & 0x7;
4916 
4917 out:
4918 	return length;
4919 }
4920 
4921 static ssize_t
4922 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4923 					 struct dp_sdp *sdp,
4924 					 size_t size)
4925 {
4926 	size_t length = sizeof(struct dp_sdp);
4927 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4928 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4929 	ssize_t len;
4930 
4931 	if (size < length)
4932 		return -ENOSPC;
4933 
4934 	memset(sdp, 0, size);
4935 
4936 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4937 	if (len < 0) {
4938 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4939 		return -ENOSPC;
4940 	}
4941 
4942 	if (len != infoframe_size) {
4943 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4944 		return -ENOSPC;
4945 	}
4946 
4947 	/*
4948 	 * Set up the infoframe sdp packet for HDR static metadata.
4949 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4950 	 * Table 2-100 and Table 2-101
4951 	 */
4952 
4953 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4954 	sdp->sdp_header.HB0 = 0;
4955 	/*
4956 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4957 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4958 	 * - 80h + Non-audio INFOFRAME Type value
4959 	 * - InfoFrame Type: 0x07
4960 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4961 	 */
4962 	sdp->sdp_header.HB1 = drm_infoframe->type;
4963 	/*
4964 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4965 	 * infoframe_size - 1
4966 	 */
4967 	sdp->sdp_header.HB2 = 0x1D;
4968 	/* INFOFRAME SDP Version Number */
4969 	sdp->sdp_header.HB3 = (0x13 << 2);
4970 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4971 	sdp->db[0] = drm_infoframe->version;
4972 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4973 	sdp->db[1] = drm_infoframe->length;
4974 	/*
4975 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4976 	 * HDMI_INFOFRAME_HEADER_SIZE
4977 	 */
4978 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4979 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4980 	       HDMI_DRM_INFOFRAME_SIZE);
4981 
4982 	/*
4983 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
4984 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4985 	 * - Two Data Blocks: 2 bytes
4986 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4987 	 *    CTA Header Byte3 (Length of INFOFRAME)
4988 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4989 	 *
4990 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4991 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4992 	 * will pad rest of the size.
4993 	 */
4994 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4995 }
4996 
4997 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4998 			       const struct intel_crtc_state *crtc_state,
4999 			       unsigned int type)
5000 {
5001 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5002 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5003 	struct dp_sdp sdp = {};
5004 	ssize_t len;
5005 
5006 	if ((crtc_state->infoframes.enable &
5007 	     intel_hdmi_infoframe_enable(type)) == 0)
5008 		return;
5009 
5010 	switch (type) {
5011 	case DP_SDP_VSC:
5012 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
5013 					    sizeof(sdp));
5014 		break;
5015 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5016 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5017 							       &sdp, sizeof(sdp));
5018 		break;
5019 	default:
5020 		MISSING_CASE(type);
5021 		return;
5022 	}
5023 
5024 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5025 		return;
5026 
5027 	dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5028 }
5029 
5030 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5031 			    const struct intel_crtc_state *crtc_state,
5032 			    struct drm_dp_vsc_sdp *vsc)
5033 {
5034 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5035 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5036 	struct dp_sdp sdp = {};
5037 	ssize_t len;
5038 
5039 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5040 
5041 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5042 		return;
5043 
5044 	dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5045 					&sdp, len);
5046 }
5047 
5048 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5049 			     bool enable,
5050 			     const struct intel_crtc_state *crtc_state,
5051 			     const struct drm_connector_state *conn_state)
5052 {
5053 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5054 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5055 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5056 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5057 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5058 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5059 	u32 val = intel_de_read(dev_priv, reg);
5060 
5061 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
5062 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
5063 	if (intel_psr_enabled(intel_dp))
5064 		val &= ~dip_enable;
5065 	else
5066 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5067 
5068 	if (!enable) {
5069 		intel_de_write(dev_priv, reg, val);
5070 		intel_de_posting_read(dev_priv, reg);
5071 		return;
5072 	}
5073 
5074 	intel_de_write(dev_priv, reg, val);
5075 	intel_de_posting_read(dev_priv, reg);
5076 
5077 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5078 	if (!intel_psr_enabled(intel_dp))
5079 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5080 
5081 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5082 }
5083 
5084 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5085 				   const void *buffer, size_t size)
5086 {
5087 	const struct dp_sdp *sdp = buffer;
5088 
5089 	if (size < sizeof(struct dp_sdp))
5090 		return -EINVAL;
5091 
5092 	memset(vsc, 0, sizeof(*vsc));
5093 
5094 	if (sdp->sdp_header.HB0 != 0)
5095 		return -EINVAL;
5096 
5097 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5098 		return -EINVAL;
5099 
5100 	vsc->sdp_type = sdp->sdp_header.HB1;
5101 	vsc->revision = sdp->sdp_header.HB2;
5102 	vsc->length = sdp->sdp_header.HB3;
5103 
5104 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5105 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5106 		/*
5107 		 * - HB2 = 0x2, HB3 = 0x8
5108 		 *   VSC SDP supporting 3D stereo + PSR
5109 		 * - HB2 = 0x4, HB3 = 0xe
5110 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5111 		 *   first scan line of the SU region (applies to eDP v1.4b
5112 		 *   and higher).
5113 		 */
5114 		return 0;
5115 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5116 		/*
5117 		 * - HB2 = 0x5, HB3 = 0x13
5118 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5119 		 *   Format.
5120 		 */
5121 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5122 		vsc->colorimetry = sdp->db[16] & 0xf;
5123 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5124 
5125 		switch (sdp->db[17] & 0x7) {
5126 		case 0x0:
5127 			vsc->bpc = 6;
5128 			break;
5129 		case 0x1:
5130 			vsc->bpc = 8;
5131 			break;
5132 		case 0x2:
5133 			vsc->bpc = 10;
5134 			break;
5135 		case 0x3:
5136 			vsc->bpc = 12;
5137 			break;
5138 		case 0x4:
5139 			vsc->bpc = 16;
5140 			break;
5141 		default:
5142 			MISSING_CASE(sdp->db[17] & 0x7);
5143 			return -EINVAL;
5144 		}
5145 
5146 		vsc->content_type = sdp->db[18] & 0x7;
5147 	} else {
5148 		return -EINVAL;
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 static int
5155 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5156 					   const void *buffer, size_t size)
5157 {
5158 	int ret;
5159 
5160 	const struct dp_sdp *sdp = buffer;
5161 
5162 	if (size < sizeof(struct dp_sdp))
5163 		return -EINVAL;
5164 
5165 	if (sdp->sdp_header.HB0 != 0)
5166 		return -EINVAL;
5167 
5168 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5169 		return -EINVAL;
5170 
5171 	/*
5172 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5173 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5174 	 */
5175 	if (sdp->sdp_header.HB2 != 0x1D)
5176 		return -EINVAL;
5177 
5178 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5179 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5180 		return -EINVAL;
5181 
5182 	/* INFOFRAME SDP Version Number */
5183 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5184 		return -EINVAL;
5185 
5186 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5187 	if (sdp->db[0] != 1)
5188 		return -EINVAL;
5189 
5190 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5191 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5192 		return -EINVAL;
5193 
5194 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5195 					     HDMI_DRM_INFOFRAME_SIZE);
5196 
5197 	return ret;
5198 }
5199 
5200 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5201 				  struct intel_crtc_state *crtc_state,
5202 				  struct drm_dp_vsc_sdp *vsc)
5203 {
5204 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5205 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5206 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5207 	unsigned int type = DP_SDP_VSC;
5208 	struct dp_sdp sdp = {};
5209 	int ret;
5210 
5211 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5212 	if (intel_psr_enabled(intel_dp))
5213 		return;
5214 
5215 	if ((crtc_state->infoframes.enable &
5216 	     intel_hdmi_infoframe_enable(type)) == 0)
5217 		return;
5218 
5219 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5220 
5221 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5222 
5223 	if (ret)
5224 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5225 }
5226 
5227 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5228 						     struct intel_crtc_state *crtc_state,
5229 						     struct hdmi_drm_infoframe *drm_infoframe)
5230 {
5231 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5232 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5233 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5234 	struct dp_sdp sdp = {};
5235 	int ret;
5236 
5237 	if ((crtc_state->infoframes.enable &
5238 	    intel_hdmi_infoframe_enable(type)) == 0)
5239 		return;
5240 
5241 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5242 				 sizeof(sdp));
5243 
5244 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5245 							 sizeof(sdp));
5246 
5247 	if (ret)
5248 		drm_dbg_kms(&dev_priv->drm,
5249 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5250 }
5251 
5252 void intel_read_dp_sdp(struct intel_encoder *encoder,
5253 		       struct intel_crtc_state *crtc_state,
5254 		       unsigned int type)
5255 {
5256 	if (encoder->type != INTEL_OUTPUT_DDI)
5257 		return;
5258 
5259 	switch (type) {
5260 	case DP_SDP_VSC:
5261 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5262 				      &crtc_state->infoframes.vsc);
5263 		break;
5264 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5265 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5266 							 &crtc_state->infoframes.drm.drm);
5267 		break;
5268 	default:
5269 		MISSING_CASE(type);
5270 		break;
5271 	}
5272 }
5273 
5274 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5275 {
5276 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5277 	int status = 0;
5278 	int test_link_rate;
5279 	u8 test_lane_count, test_link_bw;
5280 	/* (DP CTS 1.2)
5281 	 * 4.3.1.11
5282 	 */
5283 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5284 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5285 				   &test_lane_count);
5286 
5287 	if (status <= 0) {
5288 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5289 		return DP_TEST_NAK;
5290 	}
5291 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5292 
5293 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5294 				   &test_link_bw);
5295 	if (status <= 0) {
5296 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5297 		return DP_TEST_NAK;
5298 	}
5299 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5300 
5301 	/* Validate the requested link rate and lane count */
5302 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5303 					test_lane_count))
5304 		return DP_TEST_NAK;
5305 
5306 	intel_dp->compliance.test_lane_count = test_lane_count;
5307 	intel_dp->compliance.test_link_rate = test_link_rate;
5308 
5309 	return DP_TEST_ACK;
5310 }
5311 
5312 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5313 {
5314 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5315 	u8 test_pattern;
5316 	u8 test_misc;
5317 	__be16 h_width, v_height;
5318 	int status = 0;
5319 
5320 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5321 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5322 				   &test_pattern);
5323 	if (status <= 0) {
5324 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5325 		return DP_TEST_NAK;
5326 	}
5327 	if (test_pattern != DP_COLOR_RAMP)
5328 		return DP_TEST_NAK;
5329 
5330 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5331 				  &h_width, 2);
5332 	if (status <= 0) {
5333 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5334 		return DP_TEST_NAK;
5335 	}
5336 
5337 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5338 				  &v_height, 2);
5339 	if (status <= 0) {
5340 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5341 		return DP_TEST_NAK;
5342 	}
5343 
5344 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5345 				   &test_misc);
5346 	if (status <= 0) {
5347 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5348 		return DP_TEST_NAK;
5349 	}
5350 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5351 		return DP_TEST_NAK;
5352 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5353 		return DP_TEST_NAK;
5354 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5355 	case DP_TEST_BIT_DEPTH_6:
5356 		intel_dp->compliance.test_data.bpc = 6;
5357 		break;
5358 	case DP_TEST_BIT_DEPTH_8:
5359 		intel_dp->compliance.test_data.bpc = 8;
5360 		break;
5361 	default:
5362 		return DP_TEST_NAK;
5363 	}
5364 
5365 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5366 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5367 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5368 	/* Set test active flag here so userspace doesn't interrupt things */
5369 	intel_dp->compliance.test_active = true;
5370 
5371 	return DP_TEST_ACK;
5372 }
5373 
5374 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5375 {
5376 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5377 	u8 test_result = DP_TEST_ACK;
5378 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5379 	struct drm_connector *connector = &intel_connector->base;
5380 
5381 	if (intel_connector->detect_edid == NULL ||
5382 	    connector->edid_corrupt ||
5383 	    intel_dp->aux.i2c_defer_count > 6) {
5384 		/* Check EDID read for NACKs, DEFERs and corruption
5385 		 * (DP CTS 1.2 Core r1.1)
5386 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5387 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5388 		 *    4.2.2.6 : EDID corruption detected
5389 		 * Use failsafe mode for all cases
5390 		 */
5391 		if (intel_dp->aux.i2c_nack_count > 0 ||
5392 			intel_dp->aux.i2c_defer_count > 0)
5393 			drm_dbg_kms(&i915->drm,
5394 				    "EDID read had %d NACKs, %d DEFERs\n",
5395 				    intel_dp->aux.i2c_nack_count,
5396 				    intel_dp->aux.i2c_defer_count);
5397 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5398 	} else {
5399 		struct edid *block = intel_connector->detect_edid;
5400 
5401 		/* We have to write the checksum
5402 		 * of the last block read
5403 		 */
5404 		block += intel_connector->detect_edid->extensions;
5405 
5406 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5407 				       block->checksum) <= 0)
5408 			drm_dbg_kms(&i915->drm,
5409 				    "Failed to write EDID checksum\n");
5410 
5411 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5412 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5413 	}
5414 
5415 	/* Set test active flag here so userspace doesn't interrupt things */
5416 	intel_dp->compliance.test_active = true;
5417 
5418 	return test_result;
5419 }
5420 
5421 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5422 {
5423 	struct drm_dp_phy_test_params *data =
5424 		&intel_dp->compliance.test_data.phytest;
5425 
5426 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5427 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5428 		return DP_TEST_NAK;
5429 	}
5430 
5431 	/*
5432 	 * link_mst is set to false to avoid executing mst related code
5433 	 * during compliance testing.
