xref: /openbsd/sys/dev/pci/drm/i915/gvt/scheduler.c (revision 771fbea0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct drm_i915_gem_object *ctx_obj =
62 		workload->req->context->state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct vm_page *page;
65 
66 	if (WARN_ON(!workload->shadow_mm))
67 		return;
68 
69 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 		return;
71 
72 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73 	shadow_ring_context = kmap(page);
74 	set_context_pdp_root_pointer(shadow_ring_context,
75 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 	kunmap(page);
77 }
78 
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 		u32 *reg_state, bool save)
86 {
87 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 	int i = 0;
91 	u32 flex_mmio[] = {
92 		i915_mmio_reg_offset(EU_PERF_CNTL0),
93 		i915_mmio_reg_offset(EU_PERF_CNTL1),
94 		i915_mmio_reg_offset(EU_PERF_CNTL2),
95 		i915_mmio_reg_offset(EU_PERF_CNTL3),
96 		i915_mmio_reg_offset(EU_PERF_CNTL4),
97 		i915_mmio_reg_offset(EU_PERF_CNTL5),
98 		i915_mmio_reg_offset(EU_PERF_CNTL6),
99 	};
100 
101 	if (workload->engine->id != RCS0)
102 		return;
103 
104 	if (save) {
105 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106 
107 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 			u32 state_offset = ctx_flexeu0 + i * 2;
109 
110 			workload->flex_mmio[i] = reg_state[state_offset + 1];
111 		}
112 	} else {
113 		reg_state[ctx_oactxctrl] =
114 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116 
117 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 			u32 state_offset = ctx_flexeu0 + i * 2;
119 			u32 mmio = flex_mmio[i];
120 
121 			reg_state[state_offset] = mmio;
122 			reg_state[state_offset + 1] = workload->flex_mmio[i];
123 		}
124 	}
125 }
126 
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 	struct intel_vgpu *vgpu = workload->vgpu;
130 	struct intel_gvt *gvt = vgpu->gvt;
131 	struct drm_i915_gem_object *ctx_obj =
132 		workload->req->context->state->obj;
133 	struct execlist_ring_context *shadow_ring_context;
134 	struct vm_page *page;
135 	void *dst;
136 	unsigned long context_gpa, context_page_num;
137 	int i;
138 
139 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 	shadow_ring_context = kmap(page);
141 
142 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 					      + RING_CTX_OFF(name.val),\
149 					      &shadow_ring_context->name.val, 4);\
150 		shadow_ring_context->name.val |= 0xffff << 16;\
151 	}
152 
153 	COPY_REG_MASKED(ctx_ctrl);
154 	COPY_REG(ctx_timestamp);
155 
156 	if (workload->engine->id == RCS0) {
157 		COPY_REG(bb_per_ctx_ptr);
158 		COPY_REG(rcs_indirect_ctx);
159 		COPY_REG(rcs_indirect_ctx_offset);
160 	}
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163 
164 	intel_gvt_hypervisor_read_gpa(vgpu,
165 			workload->ring_context_gpa +
166 			sizeof(*shadow_ring_context),
167 			(void *)shadow_ring_context +
168 			sizeof(*shadow_ring_context),
169 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170 
171 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 	kunmap(page);
173 
174 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 		return 0;
176 
177 	gvt_dbg_sched("ring %s workload lrca %x",
178 		      workload->engine->name,
179 		      workload->ctx_desc.lrca);
180 
181 	context_page_num = workload->engine->context_size;
182 	context_page_num = context_page_num >> PAGE_SHIFT;
183 
184 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
185 		context_page_num = 19;
186 
187 	i = 2;
188 	while (i < context_page_num) {
189 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 				(u32)((workload->ctx_desc.lrca + i) <<
191 				I915_GTT_PAGE_SHIFT));
192 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 			gvt_vgpu_err("Invalid guest context descriptor\n");
194 			return -EFAULT;
195 		}
196 
197 		page = i915_gem_object_get_page(ctx_obj, i);
198 		dst = kmap(page);
199 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 				I915_GTT_PAGE_SIZE);
201 		kunmap(page);
202 		i++;
203 	}
204 	return 0;
205 }
206 
207 static inline bool is_gvt_request(struct i915_request *rq)
208 {
209 	return intel_context_force_single_submission(rq->context);
210 }
211 
212 static void save_ring_hw_state(struct intel_vgpu *vgpu,
213 			       const struct intel_engine_cs *engine)
214 {
215 	struct intel_uncore *uncore = engine->uncore;
216 	i915_reg_t reg;
217 
218 	reg = RING_INSTDONE(engine->mmio_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
220 		intel_uncore_read(uncore, reg);
221 
222 	reg = RING_ACTHD(engine->mmio_base);
223 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
224 		intel_uncore_read(uncore, reg);
225 
226 	reg = RING_ACTHD_UDW(engine->mmio_base);
227 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
228 		intel_uncore_read(uncore, reg);
229 }
230 
231 static int shadow_context_status_change(struct notifier_block *nb,
232 		unsigned long action, void *data)
233 {
234 	struct i915_request *rq = data;
235 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
236 				shadow_ctx_notifier_block[rq->engine->id]);
237 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
238 	enum intel_engine_id ring_id = rq->engine->id;
239 	struct intel_vgpu_workload *workload;
240 	unsigned long flags;
241 
242 	if (!is_gvt_request(rq)) {
243 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
244 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
245 		    scheduler->engine_owner[ring_id]) {
246 			/* Switch ring from vGPU to host. */
247 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
248 					      NULL, rq->engine);
249 			scheduler->engine_owner[ring_id] = NULL;
250 		}
251 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
252 
253 		return NOTIFY_OK;
254 	}
255 
256 	workload = scheduler->current_workload[ring_id];
257 	if (unlikely(!workload))
258 		return NOTIFY_OK;
259 
260 	switch (action) {
261 	case INTEL_CONTEXT_SCHEDULE_IN:
262 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
264 			/* Switch ring from host to vGPU or vGPU to vGPU. */
265 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
266 					      workload->vgpu, rq->engine);
267 			scheduler->engine_owner[ring_id] = workload->vgpu;
268 		} else
