1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright (C) 2017 Google, Inc. 4 * Copyright _ 2017-2019, Intel Corporation. 5 * 6 * Authors: 7 * Sean Paul <seanpaul@chromium.org> 8 * Ramalingam C <ramalingam.c@intel.com> 9 */ 10 11 #include <linux/component.h> 12 #include <linux/i2c.h> 13 #include <linux/random.h> 14 15 #include <drm/drm_hdcp.h> 16 #include <drm/i915_component.h> 17 18 #include "i915_reg.h" 19 #include "intel_display_power.h" 20 #include "intel_display_types.h" 21 #include "intel_hdcp.h" 22 #include "intel_sideband.h" 23 #include "intel_connector.h" 24 25 #define KEY_LOAD_TRIES 5 26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS 50 27 #define HDCP2_LC_RETRY_CNT 3 28 29 static 30 bool intel_hdcp_is_ksv_valid(u8 *ksv) 31 { 32 int i, ones = 0; 33 /* KSV has 20 1's and 20 0's */ 34 for (i = 0; i < DRM_HDCP_KSV_LEN; i++) 35 ones += hweight8(ksv[i]); 36 if (ones != 20) 37 return false; 38 39 return true; 40 } 41 42 static 43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port, 44 const struct intel_hdcp_shim *shim, u8 *bksv) 45 { 46 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 47 int ret, i, tries = 2; 48 49 /* HDCP spec states that we must retry the bksv if it is invalid */ 50 for (i = 0; i < tries; i++) { 51 ret = shim->read_bksv(dig_port, bksv); 52 if (ret) 53 return ret; 54 if (intel_hdcp_is_ksv_valid(bksv)) 55 break; 56 } 57 if (i == tries) { 58 drm_dbg_kms(&i915->drm, "Bksv is invalid\n"); 59 return -ENODEV; 60 } 61 62 return 0; 63 } 64 65 /* Is HDCP1.4 capable on Platform and Sink */ 66 bool intel_hdcp_capable(struct intel_connector *connector) 67 { 68 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 69 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 70 bool capable = false; 71 u8 bksv[5]; 72 73 if (!shim) 74 return capable; 75 76 if (shim->hdcp_capable) { 77 shim->hdcp_capable(dig_port, &capable); 78 } else { 79 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv)) 80 capable = true; 81 } 82 83 return capable; 84 } 85 86 /* Is HDCP2.2 capable on Platform and Sink */ 87 bool intel_hdcp2_capable(struct intel_connector *connector) 88 { 89 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 90 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 91 struct intel_hdcp *hdcp = &connector->hdcp; 92 bool capable = false; 93 94 /* I915 support for HDCP2.2 */ 95 if (!hdcp->hdcp2_supported) 96 return false; 97 98 /* MEI interface is solid */ 99 mutex_lock(&dev_priv->hdcp_comp_mutex); 100 if (!dev_priv->hdcp_comp_added || !dev_priv->hdcp_master) { 101 mutex_unlock(&dev_priv->hdcp_comp_mutex); 102 return false; 103 } 104 mutex_unlock(&dev_priv->hdcp_comp_mutex); 105 106 /* Sink's capability for HDCP2.2 */ 107 hdcp->shim->hdcp_2_2_capable(dig_port, &capable); 108 109 return capable; 110 } 111 112 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv, 113 enum transcoder cpu_transcoder, enum port port) 114 { 115 return intel_de_read(dev_priv, 116 HDCP_STATUS(dev_priv, cpu_transcoder, port)) & 117 HDCP_STATUS_ENC; 118 } 119 120 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv, 121 enum transcoder cpu_transcoder, enum port port) 122 { 123 return intel_de_read(dev_priv, 124 HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & 125 LINK_ENCRYPTION_STATUS; 126 } 127 128 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port, 129 const struct intel_hdcp_shim *shim) 130 { 131 int ret, read_ret; 132 bool ksv_ready; 133 134 /* Poll for ksv list ready (spec says max time allowed is 5s) */ 135 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port, 136 &ksv_ready), 137 read_ret || ksv_ready, 5 * 1000 * 1000, 1000, 138 100 * 1000); 139 if (ret) 140 return ret; 141 if (read_ret) 142 return read_ret; 143 if (!ksv_ready) 144 return -ETIMEDOUT; 145 146 return 0; 147 } 148 149 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv) 150 { 151 enum i915_power_well_id id; 152 intel_wakeref_t wakeref; 153 bool enabled = false; 154 155 /* 156 * On HSW and BDW, Display HW loads the Key as soon as Display resumes. 157 * On all BXT+, SW can load the keys only when the PW#1 is turned on. 158 */ 159 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 160 id = HSW_DISP_PW_GLOBAL; 161 else 162 id = SKL_DISP_PW_1; 163 164 /* PG1 (power well #1) needs to be enabled */ 165 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 166 enabled = intel_display_power_well_is_enabled(dev_priv, id); 167 168 /* 169 * Another req for hdcp key loadability is enabled state of pll for 170 * cdclk. Without active crtc we wont land here. So we are assuming that 171 * cdclk is already on. 172 */ 173 174 return enabled; 175 } 176 177 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv) 178 { 179 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); 180 intel_de_write(dev_priv, HDCP_KEY_STATUS, 181 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); 182 } 183 184 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv) 185 { 186 int ret; 187 u32 val; 188 189 val = intel_de_read(dev_priv, HDCP_KEY_STATUS); 190 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) 191 return 0; 192 193 /* 194 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes 195 * out of reset. So if Key is not already loaded, its an error state. 196 */ 197 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 198 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) 199 return -ENXIO; 200 201 /* 202 * Initiate loading the HDCP key from fuses. 203 * 204 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9 205 * platforms except BXT and GLK, differ in the key load trigger process 206 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f. 207 */ 208 if (IS_GEN9_BC(dev_priv)) { 209 ret = sandybridge_pcode_write(dev_priv, 210 SKL_PCODE_LOAD_HDCP_KEYS, 1); 211 if (ret) { 212 drm_err(&dev_priv->drm, 213 "Failed to initiate HDCP key load (%d)\n", 214 ret); 215 return ret; 216 } 217 } else { 218 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); 219 } 220 221 /* Wait for the keys to load (500us) */ 222 ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS, 223 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, 224 10, 1, &val); 225 if (ret) 226 return ret; 227 else if (!(val & HDCP_KEY_LOAD_STATUS)) 228 return -ENXIO; 229 230 /* Send Aksv over to PCH display for use in authentication */ 231 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); 232 233 return 0; 234 } 235 236 /* Returns updated SHA-1 index */ 237 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text) 238 { 239 intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text); 240 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) { 241 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n"); 242 return -ETIMEDOUT; 243 } 244 return 0; 245 } 246 247 static 248 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv, 249 enum transcoder cpu_transcoder, enum port port) 250 { 251 if (INTEL_GEN(dev_priv) >= 12) { 252 switch (cpu_transcoder) { 253 case TRANSCODER_A: 254 return HDCP_TRANSA_REP_PRESENT | 255 HDCP_TRANSA_SHA1_M0; 256 case TRANSCODER_B: 257 return HDCP_TRANSB_REP_PRESENT | 258 HDCP_TRANSB_SHA1_M0; 259 case TRANSCODER_C: 260 return HDCP_TRANSC_REP_PRESENT | 261 HDCP_TRANSC_SHA1_M0; 262 case TRANSCODER_D: 263 return HDCP_TRANSD_REP_PRESENT | 264 HDCP_TRANSD_SHA1_M0; 265 default: 266 drm_err(&dev_priv->drm, "Unknown transcoder %d\n", 267 cpu_transcoder); 268 return -EINVAL; 269 } 270 } 271 272 switch (port) { 273 case PORT_A: 274 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; 275 case PORT_B: 276 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; 277 case PORT_C: 278 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; 279 case PORT_D: 280 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; 281 case PORT_E: 282 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; 283 default: 284 drm_err(&dev_priv->drm, "Unknown port %d\n", port); 285 return -EINVAL; 286 } 287 } 288 289 static 290 int intel_hdcp_validate_v_prime(struct intel_connector *connector, 291 const struct intel_hdcp_shim *shim, 292 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) 293 { 294 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 295 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 296 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 297 enum port port = dig_port->base.port; 298 u32 vprime, sha_text, sha_leftovers, rep_ctl; 299 int ret, i, j, sha_idx; 300 301 /* Process V' values from the receiver */ 302 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { 303 ret = shim->read_v_prime_part(dig_port, i, &vprime); 304 if (ret) 305 return ret; 306 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime); 307 } 308 309 /* 310 * We need to write the concatenation of all device KSVs, BINFO (DP) || 311 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte 312 * stream is written via the HDCP_SHA_TEXT register in 32-bit 313 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This 314 * index will keep track of our progress through the 64 bytes as well as 315 * helping us work the 40-bit KSVs through our 32-bit register. 