5434 	 */
5435 	intel_dp->link_mst = false;
5436 
5437 	return DP_TEST_ACK;
5438 }
5439 
5440 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5441 {
5442 	struct drm_i915_private *dev_priv =
5443 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5444 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5445 	struct drm_dp_phy_test_params *data =
5446 			&intel_dp->compliance.test_data.phytest;
5447 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5448 	enum pipe pipe = crtc->pipe;
5449 	u32 pattern_val;
5450 
5451 	switch (data->phy_pattern) {
5452 	case DP_PHY_TEST_PATTERN_NONE:
5453 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5454 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5455 		break;
5456 	case DP_PHY_TEST_PATTERN_D10_2:
5457 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5458 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5459 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5460 		break;
5461 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5462 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5463 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5464 			       DDI_DP_COMP_CTL_ENABLE |
5465 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5466 		break;
5467 	case DP_PHY_TEST_PATTERN_PRBS7:
5468 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5469 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5470 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5471 		break;
5472 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5473 		/*
5474 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5475 		 * current firmware of DPR-100 could not set it, so hardcoding
5476 		 * now for complaince test.
5477 		 */
5478 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5479 		pattern_val = 0x3e0f83e0;
5480 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5481 		pattern_val = 0x0f83e0f8;
5482 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5483 		pattern_val = 0x0000f83e;
5484 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5485 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5486 			       DDI_DP_COMP_CTL_ENABLE |
5487 			       DDI_DP_COMP_CTL_CUSTOM80);
5488 		break;
5489 	case DP_PHY_TEST_PATTERN_CP2520:
5490 		/*
5491 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5492 		 * current firmware of DPR-100 could not set it, so hardcoding
5493 		 * now for complaince test.
5494 		 */
5495 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5496 		pattern_val = 0xFB;
5497 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5498 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5499 			       pattern_val);
5500 		break;
5501 	default:
5502 		WARN(1, "Invalid Phy Test Pattern\n");
5503 	}
5504 }
5505 
5506 static void
5507 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5508 {
5509 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5510 	struct drm_device *dev = dig_port->base.base.dev;
5511 	struct drm_i915_private *dev_priv = to_i915(dev);
5512 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5513 	enum pipe pipe = crtc->pipe;
5514 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5515 
5516 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5517 						 TRANS_DDI_FUNC_CTL(pipe));
5518 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5519 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5520 
5521 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5522 				      TGL_TRANS_DDI_PORT_MASK);
5523 	trans_conf_value &= ~PIPECONF_ENABLE;
5524 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5525 
5526 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5527 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5528 		       trans_ddi_func_ctl_value);
5529 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5530 }
5531 
5532 static void
5533 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5534 {
5535 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5536 	struct drm_device *dev = dig_port->base.base.dev;
5537 	struct drm_i915_private *dev_priv = to_i915(dev);
5538 	enum port port = dig_port->base.port;
5539 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5540 	enum pipe pipe = crtc->pipe;
5541 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5542 
5543 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5544 						 TRANS_DDI_FUNC_CTL(pipe));
5545 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5546 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5547 
5548 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5549 				    TGL_TRANS_DDI_SELECT_PORT(port);
5550 	trans_conf_value |= PIPECONF_ENABLE;
5551 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5552 
5553 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5554 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5555 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5556 		       trans_ddi_func_ctl_value);
5557 }
5558 
5559 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5560 {
5561 	struct drm_dp_phy_test_params *data =
5562 		&intel_dp->compliance.test_data.phytest;
5563 	u8 link_status[DP_LINK_STATUS_SIZE];
5564 
5565 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
5566 		DRM_DEBUG_KMS("failed to get link status\n");
5567 		return;
5568 	}
5569 
5570 	/* retrieve vswing & pre-emphasis setting */
5571 	intel_dp_get_adjust_train(intel_dp, link_status);
5572 
5573 	intel_dp_autotest_phy_ddi_disable(intel_dp);
5574 
5575 	intel_dp_set_signal_levels(intel_dp);
5576 
5577 	intel_dp_phy_pattern_update(intel_dp);
5578 
5579 	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5580 
5581 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5582 				    link_status[DP_DPCD_REV]);
5583 }
5584 
5585 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5586 {
5587 	u8 test_result;
5588 
5589 	test_result = intel_dp_prepare_phytest(intel_dp);
5590 	if (test_result != DP_TEST_ACK)
5591 		DRM_ERROR("Phy test preparation failed\n");
5592 
5593 	intel_dp_process_phy_request(intel_dp);
5594 
5595 	return test_result;
5596 }
5597 
5598 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5599 {
5600 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5601 	u8 response = DP_TEST_NAK;
5602 	u8 request = 0;
5603 	int status;
5604 
5605 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5606 	if (status <= 0) {
5607 		drm_dbg_kms(&i915->drm,
5608 			    "Could not read test request from sink\n");
5609 		goto update_status;
5610 	}
5611 
5612 	switch (request) {
5613 	case DP_TEST_LINK_TRAINING:
5614 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5615 		response = intel_dp_autotest_link_training(intel_dp);
5616 		break;
5617 	case DP_TEST_LINK_VIDEO_PATTERN:
5618 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5619 		response = intel_dp_autotest_video_pattern(intel_dp);
5620 		break;
5621 	case DP_TEST_LINK_EDID_READ:
5622 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5623 		response = intel_dp_autotest_edid(intel_dp);
5624 		break;
5625 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5626 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5627 		response = intel_dp_autotest_phy_pattern(intel_dp);
5628 		break;
5629 	default:
5630 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5631 			    request);
5632 		break;
5633 	}
5634 
5635 	if (response & DP_TEST_ACK)
5636 		intel_dp->compliance.test_type = request;
5637 
5638 update_status:
5639 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5640 	if (status <= 0)
5641 		drm_dbg_kms(&i915->drm,
5642 			    "Could not write test response to sink\n");
5643 }
5644 
5645 /**
5646  * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5647  * @intel_dp: Intel DP struct
5648  *
5649  * Read any pending MST interrupts, call MST core to handle these and ack the
5650  * interrupts. Check if the main and AUX link state is ok.
5651  *
5652  * Returns:
5653  * - %true if pending interrupts were serviced (or no interrupts were
5654  *   pending) w/o detecting an error condition.
5655  * - %false if an error condition - like AUX failure or a loss of link - is
5656  *   detected, which needs servicing from the hotplug work.
5657  */
5658 static bool
5659 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5660 {
5661 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5662 	bool link_ok = true;
5663 
5664 	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5665 
5666 	for (;;) {
5667 		/*
5668 		 * The +2 is because DP_DPRX_ESI_LEN is 14, but we then
5669 		 * pass in "esi+10" to drm_dp_channel_eq_ok(), which
5670 		 * takes a 6-byte array. So we actually need 16 bytes
5671 		 * here.
5672 		 *
5673 		 * Somebody who knows what the limits actually are
5674 		 * should check this, but for now this is at least
5675 		 * harmless and avoids a valid compiler warning about
5676 		 * using more of the array than we have allocated.
5677 		 */
5678 		u8 esi[DP_DPRX_ESI_LEN+2] = {};
5679 		bool handled;
5680 		int retry;
5681 
5682 		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5683 			drm_dbg_kms(&i915->drm,
5684 				    "failed to get ESI - device may have failed\n");
5685 			link_ok = false;
5686 
5687 			break;
5688 		}
5689 
5690 		/* check link status - esi[10] = 0x200c */
5691 		if (intel_dp->active_mst_links > 0 && link_ok &&
5692 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5693 			drm_dbg_kms(&i915->drm,
5694 				    "channel EQ not ok, retraining\n");
5695 			link_ok = false;
5696 		}
5697 
5698 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5699 
5700 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5701 		if (!handled)
5702 			break;
5703 
5704 		for (retry = 0; retry < 3; retry++) {
5705 			int wret;
5706 
5707 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5708 						 DP_SINK_COUNT_ESI+1,
5709 						 &esi[1], 3);
5710 			if (wret == 3)
5711 				break;
5712 		}
5713 	}
5714 
5715 	return link_ok;
5716 }
5717 
5718 static bool
5719 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5720 {
5721 	u8 link_status[DP_LINK_STATUS_SIZE];
5722 
5723 	if (!intel_dp->link_trained)
5724 		return false;
5725 
5726 	/*
5727 	 * While PSR source HW is enabled, it will control main-link sending
5728 	 * frames, enabling and disabling it so trying to do a retrain will fail
5729 	 * as the link would or not be on or it could mix training patterns
5730 	 * and frame data at the same time causing retrain to fail.
5731 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5732 	 * any link status error.
5733 	 */
5734 	if (intel_psr_enabled(intel_dp))
5735 		return false;
5736 
5737 	if (!intel_dp_get_link_status(intel_dp, link_status))
5738 		return false;
5739 
5740 	/*
5741 	 * Validate the cached values of intel_dp->link_rate and
5742 	 * intel_dp->lane_count before attempting to retrain.
