1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_engine_pool.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_pm.h" 24 #include "gt/intel_ring.h" 25 26 #include "i915_drv.h" 27 #include "i915_gem_clflush.h" 28 #include "i915_gem_context.h" 29 #include "i915_gem_ioctls.h" 30 #include "i915_sw_fence_work.h" 31 #include "i915_trace.h" 32 33 struct eb_vma { 34 struct i915_vma *vma; 35 unsigned int flags; 36 37 /** This vma's place in the execbuf reservation list */ 38 struct drm_i915_gem_exec_object2 *exec; 39 struct list_head bind_link; 40 struct list_head reloc_link; 41 42 struct hlist_node node; 43 u32 handle; 44 }; 45 46 enum { 47 FORCE_CPU_RELOC = 1, 48 FORCE_GTT_RELOC, 49 FORCE_GPU_RELOC, 50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 51 }; 52 53 #define __EXEC_OBJECT_HAS_PIN BIT(31) 54 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 55 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 56 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 57 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 59 60 #define __EXEC_HAS_RELOC BIT(31) 61 #define __EXEC_INTERNAL_FLAGS (~0u << 31) 62 #define UPDATE PIN_OFFSET_FIXED 63 64 #define BATCH_OFFSET_BIAS (256*1024) 65 66 #define __I915_EXEC_ILLEGAL_FLAGS \ 67 (__I915_EXEC_UNKNOWN_FLAGS | \ 68 I915_EXEC_CONSTANTS_MASK | \ 69 I915_EXEC_RESOURCE_STREAMER) 70 71 /* Catch emission of unexpected errors for CI! */ 72 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 73 #undef EINVAL 74 #define EINVAL ({ \ 75 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 76 22; \ 77 }) 78 #endif 79 80 /** 81 * DOC: User command execution 82 * 83 * Userspace submits commands to be executed on the GPU as an instruction 84 * stream within a GEM object we call a batchbuffer. This instructions may 85 * refer to other GEM objects containing auxiliary state such as kernels, 86 * samplers, render targets and even secondary batchbuffers. Userspace does 87 * not know where in the GPU memory these objects reside and so before the 88 * batchbuffer is passed to the GPU for execution, those addresses in the 89 * batchbuffer and auxiliary objects are updated. This is known as relocation, 90 * or patching. To try and avoid having to relocate each object on the next 91 * execution, userspace is told the location of those objects in this pass, 92 * but this remains just a hint as the kernel may choose a new location for 93 * any object in the future. 94 * 95 * At the level of talking to the hardware, submitting a batchbuffer for the 96 * GPU to execute is to add content to a buffer from which the HW 97 * command streamer is reading. 98 * 99 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 100 * Execlists, this command is not placed on the same buffer as the 101 * remaining items. 102 * 103 * 2. Add a command to invalidate caches to the buffer. 104 * 105 * 3. Add a batchbuffer start command to the buffer; the start command is 106 * essentially a token together with the GPU address of the batchbuffer 107 * to be executed. 108 * 109 * 4. Add a pipeline flush to the buffer. 110 * 111 * 5. Add a memory write command to the buffer to record when the GPU 112 * is done executing the batchbuffer. The memory write writes the 113 * global sequence number of the request, ``i915_request::global_seqno``; 114 * the i915 driver uses the current value in the register to determine 115 * if the GPU has completed the batchbuffer. 116 * 117 * 6. Add a user interrupt command to the buffer. This command instructs 118 * the GPU to issue an interrupt when the command, pipeline flush and 119 * memory write are completed. 120 * 121 * 7. Inform the hardware of the additional commands added to the buffer 122 * (by updating the tail pointer). 123 * 124 * Processing an execbuf ioctl is conceptually split up into a few phases. 125 * 126 * 1. Validation - Ensure all the pointers, handles and flags are valid. 127 * 2. Reservation - Assign GPU address space for every object 128 * 3. Relocation - Update any addresses to point to the final locations 129 * 4. Serialisation - Order the request with respect to its dependencies 130 * 5. Construction - Construct a request to execute the batchbuffer 131 * 6. Submission (at some point in the future execution) 132 * 133 * Reserving resources for the execbuf is the most complicated phase. We 134 * neither want to have to migrate the object in the address space, nor do 135 * we want to have to update any relocations pointing to this object. Ideally, 136 * we want to leave the object where it is and for all the existing relocations 137 * to match. If the object is given a new address, or if userspace thinks the 138 * object is elsewhere, we have to parse all the relocation entries and update 139 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 140 * all the target addresses in all of its objects match the value in the 141 * relocation entries and that they all match the presumed offsets given by the 142 * list of execbuffer objects. Using this knowledge, we know that if we haven't 143 * moved any buffers, all the relocation entries are valid and we can skip 144 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 145 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 146 * 147 * The addresses written in the objects must match the corresponding 148 * reloc.presumed_offset which in turn must match the corresponding 149 * execobject.offset. 150 * 151 * Any render targets written to in the batch must be flagged with 152 * EXEC_OBJECT_WRITE. 153 * 154 * To avoid stalling, execobject.offset should match the current 155 * address of that object within the active context. 156 * 157 * The reservation is done is multiple phases. First we try and keep any 158 * object already bound in its current location - so as long as meets the 159 * constraints imposed by the new execbuffer. Any object left unbound after the 160 * first pass is then fitted into any available idle space. If an object does 161 * not fit, all objects are removed from the reservation and the process rerun 162 * after sorting the objects into a priority order (more difficult to fit 163 * objects are tried first). Failing that, the entire VM is cleared and we try 164 * to fit the execbuf once last time before concluding that it simply will not 165 * fit. 166 * 167 * A small complication to all of this is that we allow userspace not only to 168 * specify an alignment and a size for the object in the address space, but 169 * we also allow userspace to specify the exact offset. This objects are 170 * simpler to place (the location is known a priori) all we have to do is make 171 * sure the space is available. 172 * 173 * Once all the objects are in place, patching up the buried pointers to point 174 * to the final locations is a fairly simple job of walking over the relocation 175 * entry arrays, looking up the right address and rewriting the value into 176 * the object. Simple! ... The relocation entries are stored in user memory 177 * and so to access them we have to copy them into a local buffer. That copy 178 * has to avoid taking any pagefaults as they may lead back to a GEM object 179 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 180 * the relocation into multiple passes. First we try to do everything within an 181 * atomic context (avoid the pagefaults) which requires that we never wait. If 182 * we detect that we may wait, or if we need to fault, then we have to fallback 183 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 184 * bells yet?) Dropping the mutex means that we lose all the state we have 185 * built up so far for the execbuf and we must reset any global data. However, 186 * we do leave the objects pinned in their final locations - which is a 187 * potential issue for concurrent execbufs. Once we have left the mutex, we can 188 * allocate and copy all the relocation entries into a large array at our 189 * leisure, reacquire the mutex, reclaim all the objects and other state and 190 * then proceed to update any incorrect addresses with the objects. 191 * 192 * As we process the relocation entries, we maintain a record of whether the 193 * object is being written to. Using NORELOC, we expect userspace to provide 194 * this information instead. We also check whether we can skip the relocation 195 * by comparing the expected value inside the relocation entry with the target's 196 * final address. If they differ, we have to map the current object and rewrite 197 * the 4 or 8 byte pointer within. 198 * 199 * Serialising an execbuf is quite simple according to the rules of the GEM 200 * ABI. Execution within each context is ordered by the order of submission. 201 * Writes to any GEM object are in order of submission and are exclusive. Reads 202 * from a GEM object are unordered with respect to other reads, but ordered by 203 * writes. A write submitted after a read cannot occur before the read, and 204 * similarly any read submitted after a write cannot occur before the write. 205 * Writes are ordered between engines such that only one write occurs at any 206 * time (completing any reads beforehand) - using semaphores where available 207 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 208 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 209 * reads before starting, and any read (either using set-domain or pread) must 210 * flush all GPU writes before starting. (Note we only employ a barrier before, 211 * we currently rely on userspace not concurrently starting a new execution 212 * whilst reading or writing to an object. This may be an advantage or not 213 * depending on how much you trust userspace not to shoot themselves in the 214 * foot.) Serialisation may just result in the request being inserted into 215 * a DAG awaiting its turn, but most simple is to wait on the CPU until 216 * all dependencies are resolved. 