269 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270 				      ring_id, workload->vgpu->id);
271 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
272 		atomic_set(&workload->shadow_ctx_active, 1);
273 		break;
274 	case INTEL_CONTEXT_SCHEDULE_OUT:
275 		save_ring_hw_state(workload->vgpu, rq->engine);
276 		atomic_set(&workload->shadow_ctx_active, 0);
277 		break;
278 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
279 		save_ring_hw_state(workload->vgpu, rq->engine);
280 		break;
281 	default:
282 		WARN_ON(1);
283 		return NOTIFY_OK;
284 	}
285 	wake_up(&workload->shadow_ctx_status_wq);
286 	return NOTIFY_OK;
287 }
288 
289 static void
290 shadow_context_descriptor_update(struct intel_context *ce,
291 				 struct intel_vgpu_workload *workload)
292 {
293 	u64 desc = ce->lrc.desc;
294 
295 	/*
296 	 * Update bits 0-11 of the context descriptor which includes flags
297 	 * like GEN8_CTX_* cached in desc_template
298 	 */
299 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
300 	desc |= (u64)workload->ctx_desc.addressing_mode <<
301 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
302 
303 	ce->lrc.desc = desc;
304 }
305 
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
307 {
308 	struct intel_vgpu *vgpu = workload->vgpu;
309 	struct i915_request *req = workload->req;
310 	void *shadow_ring_buffer_va;
311 	u32 *cs;
312 	int err;
313 
314 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
315 		intel_vgpu_restore_inhibit_context(vgpu, req);
316 
317 	/*
318 	 * To track whether a request has started on HW, we can emit a
319 	 * breadcrumb at the beginning of the request and check its
320 	 * timeline's HWSP to see if the breadcrumb has advanced past the
321 	 * start of this request. Actually, the request must have the
322 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323 	 * scheduler might get a wrong state of it during reset. Since the
324 	 * requests from gvt always set the has_init_breadcrumb flag, here
325 	 * need to do the emit_init_breadcrumb for all the requests.
326 	 */
327 	if (req->engine->emit_init_breadcrumb) {
328 		err = req->engine->emit_init_breadcrumb(req);
329 		if (err) {
330 			gvt_vgpu_err("fail to emit init breadcrumb\n");
331 			return err;
332 		}
333 	}
334 
335 	/* allocate shadow ring buffer */
336 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
337 	if (IS_ERR(cs)) {
338 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
339 			workload->rb_len);
340 		return PTR_ERR(cs);
341 	}
342 
343 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
344 
345 	/* get shadow ring buffer va */
346 	workload->shadow_ring_buffer_va = cs;
347 
348 	memcpy(cs, shadow_ring_buffer_va,
349 			workload->rb_len);
350 
351 	cs += workload->rb_len / sizeof(u32);
352 	intel_ring_advance(workload->req, cs);
353 
354 	return 0;
355 }
356 
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
358 {
359 	if (!wa_ctx->indirect_ctx.obj)
360 		return;
361 
362 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
363 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
364 
365 	wa_ctx->indirect_ctx.obj = NULL;
366 	wa_ctx->indirect_ctx.shadow_va = NULL;
367 }
368 
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
370 					  struct intel_context *ce)
371 {
372 	struct intel_vgpu_mm *mm = workload->shadow_mm;
373 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
374 	int i = 0;
375 
376 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
377 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
378 	} else {
379 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
380 			struct i915_page_directory * const pd =
381 				i915_pd_entry(ppgtt->pd, i);
382 			/* skip now as current i915 ppgtt alloc won't allocate
383 			   top level pdp for non 4-level table, won't impact
384 			   shadow ppgtt. */
385 			if (!pd)
386 				break;
387 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
388 		}
389 	}
390 }
391 
392 static int
393 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
394 {
395 	struct intel_vgpu *vgpu = workload->vgpu;
396 	struct intel_vgpu_submission *s = &vgpu->submission;
397 	struct i915_request *rq;
398 
399 	if (workload->req)
400 		return 0;
401 
402 	rq = i915_request_create(s->shadow[workload->engine->id]);
403 	if (IS_ERR(rq)) {
404 		gvt_vgpu_err("fail to allocate gem request\n");
405 		return PTR_ERR(rq);
406 	}
407 
408 	workload->req = i915_request_get(rq);
409 	return 0;
410 }
411 
412 /**
413  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
414  * shadow it as well, include ringbuffer,wa_ctx and ctx.
415  * @workload: an abstract entity for each execlist submission.
416  *
417  * This function is called before the workload submitting to i915, to make
418  * sure the content of the workload is valid.
419  */
420 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
421 {
422 	struct intel_vgpu *vgpu = workload->vgpu;
423 	struct intel_vgpu_submission *s = &vgpu->submission;
424 	int ret;
425 
426 	lockdep_assert_held(&vgpu->vgpu_lock);
427 
428 	if (workload->shadow)
429 		return 0;
430 
431 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
432 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
433 						 workload);
434 
435 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
436 	if (ret)
437 		return ret;
438 
439 	if (workload->engine->id == RCS0 &&
440 	    workload->wa_ctx.indirect_ctx.size) {
441 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
442 		if (ret)
443 			goto err_shadow;
444 	}
445 
446 	workload->shadow = true;
447 	return 0;
448 
449 err_shadow:
450 	release_shadow_wa_ctx(&workload->wa_ctx);
451 	return ret;
452 }
453 
454 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
455 
456 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
457 {
458 	struct intel_gvt *gvt = workload->vgpu->gvt;
459 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
460 	struct intel_vgpu_shadow_bb *bb;
461 	int ret;
462 
463 	list_for_each_entry(bb, &workload->shadow_bb, list) {
464 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
465 		 * is only updated into ring_scan_buffer, not real ring address
466 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
467 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
468 		 * in copy_workload_to_ring_buffer.
