1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_ring.h" 41 42 #include "i915_drv.h" 43 #include "i915_gem_gtt.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct drm_i915_gem_object *ctx_obj = 62 workload->req->context->state->obj; 63 struct execlist_ring_context *shadow_ring_context; 64 struct vm_page *page; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 73 shadow_ring_context = kmap(page); 74 set_context_pdp_root_pointer(shadow_ring_context, 75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 76 kunmap(page); 77 } 78 79 /* 80 * when populating shadow ctx from guest, we should not overrride oa related 81 * registers, so that they will not be overlapped by guest oa configs. Thus 82 * made it possible to capture oa data from host for both host and guests. 83 */ 84 static void sr_oa_regs(struct intel_vgpu_workload *workload, 85 u32 *reg_state, bool save) 86 { 87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 90 int i = 0; 91 u32 flex_mmio[] = { 92 i915_mmio_reg_offset(EU_PERF_CNTL0), 93 i915_mmio_reg_offset(EU_PERF_CNTL1), 94 i915_mmio_reg_offset(EU_PERF_CNTL2), 95 i915_mmio_reg_offset(EU_PERF_CNTL3), 96 i915_mmio_reg_offset(EU_PERF_CNTL4), 97 i915_mmio_reg_offset(EU_PERF_CNTL5), 98 i915_mmio_reg_offset(EU_PERF_CNTL6), 99 }; 100 101 if (workload->engine->id != RCS0) 102 return; 103 104 if (save) { 105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 106 107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 108 u32 state_offset = ctx_flexeu0 + i * 2; 109 110 workload->flex_mmio[i] = reg_state[state_offset + 1]; 111 } 112 } else { 113 reg_state[ctx_oactxctrl] = 114 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 116 117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 118 u32 state_offset = ctx_flexeu0 + i * 2; 119 u32 mmio = flex_mmio[i]; 120 121 reg_state[state_offset] = mmio; 122 reg_state[state_offset + 1] = workload->flex_mmio[i]; 123 } 124 } 125 } 126 127 static int populate_shadow_context(struct intel_vgpu_workload *workload) 128 { 129 struct intel_vgpu *vgpu = workload->vgpu; 130 struct intel_gvt *gvt = vgpu->gvt; 131 struct drm_i915_gem_object *ctx_obj = 132 workload->req->context->state->obj; 133 struct execlist_ring_context *shadow_ring_context; 134 struct vm_page *page; 135 void *dst; 136 unsigned long context_gpa, context_page_num; 137 int i; 138 139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 140 shadow_ring_context = kmap(page); 141 142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 143 #define COPY_REG(name) \ 144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 146 #define COPY_REG_MASKED(name) {\ 147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 148 + RING_CTX_OFF(name.val),\ 149 &shadow_ring_context->name.val, 4);\ 150 shadow_ring_context->name.val |= 0xffff << 16;\ 151 } 152 153 COPY_REG_MASKED(ctx_ctrl); 154 COPY_REG(ctx_timestamp); 155 156 if (workload->engine->id == RCS0) { 157 COPY_REG(bb_per_ctx_ptr); 158 COPY_REG(rcs_indirect_ctx); 159 COPY_REG(rcs_indirect_ctx_offset); 160 } 161 #undef COPY_REG 162 #undef COPY_REG_MASKED 163 164 intel_gvt_hypervisor_read_gpa(vgpu, 165 workload->ring_context_gpa + 166 sizeof(*shadow_ring_context), 167 (void *)shadow_ring_context + 168 sizeof(*shadow_ring_context), 169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 170 171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 172 kunmap(page); 173 174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 175 return 0; 176 177 gvt_dbg_sched("ring %s workload lrca %x", 178 workload->engine->name, 179 workload->ctx_desc.lrca); 180 181 context_page_num = workload->engine->context_size; 182 context_page_num = context_page_num >> PAGE_SHIFT; 183 184 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 185 context_page_num = 19; 186 187 i = 2; 188 while (i < context_page_num) { 189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 190 (u32)((workload->ctx_desc.lrca + i) << 191 I915_GTT_PAGE_SHIFT)); 192 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 193 gvt_vgpu_err("Invalid guest context descriptor\n"); 194 return -EFAULT; 195 } 196 197 page = i915_gem_object_get_page(ctx_obj, i); 198 dst = kmap(page); 199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 200 I915_GTT_PAGE_SIZE); 201 kunmap(page); 202 i++; 203 } 204 return 0; 205 } 206 207 static inline bool is_gvt_request(struct i915_request *rq) 208 { 209 return intel_context_force_single_submission(rq->context); 210 } 211 212 static void save_ring_hw_state(struct intel_vgpu *vgpu, 213 const struct intel_engine_cs *engine) 214 { 215 struct intel_uncore *uncore = engine->uncore; 216 i915_reg_t reg; 217 218 reg = RING_INSTDONE(engine->mmio_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 220 intel_uncore_read(uncore, reg); 221 222 reg = RING_ACTHD(engine->mmio_base); 223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 224 intel_uncore_read(uncore, reg); 225 226 reg = RING_ACTHD_UDW(engine->mmio_base); 227 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 228 intel_uncore_read(uncore, reg); 229 } 230 231 static int shadow_context_status_change(struct notifier_block *nb, 232 unsigned long action, void *data) 233 { 234 struct i915_request *rq = data; 235 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 236 shadow_ctx_notifier_block[rq->engine->id]); 237 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 238 enum intel_engine_id ring_id = rq->engine->id; 239 struct intel_vgpu_workload *workload; 240 unsigned long flags; 241 242 if (!is_gvt_request(rq)) { 243 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 244 if (action == INTEL_CONTEXT_SCHEDULE_IN && 245 scheduler->engine_owner[ring_id]) { 