217 * 218 * After all of that, is just a matter of closing the request and handing it to 219 * the hardware (well, leaving it in a queue to be executed). However, we also 220 * offer the ability for batchbuffers to be run with elevated privileges so 221 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 222 * Before any batch is given extra privileges we first must check that it 223 * contains no nefarious instructions, we check that each instruction is from 224 * our whitelist and all registers are also from an allowed list. We first 225 * copy the user's batchbuffer to a shadow (so that the user doesn't have 226 * access to it, either by the CPU or GPU as we scan it) and then parse each 227 * instruction. If everything is ok, we set a flag telling the hardware to run 228 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 229 */ 230 231 struct i915_execbuffer { 232 struct drm_i915_private *i915; /** i915 backpointer */ 233 struct drm_file *file; /** per-file lookup tables and limits */ 234 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 235 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 236 struct eb_vma *vma; 237 238 struct intel_engine_cs *engine; /** engine to queue the request to */ 239 struct intel_context *context; /* logical state for the request */ 240 struct i915_gem_context *gem_context; /** caller's context */ 241 242 struct i915_request *request; /** our request to build */ 243 struct eb_vma *batch; /** identity of the batch obj/vma */ 244 struct i915_vma *trampoline; /** trampoline used for chaining */ 245 246 /** actual size of execobj[] as we may extend it for the cmdparser */ 247 unsigned int buffer_count; 248 249 /** list of vma not yet bound during reservation phase */ 250 struct list_head unbound; 251 252 /** list of vma that have execobj.relocation_count */ 253 struct list_head relocs; 254 255 /** 256 * Track the most recently used object for relocations, as we 257 * frequently have to perform multiple relocations within the same 258 * obj/page 259 */ 260 struct reloc_cache { 261 struct drm_mm_node node; /** temporary GTT binding */ 262 unsigned long vaddr; /** Current kmap address */ 263 unsigned long page; /** Currently mapped page index */ 264 unsigned int gen; /** Cached value of INTEL_GEN */ 265 bool use_64bit_reloc : 1; 266 bool has_llc : 1; 267 bool has_fence : 1; 268 bool needs_unfenced : 1; 269 270 struct i915_request *rq; 271 u32 *rq_cmd; 272 unsigned int rq_size; 273 274 struct agp_map *map; 275 bus_space_tag_t iot; 276 bus_space_handle_t ioh; 277 } reloc_cache; 278 279 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 280 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 281 282 u32 batch_start_offset; /** Location within object of batch */ 283 u32 batch_len; /** Length of batch within object */ 284 u32 batch_flags; /** Flags composed for emit_bb_start() */ 285 286 /** 287 * Indicate either the size of the hastable used to resolve 288 * relocation handles, or if negative that we are using a direct 289 * index into the execobj[]. 290 */ 291 int lut_size; 292 struct hlist_head *buckets; /** ht for relocation handles */ 293 }; 294 295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 296 { 297 return intel_engine_requires_cmd_parser(eb->engine) || 298 (intel_engine_using_cmd_parser(eb->engine) && 299 eb->args->batch_len); 300 } 301 302 static int eb_create(struct i915_execbuffer *eb) 303 { 304 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 305 unsigned int size = 1 + ilog2(eb->buffer_count); 306 307 /* 308 * Without a 1:1 association between relocation handles and 309 * the execobject[] index, we instead create a hashtable. 310 * We size it dynamically based on available memory, starting 311 * first with 1:1 assocative hash and scaling back until 312 * the allocation succeeds. 313 * 314 * Later on we use a positive lut_size to indicate we are 315 * using this hashtable, and a negative value to indicate a 316 * direct lookup. 317 */ 318 do { 319 gfp_t flags; 320 321 /* While we can still reduce the allocation size, don't 322 * raise a warning and allow the allocation to fail. 323 * On the last pass though, we want to try as hard 324 * as possible to perform the allocation and warn 325 * if it fails. 326 */ 327 flags = GFP_KERNEL; 328 if (size > 1) 329 flags |= __GFP_NORETRY | __GFP_NOWARN; 330 331 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 332 flags); 333 if (eb->buckets) 334 break; 335 } while (--size); 336 337 if (unlikely(!size)) 338 return -ENOMEM; 339 340 eb->lut_size = size; 341 } else { 342 eb->lut_size = -eb->buffer_count; 343 } 344 345 return 0; 346 } 347 348 static bool 349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 350 const struct i915_vma *vma, 351 unsigned int flags) 352 { 353 if (vma->node.size < entry->pad_to_size) 354 return true; 355 356 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 357 return true; 358 359 if (flags & EXEC_OBJECT_PINNED && 360 vma->node.start != entry->offset) 361 return true; 362 363 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 364 vma->node.start < BATCH_OFFSET_BIAS) 365 return true; 366 367 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 368 (vma->node.start + vma->node.size - 1) >> 32) 369 return true; 370 371 if (flags & __EXEC_OBJECT_NEEDS_MAP && 372 !i915_vma_is_map_and_fenceable(vma)) 373 return true; 374 375 return false; 376 } 377 378 static inline bool 379 eb_pin_vma(struct i915_execbuffer *eb, 380 const struct drm_i915_gem_exec_object2 *entry, 381 struct eb_vma *ev) 382 { 383 struct i915_vma *vma = ev->vma; 384 u64 pin_flags; 385 386 if (vma->node.size) 387 pin_flags = vma->node.start; 388 else 389 pin_flags = entry->offset & PIN_OFFSET_MASK; 390 391 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 392 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 393 pin_flags |= PIN_GLOBAL; 394 395 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 396 return false; 397 398 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 399 if (unlikely(i915_vma_pin_fence(vma))) { 400 i915_vma_unpin(vma); 401 return false; 402 } 403 404 if (vma->fence) 405 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 406 } 407 408 ev->flags |= __EXEC_OBJECT_HAS_PIN; 409 return !eb_vma_misplaced(entry, vma, ev->flags); 410 } 411 412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 413 { 414 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 415 416 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 417 __i915_vma_unpin_fence(vma); 418 419 __i915_vma_unpin(vma); 420 } 421 422 static inline void 423 eb_unreserve_vma(struct eb_vma *ev) 424 { 425 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 426 return; 427 428 __eb_unreserve_vma(ev->vma, ev->flags); 429 ev->flags &= ~__EXEC_OBJECT_RESERVED; 430 } 431 432 static int 433 eb_validate_vma(struct i915_execbuffer *eb, 434 struct drm_i915_gem_exec_object2 *entry, 435 struct i915_vma *vma) 436 { 437 if (unlikely(entry->flags & eb->invalid_flags)) 438 return -EINVAL; 439 440 if (unlikely(entry->alignment && 441 !is_power_of_2_u64(entry->alignment))) 442 return -EINVAL; 443 444 /* 445 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 446 * any non-page-aligned or non-canonical addresses. 447 */ 448 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 449 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 450 return -EINVAL; 451 452 /* pad_to_size was once a reserved field, so sanitize it */ 453 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 454 if (unlikely(offset_in_page(entry->pad_to_size))) 455 return -EINVAL; 456 } else { 457 entry->pad_to_size = 0; 458 } 459 /* 460 * From drm_mm perspective address space is continuous, 461 * so from this point we're always using non-canonical 462 * form internally. 463 */ 464 entry->offset = gen8_noncanonical_addr(entry->offset); 465 466 if (!eb->reloc_cache.has_fence) { 467 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 468 } else { 469 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 470 eb->reloc_cache.needs_unfenced) && 471 i915_gem_object_is_tiled(vma->obj)) 472 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 473 } 474 475 if (!(entry->flags & EXEC_OBJECT_PINNED)) 476 entry->flags |= eb->context_flags; 477 478 return 0; 479 } 480 481 static void 482 eb_add_vma(struct i915_execbuffer *eb, 483 unsigned int i, unsigned batch_idx, 484 struct i915_vma *vma) 485 { 486 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 487 struct eb_vma *ev = &eb->vma[i]; 488 489 GEM_BUG_ON(i915_vma_is_closed(vma)); 490 491 ev->vma = i915_vma_get(vma); 492 ev->exec = entry; 493 ev->flags = entry->flags; 494 495 if (eb->lut_size > 0) { 496 ev->handle = entry->handle; 497 hlist_add_head(&ev->node, 498 &eb->buckets[hash_32(entry->handle, 499 eb->lut_size)]); 500 } 501 502 if (entry->relocation_count) 503 list_add_tail(&ev->reloc_link, &eb->relocs); 504 505 /* 506 * SNA is doing fancy tricks with compressing batch buffers, which leads 507 * to negative relocation deltas. Usually that works out ok since the 508 * relocate address is still positive, except when the batch is placed 509 * very low in the GTT. Ensure this doesn't happen. 510 * 511 * Note that actual hangs have only been observed on gen7, but for 512 * paranoia do it everywhere. 513 */ 514 if (i == batch_idx) { 515 if (entry->relocation_count && 516 !(ev->flags & EXEC_OBJECT_PINNED)) 517 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 518 if (eb->reloc_cache.has_fence) 519 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 520 521 eb->batch = ev; 522 } 523 524 if (eb_pin_vma(eb, entry, ev)) { 525 if (entry->offset != vma->node.start) { 526 entry->offset = vma->node.start | UPDATE; 527 eb->args->flags |= __EXEC_HAS_RELOC; 528 } 529 } else { 530 eb_unreserve_vma(ev); 531 list_add_tail(&ev->bind_link, &eb->unbound); 532 } 533 } 534 535 static inline int use_cpu_reloc(const struct reloc_cache *cache, 536 const struct drm_i915_gem_object *obj) 537 { 538 if (!i915_gem_object_has_struct_page(obj)) 539 return false; 540 541 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 542 return true; 543 544 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 545 return false; 546 547 return (cache->has_llc || 548 obj->cache_dirty || 549 obj->cache_level != I915_CACHE_NONE); 550 } 551 552 static int eb_reserve_vma(const struct i915_execbuffer *eb, 553 struct eb_vma *ev, 554 u64 pin_flags) 555 { 556 struct drm_i915_gem_exec_object2 *entry = ev->exec; 557 unsigned int exec_flags = ev->flags; 558 struct i915_vma *vma = ev->vma; 559 int err; 560 561 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 562 pin_flags |= PIN_GLOBAL; 563 564 /* 565 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 566 * limit address to the first 4GBs for unflagged objects. 