469 		 */
470 
471 		if (bb->bb_offset)
472 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
473 				+ bb->bb_offset;
474 
475 		if (bb->ppgtt) {
476 			/* for non-priv bb, scan&shadow is only for
477 			 * debugging purpose, so the content of shadow bb
478 			 * is the same as original bb. Therefore,
479 			 * here, rather than switch to shadow bb's gma
480 			 * address, we directly use original batch buffer's
481 			 * gma address, and send original bb to hardware
482 			 * directly
483 			 */
484 			if (bb->clflush & CLFLUSH_AFTER) {
485 				drm_clflush_virt_range(bb->va,
486 						bb->obj->base.size);
487 				bb->clflush &= ~CLFLUSH_AFTER;
488 			}
489 			i915_gem_object_finish_access(bb->obj);
490 			bb->accessing = false;
491 
492 		} else {
493 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
494 					NULL, 0, 0, 0);
495 			if (IS_ERR(bb->vma)) {
496 				ret = PTR_ERR(bb->vma);
497 				goto err;
498 			}
499 
500 			/* relocate shadow batch buffer */
501 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
502 			if (gmadr_bytes == 8)
503 				bb->bb_start_cmd_va[2] = 0;
504 
505 			/* No one is going to touch shadow bb from now on. */
506 			if (bb->clflush & CLFLUSH_AFTER) {
507 				drm_clflush_virt_range(bb->va,
508 						bb->obj->base.size);
509 				bb->clflush &= ~CLFLUSH_AFTER;
510 			}
511 
512 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
513 								false);
514 			if (ret)
515 				goto err;
516 
517 			ret = i915_vma_move_to_active(bb->vma,
518 						      workload->req,
519 						      0);
520 			if (ret)
521 				goto err;
522 
523 			i915_gem_object_finish_access(bb->obj);
524 			bb->accessing = false;
525 		}
526 	}
527 	return 0;
528 err:
529 	release_shadow_batch_buffer(workload);
530 	return ret;
531 }
532 
533 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
534 {
535 	struct intel_vgpu_workload *workload =
536 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
537 	struct i915_request *rq = workload->req;
538 	struct execlist_ring_context *shadow_ring_context =
539 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
540 
541 	shadow_ring_context->bb_per_ctx_ptr.val =
542 		(shadow_ring_context->bb_per_ctx_ptr.val &
543 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
544 	shadow_ring_context->rcs_indirect_ctx.val =
545 		(shadow_ring_context->rcs_indirect_ctx.val &
546 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
547 }
548 
549 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
550 {
551 	struct i915_vma *vma;
552 	unsigned char *per_ctx_va =
553 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
554 		wa_ctx->indirect_ctx.size;
555 
556 	if (wa_ctx->indirect_ctx.size == 0)
557 		return 0;
558 
559 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
560 				       0, CACHELINE_BYTES, 0);
561 	if (IS_ERR(vma))
562 		return PTR_ERR(vma);
563 
564 	/* FIXME: we are not tracking our pinned VMA leaving it
565 	 * up to the core to fix up the stray pin_count upon
566 	 * free.
567 	 */
568 
569 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
570 
571 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
572 	memset(per_ctx_va, 0, CACHELINE_BYTES);
573 
574 	update_wa_ctx_2_shadow_ctx(wa_ctx);
575 	return 0;
576 }
577 
578 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
579 {
580 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
581 		workload->rb_start;
582 }
583 
584 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
585 {
586 	struct intel_vgpu_shadow_bb *bb, *pos;
587 
588 	if (list_empty(&workload->shadow_bb))
589 		return;
590 
591 	bb = list_first_entry(&workload->shadow_bb,
592 			struct intel_vgpu_shadow_bb, list);
593 
594 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
595 		if (bb->obj) {
596 			if (bb->accessing)
597 				i915_gem_object_finish_access(bb->obj);
598 
599 			if (bb->va && !IS_ERR(bb->va))
600 				i915_gem_object_unpin_map(bb->obj);
601 
602 			if (bb->vma && !IS_ERR(bb->vma)) {
603 				i915_vma_unpin(bb->vma);
604 				i915_vma_close(bb->vma);
605 			}
606 			i915_gem_object_put(bb->obj);
607 		}
608 		list_del(&bb->list);
609 		kfree(bb);
610 	}
611 }
612 
613 static int prepare_workload(struct intel_vgpu_workload *workload)
614 {
615 	struct intel_vgpu *vgpu = workload->vgpu;
616 	struct intel_vgpu_submission *s = &vgpu->submission;
617 	int ret = 0;
618 
619 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 	if (ret) {
621 		gvt_vgpu_err("fail to vgpu pin mm\n");
622 		return ret;
623 	}
624 
625 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
626 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
627 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
628 		return -EINVAL;
629 	}
630 
631 	update_shadow_pdps(workload);
632 
633 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
634 
635 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
636 	if (ret) {
637 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
638 		goto err_unpin_mm;
639 	}
640 
641 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
642 	if (ret) {
643 		gvt_vgpu_err("fail to flush post shadow\n");
644 		goto err_unpin_mm;
645 	}
646 
647 	ret = copy_workload_to_ring_buffer(workload);
648 	if (ret) {
649 		gvt_vgpu_err("fail to generate request\n");
650 		goto err_unpin_mm;
651 	}
652 
653 	ret = prepare_shadow_batch_buffer(workload);
654 	if (ret) {
655 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
656 		goto err_unpin_mm;
657 	}
658 
659 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
660 	if (ret) {
661 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
662 		goto err_shadow_batch;
663 	}
664 
665 	if (workload->prepare) {
666 		ret = workload->prepare(workload);
667 		if (ret)
668 			goto err_shadow_wa_ctx;
669 	}
670 
671 	return 0;
672 err_shadow_wa_ctx:
673 	release_shadow_wa_ctx(&workload->wa_ctx);
674 err_shadow_batch:
675 	release_shadow_batch_buffer(workload);
676 err_unpin_mm:
677 	intel_vgpu_unpin_mm(workload->shadow_mm);
678 	return ret;
679 }
680 
681 static int dispatch_workload(struct intel_vgpu_workload *workload)
682 {
683 	struct intel_vgpu *vgpu = workload->vgpu;
684 	struct i915_request *rq;
685 	int ret;
686 
687 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
688 		      workload->engine->name, workload);
689 
690 	mutex_lock(&vgpu->vgpu_lock);
691 
692 	ret = intel_gvt_workload_req_alloc(workload);
693 	if (ret)
694 		goto err_req;