246 /* Switch ring from vGPU to host. */ 247 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 248 NULL, rq->engine); 249 scheduler->engine_owner[ring_id] = NULL; 250 } 251 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 252 253 return NOTIFY_OK; 254 } 255 256 workload = scheduler->current_workload[ring_id]; 257 if (unlikely(!workload)) 258 return NOTIFY_OK; 259 260 switch (action) { 261 case INTEL_CONTEXT_SCHEDULE_IN: 262 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 263 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 264 /* Switch ring from host to vGPU or vGPU to vGPU. */ 265 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 266 workload->vgpu, rq->engine); 267 scheduler->engine_owner[ring_id] = workload->vgpu; 268 } else 269 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 270 ring_id, workload->vgpu->id); 271 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 272 atomic_set(&workload->shadow_ctx_active, 1); 273 break; 274 case INTEL_CONTEXT_SCHEDULE_OUT: 275 save_ring_hw_state(workload->vgpu, rq->engine); 276 atomic_set(&workload->shadow_ctx_active, 0); 277 break; 278 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 279 save_ring_hw_state(workload->vgpu, rq->engine); 280 break; 281 default: 282 WARN_ON(1); 283 return NOTIFY_OK; 284 } 285 wake_up(&workload->shadow_ctx_status_wq); 286 return NOTIFY_OK; 287 } 288 289 static void 290 shadow_context_descriptor_update(struct intel_context *ce, 291 struct intel_vgpu_workload *workload) 292 { 293 u64 desc = ce->lrc.desc; 294 295 /* 296 * Update bits 0-11 of the context descriptor which includes flags 297 * like GEN8_CTX_* cached in desc_template 298 */ 299 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 300 desc |= (u64)workload->ctx_desc.addressing_mode << 301 GEN8_CTX_ADDRESSING_MODE_SHIFT; 302 303 ce->lrc.desc = desc; 304 } 305 306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 307 { 308 struct intel_vgpu *vgpu = workload->vgpu; 309 struct i915_request *req = workload->req; 310 void *shadow_ring_buffer_va; 311 u32 *cs; 312 int err; 313 314 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context)) 315 intel_vgpu_restore_inhibit_context(vgpu, req); 316 317 /* 318 * To track whether a request has started on HW, we can emit a 319 * breadcrumb at the beginning of the request and check its 320 * timeline's HWSP to see if the breadcrumb has advanced past the 321 * start of this request. Actually, the request must have the 322 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 323 * scheduler might get a wrong state of it during reset. Since the 324 * requests from gvt always set the has_init_breadcrumb flag, here 325 * need to do the emit_init_breadcrumb for all the requests. 326 */ 327 if (req->engine->emit_init_breadcrumb) { 328 err = req->engine->emit_init_breadcrumb(req); 329 if (err) { 330 gvt_vgpu_err("fail to emit init breadcrumb\n"); 331 return err; 332 } 333 } 334 335 /* allocate shadow ring buffer */ 336 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 337 if (IS_ERR(cs)) { 338 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 339 workload->rb_len); 340 return PTR_ERR(cs); 341 } 342 343 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 344 345 /* get shadow ring buffer va */ 346 workload->shadow_ring_buffer_va = cs; 347 348 memcpy(cs, shadow_ring_buffer_va, 349 workload->rb_len); 350 351 cs += workload->rb_len / sizeof(u32); 352 intel_ring_advance(workload->req, cs); 353 354 return 0; 355 } 356 357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 358 { 359 if (!wa_ctx->indirect_ctx.obj) 360 return; 361 362 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 363 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 364 365 wa_ctx->indirect_ctx.obj = NULL; 366 wa_ctx->indirect_ctx.shadow_va = NULL; 367 } 368 369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 370 struct intel_context *ce) 371 { 372 struct intel_vgpu_mm *mm = workload->shadow_mm; 373 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 374 int i = 0; 375 376 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 377 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 378 } else { 379 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 380 struct i915_page_directory * const pd = 381 i915_pd_entry(ppgtt->pd, i); 382 /* skip now as current i915 ppgtt alloc won't allocate 383 top level pdp for non 4-level table, won't impact 384 shadow ppgtt. */ 385 if (!pd) 386 break; 387 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 388 } 389 } 390 } 391 392 static int 393 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 394 { 395 struct intel_vgpu *vgpu = workload->vgpu; 396 struct intel_vgpu_submission *s = &vgpu->submission; 397 struct i915_request *rq; 398 399 if (workload->req) 400 return 0; 401 402 rq = i915_request_create(s->shadow[workload->engine->id]); 403 if (IS_ERR(rq)) { 404 gvt_vgpu_err("fail to allocate gem request\n"); 405 return PTR_ERR(rq); 406 } 407 408 workload->req = i915_request_get(rq); 409 return 0; 410 } 411 412 /** 413 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 414 * shadow it as well, include ringbuffer,wa_ctx and ctx. 415 * @workload: an abstract entity for each execlist submission. 416 * 417 * This function is called before the workload submitting to i915, to make 418 * sure the content of the workload is valid. 