1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <linux/dma-fence-array.h> 27 #include <drm/drm_gem.h> 28 29 #include "display/intel_display.h" 30 #include "display/intel_frontbuffer.h" 31 #include "gem/i915_gem_lmem.h" 32 #include "gem/i915_gem_tiling.h" 33 #include "gt/intel_engine.h" 34 #include "gt/intel_engine_heartbeat.h" 35 #include "gt/intel_gt.h" 36 #include "gt/intel_gt_requests.h" 37 #include "gt/intel_tlb.h" 38 39 #include "i915_drv.h" 40 #include "i915_gem_evict.h" 41 #include "i915_sw_fence_work.h" 42 #include "i915_trace.h" 43 #include "i915_vma.h" 44 #include "i915_vma_resource.h" 45 46 #include <dev/pci/agpvar.h> 47 48 static inline void assert_vma_held_evict(const struct i915_vma *vma) 49 { 50 /* 51 * We may be forced to unbind when the vm is dead, to clean it up. 52 * This is the only exception to the requirement of the object lock 53 * being held. 54 */ 55 if (kref_read(&vma->vm->ref)) 56 assert_object_held_shared(vma->obj); 57 } 58 59 static struct pool slab_vmas; 60 61 static struct i915_vma *i915_vma_alloc(void) 62 { 63 #ifdef __linux__ 64 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 65 #else 66 return pool_get(&slab_vmas, PR_WAITOK | PR_ZERO); 67 #endif 68 } 69 70 static void i915_vma_free(struct i915_vma *vma) 71 { 72 #ifdef __linux__ 73 return kmem_cache_free(slab_vmas, vma); 74 #else 75 pool_put(&slab_vmas, vma); 76 #endif 77 } 78 79 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 80 81 #include <linux/stackdepot.h> 82 83 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 84 { 85 char buf[512]; 86 87 if (!vma->node.stack) { 88 drm_dbg(vma->obj->base.dev, 89 "vma.node [%08llx + %08llx] %s: unknown owner\n", 90 vma->node.start, vma->node.size, reason); 91 return; 92 } 93 94 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 95 drm_dbg(vma->obj->base.dev, 96 "vma.node [%08llx + %08llx] %s: inserted at %s\n", 97 vma->node.start, vma->node.size, reason, buf); 98 } 99 100 #else 101 102 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 103 { 104 } 105 106 #endif 107 108 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 109 { 110 return container_of(ref, typeof(struct i915_vma), active); 111 } 112 113 static int __i915_vma_active(struct i915_active *ref) 114 { 115 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 116 } 117 118 static void __i915_vma_retire(struct i915_active *ref) 119 { 120 i915_vma_put(active_to_vma(ref)); 121 } 122 123 static struct i915_vma * 124 vma_create(struct drm_i915_gem_object *obj, 125 struct i915_address_space *vm, 126 const struct i915_gtt_view *view) 127 { 128 struct i915_vma *pos = ERR_PTR(-E2BIG); 129 struct i915_vma *vma; 130 struct rb_node *rb, **p; 131 int err; 132 133 /* The aliasing_ppgtt should never be used directly! */ 134 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 135 136 vma = i915_vma_alloc(); 137 if (vma == NULL) 138 return ERR_PTR(-ENOMEM); 139 140 vma->ops = &vm->vma_ops; 141 vma->obj = obj; 142 vma->size = obj->base.size; 143 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 144 145 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 146 147 #ifdef notyet 148 /* Declare ourselves safe for use inside shrinkers */ 149 if (IS_ENABLED(CONFIG_LOCKDEP)) { 150 fs_reclaim_acquire(GFP_KERNEL); 151 might_lock(&vma->active.mutex); 152 fs_reclaim_release(GFP_KERNEL); 153 } 154 #endif 155 156 INIT_LIST_HEAD(&vma->closed_link); 157 INIT_LIST_HEAD(&vma->obj_link); 158 RB_CLEAR_NODE(&vma->obj_node); 159 160 if (view && view->type != I915_GTT_VIEW_NORMAL) { 161 vma->gtt_view = *view; 162 if (view->type == I915_GTT_VIEW_PARTIAL) { 163 GEM_BUG_ON(range_overflows_t(u64, 164 view->partial.offset, 165 view->partial.size, 166 obj->base.size >> PAGE_SHIFT)); 167 vma->size = view->partial.size; 168 vma->size <<= PAGE_SHIFT; 169 GEM_BUG_ON(vma->size > obj->base.size); 170 } else if (view->type == I915_GTT_VIEW_ROTATED) { 171 vma->size = intel_rotation_info_size(&view->rotated); 172 vma->size <<= PAGE_SHIFT; 