695 
696 	ret = intel_gvt_scan_and_shadow_workload(workload);
697 	if (ret)
698 		goto out;
699 
700 	ret = populate_shadow_context(workload);
701 	if (ret) {
702 		release_shadow_wa_ctx(&workload->wa_ctx);
703 		goto out;
704 	}
705 
706 	ret = prepare_workload(workload);
707 out:
708 	if (ret) {
709 		/* We might still need to add request with
710 		 * clean ctx to retire it properly..
711 		 */
712 		rq = fetch_and_zero(&workload->req);
713 		i915_request_put(rq);
714 	}
715 
716 	if (!IS_ERR_OR_NULL(workload->req)) {
717 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
718 			      workload->engine->name, workload->req);
719 		i915_request_add(workload->req);
720 		workload->dispatched = true;
721 	}
722 err_req:
723 	if (ret)
724 		workload->status = ret;
725 	mutex_unlock(&vgpu->vgpu_lock);
726 	return ret;
727 }
728 
729 static struct intel_vgpu_workload *
730 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
731 {
732 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
733 	struct intel_vgpu_workload *workload = NULL;
734 
735 	mutex_lock(&gvt->sched_lock);
736 
737 	/*
738 	 * no current vgpu / will be scheduled out / no workload
739 	 * bail out
740 	 */
741 	if (!scheduler->current_vgpu) {
742 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
743 		goto out;
744 	}
745 
746 	if (scheduler->need_reschedule) {
747 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
748 		goto out;
749 	}
750 
751 	if (!scheduler->current_vgpu->active ||
752 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
753 		goto out;
754 
755 	/*
756 	 * still have current workload, maybe the workload disptacher
757 	 * fail to submit it for some reason, resubmit it.
758 	 */
759 	if (scheduler->current_workload[engine->id]) {
760 		workload = scheduler->current_workload[engine->id];
761 		gvt_dbg_sched("ring %s still have current workload %p\n",
762 			      engine->name, workload);
763 		goto out;
764 	}
765 
766 	/*
767 	 * pick a workload as current workload
768 	 * once current workload is set, schedule policy routines
769 	 * will wait the current workload is finished when trying to
770 	 * schedule out a vgpu.
771 	 */
772 	scheduler->current_workload[engine->id] =
773 		list_first_entry(workload_q_head(scheduler->current_vgpu,
774 						 engine),
775 				 struct intel_vgpu_workload, list);
776 
777 	workload = scheduler->current_workload[engine->id];
778 
779 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
780 
781 	atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783 	mutex_unlock(&gvt->sched_lock);
784 	return workload;
785 }
786 
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789 	struct i915_request *rq = workload->req;
790 	struct intel_vgpu *vgpu = workload->vgpu;
791 	struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
792 	struct execlist_ring_context *shadow_ring_context;
793 	struct vm_page *page;
794 	void *src;
795 	unsigned long context_gpa, context_page_num;
796 	int i;
797 	u32 ring_base;
798 	u32 head, tail;
799 	u16 wrap_count;
800 
801 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
802 		      workload->ctx_desc.lrca);
803 
804 	head = workload->rb_head;
805 	tail = workload->rb_tail;
806 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
807 
808 	if (tail < head) {
809 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
810 			wrap_count = 0;
811 		else
812 			wrap_count += 1;
813 	}
814 
815 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
816 
817 	ring_base = rq->engine->mmio_base;
818 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
819 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
820 
821 	context_page_num = rq->engine->context_size;
822 	context_page_num = context_page_num >> PAGE_SHIFT;
823 
824 	if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
825 		context_page_num = 19;
826 
827 	i = 2;
828 
829 	while (i < context_page_num) {
830 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
831 				(u32)((workload->ctx_desc.lrca + i) <<
832 					I915_GTT_PAGE_SHIFT));
833 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
834 			gvt_vgpu_err("invalid guest context descriptor\n");
835 			return;
836 		}
837 
838 		page = i915_gem_object_get_page(ctx_obj, i);
839 		src = kmap(page);
840 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
841 				I915_GTT_PAGE_SIZE);
842 		kunmap(page);
843 		i++;
844 	}
845 
846 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
847 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
848 
849 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
850 	shadow_ring_context = kmap(page);
851 
852 #define COPY_REG(name) \
853 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
854 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
855 
856 	COPY_REG(ctx_ctrl);
857 	COPY_REG(ctx_timestamp);
858 
859 #undef COPY_REG
860 
861 	intel_gvt_hypervisor_write_gpa(vgpu,
862 			workload->ring_context_gpa +
863 			sizeof(*shadow_ring_context),
864 			(void *)shadow_ring_context +
865 			sizeof(*shadow_ring_context),
866 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
867 
868 	kunmap(page);
869 }
870 
871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
872 				intel_engine_mask_t engine_mask)
873 {
874 	struct intel_vgpu_submission *s = &vgpu->submission;
875 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
876 	struct intel_engine_cs *engine;
877 	struct intel_vgpu_workload *pos, *n;
878 	intel_engine_mask_t tmp;
879 
880 	/* free the unsubmited workloads in the queues. */
881 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
882 		list_for_each_entry_safe(pos, n,
883 			&s->workload_q_head[engine->id], list) {
884 			list_del_init(&pos->list);
885 			intel_vgpu_destroy_workload(pos);
886 		}
887 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
888 	}
889 }
890 
891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
892 {
893 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
894 	struct intel_vgpu_workload *workload =
895 		scheduler->current_workload[ring_id];
896 	struct intel_vgpu *vgpu = workload->vgpu;
897 	struct intel_vgpu_submission *s = &vgpu->submission;
898 	struct i915_request *rq = workload->req;
899 	int event;
900 
901 	mutex_lock(&vgpu->vgpu_lock);
902 	mutex_lock(&gvt->sched_lock);
903 
904 	/* For the workload w/ request, needs to wait for the context
905 	 * switch to make sure request is completed.