316 * 317 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian 318 */ 319 sha_idx = 0; 320 sha_text = 0; 321 sha_leftovers = 0; 322 rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port); 323 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 324 for (i = 0; i < num_downstream; i++) { 325 unsigned int sha_empty; 326 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; 327 328 /* Fill up the empty slots in sha_text and write it out */ 329 sha_empty = sizeof(sha_text) - sha_leftovers; 330 for (j = 0; j < sha_empty; j++) { 331 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8); 332 sha_text |= ksv[j] << off; 333 } 334 335 ret = intel_write_sha_text(dev_priv, sha_text); 336 if (ret < 0) 337 return ret; 338 339 /* Programming guide writes this every 64 bytes */ 340 sha_idx += sizeof(sha_text); 341 if (!(sha_idx % 64)) 342 intel_de_write(dev_priv, HDCP_REP_CTL, 343 rep_ctl | HDCP_SHA1_TEXT_32); 344 345 /* Store the leftover bytes from the ksv in sha_text */ 346 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; 347 sha_text = 0; 348 for (j = 0; j < sha_leftovers; j++) 349 sha_text |= ksv[sha_empty + j] << 350 ((sizeof(sha_text) - j - 1) * 8); 351 352 /* 353 * If we still have room in sha_text for more data, continue. 354 * Otherwise, write it out immediately. 355 */ 356 if (sizeof(sha_text) > sha_leftovers) 357 continue; 358 359 ret = intel_write_sha_text(dev_priv, sha_text); 360 if (ret < 0) 361 return ret; 362 sha_leftovers = 0; 363 sha_text = 0; 364 sha_idx += sizeof(sha_text); 365 } 366 367 /* 368 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many 369 * bytes are leftover from the last ksv, we might be able to fit them 370 * all in sha_text (first 2 cases), or we might need to split them up 371 * into 2 writes (last 2 cases). 372 */ 373 if (sha_leftovers == 0) { 374 /* Write 16 bits of text, 16 bits of M0 */ 375 intel_de_write(dev_priv, HDCP_REP_CTL, 376 rep_ctl | HDCP_SHA1_TEXT_16); 377 ret = intel_write_sha_text(dev_priv, 378 bstatus[0] << 8 | bstatus[1]); 379 if (ret < 0) 380 return ret; 381 sha_idx += sizeof(sha_text); 382 383 /* Write 32 bits of M0 */ 384 intel_de_write(dev_priv, HDCP_REP_CTL, 385 rep_ctl | HDCP_SHA1_TEXT_0); 386 ret = intel_write_sha_text(dev_priv, 0); 387 if (ret < 0) 388 return ret; 389 sha_idx += sizeof(sha_text); 390 391 /* Write 16 bits of M0 */ 392 intel_de_write(dev_priv, HDCP_REP_CTL, 393 rep_ctl | HDCP_SHA1_TEXT_16); 394 ret = intel_write_sha_text(dev_priv, 0); 395 if (ret < 0) 396 return ret; 397 sha_idx += sizeof(sha_text); 398 399 } else if (sha_leftovers == 1) { 400 /* Write 24 bits of text, 8 bits of M0 */ 401 intel_de_write(dev_priv, HDCP_REP_CTL, 402 rep_ctl | HDCP_SHA1_TEXT_24); 403 sha_text |= bstatus[0] << 16 | bstatus[1] << 8; 404 /* Only 24-bits of data, must be in the LSB */ 405 sha_text = (sha_text & 0xffffff00) >> 8; 406 ret = intel_write_sha_text(dev_priv, sha_text); 407 if (ret < 0) 408 return ret; 409 sha_idx += sizeof(sha_text); 410 411 /* Write 32 bits of M0 */ 412 intel_de_write(dev_priv, HDCP_REP_CTL, 413 rep_ctl | HDCP_SHA1_TEXT_0); 414 ret = intel_write_sha_text(dev_priv, 0); 415 if (ret < 0) 416 return ret; 417 sha_idx += sizeof(sha_text); 418 419 /* Write 24 bits of M0 */ 420 intel_de_write(dev_priv, HDCP_REP_CTL, 421 rep_ctl | HDCP_SHA1_TEXT_8); 422 ret = intel_write_sha_text(dev_priv, 0); 423 if (ret < 0) 424 return ret; 425 sha_idx += sizeof(sha_text); 426 427 } else if (sha_leftovers == 2) { 428 /* Write 32 bits of text */ 429 intel_de_write(dev_priv, HDCP_REP_CTL, 430 rep_ctl | HDCP_SHA1_TEXT_32); 431 sha_text |= bstatus[0] << 8 | bstatus[1]; 432 ret = intel_write_sha_text(dev_priv, sha_text); 433 if (ret < 0) 434 return ret; 435 sha_idx += sizeof(sha_text); 436 437 /* Write 64 bits of M0 */ 438 intel_de_write(dev_priv, HDCP_REP_CTL, 439 rep_ctl | HDCP_SHA1_TEXT_0); 440 for (i = 0; i < 2; i++) { 441 ret = intel_write_sha_text(dev_priv, 0); 442 if (ret < 0) 443 return ret; 444 sha_idx += sizeof(sha_text); 445 } 446 447 /* 448 * Terminate the SHA-1 stream by hand. For the other leftover 449 * cases this is appended by the hardware. 450 */ 451 intel_de_write(dev_priv, HDCP_REP_CTL, 452 rep_ctl | HDCP_SHA1_TEXT_32); 453 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24; 454 ret = intel_write_sha_text(dev_priv, sha_text); 455 if (ret < 0) 456 return ret; 457 sha_idx += sizeof(sha_text); 458 } else if (sha_leftovers == 3) { 459 /* Write 32 bits of text (filled from LSB) */ 460 intel_de_write(dev_priv, HDCP_REP_CTL, 461 rep_ctl | HDCP_SHA1_TEXT_32); 462 sha_text |= bstatus[0]; 463 ret = intel_write_sha_text(dev_priv, sha_text); 464 if (ret < 0) 465 return ret; 466 sha_idx += sizeof(sha_text); 467 468 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */ 469 intel_de_write(dev_priv, HDCP_REP_CTL, 470 rep_ctl | HDCP_SHA1_TEXT_8); 471 ret = intel_write_sha_text(dev_priv, bstatus[1]); 472 if (ret < 0) 473 return ret; 474 sha_idx += sizeof(sha_text); 475 476 /* Write 32 bits of M0 */ 477 intel_de_write(dev_priv, HDCP_REP_CTL, 478 rep_ctl | HDCP_SHA1_TEXT_0); 479 ret = intel_write_sha_text(dev_priv, 0); 480 if (ret < 0) 481 return ret; 482 sha_idx += sizeof(sha_text); 483 484 /* Write 8 bits of M0 */ 485 intel_de_write(dev_priv, HDCP_REP_CTL, 486 rep_ctl | HDCP_SHA1_TEXT_24); 487 ret = intel_write_sha_text(dev_priv, 0); 488 if (ret < 0) 489 return ret; 490 sha_idx += sizeof(sha_text); 491 } else { 492 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n", 493 sha_leftovers); 494 return -EINVAL; 495 } 496 497 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 498 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ 499 while ((sha_idx % 64) < (64 - sizeof(sha_text))) { 500 ret = intel_write_sha_text(dev_priv, 0); 501 if (ret < 0) 502 return ret; 503 sha_idx += sizeof(sha_text); 504 } 505 506 /* 507 * Last write gets the length of the concatenation in bits. That is: 508 * - 5 bytes per device 509 * - 10 bytes for BINFO/BSTATUS(2), M0(8) 510 */ 511 sha_text = (num_downstream * 5 + 10) * 8; 512 ret = intel_write_sha_text(dev_priv, sha_text); 513 if (ret < 0) 514 return ret; 515 516 /* Tell the HW we're done with the hash and wait for it to ACK */ 517 intel_de_write(dev_priv, HDCP_REP_CTL, 518 rep_ctl | HDCP_SHA1_COMPLETE_HASH); 519 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, 520 HDCP_SHA1_COMPLETE, 1)) { 521 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n"); 522 return -ETIMEDOUT; 523 } 524 if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { 525 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n"); 526 return -ENXIO; 527 } 528 529 return 0; 530 } 531 532 /* Implements Part 2 of the HDCP authorization procedure */ 533 static 534 int intel_hdcp_auth_downstream(struct intel_connector *connector) 535 { 536 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 537 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 538 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 539 u8 bstatus[2], num_downstream, *ksv_fifo; 540 int ret, i, tries = 3; 541 542 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim); 543 if (ret) { 544 drm_dbg_kms(&dev_priv->drm, 545 "KSV list failed to become ready (%d)\n", ret); 546 return ret; 547 } 548 549 ret = shim->read_bstatus(dig_port, bstatus); 550 if (ret) 551 return ret; 552 553 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || 554 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { 555 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n"); 556 return -EPERM; 557 } 558 559 /* 560 * When repeater reports 0 device count, HDCP1.4 spec allows disabling 561 * the HDCP encryption. That implies that repeater can't have its own 562 * display. As there is no consumption of encrypted content in the 563 * repeater with 0 downstream devices, we are failing the 564 * authentication. 565 */ 566 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); 567 if (num_downstream == 0) { 568 drm_dbg_kms(&dev_priv->drm, 569 "Repeater with zero downstream devices\n"); 570 return -EINVAL; 571 } 572 573 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); 574 if (!ksv_fifo) { 575 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n"); 576 return -ENOMEM; 577 } 578 579 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo); 580 if (ret) 581 goto err; 582 583 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo, 584 num_downstream) > 0) { 585 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n"); 586 ret = -EPERM; 587 goto err; 588 } 589 590 /* 591 * When V prime mismatches, DP Spec mandates re-read of 592 * V prime atleast twice. 