xref: /openbsd/sys/dev/pci/drm/i915/gt/intel_sseu.c (revision 3bef86f7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_perf_types.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gt_regs.h"
12 #include "intel_sseu.h"
13 
14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15 			 u8 max_subslices, u8 max_eus_per_subslice)
16 {
17 	sseu->max_slices = max_slices;
18 	sseu->max_subslices = max_subslices;
19 	sseu->max_eus_per_subslice = max_eus_per_subslice;
20 }
21 
22 unsigned int
23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
24 {
25 	unsigned int i, total = 0;
26 
27 	if (sseu->has_xehp_dss)
28 		return bitmap_weight(sseu->subslice_mask.xehp,
29 				     XEHP_BITMAP_BITS(sseu->subslice_mask));
30 
31 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32 		total += hweight8(sseu->subslice_mask.hsw[i]);
33 
34 	return total;
35 }
36 
37 unsigned int
38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
39 {
40 	WARN_ON(sseu->has_xehp_dss);
41 	if (WARN_ON(slice >= sseu->max_slices))
42 		return 0;
43 
44 	return sseu->subslice_mask.hsw[slice];
45 }
46 
47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
48 			int subslice)
49 {
50 	if (sseu->has_xehp_dss) {
51 		WARN_ON(slice > 0);
52 		return sseu->eu_mask.xehp[subslice];
53 	} else {
54 		return sseu->eu_mask.hsw[slice][subslice];
55 	}
56 }
57 
58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
59 			 u16 eu_mask)
60 {
61 	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62 	if (sseu->has_xehp_dss) {
63 		GEM_WARN_ON(slice > 0);
64 		sseu->eu_mask.xehp[subslice] = eu_mask;
65 	} else {
66 		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
67 	}
68 }
69 
70 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
71 {
72 	int s, ss, total = 0;
73 
74 	for (s = 0; s < sseu->max_slices; s++)
75 		for (ss = 0; ss < sseu->max_subslices; ss++)
76 			if (sseu->has_xehp_dss)
77 				total += hweight16(sseu->eu_mask.xehp[ss]);
78 			else
79 				total += hweight16(sseu->eu_mask.hsw[s][ss]);
80 
81 	return total;
82 }
83 
84 /**
85  * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86  * @to: Pointer to userspace buffer to copy to
87  * @sseu: SSEU structure containing EU mask to copy
88  *
89  * Copies the EU mask to a userspace buffer in the format expected by
90  * the query ioctl's topology queries.
91  *
92  * Returns the result of the copy_to_user() operation.
93  */
94 int intel_sseu_copy_eumask_to_user(void __user *to,
95 				   const struct sseu_dev_info *sseu)
96 {
97 	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98 	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99 	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100 	int s, ss, i;
101 
102 	for (s = 0; s < sseu->max_slices; s++) {
103 		for (ss = 0; ss < sseu->max_subslices; ss++) {
104 			int uapi_offset =
105 				s * sseu->max_subslices * eu_stride +
106 				ss * eu_stride;
107 			u16 mask = sseu_get_eus(sseu, s, ss);
108 
109 			for (i = 0; i < eu_stride; i++)
110 				eu_mask[uapi_offset + i] =
111 					(mask >> (BITS_PER_BYTE * i)) & 0xff;
112 		}
113 	}
114 
115 	return copy_to_user(to, eu_mask, len);
116 }
117 
118 /**
119  * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120  * @to: Pointer to userspace buffer to copy to
121  * @sseu: SSEU structure containing subslice mask to copy
122  *
123  * Copies the subslice mask to a userspace buffer in the format expected by
124  * the query ioctl's topology queries.
125  *
126  * Returns the result of the copy_to_user() operation.