906 	 * For the workload w/o request, directly complete the workload.
907 	 */
908 	if (rq) {
909 		wait_event(workload->shadow_ctx_status_wq,
910 			   !atomic_read(&workload->shadow_ctx_active));
911 
912 		/* If this request caused GPU hang, req->fence.error will
913 		 * be set to -EIO. Use -EIO to set workload status so
914 		 * that when this request caused GPU hang, didn't trigger
915 		 * context switch interrupt to guest.
916 		 */
917 		if (likely(workload->status == -EINPROGRESS)) {
918 			if (workload->req->fence.error == -EIO)
919 				workload->status = -EIO;
920 			else
921 				workload->status = 0;
922 		}
923 
924 		if (!workload->status &&
925 		    !(vgpu->resetting_eng & BIT(ring_id))) {
926 			update_guest_context(workload);
927 
928 			for_each_set_bit(event, workload->pending_events,
929 					 INTEL_GVT_EVENT_MAX)
930 				intel_vgpu_trigger_virtual_event(vgpu, event);
931 		}
932 
933 		i915_request_put(fetch_and_zero(&workload->req));
934 	}
935 
936 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
937 			ring_id, workload, workload->status);
938 
939 	scheduler->current_workload[ring_id] = NULL;
940 
941 	list_del_init(&workload->list);
942 
943 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
944 		/* if workload->status is not successful means HW GPU
945 		 * has occurred GPU hang or something wrong with i915/GVT,
946 		 * and GVT won't inject context switch interrupt to guest.
947 		 * So this error is a vGPU hang actually to the guest.
948 		 * According to this we should emunlate a vGPU hang. If
949 		 * there are pending workloads which are already submitted
950 		 * from guest, we should clean them up like HW GPU does.
951 		 *
952 		 * if it is in middle of engine resetting, the pending
953 		 * workloads won't be submitted to HW GPU and will be
954 		 * cleaned up during the resetting process later, so doing
955 		 * the workload clean up here doesn't have any impact.
956 		 **/
957 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
958 	}
959 
960 	workload->complete(workload);
961 
962 	atomic_dec(&s->running_workload_num);
963 	wake_up(&scheduler->workload_complete_wq);
964 
965 	if (gvt->scheduler.need_reschedule)
966 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
967 
968 	mutex_unlock(&gvt->sched_lock);
969 	mutex_unlock(&vgpu->vgpu_lock);
970 }
971 
972 static int workload_thread(void *arg)
973 {
974 	struct intel_engine_cs *engine = arg;
975 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
976 	struct intel_gvt *gvt = engine->i915->gvt;
977 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
978 	struct intel_vgpu_workload *workload = NULL;
979 	struct intel_vgpu *vgpu = NULL;
980 	int ret;
981 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
982 
983 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
984 
985 	while (!kthread_should_stop()) {
986 		intel_wakeref_t wakeref;
987 
988 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
989 		do {
990 			workload = pick_next_workload(gvt, engine);
991 			if (workload)
992 				break;
993 			wait_woken(&wait, TASK_INTERRUPTIBLE,
994 				   MAX_SCHEDULE_TIMEOUT);
995 		} while (!kthread_should_stop());
996 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
997 
998 		if (!workload)
999 			break;
1000 
1001 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1002 			      engine->name, workload,
1003 			      workload->vgpu->id);
1004 
1005 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1006 
1007 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1008 			      engine->name, workload);
1009 
1010 		if (need_force_wake)
1011 			intel_uncore_forcewake_get(engine->uncore,
1012 						   FORCEWAKE_ALL);
1013 		/*
1014 		 * Update the vReg of the vGPU which submitted this
1015 		 * workload. The vGPU may use these registers for checking
1016 		 * the context state. The value comes from GPU commands
1017 		 * in this workload.