173 } else if (view->type == I915_GTT_VIEW_REMAPPED) { 174 vma->size = intel_remapped_info_size(&view->remapped); 175 vma->size <<= PAGE_SHIFT; 176 } 177 } 178 179 if (unlikely(vma->size > vm->total)) 180 goto err_vma; 181 182 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 183 184 err = mutex_lock_interruptible(&vm->mutex); 185 if (err) { 186 pos = ERR_PTR(err); 187 goto err_vma; 188 } 189 190 vma->vm = vm; 191 list_add_tail(&vma->vm_link, &vm->unbound_list); 192 193 spin_lock(&obj->vma.lock); 194 if (i915_is_ggtt(vm)) { 195 if (unlikely(overflows_type(vma->size, u32))) 196 goto err_unlock; 197 198 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 199 i915_gem_object_get_tiling(obj), 200 i915_gem_object_get_stride(obj)); 201 if (unlikely(vma->fence_size < vma->size || /* overflow */ 202 vma->fence_size > vm->total)) 203 goto err_unlock; 204 205 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 206 207 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 208 i915_gem_object_get_tiling(obj), 209 i915_gem_object_get_stride(obj)); 210 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 211 212 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 213 } 214 215 rb = NULL; 216 p = &obj->vma.tree.rb_node; 217 while (*p) { 218 long cmp; 219 220 rb = *p; 221 pos = rb_entry(rb, struct i915_vma, obj_node); 222 223 /* 224 * If the view already exists in the tree, another thread 225 * already created a matching vma, so return the older instance 226 * and dispose of ours. 227 */ 228 cmp = i915_vma_compare(pos, vm, view); 229 if (cmp < 0) 230 p = &rb->rb_right; 231 else if (cmp > 0) 232 p = &rb->rb_left; 233 else 234 goto err_unlock; 235 } 236 rb_link_node(&vma->obj_node, rb, p); 237 rb_insert_color(&vma->obj_node, &obj->vma.tree); 238 239 if (i915_vma_is_ggtt(vma)) 240 /* 241 * We put the GGTT vma at the start of the vma-list, followed 242 * by the ppGGTT vma. This allows us to break early when 243 * iterating over only the GGTT vma for an object, see 244 * for_each_ggtt_vma() 245 */ 246 list_add(&vma->obj_link, &obj->vma.list); 247 else 248 list_add_tail(&vma->obj_link, &obj->vma.list); 249 250 spin_unlock(&obj->vma.lock); 251 mutex_unlock(&vm->mutex); 252 253 return vma; 254 255 err_unlock: 256 spin_unlock(&obj->vma.lock); 257 list_del_init(&vma->vm_link); 258 mutex_unlock(&vm->mutex); 259 err_vma: 260 i915_vma_free(vma); 261 return pos; 262 } 263 264 static struct i915_vma * 265 i915_vma_lookup(struct drm_i915_gem_object *obj, 266 struct i915_address_space *vm, 267 const struct i915_gtt_view *view) 268 { 269 struct rb_node *rb; 270 271 rb = obj->vma.tree.rb_node; 272 while (rb) { 273 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 274 long cmp; 275 276 cmp = i915_vma_compare(vma, vm, view); 277 if (cmp == 0) 278 return vma; 279 280 if (cmp < 0) 281 rb = rb->rb_right; 282 else 283 rb = rb->rb_left; 284 } 285 286 return NULL; 287 } 288 289 /** 290 * i915_vma_instance - return the singleton instance of the VMA 291 * @obj: parent &struct drm_i915_gem_object to be mapped 292 * @vm: address space in which the mapping is located 293 * @view: additional mapping requirements 294 * 295 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 296 * the same @view characteristics. If a match is not found, one is created. 297 * Once created, the VMA is kept until either the object is freed, or the 298 * address space is closed. 299 * 300 * Returns the vma, or an error pointer. 