419 */ 420 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 421 { 422 struct intel_vgpu *vgpu = workload->vgpu; 423 struct intel_vgpu_submission *s = &vgpu->submission; 424 int ret; 425 426 lockdep_assert_held(&vgpu->vgpu_lock); 427 428 if (workload->shadow) 429 return 0; 430 431 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 432 shadow_context_descriptor_update(s->shadow[workload->engine->id], 433 workload); 434 435 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 436 if (ret) 437 return ret; 438 439 if (workload->engine->id == RCS0 && 440 workload->wa_ctx.indirect_ctx.size) { 441 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 442 if (ret) 443 goto err_shadow; 444 } 445 446 workload->shadow = true; 447 return 0; 448 449 err_shadow: 450 release_shadow_wa_ctx(&workload->wa_ctx); 451 return ret; 452 } 453 454 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 455 456 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 457 { 458 struct intel_gvt *gvt = workload->vgpu->gvt; 459 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 460 struct intel_vgpu_shadow_bb *bb; 461 int ret; 462 463 list_for_each_entry(bb, &workload->shadow_bb, list) { 464 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 465 * is only updated into ring_scan_buffer, not real ring address 466 * allocated in later copy_workload_to_ring_buffer. pls be noted 467 * shadow_ring_buffer_va is now pointed to real ring buffer va 468 * in copy_workload_to_ring_buffer. 469 */ 470 471 if (bb->bb_offset) 472 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 473 + bb->bb_offset; 474 475 if (bb->ppgtt) { 476 /* for non-priv bb, scan&shadow is only for 477 * debugging purpose, so the content of shadow bb 478 * is the same as original bb. Therefore, 479 * here, rather than switch to shadow bb's gma 480 * address, we directly use original batch buffer's 481 * gma address, and send original bb to hardware 482 * directly 483 */ 484 if (bb->clflush & CLFLUSH_AFTER) { 485 drm_clflush_virt_range(bb->va, 486 bb->obj->base.size); 487 bb->clflush &= ~CLFLUSH_AFTER; 488 } 489 i915_gem_object_finish_access(bb->obj); 490 bb->accessing = false; 491 492 } else { 493 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 494 NULL, 0, 0, 0); 495 if (IS_ERR(bb->vma)) { 496 ret = PTR_ERR(bb->vma); 497 goto err; 498 } 499 500 /* relocate shadow batch buffer */ 501 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 502 if (gmadr_bytes == 8) 503 bb->bb_start_cmd_va[2] = 0; 504 505 /* No one is going to touch shadow bb from now on. */ 506 if (bb->clflush & CLFLUSH_AFTER) { 507 drm_clflush_virt_range(bb->va, 508 bb->obj->base.size); 509 bb->clflush &= ~CLFLUSH_AFTER; 510 } 511 512 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 513 false); 514 if (ret) 515 goto err; 516 517 ret = i915_vma_move_to_active(bb->vma, 518 workload->req, 519 0); 520 if (ret) 521 goto err; 522 523 i915_gem_object_finish_access(bb->obj); 524 bb->accessing = false; 525 } 526 } 527 return 0; 528 err: 529 release_shadow_batch_buffer(workload); 530 return ret; 531 } 532 533 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 534 { 535 struct intel_vgpu_workload *workload = 536 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 537 struct i915_request *rq = workload->req; 538 struct execlist_ring_context *shadow_ring_context = 539 (struct execlist_ring_context *)rq->context->lrc_reg_state; 540 541 shadow_ring_context->bb_per_ctx_ptr.val = 542 (shadow_ring_context->bb_per_ctx_ptr.val & 543 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 544 shadow_ring_context->rcs_indirect_ctx.val = 545 (shadow_ring_context->rcs_indirect_ctx.val & 546 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 547 } 548 549 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 550 { 551 struct i915_vma *vma; 552 unsigned char *per_ctx_va = 553 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 554 wa_ctx->indirect_ctx.size; 555 556 if (wa_ctx->indirect_ctx.size == 0) 557 return 0; 558 559 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 560 0, CACHELINE_BYTES, 0); 561 if (IS_ERR(vma)) 562 return PTR_ERR(vma); 563 564 /* FIXME: we are not tracking our pinned VMA leaving it 565 * up to the core to fix up the stray pin_count upon 566 * free. 567 */ 568 569 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 570 571 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 572 memset(per_ctx_va, 0, CACHELINE_BYTES); 573 574 update_wa_ctx_2_shadow_ctx(wa_ctx); 575 return 0; 576 } 577 578 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 579 { 580 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 581 workload->rb_start; 582 } 583 584 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 585 { 586 struct intel_vgpu_shadow_bb *bb, *pos; 587 588 if (list_empty(&workload->shadow_bb)) 589 return; 590 591 bb = list_first_entry(&workload->shadow_bb, 592 struct intel_vgpu_shadow_bb, list); 593 594 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 595 if (bb->obj) { 596 if (bb->accessing) 597 i915_gem_object_finish_access(bb->obj); 598 599 if (bb->va && !IS_ERR(bb->va)) 600 i915_gem_object_unpin_map(bb->obj); 601 602 if (bb->vma && !IS_ERR(bb->vma)) { 603 i915_vma_unpin(bb->vma); 604 i915_vma_close(bb->vma); 605 } 606 i915_gem_object_put(bb->obj); 607 } 608 list_del(&bb->list); 609 kfree(bb); 610 } 611 } 612 613 static int prepare_workload(struct intel_vgpu_workload *workload) 614 { 615 struct intel_vgpu *vgpu = workload->vgpu; 616 struct intel_vgpu_submission *s = &vgpu->submission; 617 int ret = 0; 618 619 ret = intel_vgpu_pin_mm(workload->shadow_mm); 620 if (ret) { 621 gvt_vgpu_err("fail to vgpu pin mm\n"); 622 return ret; 623 } 624 625 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 626 !workload->shadow_mm->ppgtt_mm.shadowed) { 627 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 628 return -EINVAL; 629 } 630 631 update_shadow_pdps(workload); 632 633 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 