127  */
128 int intel_sseu_copy_ssmask_to_user(void __user *to,
129 				   const struct sseu_dev_info *sseu)
130 {
131 	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132 	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133 	int len = sseu->max_slices * ss_stride;
134 	int s, ss, i;
135 
136 	for (s = 0; s < sseu->max_slices; s++) {
137 		for (ss = 0; ss < sseu->max_subslices; ss++) {
138 			i = s * ss_stride * BITS_PER_BYTE + ss;
139 
140 			if (!intel_sseu_has_subslice(sseu, s, ss))
141 				continue;
142 
143 			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144 		}
145 	}
146 
147 	return copy_to_user(to, ss_mask, len);
148 }
149 
150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151 				    u32 ss_en, u16 eu_en)
152 {
153 	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154 	int ss;
155 
156 	sseu->slice_mask |= BIT(0);
157 	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158 
159 	for (ss = 0; ss < sseu->max_subslices; ss++)
160 		if (intel_sseu_has_subslice(sseu, 0, ss))
161 			sseu_set_eus(sseu, 0, ss, eu_en);
162 
163 	sseu->eu_per_subslice = hweight16(eu_en);
164 	sseu->eu_total = compute_eu_total(sseu);
165 }
166 
167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168 				   u16 eu_en)
169 {
170 	int ss;
171 
172 	sseu->slice_mask |= BIT(0);
173 
174 	bitmap_or(sseu->subslice_mask.xehp,
175 		  sseu->compute_subslice_mask.xehp,
176 		  sseu->geometry_subslice_mask.xehp,
177 		  XEHP_BITMAP_BITS(sseu->subslice_mask));
178 
179 	for (ss = 0; ss < sseu->max_subslices; ss++)
180 		if (intel_sseu_has_subslice(sseu, 0, ss))
181 			sseu_set_eus(sseu, 0, ss, eu_en);
182 
183 	sseu->eu_per_subslice = hweight16(eu_en);
184 	sseu->eu_total = compute_eu_total(sseu);
185 }
186 
187 static void
188 xehp_load_dss_mask(struct intel_uncore *uncore,
189 		   intel_sseu_ss_mask_t *ssmask,
190 		   int numregs,
191 		   ...)
192 {
193 	STUB();
194 #ifdef notyet
195 	va_list argp;
196 	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
197 	int i;
198 
199 	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
200 		numregs = I915_MAX_SS_FUSE_REGS;
201 
202 	va_start(argp, numregs);
203 	for (i = 0; i < numregs; i++)
204 		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
205 	va_end(argp);
206 
207 	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
208 #endif
209 }
210 
211 static void xehp_sseu_info_init(struct intel_gt *gt)
212 {
213 	struct sseu_dev_info *sseu = &gt->info.sseu;
214 	struct intel_uncore *uncore = gt->uncore;
215 	u16 eu_en = 0;
216 	u8 eu_en_fuse;
217 	int num_compute_regs, num_geometry_regs;
218 	int eu;
219 
220 	if (IS_PONTEVECCHIO(gt->i915)) {
221 		num_geometry_regs = 0;
222 		num_compute_regs = 2;
223 	} else {
224 		num_geometry_regs = 1;
225 		num_compute_regs = 1;
226 	}
227 
228 	/*
229 	 * The concept of slice has been removed in Xe_HP.  To be compatible
230 	 * with prior generations, assume a single slice across the entire
231 	 * device. Then calculate out the DSS for each workload type within
232 	 * that software slice.
233 	 */
234 	intel_sseu_set_info(sseu, 1,
235 			    32 * max(num_geometry_regs, num_compute_regs),
236 			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
237 	sseu->has_xehp_dss = 1;
238 
239 	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
240 			   num_geometry_regs,
241 			   GEN12_GT_GEOMETRY_DSS_ENABLE);
242 	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
243 			   num_compute_regs,
244 			   GEN12_GT_COMPUTE_DSS_ENABLE,
245 			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
246 
247 	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
248 
249 	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
250 		eu_en = eu_en_fuse;
251 	else
252 		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
253 			if (eu_en_fuse & BIT(eu))
254 				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
255 
256 	xehp_compute_sseu_info(sseu, eu_en);
257 }
258 
259 static void gen12_sseu_info_init(struct intel_gt *gt)
260 {
261 	struct sseu_dev_info *sseu = &gt->info.sseu;
262 	struct intel_uncore *uncore = gt->uncore;
263 	u32 g_dss_en;
264 	u16 eu_en = 0;
265 	u8 eu_en_fuse;
266 	u8 s_en;
267 	int eu;
268 
269 	/*
270 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
271 	 * Instead of splitting these, provide userspace with an array
272 	 * of DSS to more closely represent the hardware resource.