1018 		 */
1019 		update_vreg_in_ctx(workload);
1020 
1021 		ret = dispatch_workload(workload);
1022 
1023 		if (ret) {
1024 			vgpu = workload->vgpu;
1025 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1026 			goto complete;
1027 		}
1028 
1029 		gvt_dbg_sched("ring %s wait workload %p\n",
1030 			      engine->name, workload);
1031 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1032 
1033 complete:
1034 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1035 			      workload, workload->status);
1036 
1037 		complete_current_workload(gvt, engine->id);
1038 
1039 		if (need_force_wake)
1040 			intel_uncore_forcewake_put(engine->uncore,
1041 						   FORCEWAKE_ALL);
1042 
1043 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1044 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1045 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1046 	}
1047 	return 0;
1048 }
1049 
1050 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1051 {
1052 	struct intel_vgpu_submission *s = &vgpu->submission;
1053 	struct intel_gvt *gvt = vgpu->gvt;
1054 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1055 
1056 	if (atomic_read(&s->running_workload_num)) {
1057 		gvt_dbg_sched("wait vgpu idle\n");
1058 
1059 		wait_event(scheduler->workload_complete_wq,
1060 				!atomic_read(&s->running_workload_num));
1061 	}
1062 }
1063 
1064 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1065 {
1066 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1067 	struct intel_engine_cs *engine;
1068 	enum intel_engine_id i;
1069 
1070 	gvt_dbg_core("clean workload scheduler\n");
1071 
1072 	for_each_engine(engine, gvt->gt, i) {
1073 		atomic_notifier_chain_unregister(
1074 					&engine->context_status_notifier,
1075 					&gvt->shadow_ctx_notifier_block[i]);
1076 		kthread_stop(scheduler->thread[i]);
1077 	}
1078 }
1079 
1080 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1081 {
1082 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1083 	struct intel_engine_cs *engine;
1084 	enum intel_engine_id i;
1085 	int ret;
1086 
1087 	gvt_dbg_core("init workload scheduler\n");
1088 
1089 	init_waitqueue_head(&scheduler->workload_complete_wq);
1090 
1091 	for_each_engine(engine, gvt->gt, i) {
1092 		init_waitqueue_head(&scheduler->waitq[i]);
1093 
1094 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1095 						   "gvt:%s", engine->name);
1096 		if (IS_ERR(scheduler->thread[i])) {
1097 			gvt_err("fail to create workload thread\n");
1098 			ret = PTR_ERR(scheduler->thread[i]);
1099 			goto err;
1100 		}
1101 
1102 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1103 					shadow_context_status_change;
1104 		atomic_notifier_chain_register(&engine->context_status_notifier,
1105 					&gvt->shadow_ctx_notifier_block[i]);
1106 	}
1107 
1108 	return 0;
1109 
1110 err:
1111 	intel_gvt_clean_workload_scheduler(gvt);
1112 	return ret;
1113 }
1114 
1115 static void
1116 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1117 				struct i915_ppgtt *ppgtt)
1118 {
1119 	int i;
1120 
1121 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1122 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1123 	} else {
1124 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1125 			struct i915_page_directory * const pd =
1126 				i915_pd_entry(ppgtt->pd, i);
1127 
1128 			px_dma(pd) = s->i915_context_pdps[i];
1129 		}
1130 	}
1131 }
1132 
1133 /**
1134  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1135  * @vgpu: a vGPU
1136  *
1137  * This function is called when a vGPU is being destroyed.
1138  *
1139  */
1140 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1141 {
1142 	struct intel_vgpu_submission *s = &vgpu->submission;
1143 	struct intel_engine_cs *engine;
1144 	enum intel_engine_id id;
1145 
1146 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1147 
1148 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1149 	for_each_engine(engine, vgpu->gvt->gt, id)
1150 		intel_context_unpin(s->shadow[id]);
1151 
1152 	kmem_cache_destroy(s->workloads);
1153 }
1154 
1155 
1156 /**
1157  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1158  * @vgpu: a vGPU
1159  * @engine_mask: engines expected to be reset
1160  *
1161  * This function is called when a vGPU is being destroyed.
1162  *
1163  */
1164 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1165 				 intel_engine_mask_t engine_mask)
1166 {
1167 	struct intel_vgpu_submission *s = &vgpu->submission;
1168 
1169 	if (!s->active)
1170 		return;
1171 
1172 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1173 	s->ops->reset(vgpu, engine_mask);
1174 }
1175 
1176 static void
1177 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1178 			     struct i915_ppgtt *ppgtt)
1179 {
1180 	int i;
1181 
1182 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1183 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1184 	} else {
1185 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1186 			struct i915_page_directory * const pd =
1187 				i915_pd_entry(ppgtt->pd, i);
1188 
1189 			s->i915_context_pdps[i] = px_dma(pd);
1190 		}
1191 	}
1192 }
1193 
1194 /**
1195  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1196  * @vgpu: a vGPU
1197  *
1198  * This function is called when a vGPU is being created.
1199  *
1200  * Returns:
1201  * Zero on success, negative error code if failed.