5743 	 */
5744 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5745 					intel_dp->lane_count))
5746 		return false;
5747 
5748 	/* Retrain if Channel EQ or CR not ok */
5749 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5750 }
5751 
5752 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5753 				   const struct drm_connector_state *conn_state)
5754 {
5755 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5756 	struct intel_encoder *encoder;
5757 	enum pipe pipe;
5758 
5759 	if (!conn_state->best_encoder)
5760 		return false;
5761 
5762 	/* SST */
5763 	encoder = &dp_to_dig_port(intel_dp)->base;
5764 	if (conn_state->best_encoder == &encoder->base)
5765 		return true;
5766 
5767 	/* MST */
5768 	for_each_pipe(i915, pipe) {
5769 		encoder = &intel_dp->mst_encoders[pipe]->base;
5770 		if (conn_state->best_encoder == &encoder->base)
5771 			return true;
5772 	}
5773 
5774 	return false;
5775 }
5776 
5777 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5778 				      struct drm_modeset_acquire_ctx *ctx,
5779 				      u32 *crtc_mask)
5780 {
5781 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5782 	struct drm_connector_list_iter conn_iter;
5783 	struct intel_connector *connector;
5784 	int ret = 0;
5785 
5786 	*crtc_mask = 0;
5787 
5788 	if (!intel_dp_needs_link_retrain(intel_dp))
5789 		return 0;
5790 
5791 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5792 	for_each_intel_connector_iter(connector, &conn_iter) {
5793 		struct drm_connector_state *conn_state =
5794 			connector->base.state;
5795 		struct intel_crtc_state *crtc_state;
5796 		struct intel_crtc *crtc;
5797 
5798 		if (!intel_dp_has_connector(intel_dp, conn_state))
5799 			continue;
5800 
5801 		crtc = to_intel_crtc(conn_state->crtc);
5802 		if (!crtc)
5803 			continue;
5804 
5805 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5806 		if (ret)
5807 			break;
5808 
5809 		crtc_state = to_intel_crtc_state(crtc->base.state);
5810 
5811 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5812 
5813 		if (!crtc_state->hw.active)
5814 			continue;
5815 
5816 		if (conn_state->commit &&
5817 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5818 			continue;
5819 
5820 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5821 	}
5822 	drm_connector_list_iter_end(&conn_iter);
5823 
5824 	if (!intel_dp_needs_link_retrain(intel_dp))
5825 		*crtc_mask = 0;
5826 
5827 	return ret;
5828 }
5829 
5830 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5831 {
5832 	struct intel_connector *connector = intel_dp->attached_connector;
5833 
5834 	return connector->base.status == connector_status_connected ||
5835 		intel_dp->is_mst;
5836 }
5837 
5838 int intel_dp_retrain_link(struct intel_encoder *encoder,
5839 			  struct drm_modeset_acquire_ctx *ctx)
5840 {
5841 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5842 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5843 	struct intel_crtc *crtc;
5844 	u32 crtc_mask;
5845 	int ret;
5846 
5847 	if (!intel_dp_is_connected(intel_dp))
5848 		return 0;
5849 
5850 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5851 			       ctx);
5852 	if (ret)
5853 		return ret;
5854 
5855 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5856 	if (ret)
5857 		return ret;
5858 
5859 	if (crtc_mask == 0)
5860 		return 0;
5861 
5862 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5863 		    encoder->base.base.id, encoder->base.name);
5864 
5865 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5866 		const struct intel_crtc_state *crtc_state =
5867 			to_intel_crtc_state(crtc->base.state);
5868 
5869 		/* Suppress underruns caused by re-training */
5870 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5871 		if (crtc_state->has_pch_encoder)
5872 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5873 							      intel_crtc_pch_transcoder(crtc), false);
5874 	}
5875 
5876 	intel_dp_start_link_train(intel_dp);
5877 	intel_dp_stop_link_train(intel_dp);
5878 
5879 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5880 		const struct intel_crtc_state *crtc_state =
5881 			to_intel_crtc_state(crtc->base.state);
5882 
5883 		/* Keep underrun reporting disabled until things are stable */
5884 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5885 
5886 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5887 		if (crtc_state->has_pch_encoder)
5888 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5889 							      intel_crtc_pch_transcoder(crtc), true);
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 /*
5896  * If display is now connected check links status,
5897  * there has been known issues of link loss triggering
5898  * long pulse.
5899  *
5900  * Some sinks (eg. ASUS PB287Q) seem to perform some
5901  * weird HPD ping pong during modesets. So we can apparently
5902  * end up with HPD going low during a modeset, and then
5903  * going back up soon after. And once that happens we must
5904  * retrain the link to get a picture. That's in case no
5905  * userspace component reacted to intermittent HPD dip.
5906  */
5907 static enum intel_hotplug_state
5908 intel_dp_hotplug(struct intel_encoder *encoder,
5909 		 struct intel_connector *connector)
5910 {
5911 	struct drm_modeset_acquire_ctx ctx;
5912 	enum intel_hotplug_state state;
5913 	int ret;
5914 
5915 	state = intel_encoder_hotplug(encoder, connector);
5916 
5917 	drm_modeset_acquire_init(&ctx, 0);
5918 
5919 	for (;;) {
5920 		ret = intel_dp_retrain_link(encoder, &ctx);
5921 
5922 		if (ret == -EDEADLK) {
5923 			drm_modeset_backoff(&ctx);
5924 			continue;
5925 		}
5926 
5927 		break;
5928 	}
5929 
5930 	drm_modeset_drop_locks(&ctx);
5931 	drm_modeset_acquire_fini(&ctx);
5932 	drm_WARN(encoder->base.dev, ret,
5933 		 "Acquiring modeset locks failed with %i\n", ret);
5934 
5935 	/*
5936 	 * Keeping it consistent with intel_ddi_hotplug() and
5937 	 * intel_hdmi_hotplug().
5938 	 */
5939 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5940 		state = INTEL_HOTPLUG_RETRY;
5941 
5942 	return state;
5943 }
5944 
5945 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5946 {
5947 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5948 	u8 val;
5949 
5950 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5951 		return;
5952 
5953 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5954 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5955 		return;
5956 
5957 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5958 
5959 	if (val & DP_AUTOMATED_TEST_REQUEST)
5960 		intel_dp_handle_test_request(intel_dp);
5961 
5962 	if (val & DP_CP_IRQ)
5963 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5964 
5965 	if (val & DP_SINK_SPECIFIC_IRQ)
5966 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5967 }
5968 
5969 /*
5970  * According to DP spec
5971  * 5.1.2:
5972  *  1. Read DPCD
5973  *  2. Configure link according to Receiver Capabilities
5974  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5975  *  4. Check link status on receipt of hot-plug interrupt
5976  *
5977  * intel_dp_short_pulse -  handles short pulse interrupts
5978  * when full detection is not required.
5979  * Returns %true if short pulse is handled and full detection
5980  * is NOT required and %false otherwise.
5981  */
5982 static bool
5983 intel_dp_short_pulse(struct intel_dp *intel_dp)
5984 {
5985 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5986 	u8 old_sink_count = intel_dp->sink_count;
5987 	bool ret;
5988 
5989 	/*
5990 	 * Clearing compliance test variables to allow capturing
5991 	 * of values for next automated test request.
5992 	 */
5993 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5994 
5995 	/*
5996 	 * Now read the DPCD to see if it's actually running
5997 	 * If the current value of sink count doesn't match with
5998 	 * the value that was stored earlier or dpcd read failed
5999 	 * we need to do full detection
6000 	 */
6001 	ret = intel_dp_get_dpcd(intel_dp);
6002 
6003 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
6004 		/* No need to proceed if we are going to do full detect */
6005 		return false;
6006 	}
6007 
6008 	intel_dp_check_service_irq(intel_dp);
6009 
6010 	/* Handle CEC interrupts, if any */
6011 	drm_dp_cec_irq(&intel_dp->aux);
6012 
6013 	/* defer to the hotplug work for link retraining if needed */
6014 	if (intel_dp_needs_link_retrain(intel_dp))
6015 		return false;
6016 
6017 	intel_psr_short_pulse(intel_dp);
6018 
6019 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
6020 		drm_dbg_kms(&dev_priv->drm,
6021 			    "Link Training Compliance Test requested\n");
6022 		/* Send a Hotplug Uevent to userspace to start modeset */
6023 		drm_kms_helper_hotplug_event(&dev_priv->drm);
6024 	}
6025 
6026 	return true;
6027 }
6028 
6029 /* XXX this is probably wrong for multiple downstream ports */
6030 static enum drm_connector_status
6031 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6032 {
6033 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6034 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6035 	u8 *dpcd = intel_dp->dpcd;
6036 	u8 type;
6037 
6038 	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6039 		return connector_status_connected;
6040 
6041 	if (lspcon->active)
6042 		lspcon_resume(lspcon);
6043 
6044 	if (!intel_dp_get_dpcd(intel_dp))
6045 		return connector_status_disconnected;
6046 
6047 	/* if there's no downstream port, we're done */
6048 	if (!drm_dp_is_branch(dpcd))
6049 		return connector_status_connected;
6050 
6051 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
6052 	if (intel_dp_has_sink_count(intel_dp) &&
6053 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6054 		return intel_dp->sink_count ?
6055 		connector_status_connected : connector_status_disconnected;
6056 	}
6057 
6058 	if (intel_dp_can_mst(intel_dp))
6059 		return connector_status_connected;
6060 
6061 	/* If no HPD, poke DDC gently */
6062 	if (drm_probe_ddc(&intel_dp->aux.ddc))
6063 		return connector_status_connected;
6064 
6065 	/* Well we tried, say unknown for unreliable port types */
6066 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6067 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6068 		if (type == DP_DS_PORT_TYPE_VGA ||
6069 		    type == DP_DS_PORT_TYPE_NON_EDID)
6070 			return connector_status_unknown;
6071 	} else {
6072 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6073 			DP_DWN_STRM_PORT_TYPE_MASK;
6074 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6075 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
6076 			return connector_status_unknown;
6077 	}
6078 
6079 	/* Anything else is out of spec, warn and ignore */
6080 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6081 	return connector_status_disconnected;
6082 }
6083 
6084 static enum drm_connector_status
6085 edp_detect(struct intel_dp *intel_dp)
6086 {
6087 	return connector_status_connected;
6088 }
6089 
6090 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6091 {
6092 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6093 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6094 
6095 	return intel_de_read(dev_priv, SDEISR) & bit;
6096 }
6097 
6098 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6099 {
6100 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6101 	u32 bit;
6102 
6103 	switch (encoder->hpd_pin) {
6104 	case HPD_PORT_B:
6105 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6106 		break;
6107 	case HPD_PORT_C:
6108 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6109 		break;
6110 	case HPD_PORT_D:
6111 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6112 		break;
6113 	default:
6114 		MISSING_CASE(encoder->hpd_pin);
6115 		return false;
6116 	}
6117 
6118 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6119 }
6120 
6121 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6122 {
6123 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6124 	u32 bit;
6125 
6126 	switch (encoder->hpd_pin) {
6127 	case HPD_PORT_B:
6128 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6129 		break;
6130 	case HPD_PORT_C:
6131 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6132 		break;
6133 	case HPD_PORT_D:
6134 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6135 		break;
6136 	default:
6137 		MISSING_CASE(encoder->hpd_pin);
6138 		return false;
6139 	}
6140 
6141 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6142 }
6143 
6144 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6145 {
6146 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6147 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6148 
6149 	return intel_de_read(dev_priv, DEISR) & bit;
6150 }
6151 
6152 /*
6153  * intel_digital_port_connected - is the specified port connected?
6154  * @encoder: intel_encoder
6155  *
6156  * In cases where there's a connector physically connected but it can't be used
6157  * by our hardware we also return false, since the rest of the driver should
6158  * pretty much treat the port as disconnected. This is relevant for type-C
6159  * (starting on ICL) where there's ownership involved.
6160  *
6161  * Return %true if port is connected, %false otherwise.