593 */ 594 for (i = 0; i < tries; i++) { 595 ret = intel_hdcp_validate_v_prime(connector, shim, 596 ksv_fifo, num_downstream, 597 bstatus); 598 if (!ret) 599 break; 600 } 601 602 if (i == tries) { 603 drm_dbg_kms(&dev_priv->drm, 604 "V Prime validation failed.(%d)\n", ret); 605 goto err; 606 } 607 608 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n", 609 num_downstream); 610 ret = 0; 611 err: 612 kfree(ksv_fifo); 613 return ret; 614 } 615 616 /* Implements Part 1 of the HDCP authorization procedure */ 617 static int intel_hdcp_auth(struct intel_connector *connector) 618 { 619 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 620 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 621 struct intel_hdcp *hdcp = &connector->hdcp; 622 const struct intel_hdcp_shim *shim = hdcp->shim; 623 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 624 enum port port = dig_port->base.port; 625 unsigned long r0_prime_gen_start; 626 int ret, i, tries = 2; 627 union { 628 u32 reg[2]; 629 u8 shim[DRM_HDCP_AN_LEN]; 630 } an; 631 union { 632 u32 reg[2]; 633 u8 shim[DRM_HDCP_KSV_LEN]; 634 } bksv; 635 union { 636 u32 reg; 637 u8 shim[DRM_HDCP_RI_LEN]; 638 } ri; 639 bool repeater_present, hdcp_capable; 640 641 /* 642 * Detects whether the display is HDCP capable. Although we check for 643 * valid Bksv below, the HDCP over DP spec requires that we check 644 * whether the display supports HDCP before we write An. For HDMI 645 * displays, this is not necessary. 646 */ 647 if (shim->hdcp_capable) { 648 ret = shim->hdcp_capable(dig_port, &hdcp_capable); 649 if (ret) 650 return ret; 651 if (!hdcp_capable) { 652 drm_dbg_kms(&dev_priv->drm, 653 "Panel is not HDCP capable\n"); 654 return -EINVAL; 655 } 656 } 657 658 /* Initialize An with 2 random values and acquire it */ 659 for (i = 0; i < 2; i++) 660 intel_de_write(dev_priv, 661 HDCP_ANINIT(dev_priv, cpu_transcoder, port), 662 get_random_u32()); 663 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 664 HDCP_CONF_CAPTURE_AN); 665 666 /* Wait for An to be acquired */ 667 if (intel_de_wait_for_set(dev_priv, 668 HDCP_STATUS(dev_priv, cpu_transcoder, port), 669 HDCP_STATUS_AN_READY, 1)) { 670 drm_err(&dev_priv->drm, "Timed out waiting for An\n"); 671 return -ETIMEDOUT; 672 } 673 674 an.reg[0] = intel_de_read(dev_priv, 675 HDCP_ANLO(dev_priv, cpu_transcoder, port)); 676 an.reg[1] = intel_de_read(dev_priv, 677 HDCP_ANHI(dev_priv, cpu_transcoder, port)); 678 ret = shim->write_an_aksv(dig_port, an.shim); 679 if (ret) 680 return ret; 681 682 r0_prime_gen_start = jiffies; 683 684 memset(&bksv, 0, sizeof(bksv)); 685 686 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim); 687 if (ret < 0) 688 return ret; 689 690 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) { 691 drm_err(&dev_priv->drm, "BKSV is revoked\n"); 692 return -EPERM; 693 } 694 695 intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port), 696 bksv.reg[0]); 697 intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port), 698 bksv.reg[1]); 699 700 ret = shim->repeater_present(dig_port, &repeater_present); 701 if (ret) 702 return ret; 703 if (repeater_present) 704 intel_de_write(dev_priv, HDCP_REP_CTL, 705 intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port)); 706 707 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true); 708 if (ret) 709 return ret; 710 711 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 712 HDCP_CONF_AUTH_AND_ENC); 713 714 /* Wait for R0 ready */ 715 if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) & 716 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { 717 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n"); 718 return -ETIMEDOUT; 719 } 720 721 /* 722 * Wait for R0' to become available. The spec says 100ms from Aksv, but 723 * some monitors can take longer than this. We'll set the timeout at 724 * 300ms just to be sure. 725 * 726 * On DP, there's an R0_READY bit available but no such bit 727 * exists on HDMI. Since the upper-bound is the same, we'll just do 728 * the stupid thing instead of polling on one and not the other. 729 */ 730 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); 731 732 tries = 3; 733 734 /* 735 * DP HDCP Spec mandates the two more reattempt to read R0, incase 736 * of R0 mismatch. 737 */ 738 for (i = 0; i < tries; i++) { 739 ri.reg = 0; 740 ret = shim->read_ri_prime(dig_port, ri.shim); 741 if (ret) 742 return ret; 743 intel_de_write(dev_priv, 744 HDCP_RPRIME(dev_priv, cpu_transcoder, port), 745 ri.reg); 746 747 /* Wait for Ri prime match */ 748 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) & 749 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) 750 break; 751 } 752 753 if (i == tries) { 754 drm_dbg_kms(&dev_priv->drm, 755 "Timed out waiting for Ri prime match (%x)\n", 756 intel_de_read(dev_priv, HDCP_STATUS(dev_priv, 757 cpu_transcoder, port))); 758 return -ETIMEDOUT; 759 } 760 761 /* Wait for encryption confirmation */ 762 if (intel_de_wait_for_set(dev_priv, 763 HDCP_STATUS(dev_priv, cpu_transcoder, port), 764 HDCP_STATUS_ENC, 765 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 766 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n"); 767 return -ETIMEDOUT; 768 } 769 770 /* 771 * XXX: If we have MST-connected devices, we need to enable encryption 772 * on those as well. 773 */ 774 775 if (repeater_present) 776 return intel_hdcp_auth_downstream(connector); 777 778 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n"); 779 return 0; 780 } 781 782 static int _intel_hdcp_disable(struct intel_connector *connector) 783 { 784 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 785 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 786 struct intel_hdcp *hdcp = &connector->hdcp; 787 enum port port = dig_port->base.port; 788 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 789 u32 repeater_ctl; 790 int ret; 791 792 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n", 793 connector->base.name, connector->base.base.id); 794 795 /* 796 * If there are other connectors on this port using HDCP, don't disable 797 * it. Instead, toggle the HDCP signalling off on that particular 798 * connector/pipe and exit. 799 */ 800 if (dig_port->num_hdcp_streams > 0) { 801 ret = hdcp->shim->toggle_signalling(dig_port, 802 cpu_transcoder, false); 803 if (ret) 804 DRM_ERROR("Failed to disable HDCP signalling\n"); 805 return ret; 806 } 807 808 hdcp->hdcp_encrypted = false; 809 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0); 810 if (intel_de_wait_for_clear(dev_priv, 811 HDCP_STATUS(dev_priv, cpu_transcoder, port), 812 ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 813 drm_err(&dev_priv->drm, 814 "Failed to disable HDCP, timeout clearing status\n"); 815 return -ETIMEDOUT; 816 } 817 818 repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, 819 port); 820 intel_de_write(dev_priv, HDCP_REP_CTL, 821 intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl); 822 823 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); 824 if (ret) { 825 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n"); 826 return ret; 827 } 828 829 drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n"); 830 return 0; 831 } 832 833 static int _intel_hdcp_enable(struct intel_connector *connector) 834 { 835 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 836 struct intel_hdcp *hdcp = &connector->hdcp; 837 int i, ret, tries = 3; 838 839 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n", 840 connector->base.name, connector->base.base.id); 841 842 if (!hdcp_key_loadable(dev_priv)) { 843 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n"); 844 return -ENXIO; 845 } 846 847 for (i = 0; i < KEY_LOAD_TRIES; i++) { 848 ret = intel_hdcp_load_keys(dev_priv); 849 if (!ret) 850 break; 851 intel_hdcp_clear_keys(dev_priv); 852 } 853 if (ret) { 854 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n", 855 ret); 856 return ret; 857 } 858 859 /* Incase of authentication failures, HDCP spec expects reauth. */ 860 for (i = 0; i < tries; i++) { 861 ret = intel_hdcp_auth(connector); 862 if (!ret) { 863 hdcp->hdcp_encrypted = true; 864 return 0; 865 } 866 867 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret); 868 869 /* Ensuring HDCP encryption and signalling are stopped. */ 870 _intel_hdcp_disable(connector); 871 } 872 873 drm_dbg_kms(&dev_priv->drm, 874 "HDCP authentication failed (%d tries/%d)\n", tries, ret); 875 return ret; 876 } 877 878 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp) 879 { 880 return container_of(hdcp, struct intel_connector, hdcp); 881 } 882 883 static void intel_hdcp_update_value(struct intel_connector *connector, 884 u64 value, bool update_property) 885 { 886 struct drm_device *dev = connector->base.dev; 887 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 888 struct intel_hdcp *hdcp = &connector->hdcp; 889 890 