301 */ 302 struct i915_vma * 303 i915_vma_instance(struct drm_i915_gem_object *obj, 304 struct i915_address_space *vm, 305 const struct i915_gtt_view *view) 306 { 307 struct i915_vma *vma; 308 309 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 310 GEM_BUG_ON(!kref_read(&vm->ref)); 311 312 spin_lock(&obj->vma.lock); 313 vma = i915_vma_lookup(obj, vm, view); 314 spin_unlock(&obj->vma.lock); 315 316 /* vma_create() will resolve the race if another creates the vma */ 317 if (unlikely(!vma)) 318 vma = vma_create(obj, vm, view); 319 320 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 321 return vma; 322 } 323 324 struct i915_vma_work { 325 struct dma_fence_work base; 326 struct i915_address_space *vm; 327 struct i915_vm_pt_stash stash; 328 struct i915_vma_resource *vma_res; 329 struct drm_i915_gem_object *obj; 330 struct i915_sw_dma_fence_cb cb; 331 unsigned int pat_index; 332 unsigned int flags; 333 }; 334 335 static void __vma_bind(struct dma_fence_work *work) 336 { 337 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 338 struct i915_vma_resource *vma_res = vw->vma_res; 339 340 /* 341 * We are about the bind the object, which must mean we have already 342 * signaled the work to potentially clear/move the pages underneath. If 343 * something went wrong at that stage then the object should have 344 * unknown_state set, in which case we need to skip the bind. 345 */ 346 if (i915_gem_object_has_unknown_state(vw->obj)) 347 return; 348 349 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 350 vma_res, vw->pat_index, vw->flags); 351 } 352 353 static void __vma_release(struct dma_fence_work *work) 354 { 355 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 356 357 if (vw->obj) 358 i915_gem_object_put(vw->obj); 359 360 i915_vm_free_pt_stash(vw->vm, &vw->stash); 361 if (vw->vma_res) 362 i915_vma_resource_put(vw->vma_res); 363 } 364 365 static const struct dma_fence_work_ops bind_ops = { 366 .name = "bind", 367 .work = __vma_bind, 368 .release = __vma_release, 369 }; 370 371 struct i915_vma_work *i915_vma_work(void) 372 { 373 struct i915_vma_work *vw; 374 375 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 376 if (!vw) 377 return NULL; 378 379 dma_fence_work_init(&vw->base, &bind_ops); 380 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 381 382 return vw; 383 } 384 385 int i915_vma_wait_for_bind(struct i915_vma *vma) 386 { 387 int err = 0; 388 389 if (rcu_access_pointer(vma->active.excl.fence)) { 390 struct dma_fence *fence; 391 392 rcu_read_lock(); 393 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 394 rcu_read_unlock(); 395 if (fence) { 396 err = dma_fence_wait(fence, true); 397 dma_fence_put(fence); 398 } 399 } 400 401 return err; 402 } 403 404 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 405 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 406 { 407 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 408 int err; 409 410 if (!fence) 411 return 0; 412 413 if (dma_fence_is_signaled(fence)) 414 err = fence->error; 415 else 416 err = -EBUSY; 417 418 dma_fence_put(fence); 419 420 return err; 421 } 422 #else 423 #define i915_vma_verify_bind_complete(_vma) 0 424 #endif 425 426 I915_SELFTEST_EXPORT void 427 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 428 struct i915_vma *vma) 429 { 430 struct drm_i915_gem_object *obj = vma->obj; 431 432 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 433 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 434 i915_gem_object_is_lmem(obj), obj->mm.region, 435 vma->ops, vma->private, __i915_vma_offset(vma), 436 __i915_vma_size(vma), vma->size, vma->guard); 437 } 438 439 /** 440 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 441 * @vma: VMA to map 442 * @pat_index: PAT index to set in PTE 443 * @flags: flags like global or local mapping 444 * @work: preallocated worker for allocating and binding the PTE 445 * @vma_res: pointer to a preallocated vma resource. The resource is either 446 * consumed or freed. 447 * 448 * DMA addresses are taken from the scatter-gather table of this object (or of 449 * this VMA in case of non-default GGTT views) and PTE entries set up. 450 * Note that DMA addresses are also the only part of the SG table we care about. 