6162  */
6163 bool intel_digital_port_connected(struct intel_encoder *encoder)
6164 {
6165 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6166 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6167 	bool is_connected = false;
6168 	intel_wakeref_t wakeref;
6169 
6170 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6171 		is_connected = dig_port->connected(encoder);
6172 
6173 	return is_connected;
6174 }
6175 
6176 static struct edid *
6177 intel_dp_get_edid(struct intel_dp *intel_dp)
6178 {
6179 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6180 
6181 	/* use cached edid if we have one */
6182 	if (intel_connector->edid) {
6183 		/* invalid edid */
6184 		if (IS_ERR(intel_connector->edid))
6185 			return NULL;
6186 
6187 		return drm_edid_duplicate(intel_connector->edid);
6188 	} else
6189 		return drm_get_edid(&intel_connector->base,
6190 				    &intel_dp->aux.ddc);
6191 }
6192 
6193 static void
6194 intel_dp_update_dfp(struct intel_dp *intel_dp,
6195 		    const struct edid *edid)
6196 {
6197 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6198 	struct intel_connector *connector = intel_dp->attached_connector;
6199 
6200 	intel_dp->dfp.max_bpc =
6201 		drm_dp_downstream_max_bpc(intel_dp->dpcd,
6202 					  intel_dp->downstream_ports, edid);
6203 
6204 	intel_dp->dfp.max_dotclock =
6205 		drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6206 					       intel_dp->downstream_ports);
6207 
6208 	intel_dp->dfp.min_tmds_clock =
6209 		drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6210 						 intel_dp->downstream_ports,
6211 						 edid);
6212 	intel_dp->dfp.max_tmds_clock =
6213 		drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6214 						 intel_dp->downstream_ports,
6215 						 edid);
6216 
6217 	drm_dbg_kms(&i915->drm,
6218 		    "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6219 		    connector->base.base.id, connector->base.name,
6220 		    intel_dp->dfp.max_bpc,
6221 		    intel_dp->dfp.max_dotclock,
6222 		    intel_dp->dfp.min_tmds_clock,
6223 		    intel_dp->dfp.max_tmds_clock);
6224 }
6225 
6226 static void
6227 intel_dp_update_420(struct intel_dp *intel_dp)
6228 {
6229 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6230 	struct intel_connector *connector = intel_dp->attached_connector;
6231 	bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6232 
6233 	/* No YCbCr output support on gmch platforms */
6234 	if (HAS_GMCH(i915))
6235 		return;
6236 
6237 	/*
6238 	 * ILK doesn't seem capable of DP YCbCr output. The
6239 	 * displayed image is severly corrupted. SNB+ is fine.
6240 	 */
6241 	if (IS_GEN(i915, 5))
6242 		return;
6243 
6244 	is_branch = drm_dp_is_branch(intel_dp->dpcd);
6245 	ycbcr_420_passthrough =
6246 		drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6247 						  intel_dp->downstream_ports);
6248 	ycbcr_444_to_420 =
6249 		drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6250 							intel_dp->downstream_ports);
6251 
6252 	if (INTEL_GEN(i915) >= 11) {
6253 		/* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6254 		intel_dp->dfp.ycbcr_444_to_420 =
6255 			ycbcr_444_to_420 && !ycbcr_420_passthrough;
6256 
6257 		connector->base.ycbcr_420_allowed =
6258 			!is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6259 	} else {
6260 		/* 4:4:4->4:2:0 conversion is the only way */
6261 		intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6262 
6263 		connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6264 	}
6265 
6266 	drm_dbg_kms(&i915->drm,
6267 		    "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6268 		    connector->base.base.id, connector->base.name,
6269 		    yesno(connector->base.ycbcr_420_allowed),
6270 		    yesno(intel_dp->dfp.ycbcr_444_to_420));
6271 }
6272 
6273 static void
6274 intel_dp_set_edid(struct intel_dp *intel_dp)
6275 {
6276 	struct intel_connector *connector = intel_dp->attached_connector;
6277 	struct edid *edid;
6278 
6279 	intel_dp_unset_edid(intel_dp);
6280 	edid = intel_dp_get_edid(intel_dp);
6281 	connector->detect_edid = edid;
6282 
6283 	intel_dp_update_dfp(intel_dp, edid);
6284 	intel_dp_update_420(intel_dp);
6285 
6286 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6287 		intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6288 		intel_dp->has_audio = drm_detect_monitor_audio(edid);
6289 	}
6290 
6291 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6292 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6293 }
6294 
6295 static void
6296 intel_dp_unset_edid(struct intel_dp *intel_dp)
6297 {
6298 	struct intel_connector *connector = intel_dp->attached_connector;
6299 
6300 	drm_dp_cec_unset_edid(&intel_dp->aux);
6301 	kfree(connector->detect_edid);
6302 	connector->detect_edid = NULL;
6303 
6304 	intel_dp->has_hdmi_sink = false;
6305 	intel_dp->has_audio = false;
6306 	intel_dp->edid_quirks = 0;
6307 
6308 	intel_dp->dfp.max_bpc = 0;
6309 	intel_dp->dfp.max_dotclock = 0;
6310 	intel_dp->dfp.min_tmds_clock = 0;
6311 	intel_dp->dfp.max_tmds_clock = 0;
6312 
6313 	intel_dp->dfp.ycbcr_444_to_420 = false;
6314 	connector->base.ycbcr_420_allowed = false;
6315 }
6316 
6317 static int
6318 intel_dp_detect(struct drm_connector *connector,
6319 		struct drm_modeset_acquire_ctx *ctx,
6320 		bool force)
6321 {
6322 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6323 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6324 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6325 	struct intel_encoder *encoder = &dig_port->base;
6326 	enum drm_connector_status status;
6327 
6328 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6329 		    connector->base.id, connector->name);
6330 	drm_WARN_ON(&dev_priv->drm,
6331 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6332 
6333 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
6334 		return connector_status_disconnected;
6335 
6336 	/* Can't disconnect eDP */
6337 	if (intel_dp_is_edp(intel_dp))
6338 		status = edp_detect(intel_dp);
6339 	else if (intel_digital_port_connected(encoder))
6340 		status = intel_dp_detect_dpcd(intel_dp);
6341 	else
6342 		status = connector_status_disconnected;
6343 
6344 	if (status == connector_status_disconnected) {
6345 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6346 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6347 
6348 		if (intel_dp->is_mst) {
6349 			drm_dbg_kms(&dev_priv->drm,
6350 				    "MST device may have disappeared %d vs %d\n",
6351 				    intel_dp->is_mst,
6352 				    intel_dp->mst_mgr.mst_state);
6353 			intel_dp->is_mst = false;
6354 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6355 							intel_dp->is_mst);
6356 		}
6357 
6358 		goto out;
6359 	}
6360 
6361 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6362 	if (INTEL_GEN(dev_priv) >= 11)
6363 		intel_dp_get_dsc_sink_cap(intel_dp);
6364 
6365 	intel_dp_configure_mst(intel_dp);
6366 
6367 	/*
6368 	 * TODO: Reset link params when switching to MST mode, until MST
6369 	 * supports link training fallback params.
6370 	 */
6371 	if (intel_dp->reset_link_params || intel_dp->is_mst) {
6372 		/* Initial max link lane count */
6373 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6374 
6375 		/* Initial max link rate */
6376 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6377 
6378 		intel_dp->reset_link_params = false;
6379 	}
6380 
6381 	intel_dp_print_rates(intel_dp);
6382 
6383 	if (intel_dp->is_mst) {
6384 		/*
6385 		 * If we are in MST mode then this connector
6386 		 * won't appear connected or have anything
6387 		 * with EDID on it
6388 		 */
6389 		status = connector_status_disconnected;
6390 		goto out;
6391 	}
6392 
6393 	/*
6394 	 * Some external monitors do not signal loss of link synchronization
6395 	 * with an IRQ_HPD, so force a link status check.
6396 	 */
6397 	if (!intel_dp_is_edp(intel_dp)) {
6398 		int ret;
6399 
6400 		ret = intel_dp_retrain_link(encoder, ctx);
6401 		if (ret)
6402 			return ret;
6403 	}
6404 
6405 	/*
6406 	 * Clearing NACK and defer counts to get their exact values
6407 	 * while reading EDID which are required by Compliance tests
6408 	 * 4.2.2.4 and 4.2.2.5
6409 	 */
6410 	intel_dp->aux.i2c_nack_count = 0;
6411 	intel_dp->aux.i2c_defer_count = 0;
6412 
6413 	intel_dp_set_edid(intel_dp);
6414 	if (intel_dp_is_edp(intel_dp) ||
6415 	    to_intel_connector(connector)->detect_edid)
6416 		status = connector_status_connected;
6417 
6418 	intel_dp_check_service_irq(intel_dp);
6419 
6420 out:
6421 	if (status != connector_status_connected && !intel_dp->is_mst)
6422 		intel_dp_unset_edid(intel_dp);
6423 
6424 	/*
6425 	 * Make sure the refs for power wells enabled during detect are
6426 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6427 	 */
6428 	intel_display_power_flush_work(dev_priv);
6429 
6430 	if (!intel_dp_is_edp(intel_dp))
6431 		drm_dp_set_subconnector_property(connector,
6432 						 status,
6433 						 intel_dp->dpcd,
6434 						 intel_dp->downstream_ports);
6435 	return status;
6436 }
6437 
6438 static void
6439 intel_dp_force(struct drm_connector *connector)
6440 {
6441 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6442 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6443 	struct intel_encoder *intel_encoder = &dig_port->base;
6444 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6445 	enum intel_display_power_domain aux_domain =
6446 		intel_aux_power_domain(dig_port);
6447 	intel_wakeref_t wakeref;
6448 
6449 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6450 		    connector->base.id, connector->name);
6451 	intel_dp_unset_edid(intel_dp);
6452 
6453 	if (connector->status != connector_status_connected)
6454 		return;
6455 
6456 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6457 
6458 	intel_dp_set_edid(intel_dp);
6459 
6460 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6461 }
6462 
6463 static int intel_dp_get_modes(struct drm_connector *connector)
6464 {
6465 	struct intel_connector *intel_connector = to_intel_connector(connector);
6466 	struct edid *edid;
6467 
6468 	edid = intel_connector->detect_edid;
6469 	if (edid) {
6470 		int ret = intel_connector_update_modes(connector, edid);
6471 		if (ret)
6472 			return ret;
6473 	}
6474 
6475 	/* if eDP has no EDID, fall back to fixed mode */
6476 	if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6477 	    intel_connector->panel.fixed_mode) {
6478 		struct drm_display_mode *mode;
6479 
6480 		mode = drm_mode_duplicate(connector->dev,
6481 					  intel_connector->panel.fixed_mode);
6482 		if (mode) {
6483 			drm_mode_probed_add(connector, mode);
6484 			return 1;
6485 		}
6486 	}
6487 
6488 	if (!edid) {
6489 		struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6490 		struct drm_display_mode *mode;
6491 
6492 		mode = drm_dp_downstream_mode(connector->dev,
6493 					      intel_dp->dpcd,
6494 					      intel_dp->downstream_ports);
6495 		if (mode) {
6496 			drm_mode_probed_add(connector, mode);
6497 			return 1;
6498 		}
6499 	}
6500 
6501 	return 0;
6502 }
6503 
6504 static int
6505 intel_dp_connector_register(struct drm_connector *connector)
6506 {
6507 	struct drm_i915_private *i915 = to_i915(connector->dev);
6508 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6509 	int ret;
6510 
6511 	ret = intel_connector_register(connector);
6512 	if (ret)
6513 		return ret;
6514 
6515 #ifdef notyet
6516 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6517 		    intel_dp->aux.name, connector->kdev->kobj.name);
6518 #endif
6519 
6520 	intel_dp->aux.dev = connector->kdev;
6521 	ret = drm_dp_aux_register(&intel_dp->aux);
6522 	if (!ret)
6523 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6524 	return ret;
6525 }
6526 
6527 static void
6528 intel_dp_connector_unregister(struct drm_connector *connector)
6529 {
6530 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6531 
6532 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6533 	drm_dp_aux_unregister(&intel_dp->aux);
6534 	intel_connector_unregister(connector);
6535 }
6536 
6537 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6538 {
6539 	struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6540 	struct intel_dp *intel_dp = &dig_port->dp;
6541 
6542 	intel_dp_mst_encoder_cleanup(dig_port);
6543 	if (intel_dp_is_edp(intel_dp)) {
6544 		intel_wakeref_t wakeref;
6545 
6546 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6547 		/*
6548 		 * vdd might still be enabled do to the delayed vdd off.