634 635 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 636 if (ret) { 637 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 638 goto err_unpin_mm; 639 } 640 641 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 642 if (ret) { 643 gvt_vgpu_err("fail to flush post shadow\n"); 644 goto err_unpin_mm; 645 } 646 647 ret = copy_workload_to_ring_buffer(workload); 648 if (ret) { 649 gvt_vgpu_err("fail to generate request\n"); 650 goto err_unpin_mm; 651 } 652 653 ret = prepare_shadow_batch_buffer(workload); 654 if (ret) { 655 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 656 goto err_unpin_mm; 657 } 658 659 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 660 if (ret) { 661 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 662 goto err_shadow_batch; 663 } 664 665 if (workload->prepare) { 666 ret = workload->prepare(workload); 667 if (ret) 668 goto err_shadow_wa_ctx; 669 } 670 671 return 0; 672 err_shadow_wa_ctx: 673 release_shadow_wa_ctx(&workload->wa_ctx); 674 err_shadow_batch: 675 release_shadow_batch_buffer(workload); 676 err_unpin_mm: 677 intel_vgpu_unpin_mm(workload->shadow_mm); 678 return ret; 679 } 680 681 static int dispatch_workload(struct intel_vgpu_workload *workload) 682 { 683 struct intel_vgpu *vgpu = workload->vgpu; 684 struct i915_request *rq; 685 int ret; 686 687 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 688 workload->engine->name, workload); 689 690 mutex_lock(&vgpu->vgpu_lock); 691 692 ret = intel_gvt_workload_req_alloc(workload); 693 if (ret) 694 goto err_req; 695 696 ret = intel_gvt_scan_and_shadow_workload(workload); 697 if (ret) 698 goto out; 699 700 ret = populate_shadow_context(workload); 701 if (ret) { 702 release_shadow_wa_ctx(&workload->wa_ctx); 703 goto out; 704 } 705 706 ret = prepare_workload(workload); 707 out: 708 if (ret) { 709 /* We might still need to add request with 710 * clean ctx to retire it properly.. 711 */ 712 rq = fetch_and_zero(&workload->req); 713 i915_request_put(rq); 714 } 715 716 if (!IS_ERR_OR_NULL(workload->req)) { 717 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 718 workload->engine->name, workload->req); 719 i915_request_add(workload->req); 720 workload->dispatched = true; 721 } 722 err_req: 723 if (ret) 724 workload->status = ret; 725 mutex_unlock(&vgpu->vgpu_lock); 726 return ret; 727 } 728 729 static struct intel_vgpu_workload * 730 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 731 { 732 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 733 struct intel_vgpu_workload *workload = NULL; 734 735 mutex_lock(&gvt->sched_lock); 736 737 /* 738 * no current vgpu / will be scheduled out / no workload 739 * bail out 740 */ 741 if (!scheduler->current_vgpu) { 742 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 743 goto out; 744 } 745 746 if (scheduler->need_reschedule) { 747 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 748 goto out; 749 } 750 751 if (!scheduler->current_vgpu->active || 752 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 753 goto out; 754 755 /* 756 * still have current workload, maybe the workload disptacher 757 * fail to submit it for some reason, resubmit it. 758 */ 759 if (scheduler->current_workload[engine->id]) { 760 workload = scheduler->current_workload[engine->id]; 761 gvt_dbg_sched("ring %s still have current workload %p\n", 762 engine->name, workload); 763 goto out; 764 } 765 766 /* 767 * pick a workload as current workload 768 * once current workload is set, schedule policy routines 769 * will wait the current workload is finished when trying to 770 * schedule out a vgpu. 771 */ 772 scheduler->current_workload[engine->id] = 773 list_first_entry(workload_q_head(scheduler->current_vgpu, 774 engine), 775 struct intel_vgpu_workload, list); 776 777 workload = scheduler->current_workload[engine->id]; 778 779 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 780 781 atomic_inc(&workload->vgpu->submission.running_workload_num); 782 out: 783 mutex_unlock(&gvt->sched_lock); 784 return workload; 785 } 786 787 static void update_guest_context(struct intel_vgpu_workload *workload) 788 { 789 struct i915_request *rq = workload->req; 790 struct intel_vgpu *vgpu = workload->vgpu; 791 struct drm_i915_gem_object *ctx_obj = rq->context->state->obj; 792 struct execlist_ring_context *shadow_ring_context; 793 struct vm_page *page; 794 void *src; 795 unsigned long context_gpa, context_page_num; 796 int i; 797 u32 ring_base; 798 u32 head, tail; 799 u16 wrap_count; 800 801 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 802 workload->ctx_desc.lrca); 803 804 head = workload->rb_head; 805 tail = workload->rb_tail; 806 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 807 808 if (tail < head) { 809 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 810 wrap_count = 0; 811 else 812 wrap_count += 1; 813 } 814 815 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 816 817 ring_base = rq->engine->mmio_base; 818 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 819 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 820 821 context_page_num = rq->engine->context_size; 822 context_page_num = context_page_num >> PAGE_SHIFT; 823 824 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0) 825 context_page_num = 19; 826 827 i = 2; 828 829 while (i < context_page_num) { 830 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 831 (u32)((workload->ctx_desc.lrca + i) << 832 I915_GTT_PAGE_SHIFT)); 833 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 834 gvt_vgpu_err("invalid guest context descriptor\n"); 835 return; 836 } 837 838 page = i915_gem_object_get_page(ctx_obj, i); 839 src = kmap(page); 840 