273 	 */
274 	intel_sseu_set_info(sseu, 1, 6, 16);
275 
276 	/*
277 	 * Although gen12 architecture supported multiple slices, TGL, RKL,
278 	 * DG1, and ADL only had a single slice.
279 	 */
280 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
281 		GEN11_GT_S_ENA_MASK;
282 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
283 
284 	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
285 
286 	/* one bit per pair of EUs */
287 	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
288 		       GEN11_EU_DIS_MASK);
289 
290 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
291 		if (eu_en_fuse & BIT(eu))
292 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
293 
294 	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
295 
296 	/* TGL only supports slice-level power gating */
297 	sseu->has_slice_pg = 1;
298 }
299 
300 static void gen11_sseu_info_init(struct intel_gt *gt)
301 {
302 	struct sseu_dev_info *sseu = &gt->info.sseu;
303 	struct intel_uncore *uncore = gt->uncore;
304 	u32 ss_en;
305 	u8 eu_en;
306 	u8 s_en;
307 
308 	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
309 		intel_sseu_set_info(sseu, 1, 4, 8);
310 	else
311 		intel_sseu_set_info(sseu, 1, 8, 8);
312 
313 	/*
314 	 * Although gen11 architecture supported multiple slices, ICL and
315 	 * EHL/JSL only had a single slice in practice.
316 	 */
317 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
318 		GEN11_GT_S_ENA_MASK;
319 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
320 
321 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
322 
323 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
324 		  GEN11_EU_DIS_MASK);
325 
326 	gen11_compute_sseu_info(sseu, ss_en, eu_en);
327 
328 	/* ICL has no power gating restrictions. */
329 	sseu->has_slice_pg = 1;
330 	sseu->has_subslice_pg = 1;
331 	sseu->has_eu_pg = 1;
332 }
333 
334 static void cherryview_sseu_info_init(struct intel_gt *gt)
335 {
336 	struct sseu_dev_info *sseu = &gt->info.sseu;
337 	u32 fuse;
338 
339 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
340 
341 	sseu->slice_mask = BIT(0);
342 	intel_sseu_set_info(sseu, 1, 2, 8);
343 
344 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
345 		u8 disabled_mask =
346 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
347 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
348 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
349 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
350 
351 		sseu->subslice_mask.hsw[0] |= BIT(0);
352 		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
353 	}
354 
355 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
356 		u8 disabled_mask =
357 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
358 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
359 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
360 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
361 
362 		sseu->subslice_mask.hsw[0] |= BIT(1);
363 		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
364 	}
365 
366 	sseu->eu_total = compute_eu_total(sseu);
367 
368 	/*
369 	 * CHV expected to always have a uniform distribution of EU
370 	 * across subslices.
371 	 */
372 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
373 		sseu->eu_total /
374 		intel_sseu_subslice_total(sseu) :
375 		0;
376 	/*
377 	 * CHV supports subslice power gating on devices with more than
378 	 * one subslice, and supports EU power gating on devices with
379 	 * more than one EU pair per subslice.
380 	 */
381 	sseu->has_slice_pg = 0;
382 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
383 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
384 }
385 
386 static void gen9_sseu_info_init(struct intel_gt *gt)
387 {
388 	struct drm_i915_private *i915 = gt->i915;
389 	struct sseu_dev_info *sseu = &gt->info.sseu;
390 	struct intel_uncore *uncore = gt->uncore;
391 	u32 fuse2, eu_disable, subslice_mask;
392 	const u8 eu_mask = 0xff;
393 	int s, ss;
394 
395 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
396 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
397 
398 	/* BXT has a single slice and at most 3 subslices. */
399 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
400 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
401 
402 	/*
403 	 * The subslice disable field is global, i.e. it applies
404 	 * to each of the enabled slices.