6549 		 * Make sure vdd is actually turned off here.
6550 		 */
6551 		with_pps_lock(intel_dp, wakeref)
6552 			edp_panel_vdd_off_sync(intel_dp);
6553 
6554 		if (intel_dp->edp_notifier.notifier_call) {
6555 			unregister_reboot_notifier(&intel_dp->edp_notifier);
6556 			intel_dp->edp_notifier.notifier_call = NULL;
6557 		}
6558 	}
6559 
6560 	intel_dp_aux_fini(intel_dp);
6561 }
6562 
6563 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6564 {
6565 	intel_dp_encoder_flush_work(encoder);
6566 
6567 	drm_encoder_cleanup(encoder);
6568 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6569 }
6570 
6571 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6572 {
6573 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6574 	intel_wakeref_t wakeref;
6575 
6576 	if (!intel_dp_is_edp(intel_dp))
6577 		return;
6578 
6579 	/*
6580 	 * vdd might still be enabled do to the delayed vdd off.
6581 	 * Make sure vdd is actually turned off here.
6582 	 */
6583 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6584 	with_pps_lock(intel_dp, wakeref)
6585 		edp_panel_vdd_off_sync(intel_dp);
6586 }
6587 
6588 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6589 {
6590 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6591 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6592 
6593 	lockdep_assert_held(&dev_priv->pps_mutex);
6594 
6595 	if (!edp_have_panel_vdd(intel_dp))
6596 		return;
6597 
6598 	/*
6599 	 * The VDD bit needs a power domain reference, so if the bit is
6600 	 * already enabled when we boot or resume, grab this reference and
6601 	 * schedule a vdd off, so we don't hold on to the reference
6602 	 * indefinitely.
6603 	 */
6604 	drm_dbg_kms(&dev_priv->drm,
6605 		    "VDD left on by BIOS, adjusting state tracking\n");
6606 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6607 
6608 	edp_panel_vdd_schedule_off(intel_dp);
6609 }
6610 
6611 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6612 {
6613 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6614 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6615 	enum pipe pipe;
6616 
6617 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6618 				  encoder->port, &pipe))
6619 		return pipe;
6620 
6621 	return INVALID_PIPE;
6622 }
6623 
6624 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6625 {
6626 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6627 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6628 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6629 	intel_wakeref_t wakeref;
6630 
6631 	if (!HAS_DDI(dev_priv))
6632 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6633 
6634 	if (lspcon->active)
6635 		lspcon_resume(lspcon);
6636 
6637 	intel_dp->reset_link_params = true;
6638 
6639 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6640 	    !intel_dp_is_edp(intel_dp))
6641 		return;
6642 
6643 	with_pps_lock(intel_dp, wakeref) {
6644 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6645 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6646 
6647 		if (intel_dp_is_edp(intel_dp)) {
6648 			/*
6649 			 * Reinit the power sequencer, in case BIOS did
6650 			 * something nasty with it.
6651 			 */
6652 			intel_dp_pps_init(intel_dp);
6653 			intel_edp_panel_vdd_sanitize(intel_dp);
6654 		}
6655 	}
6656 }
6657 
6658 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6659 				    int tile_group_id)
6660 {
6661 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6662 	struct drm_connector_list_iter conn_iter;
6663 	struct drm_connector *connector;
6664 	int ret = 0;
6665 
6666 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6667 	drm_for_each_connector_iter(connector, &conn_iter) {
6668 		struct drm_connector_state *conn_state;
6669 		struct intel_crtc_state *crtc_state;
6670 		struct intel_crtc *crtc;
6671 
6672 		if (!connector->has_tile ||
6673 		    connector->tile_group->id != tile_group_id)
6674 			continue;
6675 
6676 		conn_state = drm_atomic_get_connector_state(&state->base,
6677 							    connector);
6678 		if (IS_ERR(conn_state)) {
6679 			ret = PTR_ERR(conn_state);
6680 			break;
6681 		}
6682 
6683 		crtc = to_intel_crtc(conn_state->crtc);
6684 
6685 		if (!crtc)
6686 			continue;
6687 
6688 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6689 		crtc_state->uapi.mode_changed = true;
6690 
6691 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6692 		if (ret)
6693 			break;
6694 	}
6695 	drm_connector_list_iter_end(&conn_iter);
6696 
6697 	return ret;
6698 }
6699 
6700 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6701 {
6702 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6703 	struct intel_crtc *crtc;
6704 
6705 	if (transcoders == 0)
6706 		return 0;
6707 
6708 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6709 		struct intel_crtc_state *crtc_state;
6710 		int ret;
6711 
6712 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6713 		if (IS_ERR(crtc_state))
6714 			return PTR_ERR(crtc_state);
6715 
6716 		if (!crtc_state->hw.enable)
6717 			continue;
6718 
6719 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6720 			continue;
6721 
6722 		crtc_state->uapi.mode_changed = true;
6723 
6724 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6725 		if (ret)
6726 			return ret;
6727 
6728 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6729 		if (ret)
6730 			return ret;
6731 
6732 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
6733 	}
6734 
6735 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6736 
6737 	return 0;
6738 }
6739 
6740 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6741 				      struct drm_connector *connector)
6742 {
6743 	const struct drm_connector_state *old_conn_state =
6744 		drm_atomic_get_old_connector_state(&state->base, connector);
6745 	const struct intel_crtc_state *old_crtc_state;
6746 	struct intel_crtc *crtc;
6747 	u8 transcoders;
6748 
6749 	crtc = to_intel_crtc(old_conn_state->crtc);
6750 	if (!crtc)
6751 		return 0;
6752 
6753 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6754 
6755 	if (!old_crtc_state->hw.active)
6756 		return 0;
6757 
6758 	transcoders = old_crtc_state->sync_mode_slaves_mask;
6759 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6760 		transcoders |= BIT(old_crtc_state->master_transcoder);
6761 
6762 	return intel_modeset_affected_transcoders(state,
6763 						  transcoders);
6764 }
6765 
6766 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6767 					   struct drm_atomic_state *_state)
6768 {
6769 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
6770 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
6771 	int ret;
6772 
6773 	ret = intel_digital_connector_atomic_check(conn, &state->base);
6774 	if (ret)
6775 		return ret;
6776 
6777 	/*
6778 	 * We don't enable port sync on BDW due to missing w/as and
6779 	 * due to not having adjusted the modeset sequence appropriately.
6780 	 */
6781 	if (INTEL_GEN(dev_priv) < 9)
6782 		return 0;
6783 
6784 	if (!intel_connector_needs_modeset(state, conn))
6785 		return 0;
6786 
6787 	if (conn->has_tile) {
6788 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
6789 		if (ret)
6790 			return ret;
6791 	}
6792 
6793 	return intel_modeset_synced_crtcs(state, conn);
6794 }
6795 
6796 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6797 	.force = intel_dp_force,
6798 	.fill_modes = drm_helper_probe_single_connector_modes,
6799 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6800 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6801 	.late_register = intel_dp_connector_register,
6802 	.early_unregister = intel_dp_connector_unregister,
6803 	.destroy = intel_connector_destroy,
6804 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6805 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6806 };
6807 
6808 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6809 	.detect_ctx = intel_dp_detect,
6810 	.get_modes = intel_dp_get_modes,
6811 	.mode_valid = intel_dp_mode_valid,
6812 	.atomic_check = intel_dp_connector_atomic_check,
6813 };
6814 
6815 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6816 	.reset = intel_dp_encoder_reset,
6817 	.destroy = intel_dp_encoder_destroy,
6818 };
6819 
6820 static bool intel_edp_have_power(struct intel_dp *intel_dp)
6821 {
6822 	intel_wakeref_t wakeref;
6823 	bool have_power = false;
6824 
6825 	with_pps_lock(intel_dp, wakeref) {
6826 		have_power = edp_have_panel_power(intel_dp) &&
6827 						  edp_have_panel_vdd(intel_dp);
6828 	}
6829 
6830 	return have_power;
6831 }
6832 
6833 enum irqreturn
6834 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
6835 {
6836 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6837 	struct intel_dp *intel_dp = &dig_port->dp;
6838 
6839 	if (dig_port->base.type == INTEL_OUTPUT_EDP &&
6840 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
6841 		/*
6842 		 * vdd off can generate a long/short pulse on eDP which
6843 		 * would require vdd on to handle it, and thus we
6844 		 * would end up in an endless cycle of
6845 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
6846 		 */
6847 		drm_dbg_kms(&i915->drm,
6848 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
6849 			    long_hpd ? "long" : "short",
6850 			    dig_port->base.base.base.id,
6851 			    dig_port->base.base.name);
6852 		return IRQ_HANDLED;
6853 	}
6854 
6855 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
6856 		    dig_port->base.base.base.id,
6857 		    dig_port->base.base.name,
6858 		    long_hpd ? "long" : "short");
6859 
6860 	if (long_hpd) {
6861 		intel_dp->reset_link_params = true;
6862 		return IRQ_NONE;
6863 	}
6864 
6865 	if (intel_dp->is_mst) {
6866 		if (!intel_dp_check_mst_status(intel_dp))
6867 			return IRQ_NONE;
6868 	} else if (!intel_dp_short_pulse(intel_dp)) {
6869 		return IRQ_NONE;
6870 	}
6871 
6872 	return IRQ_HANDLED;
6873 }
6874 
6875 /* check the VBT to see whether the eDP is on another port */
6876 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6877 {
6878 	/*
6879 	 * eDP not supported on g4x. so bail out early just
6880 	 * for a bit extra safety in case the VBT is bonkers.