567 */ 568 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 569 pin_flags |= PIN_ZONE_4G; 570 571 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 572 pin_flags |= PIN_MAPPABLE; 573 574 if (exec_flags & EXEC_OBJECT_PINNED) 575 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 576 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 577 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 578 579 if (drm_mm_node_allocated(&vma->node) && 580 eb_vma_misplaced(entry, vma, ev->flags)) { 581 err = i915_vma_unbind(vma); 582 if (err) 583 return err; 584 } 585 586 err = i915_vma_pin(vma, 587 entry->pad_to_size, entry->alignment, 588 pin_flags); 589 if (err) 590 return err; 591 592 if (entry->offset != vma->node.start) { 593 entry->offset = vma->node.start | UPDATE; 594 eb->args->flags |= __EXEC_HAS_RELOC; 595 } 596 597 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 598 err = i915_vma_pin_fence(vma); 599 if (unlikely(err)) { 600 i915_vma_unpin(vma); 601 return err; 602 } 603 604 if (vma->fence) 605 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 606 } 607 608 ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 609 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 610 611 return 0; 612 } 613 614 static int eb_reserve(struct i915_execbuffer *eb) 615 { 616 const unsigned int count = eb->buffer_count; 617 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 618 struct list_head last; 619 struct eb_vma *ev; 620 unsigned int i, pass; 621 int err = 0; 622 623 /* 624 * Attempt to pin all of the buffers into the GTT. 625 * This is done in 3 phases: 626 * 627 * 1a. Unbind all objects that do not match the GTT constraints for 628 * the execbuffer (fenceable, mappable, alignment etc). 629 * 1b. Increment pin count for already bound objects. 630 * 2. Bind new objects. 631 * 3. Decrement pin count. 632 * 633 * This avoid unnecessary unbinding of later objects in order to make 634 * room for the earlier objects *unless* we need to defragment. 635 */ 636 637 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex)) 638 return -EINTR; 639 640 pass = 0; 641 do { 642 list_for_each_entry(ev, &eb->unbound, bind_link) { 643 err = eb_reserve_vma(eb, ev, pin_flags); 644 if (err) 645 break; 646 } 647 if (!(err == -ENOSPC || err == -EAGAIN)) 648 break; 649 650 /* Resort *all* the objects into priority order */ 651 INIT_LIST_HEAD(&eb->unbound); 652 INIT_LIST_HEAD(&last); 653 for (i = 0; i < count; i++) { 654 unsigned int flags; 655 656 ev = &eb->vma[i]; 657 flags = ev->flags; 658 if (flags & EXEC_OBJECT_PINNED && 659 flags & __EXEC_OBJECT_HAS_PIN) 660 continue; 661 662 eb_unreserve_vma(ev); 663 664 if (flags & EXEC_OBJECT_PINNED) 665 /* Pinned must have their slot */ 666 list_add(&ev->bind_link, &eb->unbound); 667 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 668 /* Map require the lowest 256MiB (aperture) */ 669 list_add_tail(&ev->bind_link, &eb->unbound); 670 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 671 /* Prioritise 4GiB region for restricted bo */ 672 list_add(&ev->bind_link, &last); 673 else 674 list_add_tail(&ev->bind_link, &last); 675 } 676 list_splice_tail(&last, &eb->unbound); 677 678 if (err == -EAGAIN) { 679 mutex_unlock(&eb->i915->drm.struct_mutex); 680 flush_workqueue(eb->i915->mm.userptr_wq); 681 mutex_lock(&eb->i915->drm.struct_mutex); 682 continue; 683 } 684 685 switch (pass++) { 686 case 0: 687 break; 688 689 case 1: 690 /* Too fragmented, unbind everything and retry */ 691 mutex_lock(&eb->context->vm->mutex); 692 err = i915_gem_evict_vm(eb->context->vm); 693 mutex_unlock(&eb->context->vm->mutex); 694 if (err) 695 goto unlock; 696 break; 697 698 default: 699 err = -ENOSPC; 700 goto unlock; 701 } 702 703 pin_flags = PIN_USER; 704 } while (1); 705 706 unlock: 707 mutex_unlock(&eb->i915->drm.struct_mutex); 708 return err; 709 } 710 711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 712 { 713 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 714 return 0; 715 else 716 return eb->buffer_count - 1; 717 } 718 719 static int eb_select_context(struct i915_execbuffer *eb) 720 { 721 struct i915_gem_context *ctx; 722 723 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 724 if (unlikely(!ctx)) 725 return -ENOENT; 726 727 eb->gem_context = ctx; 728 if (rcu_access_pointer(ctx->vm)) 729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 730 731 eb->context_flags = 0; 732 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 733 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 734 735 return 0; 736 } 737 738 static int eb_lookup_vmas(struct i915_execbuffer *eb) 739 { 740 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 741 struct drm_i915_gem_object *obj; 742 unsigned int i, batch; 743 int err; 744 745 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) 746 return -ENOENT; 747 748 INIT_LIST_HEAD(&eb->relocs); 749 INIT_LIST_HEAD(&eb->unbound); 750 751 batch = eb_batch_index(eb); 752 753 for (i = 0; i < eb->buffer_count; i++) { 754 u32 handle = eb->exec[i].handle; 755 struct i915_lut_handle *lut; 756 struct i915_vma *vma; 757 758 vma = radix_tree_lookup(handles_vma, handle); 759 if (likely(vma)) 760 goto add_vma; 761 762 obj = i915_gem_object_lookup(eb->file, handle); 763 if (unlikely(!obj)) { 764 err = -ENOENT; 765 goto err_vma; 766 } 767 768 vma = i915_vma_instance(obj, eb->context->vm, NULL); 769 if (IS_ERR(vma)) { 770 err = PTR_ERR(vma); 771 goto err_obj; 772 } 773 774 lut = i915_lut_handle_alloc(); 775 if (unlikely(!lut)) { 776 err = -ENOMEM; 777 goto err_obj; 778 } 779 780 err = radix_tree_insert(handles_vma, handle, vma); 781 if (unlikely(err)) { 782 i915_lut_handle_free(lut); 783 goto err_obj; 784 } 785 786 /* transfer ref to lut */ 787 if (!atomic_fetch_inc(&vma->open_count)) 788 i915_vma_reopen(vma); 789 lut->handle = handle; 790 lut->ctx = eb->gem_context; 791 792 i915_gem_object_lock(obj); 793 list_add(&lut->obj_link, &obj->lut_list); 794 i915_gem_object_unlock(obj); 795 796 add_vma: 797 err = eb_validate_vma(eb, &eb->exec[i], vma); 798 if (unlikely(err)) 799 goto err_vma; 800 801 eb_add_vma(eb, i, batch, vma); 802 } 803 804 return 0; 805 806 err_obj: 807 i915_gem_object_put(obj); 808 err_vma: 809 eb->vma[i].vma = NULL; 810 return err; 811 } 812 813 static struct eb_vma * 814 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 815 { 816 if (eb->lut_size < 0) { 817 if (handle >= -eb->lut_size) 818 return NULL; 819 return &eb->vma[handle]; 820 } else { 821 struct hlist_head *head; 822 struct eb_vma *ev; 823 824 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 825 hlist_for_each_entry(ev, head, node) { 826 if (ev->handle == handle) 827 return ev; 828 } 829 return NULL; 830 } 831 } 832 833 static void eb_release_vmas(const struct i915_execbuffer *eb) 834 { 835 const unsigned int count = eb->buffer_count; 836 unsigned int i; 837 838 for (i = 0; i < count; i++) { 839 struct eb_vma *ev = &eb->vma[i]; 840 struct i915_vma *vma = ev->vma; 841 842 if (!vma) 843 break; 844 845 eb->vma[i].vma = NULL; 846 847 if (ev->flags & __EXEC_OBJECT_HAS_PIN) 848 __eb_unreserve_vma(vma, ev->flags); 849 850 i915_vma_put(vma); 851 } 852 } 853 854 static void eb_destroy(const struct i915_execbuffer *eb) 855 { 856 GEM_BUG_ON(eb->reloc_cache.rq); 857 858 if (eb->lut_size > 0) 859 kfree(eb->buckets); 860 } 861 862 static inline u64 863 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 864 const struct i915_vma *target) 865 { 866 return gen8_canonical_addr((int)reloc->delta + target->node.start); 867 } 868 869 static void reloc_cache_init(struct reloc_cache *cache, 870 struct drm_i915_private *i915) 871 { 872 cache->page = -1; 873 cache->vaddr = 0; 874 /* Must be a variable in the struct to allow GCC to unroll. */ 875 cache->gen = INTEL_GEN(i915); 876 cache->has_llc = HAS_LLC(i915); 877 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 878 cache->has_fence = cache->gen < 4; 879 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 880 #ifdef notyet 881 cache->node.flags = 0; 882 #else 883 cache->node.hole_follows = 0; 884 cache->node.allocated = 0; 885 cache->node.scanned_block = 0; 886 #endif 887 cache->rq = NULL; 888 cache->rq_size = 0; 889 890 cache->map = i915->agph; 891 cache->iot = i915->bst; 892 } 893 894 static inline void *unmask_page(unsigned long p) 895 { 896 return (void *)(uintptr_t)(p & ~PAGE_MASK); 897 } 898 899 static inline unsigned int unmask_flags(unsigned long p) 900 { 901 return p & PAGE_MASK; 902 } 903 904 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 905 906 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 907 { 908 struct drm_i915_private *i915 = 909 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 910 return &i915->ggtt; 911 } 912 913 static void reloc_gpu_flush(struct reloc_cache *cache) 914 { 915 struct drm_i915_gem_object *obj = cache->rq->batch->obj; 916 917 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 918 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 919 920 __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1)); 921 i915_gem_object_unpin_map(obj); 922 923 intel_gt_chipset_flush(cache->rq->engine->gt); 924 925 i915_request_add(cache->rq); 926 cache->rq = NULL; 927 } 928 929 static void reloc_cache_reset(struct reloc_cache *cache) 930 { 931 void *vaddr; 932 933 if (cache->rq) 934 reloc_gpu_flush(cache); 935 936 if (!cache->vaddr) 937 return; 938 939 vaddr = unmask_page(cache->vaddr); 940 if (cache->vaddr & KMAP) { 941 if (cache->vaddr & CLFLUSH_AFTER) 942 mb(); 943 944 kunmap_atomic(vaddr); 945 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 946 } else { 947 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 948 949 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 950 #ifdef __linux__ 951 io_mapping_unmap_atomic((void __iomem *)vaddr); 952 #else 953 agp_unmap_atomic(cache->map, cache->ioh); 954 #endif 955 956 if (drm_mm_node_allocated(&cache->node)) { 957 ggtt->vm.clear_range(&ggtt->vm, 958 cache->node.start, 959 cache->node.size); 960 mutex_lock(&ggtt->vm.mutex); 961 drm_mm_remove_node(&cache->node); 962 mutex_unlock(&ggtt->vm.mutex); 963 } else { 964 i915_vma_unpin((struct i915_vma *)cache->node.mm); 965 } 966 } 967 968 cache->vaddr = 0; 969 cache->page = -1; 970 } 971 972 static void *reloc_kmap(struct drm_i915_gem_object *obj, 973 struct reloc_cache *cache, 974 unsigned long page) 975 { 976 void *vaddr; 977 978 if (cache->vaddr) { 979 kunmap_atomic(unmask_page(cache->vaddr)); 980 } else { 981 unsigned int flushes; 982 int err; 983 984 err = i915_gem_object_prepare_write(obj, &flushes); 985 if (err) 986 return ERR_PTR(err); 987 988 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 989 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & ~PAGE_MASK); 990 991 cache->vaddr = flushes | KMAP; 992 cache->node.mm = (void *)obj; 993 if (flushes) 994 mb(); 995 } 996 997 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 998 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 999 cache->page = page; 1000 1001 return vaddr; 1002 } 1003 1004 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1005 struct reloc_cache *cache, 1006 unsigned long page) 1007 { 1008 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1009 unsigned long offset; 1010 void *vaddr; 1011 1012 if (cache->vaddr) { 1013 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1014 #ifdef __linux__ 1015 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1016 #else 1017 agp_unmap_atomic(cache->map, cache->ioh); 1018 #endif 1019 } else { 1020 struct i915_vma *vma; 1021 int err; 1022 1023 if (i915_gem_object_is_tiled(obj)) 1024 return ERR_PTR(-EINVAL); 1025 1026 if (use_cpu_reloc(cache, obj)) 1027 return NULL; 1028 1029 i915_gem_object_lock(obj); 1030 err = i915_gem_object_set_to_gtt_domain(obj, true); 1031 i915_gem_object_unlock(obj); 1032 if (err) 1033 return ERR_PTR(err); 1034 1035 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1036 PIN_MAPPABLE | 1037 PIN_NONBLOCK /* NOWARN */ | 1038 PIN_NOEVICT); 1039 if (IS_ERR(vma)) { 1040 memset(&cache->node, 0, sizeof(cache->node)); 1041 mutex_lock(&ggtt->vm.mutex); 1042 err = drm_mm_insert_node_in_range 1043 (&ggtt->vm.mm, &cache->node, 1044 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1045 0, ggtt->mappable_end, 1046 DRM_MM_INSERT_LOW); 1047 mutex_unlock(&ggtt->vm.mutex); 1048 if (err) /* no inactive aperture space, use cpu reloc */ 1049 return NULL; 1050 } else { 1051 cache->node.start = vma->node.start; 1052 cache->node.mm = (void *)vma; 1053 } 1054 } 1055 1056 offset = cache->node.start; 1057 if (drm_mm_node_allocated(&cache->node)) { 1058 ggtt->vm.insert_page(&ggtt->vm, 1059 i915_gem_object_get_dma_address(obj, page), 1060 offset, I915_CACHE_NONE, 0); 1061 } else { 1062 offset += page << PAGE_SHIFT; 1063 } 1064 1065 #ifdef __linux__ 1066 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1067 offset); 1068 #else 1069 agp_map_atomic(cache->map, offset, &cache->ioh); 1070 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1071 #endif 1072 cache->page = page; 1073 cache->vaddr = (unsigned long)vaddr; 1074 1075 return vaddr; 1076 } 1077 1078 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1079 struct reloc_cache *cache, 1080 unsigned long page) 1081 { 1082 void *vaddr; 1083 1084 if (cache->page == page) { 1085 vaddr = unmask_page(cache->vaddr); 1086 } else { 1087 vaddr = NULL; 1088 if ((cache->vaddr & KMAP) == 0) 1089 vaddr = reloc_iomap(obj, cache, page); 1090 if (!vaddr) 1091 vaddr = reloc_kmap(obj, cache, page); 1092 } 1093 1094 return vaddr; 1095 } 1096 1097 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1098 { 1099 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1100 if (flushes & CLFLUSH_BEFORE) { 1101 clflushopt(addr); 1102 mb(); 1103 } 1104 1105 *addr = value; 1106 1107 /* 1108 * Writes to the same cacheline are serialised by the CPU 1109 * (including clflush). On the write path, we only require 1110 * that it hits memory in an orderly fashion and place 1111 * mb barriers at the start and end of the relocation phase 1112 * to ensure ordering of clflush wrt to the system. 1113 */ 1114 if (flushes & CLFLUSH_AFTER) 1115 clflushopt(addr); 1116 } else 1117 *addr = value; 1118 } 1119 1120 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1121 { 1122 struct drm_i915_gem_object *obj = vma->obj; 1123 int err; 1124 1125 i915_vma_lock(vma); 1126 1127 if (obj->cache_dirty & ~obj->cache_coherent) 1128 i915_gem_clflush_object(obj, 0); 1129 obj->write_domain = 0; 1130 1131 err = i915_request_await_object(rq, vma->obj, true); 1132 if (err == 0) 1133 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1134 1135 i915_vma_unlock(vma); 1136 1137 return err; 1138 } 1139 1140 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1141 struct i915_vma *vma, 1142 unsigned int len) 1143 { 1144 struct reloc_cache *cache = &eb->reloc_cache; 1145 struct intel_engine_pool_node *pool; 1146 struct i915_request *rq; 1147 struct i915_vma *batch; 1148 u32 *cmd; 1149 int err; 1150 1151 pool = intel_engine_get_pool(eb->engine, PAGE_SIZE); 1152 if (IS_ERR(pool)) 1153 return PTR_ERR(pool); 1154 1155 cmd = i915_gem_object_pin_map(pool->obj, 1156 cache->has_llc ? 1157 I915_MAP_FORCE_WB : 1158 I915_MAP_FORCE_WC); 1159 if (IS_ERR(cmd)) { 1160 err = PTR_ERR(cmd); 1161 goto out_pool; 1162 } 1163 1164 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1165 if (IS_ERR(batch)) { 1166 err = PTR_ERR(batch); 1167 goto err_unmap; 1168 } 1169 1170 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1171 if (err) 1172 goto err_unmap; 1173 1174 rq = i915_request_create(eb->context); 1175 if (IS_ERR(rq)) { 1176 err = PTR_ERR(rq); 1177 goto err_unpin; 1178 } 1179 1180 err = intel_engine_pool_mark_active(pool, rq); 1181 if (err) 1182 goto err_request; 1183 1184 err = reloc_move_to_gpu(rq, vma); 1185 if (err) 1186 goto err_request; 1187 1188 err = eb->engine->emit_bb_start(rq, 1189 batch->node.start, PAGE_SIZE, 1190 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1191 if (err) 1192 goto skip_request; 1193 1194 i915_vma_lock(batch); 1195 err = i915_request_await_object(rq, batch->obj, false); 1196 if (err == 0) 1197 err = i915_vma_move_to_active(batch, rq, 0); 1198 i915_vma_unlock(batch); 1199 if (err) 1200 goto skip_request; 1201 1202 rq->batch = batch; 1203 i915_vma_unpin(batch); 1204 1205 cache->rq = rq; 1206 cache->rq_cmd = cmd; 1207 cache->rq_size = 0; 1208 1209 /* Return with batch mapping (cmd) still pinned */ 1210 goto out_pool; 1211 1212 skip_request: 1213 i915_request_set_error_once(rq, err); 1214 err_request: 1215 i915_request_add(rq); 1216 err_unpin: 1217 i915_vma_unpin(batch); 1218 err_unmap: 1219 i915_gem_object_unpin_map(pool->obj); 1220 out_pool: 1221 intel_engine_pool_put(pool); 1222 return err; 1223 } 1224 1225 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1226 struct i915_vma *vma, 1227 unsigned int len) 1228 { 1229 struct reloc_cache *cache = &eb->reloc_cache; 1230 u32 *cmd; 1231 1232 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1233 reloc_gpu_flush(cache); 1234 1235 if (unlikely(!cache->rq)) { 1236 int err; 1237 1238 if (!intel_engine_can_store_dword(eb->engine)) 1239 return ERR_PTR(-ENODEV); 1240 1241 err = __reloc_gpu_alloc(eb, vma, len); 1242 if (unlikely(err)) 1243 return ERR_PTR(err); 1244 } 1245 1246 cmd = cache->rq_cmd + cache->rq_size; 1247 cache->rq_size += len; 1248 1249 return cmd; 1250 } 1251 1252 static u64 1253 relocate_entry(struct i915_vma *vma, 1254 const struct drm_i915_gem_relocation_entry *reloc, 1255 struct i915_execbuffer *eb, 1256 const struct i915_vma *target) 1257 { 1258 u64 offset = reloc->offset; 1259 u64 target_offset = relocation_target(reloc, target); 1260 bool wide = eb->reloc_cache.use_64bit_reloc; 1261 void *vaddr; 1262 1263 if (!eb->reloc_cache.vaddr && 1264 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1265 !dma_resv_test_signaled_rcu(vma->resv, true))) { 1266 const unsigned int gen = eb->reloc_cache.gen; 1267 unsigned int len; 1268 u32 *batch; 1269 u64 addr; 1270 1271 if (wide) 1272 len = offset & 7 ? 8 : 5; 1273 else if (gen >= 4) 1274 len = 4; 1275 else 1276 len = 3; 1277 1278 batch = reloc_gpu(eb, vma, len); 1279 if (IS_ERR(batch)) 1280 goto repeat; 1281 1282 addr = gen8_canonical_addr(vma->node.start + offset); 1283 if (wide) { 1284 if (offset & 7) { 1285 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1286 *batch++ = lower_32_bits(addr); 1287 *batch++ = upper_32_bits(addr); 1288 *batch++ = lower_32_bits(target_offset); 1289 1290 addr = gen8_canonical_addr(addr + 4); 1291 1292 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1293 *batch++ = lower_32_bits(addr); 1294 *batch++ = upper_32_bits(addr); 1295 *batch++ = upper_32_bits(target_offset); 1296 } else { 1297 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1298 *batch++ = lower_32_bits(addr); 1299 *batch++ = upper_32_bits(addr); 1300 *batch++ = lower_32_bits(target_offset); 1301 *batch++ = upper_32_bits(target_offset); 1302 } 1303 } else if (gen >= 6) { 1304 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1305 *batch++ = 0; 1306 *batch++ = addr; 1307 *batch++ = target_offset; 1308 } else if (gen >= 4) { 1309 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1310 *batch++ = 0; 1311 *batch++ = addr; 1312 *batch++ = target_offset; 1313 } else { 1314 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1315 *batch++ = addr; 1316 *batch++ = target_offset; 1317 } 1318 1319 goto out; 1320 } 1321 1322 repeat: 1323 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1324 if (IS_ERR(vaddr)) 1325 return PTR_ERR(vaddr); 1326 1327 clflush_write32(vaddr + offset_in_page(offset), 1328 lower_32_bits(target_offset), 1329 eb->reloc_cache.vaddr); 1330 1331 if (wide) { 1332 offset += sizeof(u32); 1333 target_offset >>= 32; 1334 wide = false; 1335 goto repeat; 1336 } 1337 1338 out: 1339 return target->node.start | UPDATE; 1340 } 1341 1342 static u64 1343 eb_relocate_entry(struct i915_execbuffer *eb, 1344 struct eb_vma *ev, 1345 const struct drm_i915_gem_relocation_entry *reloc) 1346 { 1347 struct drm_i915_private *i915 = eb->i915; 1348 struct eb_vma *target; 1349 int err; 1350 1351 /* we've already hold a reference to all valid objects */ 1352 target = eb_get_vma(eb, reloc->target_handle); 1353 if (unlikely(!target)) 1354 return -ENOENT; 1355 1356 /* Validate that the target is in a valid r/w GPU domain */ 1357 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1358 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1359 "target %d offset %d " 1360 "read %08x write %08x", 1361 reloc->target_handle, 1362 (int) reloc->offset, 1363 reloc->read_domains, 1364 reloc->write_domain); 1365 return -EINVAL; 1366 } 1367 if (unlikely((reloc->write_domain | reloc->read_domains) 1368 & ~I915_GEM_GPU_DOMAINS)) { 1369 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1370 "target %d offset %d " 1371 "read %08x write %08x", 1372 reloc->target_handle, 1373 (int) reloc->offset, 1374 reloc->read_domains, 1375 reloc->write_domain); 1376 return -EINVAL; 1377 } 1378 1379 if (reloc->write_domain) { 1380 target->flags |= EXEC_OBJECT_WRITE; 1381 1382 /* 1383 * Sandybridge PPGTT errata: We need a global gtt mapping 1384 * for MI and pipe_control writes because the gpu doesn't 1385 * properly redirect them through the ppgtt for non_secure 1386 * batchbuffers. 