405 	 */
406 	subslice_mask = (1 << sseu->max_subslices) - 1;
407 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
408 			   GEN9_F2_SS_DIS_SHIFT);
409 
410 	/*
411 	 * Iterate through enabled slices and subslices to
412 	 * count the total enabled EU.
413 	 */
414 	for (s = 0; s < sseu->max_slices; s++) {
415 		if (!(sseu->slice_mask & BIT(s)))
416 			/* skip disabled slice */
417 			continue;
418 
419 		sseu->subslice_mask.hsw[s] = subslice_mask;
420 
421 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
422 		for (ss = 0; ss < sseu->max_subslices; ss++) {
423 			int eu_per_ss;
424 			u8 eu_disabled_mask;
425 
426 			if (!intel_sseu_has_subslice(sseu, s, ss))
427 				/* skip disabled subslice */
428 				continue;
429 
430 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
431 
432 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
433 
434 			eu_per_ss = sseu->max_eus_per_subslice -
435 				hweight8(eu_disabled_mask);
436 
437 			/*
438 			 * Record which subslice(s) has(have) 7 EUs. we
439 			 * can tune the hash used to spread work among
440 			 * subslices if they are unbalanced.
441 			 */
442 			if (eu_per_ss == 7)
443 				sseu->subslice_7eu[s] |= BIT(ss);
444 		}
445 	}
446 
447 	sseu->eu_total = compute_eu_total(sseu);
448 
449 	/*
450 	 * SKL is expected to always have a uniform distribution
451 	 * of EU across subslices with the exception that any one
452 	 * EU in any one subslice may be fused off for die
453 	 * recovery. BXT is expected to be perfectly uniform in EU
454 	 * distribution.
455 	 */
456 	sseu->eu_per_subslice =
457 		intel_sseu_subslice_total(sseu) ?
458 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
459 		0;
460 
461 	/*
462 	 * SKL+ supports slice power gating on devices with more than
463 	 * one slice, and supports EU power gating on devices with
464 	 * more than one EU pair per subslice. BXT+ supports subslice
465 	 * power gating on devices with more than one subslice, and
466 	 * supports EU power gating on devices with more than one EU
467 	 * pair per subslice.
468 	 */
469 	sseu->has_slice_pg =
470 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
471 	sseu->has_subslice_pg =
472 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
473 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
474 
475 	if (IS_GEN9_LP(i915)) {
476 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
477 		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
478 
479 		sseu->min_eu_in_pool = 0;
480 		if (HAS_POOLED_EU(i915)) {
481 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
482 				sseu->min_eu_in_pool = 3;
483 			else if (IS_SS_DISABLED(1))
484 				sseu->min_eu_in_pool = 6;
485 			else
486 				sseu->min_eu_in_pool = 9;
487 		}
488 #undef IS_SS_DISABLED
489 	}
490 }
491 
492 static void bdw_sseu_info_init(struct intel_gt *gt)
493 {
494 	struct sseu_dev_info *sseu = &gt->info.sseu;
495 	struct intel_uncore *uncore = gt->uncore;
496 	int s, ss;
497 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
498 	u32 eu_disable0, eu_disable1, eu_disable2;
499 
500 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
501 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
502 	intel_sseu_set_info(sseu, 3, 3, 8);
503 
504 	/*
505 	 * The subslice disable field is global, i.e. it applies
506 	 * to each of the enabled slices.
507 	 */
508 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
509 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
510 			   GEN8_F2_SS_DIS_SHIFT);
511 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
512 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
513 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
514 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
515 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
516 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
517 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
518 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
519 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
520 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
521 
522 	/*
523 	 * Iterate through enabled slices and subslices to
524 	 * count the total enabled EU.