6881 	 */
6882 	if (INTEL_GEN(dev_priv) < 5)
6883 		return false;
6884 
6885 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6886 		return true;
6887 
6888 	return intel_bios_is_port_edp(dev_priv, port);
6889 }
6890 
6891 static void
6892 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6893 {
6894 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6895 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6896 
6897 	if (!intel_dp_is_edp(intel_dp))
6898 		drm_connector_attach_dp_subconnector_property(connector);
6899 
6900 	if (!IS_G4X(dev_priv) && port != PORT_A)
6901 		intel_attach_force_audio_property(connector);
6902 
6903 	intel_attach_broadcast_rgb_property(connector);
6904 	if (HAS_GMCH(dev_priv))
6905 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6906 	else if (INTEL_GEN(dev_priv) >= 5)
6907 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6908 
6909 	intel_attach_colorspace_property(connector);
6910 
6911 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6912 		drm_object_attach_property(&connector->base,
6913 					   connector->dev->mode_config.hdr_output_metadata_property,
6914 					   0);
6915 
6916 	if (intel_dp_is_edp(intel_dp)) {
6917 		u32 allowed_scalers;
6918 
6919 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6920 		if (!HAS_GMCH(dev_priv))
6921 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6922 
6923 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6924 
6925 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6926 
6927 	}
6928 }
6929 
6930 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6931 {
6932 	intel_dp->panel_power_off_time = ktime_get_boottime();
6933 	intel_dp->last_power_on = jiffies;
6934 	intel_dp->last_backlight_off = jiffies;
6935 }
6936 
6937 static void
6938 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6939 {
6940 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6941 	u32 pp_on, pp_off, pp_ctl;
6942 	struct pps_registers regs;
6943 
6944 	intel_pps_get_registers(intel_dp, &regs);
6945 
6946 	pp_ctl = ilk_get_pp_control(intel_dp);
6947 
6948 	/* Ensure PPS is unlocked */
6949 	if (!HAS_DDI(dev_priv))
6950 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6951 
6952 	pp_on = intel_de_read(dev_priv, regs.pp_on);
6953 	pp_off = intel_de_read(dev_priv, regs.pp_off);
6954 
6955 	/* Pull timing values out of registers */
6956 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6957 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6958 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6959 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6960 
6961 	if (i915_mmio_reg_valid(regs.pp_div)) {
6962 		u32 pp_div;
6963 
6964 		pp_div = intel_de_read(dev_priv, regs.pp_div);
6965 
6966 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6967 	} else {
6968 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6969 	}
6970 }
6971 
6972 static void
6973 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6974 {
6975 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6976 		      state_name,
6977 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6978 }
6979 
6980 static void
6981 intel_pps_verify_state(struct intel_dp *intel_dp)
6982 {
6983 	struct edp_power_seq hw;
6984 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6985 
6986 	intel_pps_readout_hw_state(intel_dp, &hw);
6987 
6988 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6989 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6990 		DRM_ERROR("PPS state mismatch\n");
6991 		intel_pps_dump_state("sw", sw);
6992 		intel_pps_dump_state("hw", &hw);
6993 	}
6994 }
6995 
6996 static void
6997 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6998 {
6999 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7000 	struct edp_power_seq cur, vbt, spec,
7001 		*final = &intel_dp->pps_delays;
7002 
7003 	lockdep_assert_held(&dev_priv->pps_mutex);
7004 
7005 	/* already initialized? */
7006 	if (final->t11_t12 != 0)
7007 		return;
7008 
7009 	intel_pps_readout_hw_state(intel_dp, &cur);
7010 
7011 	intel_pps_dump_state("cur", &cur);
7012 
7013 	vbt = dev_priv->vbt.edp.pps;
7014 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7015 	 * of 500ms appears to be too short. Ocassionally the panel
7016 	 * just fails to power back on. Increasing the delay to 800ms
7017 	 * seems sufficient to avoid this problem.
7018 	 */
7019 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7020 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7021 		drm_dbg_kms(&dev_priv->drm,
7022 			    "Increasing T12 panel delay as per the quirk to %d\n",
7023 			    vbt.t11_t12);
7024 	}
7025 	/* T11_T12 delay is special and actually in units of 100ms, but zero
7026 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7027 	 * table multiplies it with 1000 to make it in units of 100usec,
7028 	 * too. */
7029 	vbt.t11_t12 += 100 * 10;
7030 
7031 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7032 	 * our hw here, which are all in 100usec. */
7033 	spec.t1_t3 = 210 * 10;
7034 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7035 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7036 	spec.t10 = 500 * 10;
7037 	/* This one is special and actually in units of 100ms, but zero
7038 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7039 	 * table multiplies it with 1000 to make it in units of 100usec,
7040 	 * too. */
7041 	spec.t11_t12 = (510 + 100) * 10;
7042 
7043 	intel_pps_dump_state("vbt", &vbt);
7044 
7045 	/* Use the max of the register settings and vbt. If both are
7046 	 * unset, fall back to the spec limits. */
7047 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7048 				       spec.field : \
7049 				       max(cur.field, vbt.field))
7050 	assign_final(t1_t3);
7051 	assign_final(t8);
7052 	assign_final(t9);
7053 	assign_final(t10);
7054 	assign_final(t11_t12);
7055 #undef assign_final
7056 
7057 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7058 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7059 	intel_dp->backlight_on_delay = get_delay(t8);
7060 	intel_dp->backlight_off_delay = get_delay(t9);
7061 	intel_dp->panel_power_down_delay = get_delay(t10);
7062 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7063 #undef get_delay
7064 
7065 	drm_dbg_kms(&dev_priv->drm,
7066 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7067 		    intel_dp->panel_power_up_delay,
7068 		    intel_dp->panel_power_down_delay,
7069 		    intel_dp->panel_power_cycle_delay);
7070 
7071 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7072 		    intel_dp->backlight_on_delay,
7073 		    intel_dp->backlight_off_delay);
7074 
7075 	/*
7076 	 * We override the HW backlight delays to 1 because we do manual waits
7077 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7078 	 * don't do this, we'll end up waiting for the backlight off delay
7079 	 * twice: once when we do the manual sleep, and once when we disable
7080 	 * the panel and wait for the PP_STATUS bit to become zero.
7081 	 */
7082 	final->t8 = 1;
7083 	final->t9 = 1;
7084 
7085 	/*
7086 	 * HW has only a 100msec granularity for t11_t12 so round it up
7087 	 * accordingly.
7088 	 */
7089 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7090 }
7091 
7092 static void
7093 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7094 					      bool force_disable_vdd)
7095 {
7096 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7097 	u32 pp_on, pp_off, port_sel = 0;
7098 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7099 	struct pps_registers regs;
7100 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7101 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7102 
7103 	lockdep_assert_held(&dev_priv->pps_mutex);
7104 
7105 	intel_pps_get_registers(intel_dp, &regs);
7106 
7107 	/*
7108 	 * On some VLV machines the BIOS can leave the VDD
7109 	 * enabled even on power sequencers which aren't
7110 	 * hooked up to any port. This would mess up the
7111 	 * power domain tracking the first time we pick
7112 	 * one of these power sequencers for use since
7113 	 * edp_panel_vdd_on() would notice that the VDD was
7114 	 * already on and therefore wouldn't grab the power
7115 	 * domain reference. Disable VDD first to avoid this.
7116 	 * This also avoids spuriously turning the VDD on as
7117 	 * soon as the new power sequencer gets initialized.
7118 	 */
7119 	if (force_disable_vdd) {
7120 		u32 pp = ilk_get_pp_control(intel_dp);
7121 
7122 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7123 			 "Panel power already on\n");
7124 
7125 		if (pp & EDP_FORCE_VDD)
7126 			drm_dbg_kms(&dev_priv->drm,
7127 				    "VDD already on, disabling first\n");
7128 
7129 		pp &= ~EDP_FORCE_VDD;
7130 
7131 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7132 	}
7133 
7134 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7135 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7136 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7137 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7138 
7139 	/* Haswell doesn't have any port selection bits for the panel
7140 	 * power sequencer any more. */
7141 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7142 		port_sel = PANEL_PORT_SELECT_VLV(port);
7143 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7144 		switch (port) {
7145 		case PORT_A:
7146 			port_sel = PANEL_PORT_SELECT_DPA;
7147 			break;
7148 		case PORT_C:
7149 			port_sel = PANEL_PORT_SELECT_DPC;
7150 			break;
7151 		case PORT_D:
7152 			port_sel = PANEL_PORT_SELECT_DPD;
7153 			break;
7154 		default:
7155 			MISSING_CASE(port);
7156 			break;
7157 		}
7158 	}
7159 
7160 	pp_on |= port_sel;
7161 
7162 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7163 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7164 
7165 	/*
7166 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7167 	 */
7168 	if (i915_mmio_reg_valid(regs.pp_div)) {
7169 		intel_de_write(dev_priv, regs.pp_div,
7170 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7171 	} else {
7172 		u32 pp_ctl;
7173 
7174 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7175 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7176 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7177 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7178 	}
7179 
7180 	drm_dbg_kms(&dev_priv->drm,
7181 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7182 		    intel_de_read(dev_priv, regs.pp_on),
7183 		    intel_de_read(dev_priv, regs.pp_off),
7184 		    i915_mmio_reg_valid(regs.pp_div) ?
7185 		    intel_de_read(dev_priv, regs.pp_div) :
7186 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7187 }
7188 
7189 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7190 {
7191 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7192 
7193 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7194 		vlv_initial_power_sequencer_setup(intel_dp);
7195 	} else {
7196 		intel_dp_init_panel_power_sequencer(intel_dp);
7197 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7198 	}
7199 }
7200 
7201 /**
7202  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7203  * @dev_priv: i915 device
7204  * @crtc_state: a pointer to the active intel_crtc_state
7205  * @refresh_rate: RR to be programmed
7206  *
7207  * This function gets called when refresh rate (RR) has to be changed from
7208  * one frequency to another. Switches can be between high and low RR
7209  * supported by the panel or to any other RR based on media playback (in
7210  * this case, RR value needs to be passed from user space).
7211  *
7212  * The caller of this function needs to take a lock on dev_priv->drrs.
7213  */
7214 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7215 				    const struct intel_crtc_state *crtc_state,
7216 				    int refresh_rate)
7217 {
7218 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7219 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7220 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7221 
7222 	if (refresh_rate <= 0) {
7223 		drm_dbg_kms(&dev_priv->drm,
7224 			    "Refresh rate should be positive non-zero.\n");
7225 		return;
7226 	}
7227 
7228 	if (intel_dp == NULL) {
7229 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7230 		return;
7231 	}
7232 
7233 	if (!intel_crtc) {
7234 		drm_dbg_kms(&dev_priv->drm,
7235 			    "DRRS: intel_crtc not initialized\n");
7236 		return;
7237 	}
7238 
7239 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7240 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7241 		return;
7242 	}
7243 
7244 	if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7245 			refresh_rate)
7246 		index = DRRS_LOW_RR;
7247 
7248 	if (index == dev_priv->drrs.refresh_rate_type) {
7249 		drm_dbg_kms(&dev_priv->drm,
7250 			    "DRRS requested for previously set RR...ignoring\n");
7251 		return;
7252 	}
7253 
7254 	if (!crtc_state->hw.active) {
7255 		drm_dbg_kms(&dev_priv->drm,
7256 			    "eDP encoder disabled. CRTC not Active\n");
7257 		return;
7258 	}
7259 
7260 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7261 		switch (index) {
7262 		case DRRS_HIGH_RR:
7263 			intel_dp_set_m_n(crtc_state, M1_N1);
7264 			break;
7265 		case DRRS_LOW_RR:
7266 			intel_dp_set_m_n(crtc_state, M2_N2);
7267 			break;
7268 		case DRRS_MAX_RR:
7269 		default:
7270 			drm_err(&dev_priv->drm,
7271 				"Unsupported refreshrate type\n");
7272 		}
7273 	} else if (INTEL_GEN(dev_priv) > 6) {
7274 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7275 		u32 val;
7276 
7277 		val = intel_de_read(dev_priv, reg);
7278 		if (index > DRRS_HIGH_RR) {
7279 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7280 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7281 			else
7282 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7283 		} else {
7284 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7285 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7286 			else
7287 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7288 		}
7289 		intel_de_write(dev_priv, reg, val);
7290 	}
7291 
7292 	dev_priv->drrs.refresh_rate_type = index;
7293 
7294 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7295 		    refresh_rate);
7296 }
7297 
7298 static void
7299 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7300 {
7301 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7302 
7303 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7304 	dev_priv->drrs.dp = intel_dp;
7305 }
7306 
7307 /**
7308  * intel_edp_drrs_enable - init drrs struct if supported
7309  * @intel_dp: DP struct
7310  * @crtc_state: A pointer to the active crtc state.
7311  *
7312  * Initializes frontbuffer_bits and drrs.dp
7313  */
7314 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7315 			   const struct intel_crtc_state *crtc_state)
7316 {
7317 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7318 
7319 	if (!crtc_state->has_drrs)
7320 		return;
7321 
7322 	drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7323 
7324 	mutex_lock(&dev_priv->drrs.mutex);
7325 
7326 	if (dev_priv->drrs.dp) {
7327 		drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7328 		goto unlock;
7329 	}
7330 
7331 	intel_edp_drrs_enable_locked(intel_dp);
7332 
7333 unlock:
7334 	mutex_unlock(&dev_priv->drrs.mutex);
7335 }
7336 
7337 static void
7338 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7339 			      const struct intel_crtc_state *crtc_state)
7340 {
7341 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7342 
7343 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7344 		int refresh;
7345 
7346 		refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7347 		intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7348 	}
7349 
7350 	dev_priv->drrs.dp = NULL;
7351 }
7352 
7353 /**
7354  * intel_edp_drrs_disable - Disable DRRS
7355  * @intel_dp: DP struct
7356  * @old_crtc_state: Pointer to old crtc_state.