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex)); 891 892 if (hdcp->value == value) 893 return; 894 895 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex)); 896 897 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 898 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0)) 899 dig_port->num_hdcp_streams--; 900 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 901 dig_port->num_hdcp_streams++; 902 } 903 904 hdcp->value = value; 905 if (update_property) { 906 drm_connector_get(&connector->base); 907 schedule_work(&hdcp->prop_work); 908 } 909 } 910 911 /* Implements Part 3 of the HDCP authorization procedure */ 912 static int intel_hdcp_check_link(struct intel_connector *connector) 913 { 914 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 915 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 916 struct intel_hdcp *hdcp = &connector->hdcp; 917 enum port port = dig_port->base.port; 918 enum transcoder cpu_transcoder; 919 int ret = 0; 920 921 mutex_lock(&hdcp->mutex); 922 mutex_lock(&dig_port->hdcp_mutex); 923 924 cpu_transcoder = hdcp->cpu_transcoder; 925 926 /* Check_link valid only when HDCP1.4 is enabled */ 927 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 928 !hdcp->hdcp_encrypted) { 929 ret = -EINVAL; 930 goto out; 931 } 932 933 if (drm_WARN_ON(&dev_priv->drm, 934 !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) { 935 drm_err(&dev_priv->drm, 936 "%s:%d HDCP link stopped encryption,%x\n", 937 connector->base.name, connector->base.base.id, 938 intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port))); 939 ret = -ENXIO; 940 intel_hdcp_update_value(connector, 941 DRM_MODE_CONTENT_PROTECTION_DESIRED, 942 true); 943 goto out; 944 } 945 946 if (hdcp->shim->check_link(dig_port, connector)) { 947 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 948 intel_hdcp_update_value(connector, 949 DRM_MODE_CONTENT_PROTECTION_ENABLED, true); 950 } 951 goto out; 952 } 953 954 drm_dbg_kms(&dev_priv->drm, 955 "[%s:%d] HDCP link failed, retrying authentication\n", 956 connector->base.name, connector->base.base.id); 957 958 ret = _intel_hdcp_disable(connector); 959 if (ret) { 960 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret); 961 intel_hdcp_update_value(connector, 962 DRM_MODE_CONTENT_PROTECTION_DESIRED, 963 true); 964 goto out; 965 } 966 967 ret = _intel_hdcp_enable(connector); 968 if (ret) { 969 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret); 970 intel_hdcp_update_value(connector, 971 DRM_MODE_CONTENT_PROTECTION_DESIRED, 972 true); 973 goto out; 974 } 975 976 out: 977 mutex_unlock(&dig_port->hdcp_mutex); 978 mutex_unlock(&hdcp->mutex); 979 return ret; 980 } 981 982 static void intel_hdcp_prop_work(struct work_struct *work) 983 { 984 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp, 985 prop_work); 986 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 987 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 988 989 drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL); 990 mutex_lock(&hdcp->mutex); 991 992 /* 993 * This worker is only used to flip between ENABLED/DESIRED. Either of 994 * those to UNDESIRED is handled by core. If value == UNDESIRED, 995 * we're running just after hdcp has been disabled, so just exit 996 */ 997 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 998 drm_hdcp_update_content_protection(&connector->base, 999 hdcp->value); 1000 1001 mutex_unlock(&hdcp->mutex); 1002 drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex); 1003 1004 drm_connector_put(&connector->base); 1005 } 1006 1007 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port) 1008 { 1009 return INTEL_INFO(dev_priv)->display.has_hdcp && 1010 (INTEL_GEN(dev_priv) >= 12 || port < PORT_E); 1011 } 1012 1013 static int 1014 hdcp2_prepare_ake_init(struct intel_connector *connector, 1015 struct hdcp2_ake_init *ake_data) 1016 { 1017 struct hdcp_port_data *data = &connector->hdcp.port_data; 1018 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1019 struct i915_hdcp_comp_master *comp; 1020 int ret; 1021 1022 mutex_lock(&dev_priv->hdcp_comp_mutex); 1023 comp = dev_priv->hdcp_master; 1024 1025 if (!comp || !comp->ops) { 1026 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1027 return -EINVAL; 1028 } 1029 1030 ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data); 1031 if (ret) 1032 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n", 1033 ret); 1034 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1035 1036 return ret; 1037 } 1038 1039 static int 1040 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector, 1041 struct hdcp2_ake_send_cert *rx_cert, 1042 bool *paired, 1043 struct hdcp2_ake_no_stored_km *ek_pub_km, 1044 size_t *msg_sz) 1045 { 1046 struct hdcp_port_data *data = &connector->hdcp.port_data; 1047 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1048 struct i915_hdcp_comp_master *comp; 1049 int ret; 1050 1051 mutex_lock(&dev_priv->hdcp_comp_mutex); 1052 comp = dev_priv->hdcp_master; 1053 1054 if (!comp || !comp->ops) { 1055 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1056 return -EINVAL; 1057 } 1058 1059 ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data, 1060 rx_cert, paired, 1061 ek_pub_km, msg_sz); 1062 if (ret < 0) 1063 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n", 1064 ret); 1065 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1066 1067 return ret; 1068 } 1069 1070 static int hdcp2_verify_hprime(struct intel_connector *connector, 1071 struct hdcp2_ake_send_hprime *rx_hprime) 1072 { 1073 struct hdcp_port_data *data = &connector->hdcp.port_data; 1074 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1075 struct i915_hdcp_comp_master *comp; 1076 int ret; 1077 1078 mutex_lock(&dev_priv->hdcp_comp_mutex); 1079 comp = dev_priv->hdcp_master; 1080 1081 if (!comp || !comp->ops) { 1082 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1083 return -EINVAL; 1084 } 1085 1086 ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime); 1087 if (ret < 0) 1088 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret); 1089 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1090 1091 return ret; 1092 } 1093 1094 static int 1095 hdcp2_store_pairing_info(struct intel_connector *connector, 1096 struct hdcp2_ake_send_pairing_info *pairing_info) 1097 { 1098 struct hdcp_port_data *data = &connector->hdcp.port_data; 1099 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1100 struct i915_hdcp_comp_master *comp; 1101 int ret; 1102 1103 mutex_lock(&dev_priv->hdcp_comp_mutex); 1104 comp = dev_priv->hdcp_master; 1105 1106 if (!comp || !comp->ops) { 1107 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1108 return -EINVAL; 1109 } 1110 1111 ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info); 1112 if (ret < 0) 1113 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n", 1114 ret); 1115 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1116 1117 return ret; 1118 } 1119 1120 static int 1121 hdcp2_prepare_lc_init(struct intel_connector *connector, 1122 struct hdcp2_lc_init *lc_init) 1123 { 1124 struct hdcp_port_data *data = &connector->hdcp.port_data; 1125 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1126 struct i915_hdcp_comp_master *comp; 1127 int ret; 1128 1129 mutex_lock(&dev_priv->hdcp_comp_mutex); 1130 comp = dev_priv->hdcp_master; 1131 1132 if (!comp || !comp->ops) { 1133 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1134 return -EINVAL; 1135 } 1136 1137 ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init); 1138 if (ret < 0) 1139 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n", 1140 ret); 1141 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1142 1143 return ret; 1144 } 1145 1146 static int 1147 hdcp2_verify_lprime(struct intel_connector *connector, 1148 struct hdcp2_lc_send_lprime *rx_lprime) 1149 { 1150 struct hdcp_port_data *data = &connector->hdcp.port_data; 1151 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1152 struct i915_hdcp_comp_master *comp; 1153 int ret; 1154 1155 mutex_lock(&dev_priv->hdcp_comp_mutex); 1156 comp = dev_priv->hdcp_master; 1157 1158 if (!comp || !comp->ops) { 1159 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1160 return -EINVAL; 1161 } 1162 1163 ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime); 1164 if (ret < 0) 1165 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n", 1166 ret); 1167 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1168 1169 return ret; 1170 } 1171 1172 static int hdcp2_prepare_skey(struct intel_connector *connector, 1173 struct hdcp2_ske_send_eks *ske_data) 1174 { 1175 struct hdcp_port_data *data = &connector->hdcp.port_data; 1176 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1177 struct i915_hdcp_comp_master *comp; 1178 int ret; 1179 1180 mutex_lock(&dev_priv->hdcp_comp_mutex); 1181 comp = dev_priv->hdcp_master; 1182 1183 if (!comp || !comp->ops) { 1184 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1185 return -EINVAL; 1186 } 1187 1188 ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data); 1189 if (ret < 0) 1190 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n", 1191 ret); 1192 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1193 1194 return ret; 1195 } 1196 1197 static int 1198 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector, 1199 struct hdcp2_rep_send_receiverid_list 1200 *rep_topology, 1201 struct hdcp2_rep_send_ack *rep_send_ack) 1202 { 1203 struct hdcp_port_data *data = &connector->hdcp.port_data; 1204 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1205 struct i915_hdcp_comp_master *comp; 1206 int ret; 1207 1208 mutex_lock(&dev_priv->hdcp_comp_mutex); 1209 comp = dev_priv->hdcp_master; 1210 1211 if (!comp || !comp->ops) { 1212 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1213 return -EINVAL; 1214 } 1215 1216 ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data, 1217 rep_topology, 1218 rep_send_ack); 1219 if (ret < 0) 1220 drm_dbg_kms(&dev_priv->drm, 1221 "Verify rep topology failed. %d\n", ret); 1222 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1223 1224 return ret; 1225 } 1226 1227 static int 1228 hdcp2_verify_mprime(struct intel_connector *connector, 1229 struct hdcp2_rep_stream_ready *stream_ready) 1230 { 1231 struct hdcp_port_data *data = &connector->hdcp.port_data; 1232 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1233 struct i915_hdcp_comp_master *comp; 1234 int ret; 1235 1236 mutex_lock(&dev_priv->hdcp_comp_mutex); 1237 comp = dev_priv->hdcp_master; 1238 1239 if (!comp || !comp->ops) { 1240 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1241 return -EINVAL; 1242 } 1243 1244 ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready); 1245 if (ret < 0) 1246 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret); 1247 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1248 1249 return ret; 1250 } 1251 1252 static int hdcp2_authenticate_port(struct intel_connector *connector) 1253 { 1254 struct hdcp_port_data *data = &connector->hdcp.port_data; 1255 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1256 struct i915_hdcp_comp_master *comp; 1257 int ret; 1258 1259 mutex_lock(&dev_priv->hdcp_comp_mutex); 1260 comp = dev_priv->hdcp_master; 1261 1262 if (!comp || !comp->ops) { 1263 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1264 return -EINVAL; 1265 } 1266 1267 ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data); 1268 if (ret < 0) 1269 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n", 1270 ret); 1271 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1272 1273 return ret; 1274 } 1275 1276 static int hdcp2_close_mei_session(struct intel_connector *connector) 1277 { 1278 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1279 struct i915_hdcp_comp_master *comp; 1280 int ret; 1281 1282 mutex_lock(&dev_priv->hdcp_comp_mutex); 1283 comp = dev_priv->hdcp_master; 1284 1285 if (!comp || !comp->ops) { 1286 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1287 return -EINVAL; 1288 } 1289 1290 ret = comp->ops->close_hdcp_session(comp->mei_dev, 1291 &connector->hdcp.port_data); 1292 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1293 1294 return ret; 1295 } 1296 1297 static int hdcp2_deauthenticate_port(struct intel_connector *connector) 1298 { 1299 return hdcp2_close_mei_session(connector); 1300 } 1301 1302 /* Authentication flow starts from here */ 1303 static int hdcp2_authentication_key_exchange(struct intel_connector *connector) 1304 { 1305 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1306 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1307 struct intel_hdcp *hdcp = &connector->hdcp; 1308 union { 1309 struct hdcp2_ake_init ake_init; 1310 struct hdcp2_ake_send_cert send_cert; 1311 struct hdcp2_ake_no_stored_km no_stored_km; 1312 struct hdcp2_ake_send_hprime send_hprime; 1313 struct hdcp2_ake_send_pairing_info pairing_info; 1314 } msgs; 1315 const struct intel_hdcp_shim *shim = hdcp->shim; 1316 size_t size; 1317 int ret; 1318 1319 /* Init for seq_num */ 1320 hdcp->seq_num_v = 0; 1321 hdcp->seq_num_m = 0; 1322 1323 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init); 1324 if (ret < 0) 1325 return ret; 1326 1327 ret = shim->write_2_2_msg(dig_port, &msgs.ake_init, 1328 sizeof(msgs.ake_init)); 1329 if (ret < 0) 1330 return ret; 1331 1332 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT, 1333 &msgs.send_cert, sizeof(msgs.send_cert)); 1334 if (ret < 0) 1335 return ret; 1336 1337 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) { 1338 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n"); 1339 return -EINVAL; 1340 } 1341 1342 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]); 1343 1344 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, 1345 msgs.send_cert.cert_rx.receiver_id, 1346 1) > 0) { 1347 drm_err(&dev_priv->drm, "Receiver ID is revoked\n"); 1348 return -EPERM; 1349 } 1350 1351 /* 1352 * Here msgs.no_stored_km will hold msgs corresponding to the km 1353 * stored also. 1354 */ 1355 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert, 1356 &hdcp->is_paired, 1357 &msgs.no_stored_km, &size); 1358 if (ret < 0) 1359 return ret; 1360 1361 ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size); 1362 if (ret < 0) 1363 return ret; 1364 1365 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME, 1366 &msgs.send_hprime, sizeof(msgs.send_hprime)); 1367 if (ret < 0) 1368 return ret; 1369 1370 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime); 1371 if (ret < 0) 1372 return ret; 1373 1374 if (!hdcp->is_paired) { 1375 /* Pairing is required */ 1376 ret = shim->read_2_2_msg(dig_port, 1377 HDCP_2_2_AKE_SEND_PAIRING_INFO, 1378 &msgs.pairing_info, 1379 sizeof(msgs.pairing_info)); 1380 if (ret < 0) 1381 return ret; 1382 1383 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info); 1384 if (ret < 0) 1385 return ret; 1386 hdcp->is_paired = true; 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int hdcp2_locality_check(struct intel_connector *connector) 1393 { 1394 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1395 struct intel_hdcp *hdcp = &connector->hdcp; 1396 union { 1397 struct hdcp2_lc_init lc_init; 1398 struct hdcp2_lc_send_lprime send_lprime; 1399 } msgs; 1400 const struct intel_hdcp_shim *shim = hdcp->shim; 1401 int tries = HDCP2_LC_RETRY_CNT, ret, i; 1402 1403 for (i = 0; i < tries; i++) { 1404 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init); 1405 if (ret < 0) 1406 continue; 1407 1408 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init, 1409 sizeof(msgs.lc_init)); 1410 if (ret < 0) 1411 continue; 1412 1413 ret = shim->read_2_2_msg(dig_port, 1414 HDCP_2_2_LC_SEND_LPRIME, 1415 &msgs.send_lprime, 1416 sizeof(msgs.send_lprime)); 1417 if (ret < 0) 1418 continue; 1419 1420 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime); 1421 if (!ret) 1422 break; 1423 } 1424 1425 return ret; 1426 } 1427 1428 static int hdcp2_session_key_exchange(struct intel_connector *connector) 1429 { 1430 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1431 struct intel_hdcp *hdcp = &connector->hdcp; 1432 struct hdcp2_ske_send_eks send_eks; 1433 int ret; 1434 1435 ret = hdcp2_prepare_skey(connector, &send_eks); 1436 if (ret < 0) 1437 return ret; 1438 1439 ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks, 1440 sizeof(send_eks)); 1441 if (ret < 0) 1442 return ret; 1443 1444 return 0; 1445 } 1446 1447 static 1448 int hdcp2_propagate_stream_management_info(struct intel_connector *connector) 1449 { 1450 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1451 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1452 struct intel_hdcp *hdcp = &connector->hdcp; 1453 union { 1454 struct hdcp2_rep_stream_manage stream_manage; 1455 struct hdcp2_rep_stream_ready stream_ready; 1456 } msgs; 1457 const struct intel_hdcp_shim *shim = hdcp->shim; 1458 int ret; 1459 1460 /* Prepare RepeaterAuth_Stream_Manage msg */ 1461 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE; 1462 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m); 1463 1464 /* K no of streams is fixed as 1. Stored as big-endian. */ 1465 msgs.stream_manage.k = cpu_to_be16(1); 1466 1467 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */ 1468 msgs.stream_manage.streams[0].stream_id = 0; 1469 msgs.stream_manage.streams[0].stream_type = hdcp->content_type; 1470 1471 /* Send it to Repeater */ 1472 ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage, 1473 sizeof(msgs.stream_manage)); 1474 if (ret < 0) 1475 return ret; 1476 1477 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY, 1478 &msgs.stream_ready, sizeof(msgs.stream_ready)); 1479 if (ret < 0) 1480 return ret; 1481 1482 hdcp->port_data.seq_num_m = hdcp->seq_num_m; 1483 hdcp->port_data.streams[0].stream_type = hdcp->content_type; 1484 1485 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready); 1486 if (ret < 0) 1487 return ret; 1488 1489 hdcp->seq_num_m++; 1490 1491 if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) { 1492 drm_dbg_kms(&i915->drm, "seq_num_m roll over.