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 841 I915_GTT_PAGE_SIZE); 842 kunmap(page); 843 i++; 844 } 845 846 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 847 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 848 849 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 850 shadow_ring_context = kmap(page); 851 852 #define COPY_REG(name) \ 853 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 854 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 855 856 COPY_REG(ctx_ctrl); 857 COPY_REG(ctx_timestamp); 858 859 #undef COPY_REG 860 861 intel_gvt_hypervisor_write_gpa(vgpu, 862 workload->ring_context_gpa + 863 sizeof(*shadow_ring_context), 864 (void *)shadow_ring_context + 865 sizeof(*shadow_ring_context), 866 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 867 868 kunmap(page); 869 } 870 871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 872 intel_engine_mask_t engine_mask) 873 { 874 struct intel_vgpu_submission *s = &vgpu->submission; 875 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 876 struct intel_engine_cs *engine; 877 struct intel_vgpu_workload *pos, *n; 878 intel_engine_mask_t tmp; 879 880 /* free the unsubmited workloads in the queues. */ 881 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 882 list_for_each_entry_safe(pos, n, 883 &s->workload_q_head[engine->id], list) { 884 list_del_init(&pos->list); 885 intel_vgpu_destroy_workload(pos); 886 } 887 clear_bit(engine->id, s->shadow_ctx_desc_updated); 888 } 889 } 890 891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 892 { 893 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 894 struct intel_vgpu_workload *workload = 895 scheduler->current_workload[ring_id]; 896 struct intel_vgpu *vgpu = workload->vgpu; 897 struct intel_vgpu_submission *s = &vgpu->submission; 898 struct i915_request *rq = workload->req; 899 int event; 900 901 mutex_lock(&vgpu->vgpu_lock); 902 mutex_lock(&gvt->sched_lock); 903 904 /* For the workload w/ request, needs to wait for the context 905 * switch to make sure request is completed. 906 * For the workload w/o request, directly complete the workload. 907 */ 908 if (rq) { 909 wait_event(workload->shadow_ctx_status_wq, 910 !atomic_read(&workload->shadow_ctx_active)); 911 912 /* If this request caused GPU hang, req->fence.error will 913 * be set to -EIO. Use -EIO to set workload status so 914 * that when this request caused GPU hang, didn't trigger 915 * context switch interrupt to guest. 916 */ 917 if (likely(workload->status == -EINPROGRESS)) { 918 if (workload->req->fence.error == -EIO) 919 workload->status = -EIO; 920 else 921 workload->status = 0; 922 } 923 924 if (!workload->status && 925 !(vgpu->resetting_eng & BIT(ring_id))) { 926 update_guest_context(workload); 927 928 for_each_set_bit(event, workload->pending_events, 929 INTEL_GVT_EVENT_MAX) 930 intel_vgpu_trigger_virtual_event(vgpu, event); 931 } 932 933 i915_request_put(fetch_and_zero(&workload->req)); 934 } 935 936 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 937 ring_id, workload, workload->status); 938 939 scheduler->current_workload[ring_id] = NULL; 940 941 list_del_init(&workload->list); 942 943 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 944 /* if workload->status is not successful means HW GPU 945 * has occurred GPU hang or something wrong with i915/GVT, 946 * and GVT won't inject context switch interrupt to guest. 947 * So this error is a vGPU hang actually to the guest. 948 * According to this we should emunlate a vGPU hang. If 949 * there are pending workloads which are already submitted 950 * from guest, we should clean them up like HW GPU does. 951 * 952 * if it is in middle of engine resetting, the pending 953 * workloads won't be submitted to HW GPU and will be 954 * cleaned up during the resetting process later, so doing 955 * the workload clean up here doesn't have any impact. 956 **/ 957 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 958 } 959 960 workload->complete(workload); 961 962 atomic_dec(&s->running_workload_num); 963 wake_up(&scheduler->workload_complete_wq); 964 965 if (gvt->scheduler.need_reschedule) 966 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 967 968 mutex_unlock(&gvt->sched_lock); 969 mutex_unlock(&vgpu->vgpu_lock); 970 } 971 972 static int workload_thread(void *arg) 973 { 974 struct intel_engine_cs *engine = arg; 975 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 976 struct intel_gvt *gvt = engine->i915->gvt; 977 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 978 struct intel_vgpu_workload *workload = NULL; 979 struct intel_vgpu *vgpu = NULL; 980 int ret; 981 DEFINE_WAIT_FUNC(wait, woken_wake_function); 982 983 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 984 985 while (!kthread_should_stop()) { 986 intel_wakeref_t wakeref; 987 988 add_wait_queue(&scheduler->waitq[engine->id], &wait); 989 do { 990 workload = pick_next_workload(gvt, engine); 991 if (workload) 992 break; 993 wait_woken(&wait, TASK_INTERRUPTIBLE, 994 MAX_SCHEDULE_TIMEOUT); 995 } while (!kthread_should_stop()); 996 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 997 998 if (!workload) 999 break; 1000 1001 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1002 engine->name, workload, 1003 workload->vgpu->id); 1004 1005 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1006 1007 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1008 engine->name, workload); 1009 1010 if (need_force_wake) 1011 intel_uncore_forcewake_get(engine->uncore, 1012 FORCEWAKE_ALL); 1013 /* 1014 * Update the vReg of the vGPU which submitted this 1015 * workload. The vGPU may use these registers for checking 1016 * the context state. The value comes from GPU commands 1017 * in this workload. 