7357  *
7358  */
7359 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7360 			    const struct intel_crtc_state *old_crtc_state)
7361 {
7362 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7363 
7364 	if (!old_crtc_state->has_drrs)
7365 		return;
7366 
7367 	mutex_lock(&dev_priv->drrs.mutex);
7368 	if (!dev_priv->drrs.dp) {
7369 		mutex_unlock(&dev_priv->drrs.mutex);
7370 		return;
7371 	}
7372 
7373 	intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7374 	mutex_unlock(&dev_priv->drrs.mutex);
7375 
7376 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7377 }
7378 
7379 /**
7380  * intel_edp_drrs_update - Update DRRS state
7381  * @intel_dp: Intel DP
7382  * @crtc_state: new CRTC state
7383  *
7384  * This function will update DRRS states, disabling or enabling DRRS when
7385  * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7386  * intel_edp_drrs_enable() should be called instead.
7387  */
7388 void
7389 intel_edp_drrs_update(struct intel_dp *intel_dp,
7390 		      const struct intel_crtc_state *crtc_state)
7391 {
7392 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7393 
7394 	if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7395 		return;
7396 
7397 	mutex_lock(&dev_priv->drrs.mutex);
7398 
7399 	/* New state matches current one? */
7400 	if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7401 		goto unlock;
7402 
7403 	if (crtc_state->has_drrs)
7404 		intel_edp_drrs_enable_locked(intel_dp);
7405 	else
7406 		intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7407 
7408 unlock:
7409 	mutex_unlock(&dev_priv->drrs.mutex);
7410 }
7411 
7412 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7413 {
7414 	struct drm_i915_private *dev_priv =
7415 		container_of(work, typeof(*dev_priv), drrs.work.work);
7416 	struct intel_dp *intel_dp;
7417 
7418 	mutex_lock(&dev_priv->drrs.mutex);
7419 
7420 	intel_dp = dev_priv->drrs.dp;
7421 
7422 	if (!intel_dp)
7423 		goto unlock;
7424 
7425 	/*
7426 	 * The delayed work can race with an invalidate hence we need to
7427 	 * recheck.
7428 	 */
7429 
7430 	if (dev_priv->drrs.busy_frontbuffer_bits)
7431 		goto unlock;
7432 
7433 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7434 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7435 
7436 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7437 			drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7438 	}
7439 
7440 unlock:
7441 	mutex_unlock(&dev_priv->drrs.mutex);
7442 }
7443 
7444 /**
7445  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7446  * @dev_priv: i915 device
7447  * @frontbuffer_bits: frontbuffer plane tracking bits
7448  *
7449  * This function gets called everytime rendering on the given planes start.
7450  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7451  *
7452  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7453  */
7454 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7455 			       unsigned int frontbuffer_bits)
7456 {
7457 	struct intel_dp *intel_dp;
7458 	struct drm_crtc *crtc;
7459 	enum pipe pipe;
7460 
7461 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7462 		return;
7463 
7464 	cancel_delayed_work(&dev_priv->drrs.work);
7465 
7466 	mutex_lock(&dev_priv->drrs.mutex);
7467 
7468 	intel_dp = dev_priv->drrs.dp;
7469 	if (!intel_dp) {
7470 		mutex_unlock(&dev_priv->drrs.mutex);
7471 		return;
7472 	}
7473 
7474 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7475 	pipe = to_intel_crtc(crtc)->pipe;
7476 
7477 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7478 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7479 
7480 	/* invalidate means busy screen hence upclock */
7481 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7482 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7483 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7484 
7485 	mutex_unlock(&dev_priv->drrs.mutex);
7486 }
7487 
7488 /**
7489  * intel_edp_drrs_flush - Restart Idleness DRRS
7490  * @dev_priv: i915 device
7491  * @frontbuffer_bits: frontbuffer plane tracking bits
7492  *
7493  * This function gets called every time rendering on the given planes has
7494  * completed or flip on a crtc is completed. So DRRS should be upclocked
7495  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7496  * if no other planes are dirty.
7497  *
7498  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7499  */
7500 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7501 			  unsigned int frontbuffer_bits)
7502 {
7503 	struct intel_dp *intel_dp;
7504 	struct drm_crtc *crtc;
7505 	enum pipe pipe;
7506 
7507 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7508 		return;
7509 
7510 	cancel_delayed_work(&dev_priv->drrs.work);
7511 
7512 	mutex_lock(&dev_priv->drrs.mutex);
7513 
7514 	intel_dp = dev_priv->drrs.dp;
7515 	if (!intel_dp) {
7516 		mutex_unlock(&dev_priv->drrs.mutex);
7517 		return;
7518 	}
7519 
7520 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7521 	pipe = to_intel_crtc(crtc)->pipe;
7522 
7523 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7524 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7525 
7526 	/* flush means busy screen hence upclock */
7527 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7528 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7529 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7530 
7531 	/*
7532 	 * flush also means no more activity hence schedule downclock, if all
7533 	 * other fbs are quiescent too
7534 	 */
7535 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7536 		schedule_delayed_work(&dev_priv->drrs.work,
7537 				msecs_to_jiffies(1000));
7538 	mutex_unlock(&dev_priv->drrs.mutex);
7539 }
7540 
7541 /**
7542  * DOC: Display Refresh Rate Switching (DRRS)
7543  *
7544  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7545  * which enables swtching between low and high refresh rates,
7546  * dynamically, based on the usage scenario. This feature is applicable
7547  * for internal panels.
7548  *
7549  * Indication that the panel supports DRRS is given by the panel EDID, which
7550  * would list multiple refresh rates for one resolution.
7551  *
7552  * DRRS is of 2 types - static and seamless.
7553  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7554  * (may appear as a blink on screen) and is used in dock-undock scenario.
7555  * Seamless DRRS involves changing RR without any visual effect to the user
7556  * and can be used during normal system usage. This is done by programming
7557  * certain registers.
7558  *
7559  * Support for static/seamless DRRS may be indicated in the VBT based on
7560  * inputs from the panel spec.
7561  *
7562  * DRRS saves power by switching to low RR based on usage scenarios.
7563  *
7564  * The implementation is based on frontbuffer tracking implementation.  When
7565  * there is a disturbance on the screen triggered by user activity or a periodic
7566  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7567  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7568  * made.
7569  *
7570  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7571  * and intel_edp_drrs_flush() are called.
7572  *
7573  * DRRS can be further extended to support other internal panels and also
7574  * the scenario of video playback wherein RR is set based on the rate
7575  * requested by userspace.
7576  */
7577 
7578 /**
7579  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7580  * @connector: eDP connector
7581  * @fixed_mode: preferred mode of panel
7582  *
7583  * This function is  called only once at driver load to initialize basic
7584  * DRRS stuff.
7585  *
7586  * Returns:
7587  * Downclock mode if panel supports it, else return NULL.
7588  * DRRS support is determined by the presence of downclock mode (apart
7589  * from VBT setting).
7590  */
7591 static struct drm_display_mode *
7592 intel_dp_drrs_init(struct intel_connector *connector,
7593 		   struct drm_display_mode *fixed_mode)
7594 {
7595 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7596 	struct drm_display_mode *downclock_mode = NULL;
7597 
7598 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7599 	rw_init(&dev_priv->drrs.mutex, "drrs");
7600 
7601 	if (INTEL_GEN(dev_priv) <= 6) {
7602 		drm_dbg_kms(&dev_priv->drm,
7603 			    "DRRS supported for Gen7 and above\n");
7604 		return NULL;
7605 	}
7606 
7607 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7608 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7609 		return NULL;
7610 	}
7611 
7612 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7613 	if (!downclock_mode) {
7614 		drm_dbg_kms(&dev_priv->drm,
7615 			    "Downclock mode is not found. DRRS not supported\n");
7616 		return NULL;
7617 	}
7618 
7619 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7620 
7621 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7622 	drm_dbg_kms(&dev_priv->drm,
7623 		    "seamless DRRS supported for eDP panel.\n");
7624 	return downclock_mode;
7625 }
7626 
7627 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7628 				     struct intel_connector *intel_connector)
7629 {
7630 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7631 	struct drm_device *dev = &dev_priv->drm;
7632 	struct drm_connector *connector = &intel_connector->base;
7633 	struct drm_display_mode *fixed_mode = NULL;
7634 	struct drm_display_mode *downclock_mode = NULL;
7635 	bool has_dpcd;
7636 	enum pipe pipe = INVALID_PIPE;
7637 	intel_wakeref_t wakeref;
7638 	struct edid *edid;
7639 
7640 	if (!intel_dp_is_edp(intel_dp))
7641 		return true;
7642 
7643 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7644 
7645 	/*
7646 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7647 	 * driver uses the only internal power sequencer available for both
7648 	 * eDP and LVDS bail out early in this case to prevent interfering
7649 	 * with an already powered-on LVDS power sequencer.
7650 	 */
7651 	if (intel_get_lvds_encoder(dev_priv)) {
7652 		drm_WARN_ON(dev,
7653 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7654 		drm_info(&dev_priv->drm,
7655 			 "LVDS was detected, not registering eDP\n");
7656 
7657 		return false;
7658 	}
7659 
7660 	with_pps_lock(intel_dp, wakeref) {
7661 		intel_dp_init_panel_power_timestamps(intel_dp);
7662 		intel_dp_pps_init(intel_dp);
7663 		intel_edp_panel_vdd_sanitize(intel_dp);
7664 	}
7665 
7666 	/* Cache DPCD and EDID for edp. */
7667 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7668 
7669 	if (!has_dpcd) {
7670 		/* if this fails, presume the device is a ghost */
7671 		drm_info(&dev_priv->drm,
7672 			 "failed to retrieve link info, disabling eDP\n");
7673 		goto out_vdd_off;
7674 	}
7675 
7676 	mutex_lock(&dev->mode_config.mutex);
7677 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7678 	if (edid) {
7679 		if (drm_add_edid_modes(connector, edid)) {
7680 			drm_connector_update_edid_property(connector, edid);
7681 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7682 		} else {
7683 			kfree(edid);
7684 			edid = ERR_PTR(-EINVAL);
7685 		}
7686 	} else {
7687 		edid = ERR_PTR(-ENOENT);
7688 	}
7689 	intel_connector->edid = edid;
7690 
7691 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7692 	if (fixed_mode)
7693 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7694 
7695 	/* fallback to VBT if available for eDP */
7696 	if (!fixed_mode)
7697 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7698 	mutex_unlock(&dev->mode_config.mutex);
7699 
7700 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7701 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7702 		register_reboot_notifier(&intel_dp->edp_notifier);
7703 
7704 		/*
7705 		 * Figure out the current pipe for the initial backlight setup.
7706 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7707 		 * fails just assume pipe A.
7708 		 */
7709 		pipe = vlv_active_pipe(intel_dp);
7710 
7711 		if (pipe != PIPE_A && pipe != PIPE_B)
7712 			pipe = intel_dp->pps_pipe;
7713 
7714 		if (pipe != PIPE_A && pipe != PIPE_B)
7715 			pipe = PIPE_A;
7716 
7717 		drm_dbg_kms(&dev_priv->drm,
7718 			    "using pipe %c for initial backlight setup\n",
7719 			    pipe_name(pipe));
7720 	}
7721 
7722 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7723 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7724 	intel_panel_setup_backlight(connector, pipe);
7725 
7726 	if (fixed_mode) {
7727 		drm_connector_set_panel_orientation_with_quirk(connector,
7728 				dev_priv->vbt.orientation,
7729 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7730 	}
7731 
7732 	return true;
7733 
7734 out_vdd_off:
7735 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7736 	/*
7737 	 * vdd might still be enabled do to the delayed vdd off.