\n"); 1493 return -1; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static 1500 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector) 1501 { 1502 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1503 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1504 struct intel_hdcp *hdcp = &connector->hdcp; 1505 union { 1506 struct hdcp2_rep_send_receiverid_list recvid_list; 1507 struct hdcp2_rep_send_ack rep_ack; 1508 } msgs; 1509 const struct intel_hdcp_shim *shim = hdcp->shim; 1510 u32 seq_num_v, device_cnt; 1511 u8 *rx_info; 1512 int ret; 1513 1514 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST, 1515 &msgs.recvid_list, sizeof(msgs.recvid_list)); 1516 if (ret < 0) 1517 return ret; 1518 1519 rx_info = msgs.recvid_list.rx_info; 1520 1521 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) || 1522 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) { 1523 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n"); 1524 return -EINVAL; 1525 } 1526 1527 /* Converting and Storing the seq_num_v to local variable as DWORD */ 1528 seq_num_v = 1529 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v); 1530 1531 if (!hdcp->hdcp2_encrypted && seq_num_v) { 1532 drm_dbg_kms(&dev_priv->drm, 1533 "Non zero Seq_num_v at first RecvId_List msg\n"); 1534 return -EINVAL; 1535 } 1536 1537 if (seq_num_v < hdcp->seq_num_v) { 1538 /* Roll over of the seq_num_v from repeater. Reauthenticate. */ 1539 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n"); 1540 return -EINVAL; 1541 } 1542 1543 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 1544 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 1545 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, 1546 msgs.recvid_list.receiver_ids, 1547 device_cnt) > 0) { 1548 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n"); 1549 return -EPERM; 1550 } 1551 1552 ret = hdcp2_verify_rep_topology_prepare_ack(connector, 1553 &msgs.recvid_list, 1554 &msgs.rep_ack); 1555 if (ret < 0) 1556 return ret; 1557 1558 hdcp->seq_num_v = seq_num_v; 1559 ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack, 1560 sizeof(msgs.rep_ack)); 1561 if (ret < 0) 1562 return ret; 1563 1564 return 0; 1565 } 1566 1567 static int hdcp2_authenticate_repeater(struct intel_connector *connector) 1568 { 1569 int ret; 1570 1571 ret = hdcp2_authenticate_repeater_topology(connector); 1572 if (ret < 0) 1573 return ret; 1574 1575 return hdcp2_propagate_stream_management_info(connector); 1576 } 1577 1578 static int hdcp2_authenticate_sink(struct intel_connector *connector) 1579 { 1580 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1581 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1582 struct intel_hdcp *hdcp = &connector->hdcp; 1583 const struct intel_hdcp_shim *shim = hdcp->shim; 1584 int ret; 1585 1586 ret = hdcp2_authentication_key_exchange(connector); 1587 if (ret < 0) { 1588 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret); 1589 return ret; 1590 } 1591 1592 ret = hdcp2_locality_check(connector); 1593 if (ret < 0) { 1594 drm_dbg_kms(&i915->drm, 1595 "Locality Check failed. Err : %d\n", ret); 1596 return ret; 1597 } 1598 1599 ret = hdcp2_session_key_exchange(connector); 1600 if (ret < 0) { 1601 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret); 1602 return ret; 1603 } 1604 1605 if (shim->config_stream_type) { 1606 ret = shim->config_stream_type(dig_port, 1607 hdcp->is_repeater, 1608 hdcp->content_type); 1609 if (ret < 0) 1610 return ret; 1611 } 1612 1613 if (hdcp->is_repeater) { 1614 ret = hdcp2_authenticate_repeater(connector); 1615 if (ret < 0) { 1616 drm_dbg_kms(&i915->drm, 1617 "Repeater Auth Failed. Err: %d\n", ret); 1618 return ret; 1619 } 1620 } 1621 1622 hdcp->port_data.streams[0].stream_type = hdcp->content_type; 1623 ret = hdcp2_authenticate_port(connector); 1624 if (ret < 0) 1625 return ret; 1626 1627 return ret; 1628 } 1629 1630 static int hdcp2_enable_encryption(struct intel_connector *connector) 1631 { 1632 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1633 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1634 struct intel_hdcp *hdcp = &connector->hdcp; 1635 enum port port = dig_port->base.port; 1636 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1637 int ret; 1638 1639 drm_WARN_ON(&dev_priv->drm, 1640 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & 1641 LINK_ENCRYPTION_STATUS); 1642 if (hdcp->shim->toggle_signalling) { 1643 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1644 true); 1645 if (ret) { 1646 drm_err(&dev_priv->drm, 1647 "Failed to enable HDCP signalling. %d\n", 1648 ret); 1649 return ret; 1650 } 1651 } 1652 1653 if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & 1654 LINK_AUTH_STATUS) { 1655 /* Link is Authenticated. Now set for Encryption */ 1656 intel_de_write(dev_priv, 1657 HDCP2_CTL(dev_priv, cpu_transcoder, port), 1658 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ); 1659 } 1660 1661 ret = intel_de_wait_for_set(dev_priv, 1662 HDCP2_STATUS(dev_priv, cpu_transcoder, 1663 port), 1664 LINK_ENCRYPTION_STATUS, 1665 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1666 1667 return ret; 1668 } 1669 1670 static int hdcp2_disable_encryption(struct intel_connector *connector) 1671 { 1672 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1673 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1674 struct intel_hdcp *hdcp = &connector->hdcp; 1675 enum port port = dig_port->base.port; 1676 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1677 int ret; 1678 1679 drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & 1680 LINK_ENCRYPTION_STATUS)); 1681 1682 intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port), 1683 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ); 1684 1685 ret = intel_de_wait_for_clear(dev_priv, 1686 HDCP2_STATUS(dev_priv, cpu_transcoder, 1687 port), 1688 LINK_ENCRYPTION_STATUS, 1689 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1690 if (ret == -ETIMEDOUT) 1691 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout"); 1692 1693 if (hdcp->shim->toggle_signalling) { 1694 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1695 false); 1696 if (ret) { 1697 drm_err(&dev_priv->drm, 1698 "Failed to disable HDCP signalling. %d\n", 1699 ret); 1700 return ret; 1701 } 1702 } 1703 1704 return ret; 1705 } 1706 1707 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector) 1708 { 1709 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1710 int ret, i, tries = 3; 1711 1712 for (i = 0; i < tries; i++) { 1713 ret = hdcp2_authenticate_sink(connector); 1714 if (!ret) 1715 break; 1716 1717 /* Clearing the mei hdcp session */ 1718 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n", 1719 i + 1, tries, ret); 1720 if (hdcp2_deauthenticate_port(connector) < 0) 1721 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1722 } 1723 1724 if (i != tries) { 1725 /* 1726 * Ensuring the required 200mSec min time interval between 1727 * Session Key Exchange and encryption. 1728 */ 1729 drm_msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN); 1730 ret = hdcp2_enable_encryption(connector); 1731 if (ret < 0) { 1732 drm_dbg_kms(&i915->drm, 1733 "Encryption Enable Failed.(%d)\n", ret); 1734 if (hdcp2_deauthenticate_port(connector) < 0) 1735 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1736 } 1737 } 1738 1739 return ret; 1740 } 1741 1742 static int _intel_hdcp2_enable(struct intel_connector *connector) 1743 { 1744 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1745 struct intel_hdcp *hdcp = &connector->hdcp; 1746 int ret; 1747 1748 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n", 1749 connector->base.name, connector->base.base.id, 1750 hdcp->content_type); 1751 1752 ret = hdcp2_authenticate_and_encrypt(connector); 1753 if (ret) { 1754 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n", 1755 hdcp->content_type, ret); 1756 return ret; 1757 } 1758 1759 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n", 1760 connector->base.name, connector->base.base.id, 1761 hdcp->content_type); 1762 1763 hdcp->hdcp2_encrypted = true; 1764 return 0; 1765 } 1766 1767 static int _intel_hdcp2_disable(struct intel_connector *connector) 1768 { 1769 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1770 int ret; 1771 1772 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n", 1773 connector->base.name, connector->base.base.id); 1774 1775 ret = hdcp2_disable_encryption(connector); 1776 1777 if (hdcp2_deauthenticate_port(connector) < 0) 1778 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1779 1780 connector->hdcp.hdcp2_encrypted = false; 1781 1782 return ret; 1783 } 1784 1785 /* Implements the Link Integrity Check for HDCP2.2 */ 1786 static int intel_hdcp2_check_link(struct intel_connector *connector) 1787 { 1788 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1789 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1790 struct intel_hdcp *hdcp = &connector->hdcp; 1791 enum port port = dig_port->base.port; 1792 enum transcoder cpu_transcoder; 1793 int ret = 0; 1794 1795 mutex_lock(&hdcp->mutex); 1796 cpu_transcoder = hdcp->cpu_transcoder; 1797 1798 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */ 1799 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 1800 !hdcp->hdcp2_encrypted) { 1801 ret = -EINVAL; 1802 goto out; 1803 } 1804 1805 if (drm_WARN_ON(&dev_priv->drm, 1806 !