1018 */ 1019 update_vreg_in_ctx(workload); 1020 1021 ret = dispatch_workload(workload); 1022 1023 if (ret) { 1024 vgpu = workload->vgpu; 1025 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1026 goto complete; 1027 } 1028 1029 gvt_dbg_sched("ring %s wait workload %p\n", 1030 engine->name, workload); 1031 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1032 1033 complete: 1034 gvt_dbg_sched("will complete workload %p, status: %d\n", 1035 workload, workload->status); 1036 1037 complete_current_workload(gvt, engine->id); 1038 1039 if (need_force_wake) 1040 intel_uncore_forcewake_put(engine->uncore, 1041 FORCEWAKE_ALL); 1042 1043 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1044 if (ret && (vgpu_is_vm_unhealthy(ret))) 1045 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1046 } 1047 return 0; 1048 } 1049 1050 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1051 { 1052 struct intel_vgpu_submission *s = &vgpu->submission; 1053 struct intel_gvt *gvt = vgpu->gvt; 1054 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1055 1056 if (atomic_read(&s->running_workload_num)) { 1057 gvt_dbg_sched("wait vgpu idle\n"); 1058 1059 wait_event(scheduler->workload_complete_wq, 1060 !atomic_read(&s->running_workload_num)); 1061 } 1062 } 1063 1064 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1065 { 1066 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1067 struct intel_engine_cs *engine; 1068 enum intel_engine_id i; 1069 1070 gvt_dbg_core("clean workload scheduler\n"); 1071 1072 for_each_engine(engine, gvt->gt, i) { 1073 atomic_notifier_chain_unregister( 1074 &engine->context_status_notifier, 1075 &gvt->shadow_ctx_notifier_block[i]); 1076 kthread_stop(scheduler->thread[i]); 1077 } 1078 } 1079 1080 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1081 { 1082 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1083 struct intel_engine_cs *engine; 1084 enum intel_engine_id i; 1085 int ret; 1086 1087 gvt_dbg_core("init workload scheduler\n"); 1088 1089 init_waitqueue_head(&scheduler->workload_complete_wq); 1090 1091 for_each_engine(engine, gvt->gt, i) { 1092 init_waitqueue_head(&scheduler->waitq[i]); 1093 1094 scheduler->thread[i] = kthread_run(workload_thread, engine, 1095 "gvt:%s", engine->name); 1096 if (IS_ERR(scheduler->thread[i])) { 1097 gvt_err("fail to create workload thread\n"); 1098 ret = PTR_ERR(scheduler->thread[i]); 1099 goto err; 1100 } 1101 1102 gvt->shadow_ctx_notifier_block[i].notifier_call = 1103 shadow_context_status_change; 1104 atomic_notifier_chain_register(&engine->context_status_notifier, 1105 &gvt->shadow_ctx_notifier_block[i]); 1106 } 1107 1108 return 0; 1109 1110 err: 1111 intel_gvt_clean_workload_scheduler(gvt); 1112 return ret; 1113 } 1114 1115 static void 1116 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1117 struct i915_ppgtt *ppgtt) 1118 { 1119 int i; 1120 1121 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1122 px_dma(ppgtt->pd) = s->i915_context_pml4; 1123 } else { 1124 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1125 struct i915_page_directory * const pd = 1126 i915_pd_entry(ppgtt->pd, i); 1127 1128 px_dma(pd) = s->i915_context_pdps[i]; 1129 } 1130 } 1131 } 1132 1133 /** 1134 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1135 * @vgpu: a vGPU 1136 * 1137 * This function is called when a vGPU is being destroyed. 1138 * 1139 */ 1140 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1141 { 1142 struct intel_vgpu_submission *s = &vgpu->submission; 1143 struct intel_engine_cs *engine; 1144 enum intel_engine_id id; 1145 1146 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1147 1148 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1149 for_each_engine(engine, vgpu->gvt->gt, id) 1150 intel_context_unpin(s->shadow[id]); 1151 1152 kmem_cache_destroy(s->workloads); 1153 } 1154 1155 1156 /** 1157 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1158 * @vgpu: a vGPU 1159 * @engine_mask: engines expected to be reset 1160 * 1161 * This function is called when a vGPU is being destroyed. 1162 * 1163 */ 1164 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1165 intel_engine_mask_t engine_mask) 1166 { 1167 struct intel_vgpu_submission *s = &vgpu->submission; 1168 1169 if (!s->active) 1170 return; 1171 1172 intel_vgpu_clean_workloads(vgpu, engine_mask); 1173 s->ops->reset(vgpu, engine_mask); 1174 } 1175 1176 static void 1177 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1178 struct i915_ppgtt *ppgtt) 1179 { 1180 int i; 1181 1182 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1183 s->i915_context_pml4 = px_dma(ppgtt->pd); 1184 } else { 1185 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1186 struct i915_page_directory * const pd = 1187 i915_pd_entry(ppgtt->pd, i); 1188 1189 s->i915_context_pdps[i] = px_dma(pd); 1190 } 1191 } 1192 } 1193 1194 /** 1195 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1196 * @vgpu: a vGPU 1197 * 1198 * This function is called when a vGPU is being created. 1199 * 1200 * Returns: 1201 * Zero on success, negative error code if failed. 