1387 */ 1388 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1389 IS_GEN(eb->i915, 6)) { 1390 err = i915_vma_bind(target->vma, 1391 target->vma->obj->cache_level, 1392 PIN_GLOBAL, NULL); 1393 if (WARN_ONCE(err, 1394 "Unexpected failure to bind target VMA!")) 1395 return err; 1396 } 1397 } 1398 1399 /* 1400 * If the relocation already has the right value in it, no 1401 * more work needs to be done. 1402 */ 1403 if (!DBG_FORCE_RELOC && 1404 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1405 return 0; 1406 1407 /* Check that the relocation address is valid... */ 1408 if (unlikely(reloc->offset > 1409 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1410 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1411 "target %d offset %d size %d.\n", 1412 reloc->target_handle, 1413 (int)reloc->offset, 1414 (int)ev->vma->size); 1415 return -EINVAL; 1416 } 1417 if (unlikely(reloc->offset & 3)) { 1418 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1419 "target %d offset %d.\n", 1420 reloc->target_handle, 1421 (int)reloc->offset); 1422 return -EINVAL; 1423 } 1424 1425 /* 1426 * If we write into the object, we need to force the synchronisation 1427 * barrier, either with an asynchronous clflush or if we executed the 1428 * patching using the GPU (though that should be serialised by the 1429 * timeline). To be completely sure, and since we are required to 1430 * do relocations we are already stalling, disable the user's opt 1431 * out of our synchronisation. 1432 */ 1433 ev->flags &= ~EXEC_OBJECT_ASYNC; 1434 1435 /* and update the user's relocation entry */ 1436 return relocate_entry(ev->vma, reloc, eb, target->vma); 1437 } 1438 1439 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1440 { 1441 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1442 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1443 struct drm_i915_gem_relocation_entry __user *urelocs; 1444 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1445 unsigned int remain; 1446 1447 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1448 remain = entry->relocation_count; 1449 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1450 return -EINVAL; 1451 1452 /* 1453 * We must check that the entire relocation array is safe 1454 * to read. However, if the array is not writable the user loses 1455 * the updated relocation values. 1456 */ 1457 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1458 return -EFAULT; 1459 1460 do { 1461 struct drm_i915_gem_relocation_entry *r = stack; 1462 unsigned int count = 1463 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1464 unsigned int copied; 1465 1466 /* 1467 * This is the fast path and we cannot handle a pagefault 1468 * whilst holding the struct mutex lest the user pass in the 1469 * relocations contained within a mmaped bo. For in such a case 1470 * we, the page fault handler would call i915_gem_fault() and 1471 * we would try to acquire the struct mutex again. Obviously 1472 * this is bad and so lockdep complains vehemently. 1473 */ 1474 copied = __copy_from_user(r, urelocs, count * sizeof(r[0])); 1475 if (unlikely(copied)) { 1476 remain = -EFAULT; 1477 goto out; 1478 } 1479 1480 remain -= count; 1481 do { 1482 u64 offset = eb_relocate_entry(eb, ev, r); 1483 1484 if (likely(offset == 0)) { 1485 } else if ((s64)offset < 0) { 1486 remain = (int)offset; 1487 goto out; 1488 } else { 1489 /* 1490 * Note that reporting an error now 1491 * leaves everything in an inconsistent 1492 * state as we have *already* changed 1493 * the relocation value inside the 1494 * object. As we have not changed the 1495 * reloc.presumed_offset or will not 1496 * change the execobject.offset, on the 1497 * call we may not rewrite the value 1498 * inside the object, leaving it 1499 * dangling and causing a GPU hang. Unless 1500 * userspace dynamically rebuilds the 1501 * relocations on each execbuf rather than 1502 * presume a static tree. 1503 * 1504 * We did previously check if the relocations 1505 * were writable (access_ok), an error now 1506 * would be a strange race with mprotect, 1507 * having already demonstrated that we 1508 * can read from this userspace address. 1509 */ 1510 offset = gen8_canonical_addr(offset & ~UPDATE); 1511 __put_user(offset, 1512 &urelocs[r - stack].presumed_offset); 1513 } 1514 } while (r++, --count); 1515 urelocs += ARRAY_SIZE(stack); 1516 } while (remain); 1517 out: 1518 reloc_cache_reset(&eb->reloc_cache); 1519 return remain; 1520 } 1521 1522 static int eb_relocate(struct i915_execbuffer *eb) 1523 { 1524 int err; 1525 1526 mutex_lock(&eb->gem_context->mutex); 1527 err = eb_lookup_vmas(eb); 1528 mutex_unlock(&eb->gem_context->mutex); 1529 if (err) 1530 return err; 1531 1532 if (!list_empty(&eb->unbound)) { 1533 err = eb_reserve(eb); 1534 if (err) 1535 return err; 1536 } 1537 1538 /* The objects are in their final locations, apply the relocations. */ 1539 if (eb->args->flags & __EXEC_HAS_RELOC) { 1540 struct eb_vma *ev; 1541 1542 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1543 err = eb_relocate_vma(eb, ev); 1544 if (err) 1545 return err; 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1553 { 1554 const unsigned int count = eb->buffer_count; 1555 struct ww_acquire_ctx acquire; 1556 unsigned int i; 1557 int err = 0; 1558 1559 ww_acquire_init(&acquire, &reservation_ww_class); 1560 1561 for (i = 0; i < count; i++) { 1562 struct eb_vma *ev = &eb->vma[i]; 1563 struct i915_vma *vma = ev->vma; 1564 1565 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1566 if (err == -EDEADLK) { 1567 GEM_BUG_ON(i == 0); 1568 do { 1569 int j = i - 1; 1570 1571 ww_mutex_unlock(&eb->vma[j].vma->resv->lock); 1572 1573 swap(eb->vma[i], eb->vma[j]); 1574 } while (--i); 1575 1576 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1577 &acquire); 1578 } 1579 if (err) 1580 break; 1581 } 1582 ww_acquire_done(&acquire); 1583 1584 while (i--) { 1585 struct eb_vma *ev = &eb->vma[i]; 1586 struct i915_vma *vma = ev->vma; 1587 unsigned int flags = ev->flags; 1588 struct drm_i915_gem_object *obj = vma->obj; 1589 1590 assert_vma_held(vma); 1591 1592 if (flags & EXEC_OBJECT_CAPTURE) { 1593 struct i915_capture_list *capture; 1594 1595 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1596 if (capture) { 1597 capture->next = eb->request->capture_list; 1598 capture->vma = vma; 1599 eb->request->capture_list = capture; 1600 } 1601 } 1602 1603 /* 1604 * If the GPU is not _reading_ through the CPU cache, we need 1605 * to make sure that any writes (both previous GPU writes from 1606 * before a change in snooping levels and normal CPU writes) 1607 * caught in that cache are flushed to main memory. 1608 * 1609 * We want to say 1610 * obj->cache_dirty && 1611 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1612 * but gcc's optimiser doesn't handle that as well and emits 1613 * two jumps instead of one. Maybe one day... 1614 */ 1615 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1616 if (i915_gem_clflush_object(obj, 0)) 1617 flags &= ~EXEC_OBJECT_ASYNC; 1618 } 1619 1620 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1621 err = i915_request_await_object 1622 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1623 } 1624 1625 if (err == 0) 1626 err = i915_vma_move_to_active(vma, eb->request, flags); 1627 1628 i915_vma_unlock(vma); 1629 1630 __eb_unreserve_vma(vma, flags); 1631 i915_vma_put(vma); 1632 1633 ev->vma = NULL; 1634 } 1635 ww_acquire_fini(&acquire); 1636 1637 if (unlikely(err)) 1638 goto err_skip; 1639 1640 eb->exec = NULL; 1641 1642 /* Unconditionally flush any chipset caches (for streaming writes). */ 1643 intel_gt_chipset_flush(eb->engine->gt); 1644 return 0; 1645 1646 err_skip: 1647 i915_request_set_error_once(eb->request, err); 1648 return err; 1649 } 1650 1651 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1652 { 1653 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1654 return -EINVAL; 1655 1656 /* Kernel clipping was a DRI1 misfeature */ 1657 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1658 if (exec->num_cliprects || exec->cliprects_ptr) 1659 return -EINVAL; 1660 } 1661 1662 if (exec->DR4 == 0xffffffff) { 1663 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1664 exec->DR4 = 0; 1665 } 1666 if (exec->DR1 || exec->DR4) 1667 return -EINVAL; 1668 1669 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1670 return -EINVAL; 1671 1672 return 0; 1673 } 1674 1675 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1676 { 1677 u32 *cs; 1678 int i; 1679 1680 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1681 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 1682 return -EINVAL; 1683 } 1684 1685 cs = intel_ring_begin(rq, 4 * 2 + 2); 1686 if (IS_ERR(cs)) 1687 return PTR_ERR(cs); 1688 1689 *cs++ = MI_LOAD_REGISTER_IMM(4); 1690 for (i = 0; i < 4; i++) { 1691 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1692 *cs++ = 0; 1693 } 1694 *cs++ = MI_NOOP; 1695 intel_ring_advance(rq, cs); 1696 1697 return 0; 1698 } 1699 1700 static struct i915_vma * 1701 shadow_batch_pin(struct drm_i915_gem_object *obj, 1702 struct i915_address_space *vm, 1703 unsigned int flags) 1704 { 1705 struct i915_vma *vma; 1706 int err; 1707 1708 vma = i915_vma_instance(obj, vm, NULL); 1709 if (IS_ERR(vma)) 1710 return vma; 1711 1712 err = i915_vma_pin(vma, 0, 0, flags); 1713 if (err) 1714 return ERR_PTR(err); 1715 1716 return vma; 1717 } 1718 1719 struct eb_parse_work { 1720 struct dma_fence_work base; 1721 struct intel_engine_cs *engine; 1722 struct i915_vma *batch; 1723 struct i915_vma *shadow; 1724 struct i915_vma *trampoline; 1725 unsigned int batch_offset; 1726 unsigned int batch_length; 1727 }; 1728 1729 static int __eb_parse(struct dma_fence_work *work) 1730 { 1731 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1732 1733 return intel_engine_cmd_parser(pw->engine, 1734 pw->batch, 1735 pw->batch_offset, 1736 pw->batch_length, 1737 pw->shadow, 1738 pw->trampoline); 1739 } 1740 1741 static void __eb_parse_release(struct dma_fence_work *work) 1742 { 1743 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1744 1745 if (pw->trampoline) 1746 i915_active_release(&pw->trampoline->active); 1747 i915_active_release(&pw->shadow->active); 1748 i915_active_release(&pw->batch->active); 1749 } 1750 1751 static const struct dma_fence_work_ops eb_parse_ops = { 1752 .name = "eb_parse", 1753 .work = __eb_parse, 1754 .release = __eb_parse_release, 1755 }; 1756 1757 static int eb_parse_pipeline(struct