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) { 1807 drm_err(&dev_priv->drm, 1808 "HDCP2.2 link stopped the encryption, %x\n", 1809 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port))); 1810 ret = -ENXIO; 1811 intel_hdcp_update_value(connector, 1812 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1813 true); 1814 goto out; 1815 } 1816 1817 ret = hdcp->shim->check_2_2_link(dig_port); 1818 if (ret == HDCP_LINK_PROTECTED) { 1819 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 1820 intel_hdcp_update_value(connector, 1821 DRM_MODE_CONTENT_PROTECTION_ENABLED, 1822 true); 1823 } 1824 goto out; 1825 } 1826 1827 if (ret == HDCP_TOPOLOGY_CHANGE) { 1828 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 1829 goto out; 1830 1831 drm_dbg_kms(&dev_priv->drm, 1832 "HDCP2.2 Downstream topology change\n"); 1833 ret = hdcp2_authenticate_repeater_topology(connector); 1834 if (!ret) { 1835 intel_hdcp_update_value(connector, 1836 DRM_MODE_CONTENT_PROTECTION_ENABLED, 1837 true); 1838 goto out; 1839 } 1840 drm_dbg_kms(&dev_priv->drm, 1841 "[%s:%d] Repeater topology auth failed.(%d)\n", 1842 connector->base.name, connector->base.base.id, 1843 ret); 1844 } else { 1845 drm_dbg_kms(&dev_priv->drm, 1846 "[%s:%d] HDCP2.2 link failed, retrying auth\n", 1847 connector->base.name, connector->base.base.id); 1848 } 1849 1850 ret = _intel_hdcp2_disable(connector); 1851 if (ret) { 1852 drm_err(&dev_priv->drm, 1853 "[%s:%d] Failed to disable hdcp2.2 (%d)\n", 1854 connector->base.name, connector->base.base.id, ret); 1855 intel_hdcp_update_value(connector, 1856 DRM_MODE_CONTENT_PROTECTION_DESIRED, true); 1857 goto out; 1858 } 1859 1860 ret = _intel_hdcp2_enable(connector); 1861 if (ret) { 1862 drm_dbg_kms(&dev_priv->drm, 1863 "[%s:%d] Failed to enable hdcp2.2 (%d)\n", 1864 connector->base.name, connector->base.base.id, 1865 ret); 1866 intel_hdcp_update_value(connector, 1867 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1868 true); 1869 goto out; 1870 } 1871 1872 out: 1873 mutex_unlock(&hdcp->mutex); 1874 return ret; 1875 } 1876 1877 static void intel_hdcp_check_work(struct work_struct *work) 1878 { 1879 struct intel_hdcp *hdcp = container_of(to_delayed_work(work), 1880 struct intel_hdcp, 1881 check_work); 1882 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 1883 1884 if (drm_connector_is_unregistered(&connector->base)) 1885 return; 1886 1887 if (!intel_hdcp2_check_link(connector)) 1888 schedule_delayed_work(&hdcp->check_work, 1889 DRM_HDCP2_CHECK_PERIOD_MS); 1890 else if (!intel_hdcp_check_link(connector)) 1891 schedule_delayed_work(&hdcp->check_work, 1892 DRM_HDCP_CHECK_PERIOD_MS); 1893 } 1894 1895 #ifdef notyet 1896 static int i915_hdcp_component_bind(struct device *i915_kdev, 1897 struct device *mei_kdev, void *data) 1898 { 1899 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); 1900 1901 drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n"); 1902 mutex_lock(&dev_priv->hdcp_comp_mutex); 1903 dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data; 1904 dev_priv->hdcp_master->mei_dev = mei_kdev; 1905 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1906 1907 return 0; 1908 } 1909 1910 static void i915_hdcp_component_unbind(struct device *i915_kdev, 1911 struct device *mei_kdev, void *data) 1912 { 1913 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); 1914 1915 drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n"); 1916 mutex_lock(&dev_priv->hdcp_comp_mutex); 1917 dev_priv->hdcp_master = NULL; 1918 mutex_unlock(&dev_priv->hdcp_comp_mutex); 1919 } 1920 1921 static const struct component_ops i915_hdcp_component_ops = { 1922 .bind = i915_hdcp_component_bind, 1923 .unbind = i915_hdcp_component_unbind, 1924 }; 1925 1926 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port) 1927 { 1928 switch (port) { 1929 case PORT_A: 1930 return MEI_DDI_A; 1931 case PORT_B ... PORT_F: 1932 return (enum mei_fw_ddi)port; 1933 default: 1934 return MEI_DDI_INVALID_PORT; 1935 } 1936 } 1937 1938 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder) 1939 { 1940 switch (cpu_transcoder) { 1941 case TRANSCODER_A ... TRANSCODER_D: 1942 return (enum mei_fw_tc)(cpu_transcoder | 0x10); 1943 default: /* eDP, DSI TRANSCODERS are non HDCP capable */ 1944 return MEI_INVALID_TRANSCODER; 1945 } 1946 } 1947 #endif /* notyet */ 1948 1949 static int initialize_hdcp_port_data(struct intel_connector *connector, 1950 enum port port, 1951 const struct intel_hdcp_shim *shim) 1952 { 1953 STUB(); 1954 return -ENOSYS; 1955 #ifdef notyet 1956 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1957 struct intel_hdcp *hdcp = &connector->hdcp; 1958 struct hdcp_port_data *data = &hdcp->port_data; 1959 1960 if (INTEL_GEN(dev_priv) < 12) 1961 data->fw_ddi = intel_get_mei_fw_ddi_index(port); 1962 else 1963 /* 1964 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled 1965 * with zero(INVALID PORT index). 1966 */ 1967 data->fw_ddi = MEI_DDI_INVALID_PORT; 1968 1969 /* 1970 * As associated transcoder is set and modified at modeset, here fw_tc 1971 * is initialized to zero (invalid transcoder index). This will be 1972 * retained for <Gen12 forever. 1973 */ 1974 data->fw_tc = MEI_INVALID_TRANSCODER; 1975 1976 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED; 1977 data->protocol = (u8)shim->protocol; 1978 1979 data->k = 1; 1980 if (!data->streams) 1981 data->streams = kcalloc(data->k, 1982 sizeof(struct hdcp2_streamid_type), 1983 GFP_KERNEL); 1984 if (!data->streams) { 1985 drm_err(&dev_priv->drm, "Out of Memory\n"); 1986 return -ENOMEM; 1987 } 1988 1989 data->streams[0].stream_id = 0; 1990 data->streams[0].stream_type = hdcp->content_type; 1991 1992 return 0; 1993 #endif 1994 } 1995 1996 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv) 1997 { 1998 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP)) 1999 return false; 2000 2001 return (INTEL_GEN(dev_priv) >= 10 || 2002 IS_GEMINILAKE(dev_priv) || 2003 IS_KABYLAKE(dev_priv) || 2004 IS_COFFEELAKE(dev_priv) || 2005 IS_COMETLAKE(dev_priv)); 2006 } 2007 2008 void intel_hdcp_component_init(struct drm_i915_private *dev_priv) 2009 { 2010 int ret; 2011 2012 if (!is_hdcp2_supported(dev_priv)) 2013 return; 2014 2015 STUB(); 2016 #ifdef notyet 2017 mutex_lock(&dev_priv->hdcp_comp_mutex); 2018 drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added); 2019 2020 dev_priv->hdcp_comp_added = true; 2021 mutex_unlock(&dev_priv->hdcp_comp_mutex); 2022 ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops, 2023 I915_COMPONENT_HDCP); 2024 if (ret < 0) { 2025 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n", 2026 ret); 2027 mutex_lock(&dev_priv->hdcp_comp_mutex); 2028 dev_priv->hdcp_comp_added = false; 2029 mutex_unlock(&dev_priv->hdcp_comp_mutex); 2030 return; 2031 } 2032 #endif 2033 } 2034 2035 static void intel_hdcp2_init(struct intel_connector *connector, enum port port, 2036 const struct intel_hdcp_shim *shim) 2037 { 2038 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2039 struct intel_hdcp *hdcp = &connector->hdcp; 2040 int ret; 2041 2042 ret = initialize_hdcp_port_data(connector, port, shim); 2043 if (ret) { 2044 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n"); 2045 return; 2046 } 2047 2048 hdcp->hdcp2_supported = true; 2049 } 2050 2051 int intel_hdcp_init(struct intel_connector *connector, 2052 enum port port, 2053 const struct intel_hdcp_shim *shim) 2054 { 2055 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 2056 struct intel_hdcp *hdcp = &connector->hdcp; 2057 int ret; 2058 2059 if (!shim) 2060 return -EINVAL; 2061 2062 if (is_hdcp2_supported(dev_priv) && !connector->mst_port) 2063 intel_hdcp2_init(connector, port, shim); 2064 2065 ret = 2066 drm_connector_attach_content_protection_property(&connector->base, 2067 hdcp->hdcp2_supported); 2068 if (ret) { 2069 hdcp->hdcp2_supported = false; 2070 kfree(hdcp->port_data.streams); 2071 return ret; 2072 } 2073 2074 hdcp->shim = shim; 2075 rw_init(&hdcp->mutex, "ihdcp"); 2076 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work); 2077 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work); 2078 init_waitqueue_head(&hdcp->cp_irq_queue); 2079 2080 return 0; 2081 } 2082 2083 int intel_hdcp_enable(struct intel_connector *connector, 2084 enum transcoder cpu_transcoder, u8 content_type) 2085 { 2086 STUB(); 2087 return -ENOSYS; 2088 #ifdef notyet 2089 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 2090 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2091 struct intel_hdcp *hdcp = &connector->hdcp; 2092 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS; 2093 int ret = -EINVAL; 2094 2095 if (!hdcp->shim) 2096 return -ENOENT; 2097 2098 mutex_lock(&hdcp->mutex); 2099 mutex_lock(&dig_port->hdcp_mutex); 2100 drm_WARN_ON(&dev_priv->drm, 2101 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED); 2102 hdcp->content_type = content_type; 2103 hdcp->cpu_transcoder = cpu_transcoder; 2104 2105 if (INTEL_GEN(dev_priv) >= 12) 2106 hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder); 2107 2108 /* 2109 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup 2110 * is capable of HDCP2.2, it is preferred to use HDCP2.2. 