1202 * 1203 */ 1204 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1205 { 1206 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1207 struct intel_vgpu_submission *s = &vgpu->submission; 1208 struct intel_engine_cs *engine; 1209 struct i915_ppgtt *ppgtt; 1210 enum intel_engine_id i; 1211 int ret; 1212 1213 ppgtt = i915_ppgtt_create(&i915->gt); 1214 if (IS_ERR(ppgtt)) 1215 return PTR_ERR(ppgtt); 1216 1217 i915_context_ppgtt_root_save(s, ppgtt); 1218 1219 for_each_engine(engine, vgpu->gvt->gt, i) { 1220 struct intel_context *ce; 1221 1222 INIT_LIST_HEAD(&s->workload_q_head[i]); 1223 s->shadow[i] = ERR_PTR(-EINVAL); 1224 1225 ce = intel_context_create(engine); 1226 if (IS_ERR(ce)) { 1227 ret = PTR_ERR(ce); 1228 goto out_shadow_ctx; 1229 } 1230 1231 i915_vm_put(ce->vm); 1232 ce->vm = i915_vm_get(&ppgtt->vm); 1233 intel_context_set_single_submission(ce); 1234 1235 /* Max ring buffer size */ 1236 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1237 const unsigned int ring_size = 512 * SZ_4K; 1238 1239 ce->ring = __intel_context_ring_size(ring_size); 1240 } 1241 1242 ret = intel_context_pin(ce); 1243 intel_context_put(ce); 1244 if (ret) 1245 goto out_shadow_ctx; 1246 1247 s->shadow[i] = ce; 1248 } 1249 1250 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1251 1252 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1253 sizeof(struct intel_vgpu_workload), 0, 1254 SLAB_HWCACHE_ALIGN, 1255 offsetof(struct intel_vgpu_workload, rb_tail), 1256 sizeof_field(struct intel_vgpu_workload, rb_tail), 1257 NULL); 1258 1259 if (!s->workloads) { 1260 ret = -ENOMEM; 1261 goto out_shadow_ctx; 1262 } 1263 1264 atomic_set(&s->running_workload_num, 0); 1265 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1266 1267 i915_vm_put(&ppgtt->vm); 1268 return 0; 1269 1270 out_shadow_ctx: 1271 i915_context_ppgtt_root_restore(s, ppgtt); 1272 for_each_engine(engine, vgpu->gvt->gt, i) { 1273 if (IS_ERR(s->shadow[i])) 1274 break; 1275 1276 intel_context_unpin(s->shadow[i]); 1277 intel_context_put(s->shadow[i]); 1278 } 1279 i915_vm_put(&ppgtt->vm); 1280 return ret; 1281 } 1282 1283 /** 1284 * intel_vgpu_select_submission_ops - select virtual submission interface 1285 * @vgpu: a vGPU 1286 * @engine_mask: either ALL_ENGINES or target engine mask 1287 * @interface: expected vGPU virtual submission interface 1288 * 1289 * This function is called when guest configures submission interface. 1290 * 1291 * Returns: 1292 * Zero on success, negative error code if failed. 1293 * 1294 */ 1295 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1296 intel_engine_mask_t engine_mask, 1297 unsigned int interface) 1298 { 1299 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1300 struct intel_vgpu_submission *s = &vgpu->submission; 1301 const struct intel_vgpu_submission_ops *ops[] = { 1302 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1303 &intel_vgpu_execlist_submission_ops, 1304 }; 1305 int ret; 1306 1307 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1308 return -EINVAL; 1309 1310 if (drm_WARN_ON(&i915->drm, 1311 interface == 0 && engine_mask != ALL_ENGINES)) 1312 return -EINVAL; 1313 1314 if (s->active) 1315 s->ops->clean(vgpu, engine_mask); 1316 1317 if (interface == 0) { 1318 s->ops = NULL; 1319 s->virtual_submission_interface = 0; 1320 s->active = false; 1321 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1322 return 0; 1323 } 1324 1325 ret = ops[interface]->init(vgpu, engine_mask); 1326 if (ret) 1327 return ret; 1328 1329 s->ops = ops[interface]; 1330 s->virtual_submission_interface = interface; 1331 s->active = true; 1332 1333 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1334 vgpu->id, s->ops->name); 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * intel_vgpu_destroy_workload - destroy a vGPU workload 1341 * @workload: workload to destroy 1342 * 1343 * This function is called when destroy a vGPU workload. 1344 * 1345 */ 1346 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1347 { 1348 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1349 1350 release_shadow_batch_buffer(workload); 1351 release_shadow_wa_ctx(&workload->wa_ctx); 1352 1353 if (workload->shadow_mm) 1354 intel_vgpu_mm_put(workload->shadow_mm); 1355 1356 kmem_cache_free(s->workloads, workload); 1357 } 1358 1359 static struct intel_vgpu_workload * 1360 alloc_workload(struct intel_vgpu *vgpu) 1361 { 1362 struct intel_vgpu_submission *s = &vgpu->submission; 1363 struct intel_vgpu_workload *workload; 1364 1365 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1366 if (!workload) 1367 return ERR_PTR(-ENOMEM); 1368 1369 INIT_LIST_HEAD(&workload->list); 1370 INIT_LIST_HEAD(&workload->shadow_bb); 1371 1372 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1373 atomic_set(&workload->shadow_ctx_active, 0); 1374 1375 workload->status = -EINPROGRESS; 1376 workload->vgpu = vgpu; 1377 1378 return workload; 1379 } 1380 1381 #define RING_CTX_OFF(x) \ 1382 offsetof(struct execlist_ring_context, x) 1383 1384 static void read_guest_pdps(struct intel_vgpu *vgpu, 1385 u64 ring_context_gpa, u32 pdp[8]) 1386 { 1387 u64 gpa; 1388 int i; 1389 1390 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1391 1392 for (i = 0; i < 8; i++) 1393 intel_gvt_hypervisor_read_gpa(vgpu, 1394 gpa + i * 8, &pdp[7 - i], 4); 1395 } 1396 1397 static int prepare_mm(struct intel_vgpu_workload *workload) 1398 { 1399 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1400 struct intel_vgpu_mm *mm; 1401 struct intel_vgpu *vgpu = workload->vgpu; 1402 enum intel_gvt_gtt_type root_entry_type; 1403 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1404 1405 switch (desc->addressing_mode) { 1406 case 1: /* legacy 32-bit */ 1407 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1408 break; 1409 case 3: /* legacy 64-bit */ 1410 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1411 break; 1412 default: 1413 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1414 return -EINVAL; 1415 } 1416 1417 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1418 1419 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1420 if (IS_ERR(mm)) 1421 return PTR_ERR(mm); 1422 1423 workload->shadow_mm = mm; 1424 return 0; 1425 } 1426 1427 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1428 ((a)->lrca == (b)->lrca)) 1429 1430 /** 1431 * intel_vgpu_create_workload - create a vGPU workload 1432 * @vgpu: a vGPU 1433 * @engine: the engine 1434 * @desc: a guest context descriptor 1435 * 1436 * This function is called when creating a vGPU workload. 