525 	 */
526 	for (s = 0; s < sseu->max_slices; s++) {
527 		if (!(sseu->slice_mask & BIT(s)))
528 			/* skip disabled slice */
529 			continue;
530 
531 		sseu->subslice_mask.hsw[s] = subslice_mask;
532 
533 		for (ss = 0; ss < sseu->max_subslices; ss++) {
534 			u8 eu_disabled_mask;
535 			u32 n_disabled;
536 
537 			if (!intel_sseu_has_subslice(sseu, s, ss))
538 				/* skip disabled subslice */
539 				continue;
540 
541 			eu_disabled_mask =
542 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
543 
544 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
545 
546 			n_disabled = hweight8(eu_disabled_mask);
547 
548 			/*
549 			 * Record which subslices have 7 EUs.
550 			 */
551 			if (sseu->max_eus_per_subslice - n_disabled == 7)
552 				sseu->subslice_7eu[s] |= 1 << ss;
553 		}
554 	}
555 
556 	sseu->eu_total = compute_eu_total(sseu);
557 
558 	/*
559 	 * BDW is expected to always have a uniform distribution of EU across
560 	 * subslices with the exception that any one EU in any one subslice may
561 	 * be fused off for die recovery.
562 	 */
563 	sseu->eu_per_subslice =
564 		intel_sseu_subslice_total(sseu) ?
565 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
566 		0;
567 
568 	/*
569 	 * BDW supports slice power gating on devices with more than
570 	 * one slice.
571 	 */
572 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
573 	sseu->has_subslice_pg = 0;
574 	sseu->has_eu_pg = 0;
575 }
576 
577 static void hsw_sseu_info_init(struct intel_gt *gt)
578 {
579 	struct drm_i915_private *i915 = gt->i915;
580 	struct sseu_dev_info *sseu = &gt->info.sseu;
581 	u32 fuse1;
582 	u8 subslice_mask = 0;
583 	int s, ss;
584 
585 	/*
586 	 * There isn't a register to tell us how many slices/subslices. We
587 	 * work off the PCI-ids here.
588 	 */
589 	switch (INTEL_INFO(i915)->gt) {
590 	default:
591 		MISSING_CASE(INTEL_INFO(i915)->gt);
592 		fallthrough;
593 	case 1:
594 		sseu->slice_mask = BIT(0);
595 		subslice_mask = BIT(0);
596 		break;
597 	case 2:
598 		sseu->slice_mask = BIT(0);
599 		subslice_mask = BIT(0) | BIT(1);
600 		break;
601 	case 3:
602 		sseu->slice_mask = BIT(0) | BIT(1);
603 		subslice_mask = BIT(0) | BIT(1);
604 		break;
605 	}
606 
607 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
608 	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
609 	default:
610 		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
611 		fallthrough;
612 	case HSW_F1_EU_DIS_10EUS:
613 		sseu->eu_per_subslice = 10;
614 		break;
615 	case HSW_F1_EU_DIS_8EUS:
616 		sseu->eu_per_subslice = 8;
617 		break;
618 	case HSW_F1_EU_DIS_6EUS:
619 		sseu->eu_per_subslice = 6;
620 		break;
621 	}
622 
623 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
624 			    hweight8(subslice_mask),
625 			    sseu->eu_per_subslice);
626 
627 	for (s = 0; s < sseu->max_slices; s++) {
628 		sseu->subslice_mask.hsw[s] = subslice_mask;
629 
630 		for (ss = 0; ss < sseu->max_subslices; ss++) {
631 			sseu_set_eus(sseu, s, ss,
632 				     (1UL << sseu->eu_per_subslice) - 1);
633 		}
634 	}
635 
636 	sseu->eu_total = compute_eu_total(sseu);
637 
638 	/* No powergating for you. */
639 	sseu->has_slice_pg = 0;
640 	sseu->has_subslice_pg = 0;
641 	sseu->has_eu_pg = 0;
642 }
643 
644 void intel_sseu_info_init(struct intel_gt *gt)
645 {
646 	struct drm_i915_private *i915 = gt->i915;
647 
648 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
649 		xehp_sseu_info_init(gt);
650 	else if (GRAPHICS_VER(i915) >= 12)
651 		gen12_sseu_info_init(gt);
652 	else if (GRAPHICS_VER(i915) >= 11)
653 		gen11_sseu_info_init(gt);
654 	else if (GRAPHICS_VER(i915) >= 9)
655 		gen9_sseu_info_init(gt);
656 	else if (IS_BROADWELL(i915))
657 		bdw_sseu_info_init(gt);
658 	else if (IS_CHERRYVIEW(i915))
659 		cherryview_sseu_info_init(gt);
660 	else if (IS_HASWELL(i915))
661 		hsw_sseu_info_init(gt);
662 }
663 
664 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
665 			 const struct intel_sseu *req_sseu)
666 {
667 	struct drm_i915_private *i915 = gt->i915;
668 	const struct sseu_dev_info *sseu = &gt->info.sseu;
669 	bool subslice_pg = sseu->has_subslice_pg;
670 	u8 slices, subslices;
671 	u32 rpcs = 0;
672 
673 	/*
674 	 * No explicit RPCS request is needed to ensure full
675 	 * slice/subslice/EU enablement prior to Gen9.