2111 */ 2112 if (intel_hdcp2_capable(connector)) { 2113 ret = _intel_hdcp2_enable(connector); 2114 if (!ret) 2115 check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS; 2116 } 2117 2118 /* 2119 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will 2120 * be attempted. 2121 */ 2122 if (ret && intel_hdcp_capable(connector) && 2123 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) { 2124 ret = _intel_hdcp_enable(connector); 2125 } 2126 2127 if (!ret) { 2128 schedule_delayed_work(&hdcp->check_work, check_link_interval); 2129 intel_hdcp_update_value(connector, 2130 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2131 true); 2132 } 2133 2134 mutex_unlock(&dig_port->hdcp_mutex); 2135 mutex_unlock(&hdcp->mutex); 2136 return ret; 2137 #endif 2138 } 2139 2140 int intel_hdcp_disable(struct intel_connector *connector) 2141 { 2142 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2143 struct intel_hdcp *hdcp = &connector->hdcp; 2144 int ret = 0; 2145 2146 if (!hdcp->shim) 2147 return -ENOENT; 2148 2149 mutex_lock(&hdcp->mutex); 2150 mutex_lock(&dig_port->hdcp_mutex); 2151 2152 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 2153 goto out; 2154 2155 intel_hdcp_update_value(connector, 2156 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false); 2157 if (hdcp->hdcp2_encrypted) 2158 ret = _intel_hdcp2_disable(connector); 2159 else if (hdcp->hdcp_encrypted) 2160 ret = _intel_hdcp_disable(connector); 2161 2162 out: 2163 mutex_unlock(&dig_port->hdcp_mutex); 2164 mutex_unlock(&hdcp->mutex); 2165 cancel_delayed_work_sync(&hdcp->check_work); 2166 return ret; 2167 } 2168 2169 void intel_hdcp_update_pipe(struct intel_atomic_state *state, 2170 struct intel_encoder *encoder, 2171 const struct intel_crtc_state *crtc_state, 2172 const struct drm_connector_state *conn_state) 2173 { 2174 struct intel_connector *connector = 2175 to_intel_connector(conn_state->connector); 2176 struct intel_hdcp *hdcp = &connector->hdcp; 2177 bool content_protection_type_changed, desired_and_not_enabled = false; 2178 2179 if (!connector->hdcp.shim) 2180 return; 2181 2182 content_protection_type_changed = 2183 (conn_state->hdcp_content_type != hdcp->content_type && 2184 conn_state->content_protection != 2185 DRM_MODE_CONTENT_PROTECTION_UNDESIRED); 2186 2187 /* 2188 * During the HDCP encryption session if Type change is requested, 2189 * disable the HDCP and reenable it with new TYPE value. 2190 */ 2191 if (conn_state->content_protection == 2192 DRM_MODE_CONTENT_PROTECTION_UNDESIRED || 2193 content_protection_type_changed) 2194 intel_hdcp_disable(connector); 2195 2196 /* 2197 * Mark the hdcp state as DESIRED after the hdcp disable of type 2198 * change procedure. 2199 */ 2200 if (content_protection_type_changed) { 2201 mutex_lock(&hdcp->mutex); 2202 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; 2203 drm_connector_get(&connector->base); 2204 schedule_work(&hdcp->prop_work); 2205 mutex_unlock(&hdcp->mutex); 2206 } 2207 2208 if (conn_state->content_protection == 2209 DRM_MODE_CONTENT_PROTECTION_DESIRED) { 2210 mutex_lock(&hdcp->mutex); 2211 /* Avoid enabling hdcp, if it already ENABLED */ 2212 desired_and_not_enabled = 2213 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED; 2214 mutex_unlock(&hdcp->mutex); 2215 /* 2216 * If HDCP already ENABLED and CP property is DESIRED, schedule 2217 * prop_work to update correct CP property to user space. 2218 */ 2219 if (!desired_and_not_enabled && !content_protection_type_changed) { 2220 drm_connector_get(&connector->base); 2221 schedule_work(&hdcp->prop_work); 2222 } 2223 } 2224 2225 if (desired_and_not_enabled || content_protection_type_changed) 2226 intel_hdcp_enable(connector, 2227 crtc_state->cpu_transcoder, 2228 (u8)conn_state->hdcp_content_type); 2229 } 2230 2231 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv) 2232 { 2233 mutex_lock(&dev_priv->hdcp_comp_mutex); 2234 if (!dev_priv->hdcp_comp_added) { 2235 mutex_unlock(&dev_priv->hdcp_comp_mutex); 2236 return; 2237 } 2238 2239 dev_priv->hdcp_comp_added = false; 2240 mutex_unlock(&dev_priv->hdcp_comp_mutex); 2241 2242 component_del(dev_priv->drm.dev, &i915_hdcp_component_ops); 2243 } 2244 2245 void intel_hdcp_cleanup(struct intel_connector *connector) 2246 { 2247 struct intel_hdcp *hdcp = &connector->hdcp; 2248 2249 if (!hdcp->shim) 2250 return; 2251 2252 /* 2253 * If the connector is registered, it's possible userspace could kick 2254 * off another HDCP enable, which would re-spawn the workers. 2255 */ 2256 drm_WARN_ON(connector->base.dev, 2257 connector->base.registration_state == DRM_CONNECTOR_REGISTERED); 2258 2259 /* 2260 * Now that the connector is not registered, check_work won't be run, 2261 * but cancel any outstanding instances of it 2262 */ 2263 cancel_delayed_work_sync(&hdcp->check_work); 2264 2265 /* 2266 * We don't cancel prop_work in the same way as check_work since it 2267 * requires connection_mutex which could be held while calling this 2268 * function. Instead, we rely on the connector references grabbed before 2269 * scheduling prop_work to ensure the connector is alive when prop_work 2270 * is run. So if we're in the destroy path (which is where this 2271 * function should be called), we're "guaranteed" that prop_work is not 2272 * active (tl;dr This Should Never Happen). 2273 */ 2274 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work)); 2275 2276 mutex_lock(&hdcp->mutex); 2277 kfree(hdcp->port_data.streams); 2278 hdcp->shim = NULL; 2279 mutex_unlock(&hdcp->mutex); 2280 } 2281 2282 void intel_hdcp_atomic_check(struct drm_connector *connector, 2283 struct drm_connector_state *old_state, 2284 struct drm_connector_state *new_state) 2285 { 2286 u64 old_cp = old_state->content_protection; 2287 u64 new_cp = new_state->content_protection; 2288 struct drm_crtc_state *crtc_state; 2289 2290 if (!new_state->crtc) { 2291 /* 2292 * If the connector is being disabled with CP enabled, mark it 2293 * desired so it's re-enabled when the connector is brought back 2294 */ 2295 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) 2296 new_state->content_protection = 2297 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2298 return; 2299 } 2300 2301 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 2302 new_state->crtc); 2303 /* 2304 * Fix the HDCP uapi content protection state in case of modeset. 2305 * FIXME: As per HDCP content protection property uapi doc, an uevent() 2306 * need to be sent if there is transition from ENABLED->DESIRED. 2307 */ 2308 if (drm_atomic_crtc_needs_modeset(crtc_state) && 2309 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED && 2310 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) 2311 new_state->content_protection = 2312 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2313 2314 /* 2315 * Nothing to do if the state didn't change, or HDCP was activated since 2316 * the last commit. And also no change in hdcp content type. 2317 */ 2318 if (old_cp == new_cp || 2319 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && 2320 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) { 2321 if (old_state->hdcp_content_type == 2322 new_state->hdcp_content_type) 2323 return; 2324 } 2325 2326 crtc_state->mode_changed = true; 2327 } 2328 2329 /* Handles the CP_IRQ raised from the DP HDCP sink */ 2330 void intel_hdcp_handle_cp_irq(struct intel_connector *connector) 2331 { 2332 struct intel_hdcp *hdcp = &connector->hdcp; 2333 2334 if (!hdcp->shim) 2335 return; 2336 2337 atomic_inc(&connector->hdcp.cp_irq_count); 2338 wake_up_all(&connector->hdcp.cp_irq_queue); 2339 2340 schedule_delayed_work(&hdcp->check_work, 0); 2341 } 2342