7738 	 * Make sure vdd is actually turned off here.
7739 	 */
7740 	with_pps_lock(intel_dp, wakeref)
7741 		edp_panel_vdd_off_sync(intel_dp);
7742 
7743 	return false;
7744 }
7745 
7746 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7747 {
7748 	struct intel_connector *intel_connector;
7749 	struct drm_connector *connector;
7750 
7751 	intel_connector = container_of(work, typeof(*intel_connector),
7752 				       modeset_retry_work);
7753 	connector = &intel_connector->base;
7754 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7755 		      connector->name);
7756 
7757 	/* Grab the locks before changing connector property*/
7758 	mutex_lock(&connector->dev->mode_config.mutex);
7759 	/* Set connector link status to BAD and send a Uevent to notify
7760 	 * userspace to do a modeset.
7761 	 */
7762 	drm_connector_set_link_status_property(connector,
7763 					       DRM_MODE_LINK_STATUS_BAD);
7764 	mutex_unlock(&connector->dev->mode_config.mutex);
7765 	/* Send Hotplug uevent so userspace can reprobe */
7766 	drm_kms_helper_hotplug_event(connector->dev);
7767 }
7768 
7769 bool
7770 intel_dp_init_connector(struct intel_digital_port *dig_port,
7771 			struct intel_connector *intel_connector)
7772 {
7773 	struct drm_connector *connector = &intel_connector->base;
7774 	struct intel_dp *intel_dp = &dig_port->dp;
7775 	struct intel_encoder *intel_encoder = &dig_port->base;
7776 	struct drm_device *dev = intel_encoder->base.dev;
7777 	struct drm_i915_private *dev_priv = to_i915(dev);
7778 	enum port port = intel_encoder->port;
7779 	enum phy phy = intel_port_to_phy(dev_priv, port);
7780 	int type;
7781 
7782 	/* Initialize the work for modeset in case of link train failure */
7783 	INIT_WORK(&intel_connector->modeset_retry_work,
7784 		  intel_dp_modeset_retry_work_fn);
7785 
7786 	if (drm_WARN(dev, dig_port->max_lanes < 1,
7787 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7788 		     dig_port->max_lanes, intel_encoder->base.base.id,
7789 		     intel_encoder->base.name))
7790 		return false;
7791 
7792 	intel_dp_set_source_rates(intel_dp);
7793 	intel_dp_set_default_sink_rates(intel_dp);
7794 	intel_dp_set_common_rates(intel_dp);
7795 
7796 	intel_dp->reset_link_params = true;
7797 	intel_dp->pps_pipe = INVALID_PIPE;
7798 	intel_dp->active_pipe = INVALID_PIPE;
7799 
7800 	/* Preserve the current hw state. */
7801 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7802 	intel_dp->attached_connector = intel_connector;
7803 
7804 	if (intel_dp_is_port_edp(dev_priv, port)) {
7805 		/*
7806 		 * Currently we don't support eDP on TypeC ports, although in
7807 		 * theory it could work on TypeC legacy ports.
7808 		 */
7809 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7810 		type = DRM_MODE_CONNECTOR_eDP;
7811 	} else {
7812 		type = DRM_MODE_CONNECTOR_DisplayPort;
7813 	}
7814 
7815 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7816 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7817 
7818 	/*
7819 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7820 	 * for DP the encoder type can be set by the caller to
7821 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7822 	 */
7823 	if (type == DRM_MODE_CONNECTOR_eDP)
7824 		intel_encoder->type = INTEL_OUTPUT_EDP;
7825 
7826 	/* eDP only on port B and/or C on vlv/chv */
7827 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7828 			      IS_CHERRYVIEW(dev_priv)) &&
7829 			intel_dp_is_edp(intel_dp) &&
7830 			port != PORT_B && port != PORT_C))
7831 		return false;
7832 
7833 	drm_dbg_kms(&dev_priv->drm,
7834 		    "Adding %s connector on [ENCODER:%d:%s]\n",
7835 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7836 		    intel_encoder->base.base.id, intel_encoder->base.name);
7837 
7838 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7839 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7840 
7841 	if (!HAS_GMCH(dev_priv))
7842 		connector->interlace_allowed = true;
7843 	connector->doublescan_allowed = 0;
7844 
7845 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7846 
7847 	intel_dp_aux_init(intel_dp);
7848 
7849 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7850 
7851 	if (HAS_DDI(dev_priv))
7852 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7853 	else
7854 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7855 
7856 	/* init MST on ports that can support it */
7857 	intel_dp_mst_encoder_init(dig_port,
7858 				  intel_connector->base.base.id);
7859 
7860 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7861 		intel_dp_aux_fini(intel_dp);
7862 		intel_dp_mst_encoder_cleanup(dig_port);
7863 		goto fail;
7864 	}
7865 
7866 	intel_dp_add_properties(intel_dp, connector);
7867 
7868 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7869 		int ret = intel_dp_init_hdcp(dig_port, intel_connector);
7870 		if (ret)
7871 			drm_dbg_kms(&dev_priv->drm,
7872 				    "HDCP init failed, skipping.\n");
7873 	}
7874 
7875 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7876 	 * 0xd.  Failure to do so will result in spurious interrupts being
7877 	 * generated on the port when a cable is not attached.
7878 	 */
7879 	if (IS_G45(dev_priv)) {
7880 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7881 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7882 			       (temp & ~0xf) | 0xd);
7883 	}
7884 
7885 	return true;
7886 
7887 fail:
7888 	drm_connector_cleanup(connector);
7889 
7890 	return false;
7891 }
7892 
7893 bool intel_dp_init(struct drm_i915_private *dev_priv,
7894 		   i915_reg_t output_reg,
7895 		   enum port port)
7896 {
7897 	struct intel_digital_port *dig_port;
7898 	struct intel_encoder *intel_encoder;
7899 	struct drm_encoder *encoder;
7900 	struct intel_connector *intel_connector;
7901 
7902 	dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
7903 	if (!dig_port)
7904 		return false;
7905 
7906 	intel_connector = intel_connector_alloc();
7907 	if (!intel_connector)
7908 		goto err_connector_alloc;
7909 
7910 	intel_encoder = &dig_port->base;
7911 	encoder = &intel_encoder->base;
7912 
7913 	rw_init(&dig_port->hdcp_mutex, "dphdcp");
7914 
7915 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7916 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7917 			     "DP %c", port_name(port)))
7918 		goto err_encoder_init;
7919 
7920 	intel_encoder->hotplug = intel_dp_hotplug;
7921 	intel_encoder->compute_config = intel_dp_compute_config;
7922 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7923 	intel_encoder->get_config = intel_dp_get_config;
7924 	intel_encoder->update_pipe = intel_panel_update_backlight;
7925 	intel_encoder->suspend = intel_dp_encoder_suspend;
7926 	if (IS_CHERRYVIEW(dev_priv)) {
7927 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7928 		intel_encoder->pre_enable = chv_pre_enable_dp;
7929 		intel_encoder->enable = vlv_enable_dp;
7930 		intel_encoder->disable = vlv_disable_dp;
7931 		intel_encoder->post_disable = chv_post_disable_dp;
7932 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7933 	} else if (IS_VALLEYVIEW(dev_priv)) {
7934 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7935 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7936 		intel_encoder->enable = vlv_enable_dp;
7937 		intel_encoder->disable = vlv_disable_dp;
7938 		intel_encoder->post_disable = vlv_post_disable_dp;
7939 	} else {
7940 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7941 		intel_encoder->enable = g4x_enable_dp;
7942 		intel_encoder->disable = g4x_disable_dp;
7943 		intel_encoder->post_disable = g4x_post_disable_dp;
7944 	}
7945 
7946 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
7947 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
7948 		dig_port->dp.set_link_train = cpt_set_link_train;
7949 	else
7950 		dig_port->dp.set_link_train = g4x_set_link_train;
7951 
7952 	if (IS_CHERRYVIEW(dev_priv))
7953 		dig_port->dp.set_signal_levels = chv_set_signal_levels;
7954 	else if (IS_VALLEYVIEW(dev_priv))
7955 		dig_port->dp.set_signal_levels = vlv_set_signal_levels;
7956 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
7957 		dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
7958 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
7959 		dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
7960 	else
7961 		dig_port->dp.set_signal_levels = g4x_set_signal_levels;
7962 
7963 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
7964 	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
7965 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
7966 		dig_port->dp.voltage_max = intel_dp_voltage_max_3;
7967 	} else {
7968 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
7969 		dig_port->dp.voltage_max = intel_dp_voltage_max_2;
7970 	}
7971 
7972 	dig_port->dp.output_reg = output_reg;
7973 	dig_port->max_lanes = 4;
7974 	dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7975 	dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7976 
7977 	intel_encoder->type = INTEL_OUTPUT_DP;
7978 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7979 	if (IS_CHERRYVIEW(dev_priv)) {
7980 		if (port == PORT_D)
7981 			intel_encoder->pipe_mask = BIT(PIPE_C);
7982 		else
7983 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7984 	} else {
7985 		intel_encoder->pipe_mask = ~0;
7986 	}
7987 	intel_encoder->cloneable = 0;
7988 	intel_encoder->port = port;
7989 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7990 
7991 	dig_port->hpd_pulse = intel_dp_hpd_pulse;
7992 
7993 	if (HAS_GMCH(dev_priv)) {
7994 		if (IS_GM45(dev_priv))
7995 			dig_port->connected = gm45_digital_port_connected;
7996 		else
7997 			dig_port->connected = g4x_digital_port_connected;
7998 	} else {
7999 		if (port == PORT_A)
8000 			dig_port->connected = ilk_digital_port_connected;
8001 		else
8002 			dig_port->connected = ibx_digital_port_connected;
8003 	}
8004 
8005 	if (port != PORT_A)
8006 		intel_infoframe_init(dig_port);
8007 
8008 	dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8009 	if (!intel_dp_init_connector(dig_port, intel_connector))
8010 		goto err_init_connector;
8011 
8012 	return true;
8013 
8014 err_init_connector:
8015 	drm_encoder_cleanup(encoder);
8016 err_encoder_init:
8017 	kfree(intel_connector);
8018 err_connector_alloc:
8019 	kfree(dig_port);
8020 	return false;
8021 }
8022 
8023 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8024 {
8025 	struct intel_encoder *encoder;
8026 
8027 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8028 		struct intel_dp *intel_dp;
8029 
8030 		if (encoder->type != INTEL_OUTPUT_DDI)
8031 			continue;
8032 
8033 		intel_dp = enc_to_intel_dp(encoder);
8034 
8035 		if (!intel_dp->can_mst)
8036 			continue;
8037 
8038 		if (intel_dp->is_mst)
8039 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8040 	}
8041 }
8042 
8043 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8044 {
8045 	struct intel_encoder *encoder;
8046 
8047 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8048 		struct intel_dp *intel_dp;
8049 		int ret;
8050 
8051 		if (encoder->type != INTEL_OUTPUT_DDI)
8052 			continue;
8053 
8054 		intel_dp = enc_to_intel_dp(encoder);
8055 
8056 		if (!intel_dp->can_mst)
8057 			continue;
8058 
8059 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8060 						     true);
8061 		if (ret) {
8062 			intel_dp->is_mst = false;
8063 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8064 							false);
8065 		}
8066 	}
8067 }
8068