i915_execbuffer *eb, 1758 struct i915_vma *shadow, 1759 struct i915_vma *trampoline) 1760 { 1761 struct eb_parse_work *pw; 1762 int err; 1763 1764 pw = kzalloc(sizeof(*pw), GFP_KERNEL); 1765 if (!pw) 1766 return -ENOMEM; 1767 1768 err = i915_active_acquire(&eb->batch->vma->active); 1769 if (err) 1770 goto err_free; 1771 1772 err = i915_active_acquire(&shadow->active); 1773 if (err) 1774 goto err_batch; 1775 1776 if (trampoline) { 1777 err = i915_active_acquire(&trampoline->active); 1778 if (err) 1779 goto err_shadow; 1780 } 1781 1782 dma_fence_work_init(&pw->base, &eb_parse_ops); 1783 1784 pw->engine = eb->engine; 1785 pw->batch = eb->batch->vma; 1786 pw->batch_offset = eb->batch_start_offset; 1787 pw->batch_length = eb->batch_len; 1788 pw->shadow = shadow; 1789 pw->trampoline = trampoline; 1790 1791 err = dma_resv_lock_interruptible(pw->batch->resv, NULL); 1792 if (err) 1793 goto err_trampoline; 1794 1795 err = dma_resv_reserve_shared(pw->batch->resv, 1); 1796 if (err) 1797 goto err_batch_unlock; 1798 1799 /* Wait for all writes (and relocs) into the batch to complete */ 1800 err = i915_sw_fence_await_reservation(&pw->base.chain, 1801 pw->batch->resv, NULL, false, 1802 0, I915_FENCE_GFP); 1803 if (err < 0) 1804 goto err_batch_unlock; 1805 1806 /* Keep the batch alive and unwritten as we parse */ 1807 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); 1808 1809 dma_resv_unlock(pw->batch->resv); 1810 1811 /* Force execution to wait for completion of the parser */ 1812 dma_resv_lock(shadow->resv, NULL); 1813 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); 1814 dma_resv_unlock(shadow->resv); 1815 1816 dma_fence_work_commit(&pw->base); 1817 return 0; 1818 1819 err_batch_unlock: 1820 dma_resv_unlock(pw->batch->resv); 1821 err_trampoline: 1822 if (trampoline) 1823 i915_active_release(&trampoline->active); 1824 err_shadow: 1825 i915_active_release(&shadow->active); 1826 err_batch: 1827 i915_active_release(&eb->batch->vma->active); 1828 err_free: 1829 kfree(pw); 1830 return err; 1831 } 1832 1833 static int eb_parse(struct i915_execbuffer *eb) 1834 { 1835 struct drm_i915_private *i915 = eb->i915; 1836 struct intel_engine_pool_node *pool; 1837 struct i915_vma *shadow, *trampoline; 1838 unsigned int len; 1839 int err; 1840 1841 if (!eb_use_cmdparser(eb)) 1842 return 0; 1843 1844 len = eb->batch_len; 1845 if (!CMDPARSER_USES_GGTT(eb->i915)) { 1846 /* 1847 * ppGTT backed shadow buffers must be mapped RO, to prevent 1848 * post-scan tampering 1849 */ 1850 if (!eb->context->vm->has_read_only) { 1851 drm_dbg(&i915->drm, 1852 "Cannot prevent post-scan tampering without RO capable vm\n"); 1853 return -EINVAL; 1854 } 1855 } else { 1856 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 1857 } 1858 1859 pool = intel_engine_get_pool(eb->engine, len); 1860 if (IS_ERR(pool)) 1861 return PTR_ERR(pool); 1862 1863 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER); 1864 if (IS_ERR(shadow)) { 1865 err = PTR_ERR(shadow); 1866 goto err; 1867 } 1868 i915_gem_object_set_readonly(shadow->obj); 1869 1870 trampoline = NULL; 1871 if (CMDPARSER_USES_GGTT(eb->i915)) { 1872 trampoline = shadow; 1873 1874 shadow = shadow_batch_pin(pool->obj, 1875 &eb->engine->gt->ggtt->vm, 1876 PIN_GLOBAL); 1877 if (IS_ERR(shadow)) { 1878 err = PTR_ERR(shadow); 1879 shadow = trampoline; 1880 goto err_shadow; 1881 } 1882 1883 eb->batch_flags |= I915_DISPATCH_SECURE; 1884 } 1885 1886 err = eb_parse_pipeline(eb, shadow, trampoline); 1887 if (err) 1888 goto err_trampoline; 1889 1890 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow); 1891 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN; 1892 eb->batch = &eb->vma[eb->buffer_count++]; 1893 1894 eb->trampoline = trampoline; 1895 eb->batch_start_offset = 0; 1896 1897 shadow->private = pool; 1898 return 0; 1899 1900 err_trampoline: 1901 if (trampoline) 1902 i915_vma_unpin(trampoline); 1903 err_shadow: 1904 i915_vma_unpin(shadow); 1905 err: 1906 intel_engine_pool_put(pool); 1907 return err; 1908 } 1909 1910 static void 1911 add_to_client(struct i915_request *rq, struct drm_file *file) 1912 { 1913 struct drm_i915_file_private *file_priv = file->driver_priv; 1914 1915 rq->file_priv = file_priv; 1916 1917 spin_lock(&file_priv->mm.lock); 1918 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 1919 spin_unlock(&file_priv->mm.lock); 1920 } 1921 1922 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 1923 { 1924 int err; 1925 1926 err = eb_move_to_gpu(eb); 1927 if (err) 1928 return err; 1929 1930 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 1931 err = i915_reset_gen7_sol_offsets(eb->request); 1932 if (err) 1933 return err; 1934 } 1935 1936 /* 1937 * After we completed waiting for other engines (using HW semaphores) 1938 * then we can signal that this request/batch is ready to run. This 1939 * allows us to determine if the batch is still waiting on the GPU 1940 * or actually running by checking the breadcrumb. 1941 */ 1942 if (eb->engine->emit_init_breadcrumb) { 1943 err = eb->engine->emit_init_breadcrumb(eb->request); 1944 if (err) 1945 return err; 1946 } 1947 1948 err = eb->engine->emit_bb_start(eb->request, 1949 batch->node.start + 1950 eb->batch_start_offset, 1951 eb->batch_len, 1952 eb->batch_flags); 1953 if (err) 1954 return err; 1955 1956 if (eb->trampoline) { 1957 GEM_BUG_ON(eb->batch_start_offset); 1958 err = eb->engine->emit_bb_start(eb->request, 1959 eb->trampoline->node.start + 1960 eb->batch_len, 1961 0, 0); 1962 if (err) 1963 return err; 1964 } 1965 1966 if (intel_context_nopreempt(eb->context)) 1967 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 1968 1969 return 0; 1970 } 1971 1972 static int num_vcs_engines(const struct drm_i915_private *i915) 1973 { 1974 return hweight64(INTEL_INFO(i915)->engine_mask & 1975 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); 1976 } 1977 1978 /* 1979 * Find one BSD ring to dispatch the corresponding BSD command. 1980 * The engine index is returned. 1981 */ 1982 static unsigned int 1983 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 1984 struct drm_file *file) 1985 { 1986 struct drm_i915_file_private *file_priv = file->driver_priv; 1987 1988 /* Check whether the file_priv has already selected one ring. */ 1989 if ((int)file_priv->bsd_engine < 0) 1990 file_priv->bsd_engine = 1991 get_random_int() % num_vcs_engines(dev_priv); 1992 1993 return file_priv->bsd_engine; 1994 } 1995 1996 static const enum intel_engine_id user_ring_map[] = { 1997 [I915_EXEC_DEFAULT] = RCS0, 1998 [I915_EXEC_RENDER] = RCS0, 1999 [I915_EXEC_BLT] = BCS0, 2000 [I915_EXEC_BSD] = VCS0, 2001 [I915_EXEC_VEBOX] = VECS0 2002 }; 2003 2004 static struct i915_request *eb_throttle(struct intel_context *ce) 2005 { 2006 struct intel_ring *ring = ce->ring; 2007 struct intel_timeline *tl = ce->timeline; 2008 struct i915_request *rq; 2009 2010 /* 2011 * Completely unscientific finger-in-the-air estimates for suitable 2012 * maximum user request size (to avoid blocking) and then backoff. 2013 */ 2014 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2015 return NULL; 2016 2017 /* 2018 * Find a request that after waiting upon, there will be at least half 2019 * the ring available. The hysteresis allows us to compete for the 2020 * shared ring and should mean that we sleep less often prior to 2021 * claiming our resources, but not so long that the ring completely 2022 * drains before we can submit our next request. 2023 */ 2024 list_for_each_entry(rq, &tl->requests, link) { 2025 if (rq->ring != ring) 2026 continue; 2027 2028 if (__intel_ring_space(rq->postfix, 2029 ring->emit, ring->size) > ring->size / 2) 2030 break; 2031 } 2032 if (&rq->link == &tl->requests) 2033 return NULL; /* weird, we will check again later for real */ 2034 2035 return i915_request_get(rq); 2036 } 2037 2038 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2039 { 2040 struct intel_timeline *tl; 2041 struct i915_request *rq; 2042 int err; 2043 2044 /* 2045 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2046 * EIO if the GPU is already wedged. 2047 */ 2048 err = intel_gt_terminally_wedged(ce->engine->gt); 2049 if (err) 2050 return err; 2051 2052 if (unlikely(intel_context_is_banned(ce))) 2053 return -EIO; 2054 2055 /* 2056 * Pinning the contexts may generate requests in order to acquire 2057 * GGTT space, so do this first before we reserve a seqno for 2058 * ourselves. 2059 */ 2060 err = intel_context_pin(ce); 2061 if (err) 2062 return err; 2063 2064 /* 2065 * Take a local wakeref for preparing to dispatch the execbuf as 2066 * we expect to access the hardware fairly frequently in the 2067 * process, and require the engine to be kept awake between accesses. 2068 * Upon dispatch, we acquire another prolonged wakeref that we hold 2069 * until the timeline is idle, which in turn releases the wakeref 2070 * taken on the engine, and the parent device. 2071 */ 2072 tl = intel_context_timeline_lock(ce); 2073 if (IS_ERR(tl)) { 2074 err = PTR_ERR(tl); 2075 goto err_unpin; 2076 } 2077 2078 intel_context_enter(ce); 2079 rq = eb_throttle(ce); 2080 2081 intel_context_timeline_unlock(tl); 2082 2083 if (rq) { 2084 #ifdef __linux__ 2085 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2086 #else 2087 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 2088 #endif 2089 long timeout; 2090 2091 timeout = MAX_SCHEDULE_TIMEOUT; 2092 if (nonblock) 2093 timeout = 0; 2094 2095 timeout = i915_request_wait(rq, 2096 I915_WAIT_INTERRUPTIBLE, 2097 timeout); 2098 i915_request_put(rq); 2099 2100 if (timeout < 0) { 2101 err = nonblock ? -EWOULDBLOCK : timeout; 2102 goto err_exit; 2103 } 2104 } 2105 2106 eb->engine = ce->engine; 2107 eb->context = ce; 2108 return 0; 2109 2110 err_exit: 2111 mutex_lock(&tl->mutex); 2112 intel_context_exit(ce); 2113 intel_context_timeline_unlock(tl); 2114 err_unpin: 2115 intel_context_unpin(ce); 2116 return err; 2117 } 2118 2119 static void eb_unpin_engine(struct i915_execbuffer *eb) 2120 { 2121 struct intel_context *ce = eb->context; 2122 struct intel_timeline *tl = ce->timeline; 2123 2124 mutex_lock(&tl->mutex); 2125 intel_context_exit(ce); 2126 mutex_unlock(&tl->mutex); 2127 2128 intel_context_unpin(ce); 2129 } 2130 2131 static unsigned int 2132 eb_select_legacy_ring(struct i915_execbuffer *eb, 2133 struct drm_file *file, 2134 struct drm_i915_gem_execbuffer2 *args) 2135 { 2136 struct drm_i915_private *i915 = eb->i915; 2137 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2138 2139 if (user_ring_id != I915_EXEC_BSD && 2140 (args->flags & I915_EXEC_BSD_MASK)) { 2141 drm_dbg(&i915->drm, 2142 "execbuf with non bsd ring but with invalid " 2143 "bsd dispatch flags: %d\n", (int)(args->flags)); 2144 return -1; 2145 } 2146 2147 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2148 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2149 2150 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2151 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2152 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2153 bsd_idx <= I915_EXEC_BSD_RING2) { 2154 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2155 bsd_idx--; 2156 } else { 2157 drm_dbg(&i915->drm, 2158 "execbuf with unknown bsd ring: %u\n", 2159 bsd_idx); 2160 return -1; 2161 } 2162 2163 return _VCS(bsd_idx); 2164 } 2165 2166 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2167 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2168 user_ring_id); 2169 return -1; 2170 } 2171 2172 return user_ring_map[user_ring_id]; 2173 } 2174 2175 static int 2176 eb_pin_engine(struct i915_execbuffer *eb, 2177 struct drm_file *file, 2178 struct drm_i915_gem_execbuffer2 *args) 2179 { 2180 struct intel_context *ce; 2181 unsigned int idx; 2182 int err; 2183 2184 if (i915_gem_context_user_engines(eb->gem_context)) 2185 idx = args->flags & I915_EXEC_RING_MASK; 2186 else 2187 idx = eb_select_legacy_ring(eb, file, args); 2188 2189 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2190 if (IS_ERR(ce)) 2191 return PTR_ERR(ce); 2192 2193 err = __eb_pin_engine(eb, ce); 2194 intel_context_put(ce); 2195 2196 return err; 2197 } 2198 2199 static void 2200 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2201 { 2202 while (n--) 2203 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2204 kvfree(fences); 2205 } 2206 2207 static struct drm_syncobj ** 2208 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2209 struct drm_file *file) 2210 { 2211 const unsigned long nfences = args->num_cliprects; 2212 struct drm_i915_gem_exec_fence __user *user; 2213 struct drm_syncobj **fences; 2214 unsigned long n; 2215 int err; 2216 2217 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2218 return NULL; 2219 2220 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2221 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2222 if (nfences > min_t(unsigned long, 2223 ULONG_MAX / sizeof(*user), 2224 SIZE_MAX / sizeof(*fences))) 2225 return ERR_PTR(-EINVAL); 2226 2227 user = u64_to_user_ptr(args->cliprects_ptr); 2228 if (!access_ok(user, nfences * sizeof(*user))) 2229 return ERR_PTR(-EFAULT); 2230 2231 fences = kvmalloc_array(nfences, sizeof(*fences), 2232 __GFP_NOWARN | GFP_KERNEL); 2233 if (!fences) 2234 return ERR_PTR(-ENOMEM); 2235 2236 for (n = 0; n < nfences; n++) { 2237 struct drm_i915_gem_exec_fence fence; 2238 struct drm_syncobj *syncobj; 2239 2240 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2241 err = -EFAULT; 2242 goto err; 2243 } 2244 2245 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2246 err = -EINVAL; 2247 goto err; 2248 } 2249 2250 syncobj = drm_syncobj_find(file, fence.handle); 2251 if (!syncobj) { 2252 DRM_DEBUG("Invalid syncobj handle provided\n"); 2253 err = -ENOENT; 2254 goto err; 2255 } 2256 2257 #ifdef notyet 2258 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2259 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2260 #endif 2261 2262 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2263 } 2264 2265 return fences; 2266 2267 err: 2268 __free_fence_array(fences, n); 2269 return ERR_PTR(err); 2270 } 2271 2272 static void 2273 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2274 struct drm_syncobj **fences) 2275 { 2276 if (fences) 2277 __free_fence_array(fences, args->num_cliprects); 2278 } 2279 2280 static int 2281 await_fence_array(struct i915_execbuffer *eb, 2282 struct drm_syncobj **fences) 2283 { 2284 const unsigned int nfences = eb->args->num_cliprects; 2285 unsigned int n; 2286 int err; 2287 2288 for (n = 0; n < nfences; n++) { 2289 struct drm_syncobj *syncobj; 2290 struct dma_fence *fence; 2291 unsigned int flags; 2292 2293 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2294 if (!(flags & I915_EXEC_FENCE_WAIT)) 2295 continue; 2296 2297 fence = drm_syncobj_fence_get(syncobj); 2298 if (!fence) 2299 return -EINVAL; 2300 2301 err = i915_request_await_dma_fence(eb->request, fence); 2302 dma_fence_put(fence); 2303 if (err < 0) 2304 return err; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static void 2311 signal_fence_array(struct i915_execbuffer *eb, 2312 struct drm_syncobj **fences) 2313 { 2314 const unsigned int nfences = eb->args->num_cliprects; 2315 struct dma_fence * const fence = &eb->request->fence; 2316 unsigned int n; 2317 2318 for (n = 0; n < nfences; n++) { 2319 struct drm_syncobj *syncobj; 2320 unsigned int flags; 2321 2322 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2323 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2324 continue; 2325 2326 drm_syncobj_replace_fence(syncobj, fence); 2327 } 2328 } 2329 2330 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 2331 { 2332 struct i915_request *rq, *rn; 2333 2334 list_for_each_entry_safe(rq, rn, &tl->requests, link) 2335 if (rq == end || !i915_request_retire(rq)) 2336 break; 2337 } 2338 2339 static void eb_request_add(struct i915_execbuffer *eb) 2340 { 2341 struct i915_request *rq = eb->request; 2342 struct intel_timeline * const tl = i915_request_timeline(rq); 2343 struct i915_sched_attr attr = {}; 2344 struct i915_request *prev; 2345 2346 lockdep_assert_held(&tl->mutex); 2347 lockdep_unpin_lock(&tl->mutex, rq->cookie); 2348 2349 trace_i915_request_add(rq); 2350 2351 prev = __i915_request_commit(rq); 2352 2353 /* Check that the context wasn't destroyed before submission */ 2354 if (likely(!intel_context_is_closed(eb->context))) { 2355 attr = eb->gem_context->sched; 2356 2357 /* 2358 * Boost actual workloads past semaphores! 2359 * 2360 * With semaphores we spin on one engine waiting for another, 2361 * simply to reduce the latency of starting our work when 2362 * the signaler completes. However, if there is any other 2363 * work that we could be doing on this engine instead, that 2364 * is better utilisation and will reduce the overall duration 2365 * of the current work. To avoid PI boosting a semaphore 2366 * far in the distance past over useful work, we keep a history 2367 * of any semaphore use along our dependency chain. 2368 */ 2369 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 2370 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 2371 2372 /* 2373 * Boost priorities to new clients (new request flows). 2374 * 2375 * Allow interactive/synchronous clients to jump ahead of 2376 * the bulk clients. (FQ_CODEL) 2377 */ 2378 if (list_empty(&rq->sched.signalers_list)) 2379 attr.priority |= I915_PRIORITY_WAIT; 2380 } else { 2381 /* Serialise with context_close via the add_to_timeline */ 2382 i915_request_set_error_once(rq, -ENOENT); 2383 __i915_request_skip(rq); 2384 } 2385 2386 local_bh_disable(); 2387 __i915_request_queue(rq, &attr); 2388 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 2389 2390 /* Try to clean up the client's timeline after submitting the request */ 2391 if (prev) 2392 retire_requests(tl, prev); 2393 2394 mutex_unlock(&tl->mutex); 2395 } 2396 2397 static int 2398 i915_gem_do_execbuffer(struct drm_device *dev, 2399 struct drm_file *file, 2400 struct drm_i915_gem_execbuffer2 *args, 2401 struct drm_i915_gem_exec_object2 *exec, 2402 struct drm_syncobj **fences) 2403 { 2404 struct drm_i915_private *i915 = to_i915(dev); 2405 struct i915_execbuffer eb; 2406 struct dma_fence *in_fence = NULL; 2407 struct dma_fence *exec_fence = NULL; 2408 struct sync_file *out_fence = NULL; 2409 struct i915_vma *batch; 2410 int out_fence_fd = -1; 2411 int err; 2412 2413 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2414 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2415 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2416 2417 eb.i915 = i915; 2418 eb.file = file; 2419 eb.args = args; 2420 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2421 args->flags |= __EXEC_HAS_RELOC; 2422 2423 eb.exec = exec; 2424 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 2425 eb.vma[0].vma = NULL; 2426 2427 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2428 reloc_cache_init(&eb.reloc_cache, eb.i915); 2429 2430 eb.buffer_count = args->buffer_count; 2431 eb.batch_start_offset = args->batch_start_offset; 2432 eb.batch_len = args->batch_len; 2433 eb.trampoline = NULL; 2434 2435 eb.batch_flags = 0; 2436 if (args->flags & I915_EXEC_SECURE) { 2437 if (INTEL_GEN(i915) >= 11) 2438 return -ENODEV; 2439 2440 /* Return -EPERM to trigger fallback code on old binaries. */ 2441 if (!HAS_SECURE_BATCHES(i915)) 2442 return -EPERM; 2443 2444 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2445 return -EPERM; 2446 2447 eb.batch_flags |= I915_DISPATCH_SECURE; 2448 } 2449 if (args->flags & I915_EXEC_IS_PINNED) 2450 eb.batch_flags |= I915_DISPATCH_PINNED; 2451 2452 if (args->flags & I915_EXEC_FENCE_IN) { 2453 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2454 if (!in_fence) 2455 return -EINVAL; 2456 } 2457 2458 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2459 if (in_fence) { 2460 err = -EINVAL; 2461 goto err_in_fence; 2462 } 2463 2464 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2465 if (!exec_fence) { 2466 err = -EINVAL; 2467 goto err_in_fence; 2468 } 2469 } 2470 2471 if (args->flags & I915_EXEC_FENCE_OUT) { 2472 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2473 if (out_fence_fd < 0) { 2474 err = out_fence_fd; 2475 goto err_exec_fence; 2476 } 2477 } 2478 2479 err = eb_create(&eb); 2480 if (err) 2481 goto err_out_fence; 2482 2483 GEM_BUG_ON(!eb.lut_size); 2484 2485 err = eb_select_context(&eb); 2486 if (unlikely(err)) 2487 goto err_destroy; 2488 2489 err = eb_pin_engine(&eb, file, args); 2490 if (unlikely(err)) 2491 goto err_context; 2492 2493 err = eb_relocate(&eb); 2494 if (err) { 2495 /* 2496 * If the user expects the execobject.offset and 2497 * reloc.presumed_offset to be an exact match, 2498 * as for using NO_RELOC, then we cannot update 2499 * the execobject.offset until we have completed 2500 * relocation. 