1437 * 1438 * Returns: 1439 * struct intel_vgpu_workload * on success, negative error code in 1440 * pointer if failed. 1441 * 1442 */ 1443 struct intel_vgpu_workload * 1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1445 const struct intel_engine_cs *engine, 1446 struct execlist_ctx_descriptor_format *desc) 1447 { 1448 struct intel_vgpu_submission *s = &vgpu->submission; 1449 struct list_head *q = workload_q_head(vgpu, engine); 1450 struct intel_vgpu_workload *last_workload = NULL; 1451 struct intel_vgpu_workload *workload = NULL; 1452 u64 ring_context_gpa; 1453 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1454 u32 guest_head; 1455 int ret; 1456 1457 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1458 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1459 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1460 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1461 return ERR_PTR(-EINVAL); 1462 } 1463 1464 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1465 RING_CTX_OFF(ring_header.val), &head, 4); 1466 1467 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1468 RING_CTX_OFF(ring_tail.val), &tail, 4); 1469 1470 guest_head = head; 1471 1472 head &= RB_HEAD_OFF_MASK; 1473 tail &= RB_TAIL_OFF_MASK; 1474 1475 list_for_each_entry_reverse(last_workload, q, list) { 1476 1477 if (same_context(&last_workload->ctx_desc, desc)) { 1478 gvt_dbg_el("ring %s cur workload == last\n", 1479 engine->name); 1480 gvt_dbg_el("ctx head %x real head %lx\n", head, 1481 last_workload->rb_tail); 1482 /* 1483 * cannot use guest context head pointer here, 1484 * as it might not be updated at this time 1485 */ 1486 head = last_workload->rb_tail; 1487 break; 1488 } 1489 } 1490 1491 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1492 1493 /* record some ring buffer register values for scan and shadow */ 1494 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1495 RING_CTX_OFF(rb_start.val), &start, 4); 1496 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1497 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1498 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1499 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1500 1501 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1502 _RING_CTL_BUF_SIZE(ctl))) { 1503 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1504 return ERR_PTR(-EINVAL); 1505 } 1506 1507 workload = alloc_workload(vgpu); 1508 if (IS_ERR(workload)) 1509 return workload; 1510 1511 workload->engine = engine; 1512 workload->ctx_desc = *desc; 1513 workload->ring_context_gpa = ring_context_gpa; 1514 workload->rb_head = head; 1515 workload->guest_rb_head = guest_head; 1516 workload->rb_tail = tail; 1517 workload->rb_start = start; 1518 workload->rb_ctl = ctl; 1519 1520 if (engine->id == RCS0) { 1521 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1522 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1523 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1524 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1525 1526 workload->wa_ctx.indirect_ctx.guest_gma = 1527 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1528 workload->wa_ctx.indirect_ctx.size = 1529 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1530 CACHELINE_BYTES; 1531 1532 if (workload->wa_ctx.indirect_ctx.size != 0) { 1533 if (!intel_gvt_ggtt_validate_range(vgpu, 1534 workload->wa_ctx.indirect_ctx.guest_gma, 1535 workload->wa_ctx.indirect_ctx.size)) { 1536 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1537 workload->wa_ctx.indirect_ctx.guest_gma); 1538 kmem_cache_free(s->workloads, workload); 1539 return ERR_PTR(-EINVAL); 1540 } 1541 } 1542 1543 workload->wa_ctx.per_ctx.guest_gma = 1544 per_ctx & PER_CTX_ADDR_MASK; 1545 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1546 if (workload->wa_ctx.per_ctx.valid) { 1547 if (!intel_gvt_ggtt_validate_range(vgpu, 1548 workload->wa_ctx.per_ctx.guest_gma, 1549 CACHELINE_BYTES)) { 1550 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1551 workload->wa_ctx.per_ctx.guest_gma); 1552 kmem_cache_free(s->workloads, workload); 1553 return ERR_PTR(-EINVAL); 1554 } 1555 } 1556 } 1557 1558 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1559 workload, engine->name, head, tail, start, ctl); 1560 1561 ret = prepare_mm(workload); 1562 if (ret) { 1563 kmem_cache_free(s->workloads, workload); 1564 return ERR_PTR(ret); 1565 } 1566 1567 /* Only scan and shadow the first workload in the queue 1568 * as there is only one pre-allocated buf-obj for shadow. 1569 */ 1570 if (list_empty(q)) { 1571 intel_wakeref_t wakeref; 1572 1573 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1574 ret = intel_gvt_scan_and_shadow_workload(workload); 1575 } 1576 1577 if (ret) { 1578 if (vgpu_is_vm_unhealthy(ret)) 1579 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1580 intel_vgpu_destroy_workload(workload); 1581 return ERR_PTR(ret); 1582 } 1583 1584 return workload; 1585 } 1586 1587 /** 1588 * intel_vgpu_queue_workload - Qeue a vGPU workload 1589 * @workload: the workload to queue in 1590 */ 1591 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1592 { 1593 list_add_tail(&workload->list, 1594 workload_q_head(workload->vgpu, workload->engine)); 1595 intel_gvt_kick_schedule(workload->vgpu->gvt); 1596 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1597 } 1598