1202  *
1203  */
1204 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1205 {
1206 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1207 	struct intel_vgpu_submission *s = &vgpu->submission;
1208 	struct intel_engine_cs *engine;
1209 	struct i915_ppgtt *ppgtt;
1210 	enum intel_engine_id i;
1211 	int ret;
1212 
1213 	ppgtt = i915_ppgtt_create(&i915->gt);
1214 	if (IS_ERR(ppgtt))
1215 		return PTR_ERR(ppgtt);
1216 
1217 	i915_context_ppgtt_root_save(s, ppgtt);
1218 
1219 	for_each_engine(engine, vgpu->gvt->gt, i) {
1220 		struct intel_context *ce;
1221 
1222 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1223 		s->shadow[i] = ERR_PTR(-EINVAL);
1224 
1225 		ce = intel_context_create(engine);
1226 		if (IS_ERR(ce)) {
1227 			ret = PTR_ERR(ce);
1228 			goto out_shadow_ctx;
1229 		}
1230 
1231 		i915_vm_put(ce->vm);
1232 		ce->vm = i915_vm_get(&ppgtt->vm);
1233 		intel_context_set_single_submission(ce);
1234 
1235 		/* Max ring buffer size */
1236 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1237 			const unsigned int ring_size = 512 * SZ_4K;
1238 
1239 			ce->ring = __intel_context_ring_size(ring_size);
1240 		}
1241 
1242 		ret = intel_context_pin(ce);
1243 		intel_context_put(ce);
1244 		if (ret)
1245 			goto out_shadow_ctx;
1246 
1247 		s->shadow[i] = ce;
1248 	}
1249 
1250 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1251 
1252 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1253 						  sizeof(struct intel_vgpu_workload), 0,
1254 						  SLAB_HWCACHE_ALIGN,
1255 						  offsetof(struct intel_vgpu_workload, rb_tail),
1256 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1257 						  NULL);
1258 
1259 	if (!s->workloads) {
1260 		ret = -ENOMEM;
1261 		goto out_shadow_ctx;
1262 	}
1263 
1264 	atomic_set(&s->running_workload_num, 0);
1265 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1266 
1267 	i915_vm_put(&ppgtt->vm);
1268 	return 0;
1269 
1270 out_shadow_ctx:
1271 	i915_context_ppgtt_root_restore(s, ppgtt);
1272 	for_each_engine(engine, vgpu->gvt->gt, i) {
1273 		if (IS_ERR(s->shadow[i]))
1274 			break;
1275 
1276 		intel_context_unpin(s->shadow[i]);
1277 		intel_context_put(s->shadow[i]);
1278 	}
1279 	i915_vm_put(&ppgtt->vm);
1280 	return ret;
1281 }
1282 
1283 /**
1284  * intel_vgpu_select_submission_ops - select virtual submission interface
1285  * @vgpu: a vGPU
1286  * @engine_mask: either ALL_ENGINES or target engine mask
1287  * @interface: expected vGPU virtual submission interface
1288  *
1289  * This function is called when guest configures submission interface.
1290  *
1291  * Returns:
1292  * Zero on success, negative error code if failed.
1293  *
1294  */
1295 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1296 				     intel_engine_mask_t engine_mask,
1297 				     unsigned int interface)
1298 {
1299 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1300 	struct intel_vgpu_submission *s = &vgpu->submission;
1301 	const struct intel_vgpu_submission_ops *ops[] = {
1302 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1303 			&intel_vgpu_execlist_submission_ops,
1304 	};
1305 	int ret;
1306 
1307 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1308 		return -EINVAL;
1309 
1310 	if (drm_WARN_ON(&i915->drm,
1311 			interface == 0 && engine_mask != ALL_ENGINES))
1312 		return -EINVAL;
1313 
1314 	if (s->active)
1315 		s->ops->clean(vgpu, engine_mask);
1316 
1317 	if (interface == 0) {
1318 		s->ops = NULL;
1319 		s->virtual_submission_interface = 0;
1320 		s->active = false;
1321 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1322 		return 0;
1323 	}
1324 
1325 	ret = ops[interface]->init(vgpu, engine_mask);
1326 	if (ret)
1327 		return ret;
1328 
1329 	s->ops = ops[interface];
1330 	s->virtual_submission_interface = interface;
1331 	s->active = true;
1332 
1333 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1334 			vgpu->id, s->ops->name);
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * intel_vgpu_destroy_workload - destroy a vGPU workload
1341  * @workload: workload to destroy
1342  *
1343  * This function is called when destroy a vGPU workload.
1344  *
1345  */
1346 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1347 {
1348 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1349 
1350 	release_shadow_batch_buffer(workload);
1351 	release_shadow_wa_ctx(&workload->wa_ctx);
1352 
1353 	if (workload->shadow_mm)
1354 		intel_vgpu_mm_put(workload->shadow_mm);
1355 
1356 	kmem_cache_free(s->workloads, workload);
1357 }
1358 
1359 static struct intel_vgpu_workload *
1360 alloc_workload(struct intel_vgpu *vgpu)
1361 {
1362 	struct intel_vgpu_submission *s = &vgpu->submission;
1363 	struct intel_vgpu_workload *workload;
1364 
1365 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1366 	if (!workload)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	INIT_LIST_HEAD(&workload->list);
1370 	INIT_LIST_HEAD(&workload->shadow_bb);
1371 
1372 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1373 	atomic_set(&workload->shadow_ctx_active, 0);
1374 
1375 	workload->status = -EINPROGRESS;
1376 	workload->vgpu = vgpu;
1377 
1378 	return workload;
1379 }
1380 
1381 #define RING_CTX_OFF(x) \
1382 	offsetof(struct execlist_ring_context, x)
1383 
1384 static void read_guest_pdps(struct intel_vgpu *vgpu,
1385 		u64 ring_context_gpa, u32 pdp[8])
1386 {
1387 	u64 gpa;
1388 	int i;
1389 
1390 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1391 
1392 	for (i = 0; i < 8; i++)
1393 		intel_gvt_hypervisor_read_gpa(vgpu,
1394 				gpa + i * 8, &pdp[7 - i], 4);
1395 }
1396 
1397 static int prepare_mm(struct intel_vgpu_workload *workload)
1398 {
1399 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1400 	struct intel_vgpu_mm *mm;
1401 	struct intel_vgpu *vgpu = workload->vgpu;
1402 	enum intel_gvt_gtt_type root_entry_type;
1403 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1404 
1405 	switch (desc->addressing_mode) {
1406 	case 1: /* legacy 32-bit */
1407 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1408 		break;
1409 	case 3: /* legacy 64-bit */
1410 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1411 		break;
1412 	default:
1413 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1414 		return -EINVAL;
1415 	}
1416 
1417 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1418 
1419 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1420 	if (IS_ERR(mm))
1421 		return PTR_ERR(mm);
1422 
1423 	workload->shadow_mm = mm;
1424 	return 0;
1425 }
1426 
1427 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1428 		((a)->lrca == (b)->lrca))
1429 
1430 /**
1431  * intel_vgpu_create_workload - create a vGPU workload
1432  * @vgpu: a vGPU
1433  * @engine: the engine
1434  * @desc: a guest context descriptor
1435  *
1436  * This function is called when creating a vGPU workload.