676 	 */
677 	if (GRAPHICS_VER(i915) < 9)
678 		return 0;
679 
680 	/*
681 	 * If i915/perf is active, we want a stable powergating configuration
682 	 * on the system. Use the configuration pinned by i915/perf.
683 	 */
684 	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
685 		req_sseu = &gt->perf.sseu;
686 
687 	slices = hweight8(req_sseu->slice_mask);
688 	subslices = hweight8(req_sseu->subslice_mask);
689 
690 	/*
691 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
692 	 * wide and Icelake has up to eight subslices, specfial programming is
693 	 * needed in order to correctly enable all subslices.
694 	 *
695 	 * According to documentation software must consider the configuration
696 	 * as 2x4x8 and hardware will translate this to 1x8x8.
697 	 *
698 	 * Furthemore, even though SScount is three bits, maximum documented
699 	 * value for it is four. From this some rules/restrictions follow:
700 	 *
701 	 * 1.
702 	 * If enabled subslice count is greater than four, two whole slices must
703 	 * be enabled instead.
704 	 *
705 	 * 2.
706 	 * When more than one slice is enabled, hardware ignores the subslice
707 	 * count altogether.
708 	 *
709 	 * From these restrictions it follows that it is not possible to enable
710 	 * a count of subslices between the SScount maximum of four restriction,
711 	 * and the maximum available number on a particular SKU. Either all
712 	 * subslices are enabled, or a count between one and four on the first
713 	 * slice.
714 	 */
715 	if (GRAPHICS_VER(i915) == 11 &&
716 	    slices == 1 &&
717 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
718 		GEM_BUG_ON(subslices & 1);
719 
720 		subslice_pg = false;
721 		slices *= 2;
722 	}
723 
724 	/*
725 	 * Starting in Gen9, render power gating can leave
726 	 * slice/subslice/EU in a partially enabled state. We
727 	 * must make an explicit request through RPCS for full
728 	 * enablement.
729 	 */
730 	if (sseu->has_slice_pg) {
731 		u32 mask, val = slices;
732 
733 		if (GRAPHICS_VER(i915) >= 11) {
734 			mask = GEN11_RPCS_S_CNT_MASK;
735 			val <<= GEN11_RPCS_S_CNT_SHIFT;
736 		} else {
737 			mask = GEN8_RPCS_S_CNT_MASK;
738 			val <<= GEN8_RPCS_S_CNT_SHIFT;
739 		}
740 
741 		GEM_BUG_ON(val & ~mask);
742 		val &= mask;
743 
744 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
745 	}
746 
747 	if (subslice_pg) {
748 		u32 val = subslices;
749 
750 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
751 
752 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
753 		val &= GEN8_RPCS_SS_CNT_MASK;
754 
755 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
756 	}
757 
758 	if (sseu->has_eu_pg) {
759 		u32 val;
760 
761 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
762 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
763 		val &= GEN8_RPCS_EU_MIN_MASK;
764 
765 		rpcs |= val;
766 
767 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
768 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
769 		val &= GEN8_RPCS_EU_MAX_MASK;
770 
771 		rpcs |= val;
772 
773 		rpcs |= GEN8_RPCS_ENABLE;
774 	}
775 
776 	return rpcs;
777 }
778 
779 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
780 {
781 	int s;
782 
783 	if (sseu->has_xehp_dss) {
784 		drm_printf(p, "subslice total: %u\n",
785 			   intel_sseu_subslice_total(sseu));
786 		drm_printf(p, "geometry dss mask=%*pb\n",
787 			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
788 			   sseu->geometry_subslice_mask.xehp);
789 		drm_printf(p, "compute dss mask=%*pb\n",
790 			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
791 			   sseu->compute_subslice_mask.xehp);
792 	} else {
793 		drm_printf(p, "slice total: %u, mask=%04x\n",