2501 */ 2502 args->flags &= ~__EXEC_HAS_RELOC; 2503 goto err_vma; 2504 } 2505 2506 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) { 2507 drm_dbg(&i915->drm, 2508 "Attempting to use self-modifying batch buffer\n"); 2509 err = -EINVAL; 2510 goto err_vma; 2511 } 2512 2513 if (range_overflows_t(u64, 2514 eb.batch_start_offset, eb.batch_len, 2515 eb.batch->vma->size)) { 2516 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 2517 err = -EINVAL; 2518 goto err_vma; 2519 } 2520 2521 if (eb.batch_len == 0) 2522 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset; 2523 2524 err = eb_parse(&eb); 2525 if (err) 2526 goto err_vma; 2527 2528 /* 2529 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2530 * batch" bit. Hence we need to pin secure batches into the global gtt. 2531 * hsw should have this fixed, but bdw mucks it up again. */ 2532 batch = eb.batch->vma; 2533 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2534 struct i915_vma *vma; 2535 2536 /* 2537 * So on first glance it looks freaky that we pin the batch here 2538 * outside of the reservation loop. But: 2539 * - The batch is already pinned into the relevant ppgtt, so we 2540 * already have the backing storage fully allocated. 2541 * - No other BO uses the global gtt (well contexts, but meh), 2542 * so we don't really have issues with multiple objects not 2543 * fitting due to fragmentation. 2544 * So this is actually safe. 2545 */ 2546 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0); 2547 if (IS_ERR(vma)) { 2548 err = PTR_ERR(vma); 2549 goto err_parse; 2550 } 2551 2552 batch = vma; 2553 } 2554 2555 /* All GPU relocation batches must be submitted prior to the user rq */ 2556 GEM_BUG_ON(eb.reloc_cache.rq); 2557 2558 /* Allocate a request for this batch buffer nice and early. */ 2559 eb.request = i915_request_create(eb.context); 2560 if (IS_ERR(eb.request)) { 2561 err = PTR_ERR(eb.request); 2562 goto err_batch_unpin; 2563 } 2564 2565 if (in_fence) { 2566 err = i915_request_await_dma_fence(eb.request, in_fence); 2567 if (err < 0) 2568 goto err_request; 2569 } 2570 2571 if (exec_fence) { 2572 err = i915_request_await_execution(eb.request, exec_fence, 2573 eb.engine->bond_execute); 2574 if (err < 0) 2575 goto err_request; 2576 } 2577 2578 if (fences) { 2579 err = await_fence_array(&eb, fences); 2580 if (err) 2581 goto err_request; 2582 } 2583 2584 if (out_fence_fd != -1) { 2585 out_fence = sync_file_create(&eb.request->fence); 2586 if (!out_fence) { 2587 err = -ENOMEM; 2588 goto err_request; 2589 } 2590 } 2591 2592 /* 2593 * Whilst this request exists, batch_obj will be on the 2594 * active_list, and so will hold the active reference. Only when this 2595 * request is retired will the the batch_obj be moved onto the 2596 * inactive_list and lose its active reference. Hence we do not need 2597 * to explicitly hold another reference here. 2598 */ 2599 eb.request->batch = batch; 2600 if (batch->private) 2601 intel_engine_pool_mark_active(batch->private, eb.request); 2602 2603 trace_i915_request_queue(eb.request, eb.batch_flags); 2604 err = eb_submit(&eb, batch); 2605 err_request: 2606 add_to_client(eb.request, file); 2607 i915_request_get(eb.request); 2608 eb_request_add(&eb); 2609 2610 if (fences) 2611 signal_fence_array(&eb, fences); 2612 2613 if (out_fence) { 2614 if (err == 0) { 2615 fd_install(out_fence_fd, out_fence->file); 2616 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2617 args->rsvd2 |= (u64)out_fence_fd << 32; 2618 out_fence_fd = -1; 2619 } else { 2620 fput(out_fence->file); 2621 } 2622 } 2623 i915_request_put(eb.request); 2624 2625 err_batch_unpin: 2626 if (eb.batch_flags & I915_DISPATCH_SECURE) 2627 i915_vma_unpin(batch); 2628 err_parse: 2629 if (batch->private) 2630 intel_engine_pool_put(batch->private); 2631 err_vma: 2632 if (eb.exec) 2633 eb_release_vmas(&eb); 2634 if (eb.trampoline) 2635 i915_vma_unpin(eb.trampoline); 2636 eb_unpin_engine(&eb); 2637 err_context: 2638 i915_gem_context_put(eb.gem_context); 2639 err_destroy: 2640 eb_destroy(&eb); 2641 err_out_fence: 2642 if (out_fence_fd != -1) 2643 put_unused_fd(out_fence_fd); 2644 err_exec_fence: 2645 dma_fence_put(exec_fence); 2646 err_in_fence: 2647 dma_fence_put(in_fence); 2648 return err; 2649 } 2650 2651 static size_t eb_element_size(void) 2652 { 2653 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 2654 } 2655 2656 static bool check_buffer_count(size_t count) 2657 { 2658 const size_t sz = eb_element_size(); 2659 2660 /* 2661 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2662 * array size (see eb_create()). Otherwise, we can accept an array as 2663 * large as can be addressed (though use large arrays at your peril)! 2664 */ 2665 2666 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2667 } 2668 2669 /* 2670 * Legacy execbuffer just creates an exec2 list from the original exec object 2671 * list array and passes it to the real function. 2672 */ 2673 int 2674 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2675 struct drm_file *file) 2676 { 2677 struct drm_i915_private *i915 = to_i915(dev); 2678 struct drm_i915_gem_execbuffer *args = data; 2679 struct drm_i915_gem_execbuffer2 exec2; 2680 struct drm_i915_gem_exec_object *exec_list = NULL; 2681 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2682 const size_t count = args->buffer_count; 2683 unsigned int i; 2684 int err; 2685 2686 if (!check_buffer_count(count)) { 2687 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 2688 return -EINVAL; 2689 } 2690 2691 exec2.buffers_ptr = args->buffers_ptr; 2692 exec2.buffer_count = args->buffer_count; 2693 exec2.batch_start_offset = args->batch_start_offset; 2694 exec2.batch_len = args->batch_len; 2695 exec2.DR1 = args->DR1; 2696 exec2.DR4 = args->DR4; 2697 exec2.num_cliprects = args->num_cliprects; 2698 exec2.cliprects_ptr = args->cliprects_ptr; 2699 exec2.flags = I915_EXEC_RENDER; 2700 i915_execbuffer2_set_context_id(exec2, 0); 2701 2702 err = i915_gem_check_execbuffer(&exec2); 2703 if (err) 2704 return err; 2705 2706 /* Copy in the exec list from userland */ 2707 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2708 __GFP_NOWARN | GFP_KERNEL); 2709 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2710 __GFP_NOWARN | GFP_KERNEL); 2711 if (exec_list == NULL || exec2_list == NULL) { 2712 drm_dbg(&i915->drm, 2713 "Failed to allocate exec list for %d buffers\n", 2714 args->buffer_count); 2715 kvfree(exec_list); 2716 kvfree(exec2_list); 2717 return -ENOMEM; 2718 } 2719 err = copy_from_user(exec_list, 2720 u64_to_user_ptr(args->buffers_ptr), 2721 sizeof(*exec_list) * count); 2722 if (err) { 2723 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 2724 args->buffer_count, err); 2725 kvfree(exec_list); 2726 kvfree(exec2_list); 2727 return -EFAULT; 2728 } 2729 2730 for (i = 0; i < args->buffer_count; i++) { 2731 exec2_list[i].handle = exec_list[i].handle; 2732 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2733 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2734 exec2_list[i].alignment = exec_list[i].alignment; 2735 exec2_list[i].offset = exec_list[i].offset; 2736 if (INTEL_GEN(to_i915(dev)) < 4) 2737 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2738 else 2739 exec2_list[i].flags = 0; 2740 } 2741 2742 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2743 if (exec2.flags & __EXEC_HAS_RELOC) { 2744 struct drm_i915_gem_exec_object __user *user_exec_list = 2745 u64_to_user_ptr(args->buffers_ptr); 2746 2747 /* Copy the new buffer offsets back to the user's exec list. */ 2748 for (i = 0; i < args->buffer_count; i++) { 2749 if (!(exec2_list[i].offset & UPDATE)) 2750 continue; 2751 2752 exec2_list[i].offset = 2753 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2754 exec2_list[i].offset &= PIN_OFFSET_MASK; 2755 if (__copy_to_user(&user_exec_list[i].offset, 2756 &exec2_list[i].offset, 2757 sizeof(user_exec_list[i].offset))) 2758 break; 2759 } 2760 } 2761 2762 kvfree(exec_list); 2763 kvfree(exec2_list); 2764 return err; 2765 } 2766 2767 int 2768 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2769 struct drm_file *file) 2770 { 2771 struct drm_i915_private *i915 = to_i915(dev); 2772 struct drm_i915_gem_execbuffer2 *args = data; 2773 struct drm_i915_gem_exec_object2 *exec2_list; 2774 struct drm_syncobj **fences = NULL; 2775 const size_t count = args->buffer_count; 2776 int err; 2777 2778 if (!check_buffer_count(count)) { 2779 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 2780 return -EINVAL; 2781 } 2782 2783 err = i915_gem_check_execbuffer(args); 2784 if (err) 2785 return err; 2786 2787 /* Allocate an extra slot for use by the command parser */ 2788 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2789 __GFP_NOWARN | GFP_KERNEL); 2790 if (exec2_list == NULL) { 2791 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 2792 count); 2793 return -ENOMEM; 2794 } 2795 if (copy_from_user(exec2_list, 2796 u64_to_user_ptr(args->buffers_ptr), 2797 sizeof(*exec2_list) * count)) { 2798 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 2799 kvfree(exec2_list); 2800 return -EFAULT; 2801 } 2802 2803 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2804 fences = get_fence_array(args, file); 2805 if (IS_ERR(fences)) { 2806 kvfree(exec2_list); 2807 return PTR_ERR(fences); 2808 } 2809 } 2810 2811 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2812 2813 /* 2814 * Now that we have begun execution of the batchbuffer, we ignore 2815 * any new error after this point. Also given that we have already 2816 * updated the associated relocations, we try to write out the current 2817 * object locations irrespective of any error. 2818 */ 2819 if (args->flags & __EXEC_HAS_RELOC) { 2820 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2821 u64_to_user_ptr(args->buffers_ptr); 2822 unsigned int i; 2823 2824 /* Copy the new buffer offsets back to the user's exec list. */ 2825 /* 2826 * Note: count * sizeof(*user_exec_list) does not overflow, 2827 * because we checked 'count' in check_buffer_count(). 2828 * 2829 * And this range already got effectively checked earlier 2830 * when we did the "copy_from_user()" above. 2831 */ 2832 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2833 goto end; 2834 2835 for (i = 0; i < args->buffer_count; i++) { 2836 if (!(exec2_list[i].offset & UPDATE)) 2837 continue; 2838 2839 exec2_list[i].offset = 2840 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2841 unsafe_put_user(exec2_list[i].offset, 2842 &user_exec_list[i].offset, 2843 end_user); 2844 } 2845 end_user: 2846 user_access_end(); 2847 end:; 2848 } 2849 2850 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2851 put_fence_array(args, fences); 2852 kvfree(exec2_list); 2853 return err; 2854 } 2855