1437  *
1438  * Returns:
1439  * struct intel_vgpu_workload * on success, negative error code in
1440  * pointer if failed.
1441  *
1442  */
1443 struct intel_vgpu_workload *
1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1445 			   const struct intel_engine_cs *engine,
1446 			   struct execlist_ctx_descriptor_format *desc)
1447 {
1448 	struct intel_vgpu_submission *s = &vgpu->submission;
1449 	struct list_head *q = workload_q_head(vgpu, engine);
1450 	struct intel_vgpu_workload *last_workload = NULL;
1451 	struct intel_vgpu_workload *workload = NULL;
1452 	u64 ring_context_gpa;
1453 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1454 	u32 guest_head;
1455 	int ret;
1456 
1457 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1458 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1459 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1460 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1461 		return ERR_PTR(-EINVAL);
1462 	}
1463 
1464 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1465 			RING_CTX_OFF(ring_header.val), &head, 4);
1466 
1467 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1468 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1469 
1470 	guest_head = head;
1471 
1472 	head &= RB_HEAD_OFF_MASK;
1473 	tail &= RB_TAIL_OFF_MASK;
1474 
1475 	list_for_each_entry_reverse(last_workload, q, list) {
1476 
1477 		if (same_context(&last_workload->ctx_desc, desc)) {
1478 			gvt_dbg_el("ring %s cur workload == last\n",
1479 				   engine->name);
1480 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1481 				   last_workload->rb_tail);
1482 			/*
1483 			 * cannot use guest context head pointer here,
1484 			 * as it might not be updated at this time
1485 			 */
1486 			head = last_workload->rb_tail;
1487 			break;
1488 		}
1489 	}
1490 
1491 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1492 
1493 	/* record some ring buffer register values for scan and shadow */
1494 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1495 			RING_CTX_OFF(rb_start.val), &start, 4);
1496 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1497 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1498 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1499 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1500 
1501 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1502 				_RING_CTL_BUF_SIZE(ctl))) {
1503 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1504 		return ERR_PTR(-EINVAL);
1505 	}
1506 
1507 	workload = alloc_workload(vgpu);
1508 	if (IS_ERR(workload))
1509 		return workload;
1510 
1511 	workload->engine = engine;
1512 	workload->ctx_desc = *desc;
1513 	workload->ring_context_gpa = ring_context_gpa;
1514 	workload->rb_head = head;
1515 	workload->guest_rb_head = guest_head;
1516 	workload->rb_tail = tail;
1517 	workload->rb_start = start;
1518 	workload->rb_ctl = ctl;
1519 
1520 	if (engine->id == RCS0) {
1521 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1522 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1523 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1524 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1525 
1526 		workload->wa_ctx.indirect_ctx.guest_gma =
1527 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1528 		workload->wa_ctx.indirect_ctx.size =
1529 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1530 			CACHELINE_BYTES;
1531 
1532 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1533 			if (!intel_gvt_ggtt_validate_range(vgpu,
1534 				workload->wa_ctx.indirect_ctx.guest_gma,
1535 				workload->wa_ctx.indirect_ctx.size)) {
1536 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1537 				    workload->wa_ctx.indirect_ctx.guest_gma);
1538 				kmem_cache_free(s->workloads, workload);
1539 				return ERR_PTR(-EINVAL);
1540 			}
1541 		}
1542 
1543 		workload->wa_ctx.per_ctx.guest_gma =
1544 			per_ctx & PER_CTX_ADDR_MASK;
1545 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1546 		if (workload->wa_ctx.per_ctx.valid) {
1547 			if (!intel_gvt_ggtt_validate_range(vgpu,
1548 				workload->wa_ctx.per_ctx.guest_gma,
1549 				CACHELINE_BYTES)) {
1550 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1551 					workload->wa_ctx.per_ctx.guest_gma);
1552 				kmem_cache_free(s->workloads, workload);
1553 				return ERR_PTR(-EINVAL);
1554 			}
1555 		}
1556 	}
1557 
1558 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1559 		   workload, engine->name, head, tail, start, ctl);
1560 
1561 	ret = prepare_mm(workload);
1562 	if (ret) {
1563 		kmem_cache_free(s->workloads, workload);
1564 		return ERR_PTR(ret);
1565 	}
1566 
1567 	/* Only scan and shadow the first workload in the queue
1568 	 * as there is only one pre-allocated buf-obj for shadow.
1569 	 */
1570 	if (list_empty(q)) {
1571 		intel_wakeref_t wakeref;
1572 
1573 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1574 			ret = intel_gvt_scan_and_shadow_workload(workload);
1575 	}
1576 
1577 	if (ret) {
1578 		if (vgpu_is_vm_unhealthy(ret))
1579 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1580 		intel_vgpu_destroy_workload(workload);
1581 		return ERR_PTR(ret);
1582 	}
1583 
1584 	return workload;
1585 }
1586 
1587 /**
1588  * intel_vgpu_queue_workload - Qeue a vGPU workload
1589  * @workload: the workload to queue in
1590  */
1591 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1592 {
1593 	list_add_tail(&workload->list,
1594 		      workload_q_head(workload->vgpu, workload->engine));
1595 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1596 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1597 }
1598