794 			   hweight8(sseu->slice_mask), sseu->slice_mask);
795 		drm_printf(p, "subslice total: %u\n",
796 			   intel_sseu_subslice_total(sseu));
797 
798 		for (s = 0; s < sseu->max_slices; s++) {
799 			u8 ss_mask = sseu->subslice_mask.hsw[s];
800 
801 			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
802 				   s, hweight8(ss_mask), ss_mask);
803 		}
804 	}
805 
806 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
807 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
808 	drm_printf(p, "has slice power gating: %s\n",
809 		   str_yes_no(sseu->has_slice_pg));
810 	drm_printf(p, "has subslice power gating: %s\n",
811 		   str_yes_no(sseu->has_subslice_pg));
812 	drm_printf(p, "has EU power gating: %s\n",
813 		   str_yes_no(sseu->has_eu_pg));
814 }
815 
816 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
817 				    struct drm_printer *p)
818 {
819 	int s, ss;
820 
821 	for (s = 0; s < sseu->max_slices; s++) {
822 		u8 ss_mask = sseu->subslice_mask.hsw[s];
823 
824 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
825 			   s, hweight8(ss_mask), ss_mask);
826 
827 		for (ss = 0; ss < sseu->max_subslices; ss++) {
828 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
829 
830 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
831 				   ss, hweight16(enabled_eus), enabled_eus);
832 		}
833 	}
834 }
835 
836 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
837 				     struct drm_printer *p)
838 {
839 	int dss;
840 
841 	for (dss = 0; dss < sseu->max_subslices; dss++) {
842 		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
843 
844 		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
845 			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
846 			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
847 			   hweight16(enabled_eus), enabled_eus);
848 	}
849 }
850 
851 void intel_sseu_print_topology(struct drm_i915_private *i915,
852 			       const struct sseu_dev_info *sseu,
853 			       struct drm_printer *p)
854 {
855 	if (sseu->max_slices == 0) {
856 		drm_printf(p, "Unavailable\n");
857 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
858 		sseu_print_xehp_topology(sseu, p);
859 	} else {
860 		sseu_print_hsw_topology(sseu, p);
861 	}
862 }
863 
864 void intel_sseu_print_ss_info(const char *type,
865 			      const struct sseu_dev_info *sseu,
866 			      struct seq_file *m)
867 {
868 	int s;
869 
870 	if (sseu->has_xehp_dss) {
871 		seq_printf(m, "  %s Geometry DSS: %u\n", type,
872 			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
873 					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
874 		seq_printf(m, "  %s Compute DSS: %u\n", type,
875 			   bitmap_weight(sseu->compute_subslice_mask.xehp,
876 					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
877 	} else {
878 		for (s = 0; s < fls(sseu->slice_mask); s++)
879 			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
880 				   s, hweight8(sseu->subslice_mask.hsw[s]));
881 	}
882 }
883 
884 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
885 				      int dss_per_slice)
886 {
887 	STUB();
888 	return 0;
889 #ifdef notyet
890 	intel_sseu_ss_mask_t per_slice_mask = {};
891 	unsigned long slice_mask = 0;
892 	int i;
893 
894 	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
895 		8 * sizeof(slice_mask));
896 
897 	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
898 	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
899 		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
900 			slice_mask |= BIT(i);
901 
902 		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
903 				   XEHP_BITMAP_BITS(dss_mask));
904 	}
905 
906 	return slice_mask;
907 #endif
908 }
909