451 */ 452 int i915_vma_bind(struct i915_vma *vma, 453 unsigned int pat_index, 454 u32 flags, 455 struct i915_vma_work *work, 456 struct i915_vma_resource *vma_res) 457 { 458 u32 bind_flags; 459 u32 vma_flags; 460 int ret; 461 462 lockdep_assert_held(&vma->vm->mutex); 463 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 464 GEM_BUG_ON(vma->size > i915_vma_size(vma)); 465 466 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 467 vma->node.size, 468 vma->vm->total))) { 469 i915_vma_resource_free(vma_res); 470 return -ENODEV; 471 } 472 473 if (GEM_DEBUG_WARN_ON(!flags)) { 474 i915_vma_resource_free(vma_res); 475 return -EINVAL; 476 } 477 478 bind_flags = flags; 479 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 480 481 vma_flags = atomic_read(&vma->flags); 482 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 483 484 bind_flags &= ~vma_flags; 485 if (bind_flags == 0) { 486 i915_vma_resource_free(vma_res); 487 return 0; 488 } 489 490 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 491 492 /* Wait for or await async unbinds touching our range */ 493 if (work && bind_flags & vma->vm->bind_async_flags) 494 ret = i915_vma_resource_bind_dep_await(vma->vm, 495 &work->base.chain, 496 vma->node.start, 497 vma->node.size, 498 true, 499 GFP_NOWAIT | 500 __GFP_RETRY_MAYFAIL | 501 __GFP_NOWARN); 502 else 503 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 504 vma->node.size, true); 505 if (ret) { 506 i915_vma_resource_free(vma_res); 507 return ret; 508 } 509 510 if (vma->resource || !vma_res) { 511 /* Rebinding with an additional I915_VMA_*_BIND */ 512 GEM_WARN_ON(!vma_flags); 513 i915_vma_resource_free(vma_res); 514 } else { 515 i915_vma_resource_init_from_vma(vma_res, vma); 516 vma->resource = vma_res; 517 } 518 trace_i915_vma_bind(vma, bind_flags); 519 if (work && bind_flags & vma->vm->bind_async_flags) { 520 struct dma_fence *prev; 521 522 work->vma_res = i915_vma_resource_get(vma->resource); 523 work->pat_index = pat_index; 524 work->flags = bind_flags; 525 526 /* 527 * Note we only want to chain up to the migration fence on 528 * the pages (not the object itself). As we don't track that, 529 * yet, we have to use the exclusive fence instead. 530 * 531 * Also note that we do not want to track the async vma as 532 * part of the obj->resv->excl_fence as it only affects 533 * execution and not content or object's backing store lifetime. 534 */ 535 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 536 if (prev) { 537 __i915_sw_fence_await_dma_fence(&work->base.chain, 538 prev, 539 &work->cb); 540 dma_fence_put(prev); 541 } 542 543 work->base.dma.error = 0; /* enable the queue_work() */ 544 work->obj = i915_gem_object_get(vma->obj); 545 } else { 546 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 547 if (ret) { 548 i915_vma_resource_free(vma->resource); 549 vma->resource = NULL; 550 551 return ret; 552 } 553 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index, 554 bind_flags); 555 } 556 557 atomic_or(bind_flags, &vma->flags); 558 return 0; 559 } 560 561 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 562 { 563 void __iomem *ptr; 564 int err; 565 566 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 567 return IOMEM_ERR_PTR(-EINVAL); 568 569 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 570 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 571 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 572 573 ptr = READ_ONCE(vma->iomap); 574 if (ptr == NULL) { 575 /* 576 * TODO: consider just using i915_gem_object_pin_map() for lmem 577 * instead, which already supports mapping non-contiguous chunks 578 * of pages, that way we can also drop the 579 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 580 */ 581 if (i915_gem_object_is_lmem(vma->obj)) { 582 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 583 vma->obj->base.size); 584 } else if (i915_vma_is_map_and_fenceable(vma)) { 585 #ifdef __linux__ 586 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 587 i915_vma_offset(vma), 588 i915_vma_size(vma)); 589 #else 590 { 591 struct drm_i915_private *dev_priv = vma->vm->i915; 592 err = agp_map_subregion(dev_priv->agph, i915_vma_offset(vma), 593 i915_vma_size(vma), &vma->bsh); 594 if (err) { 595 err = -err; 596 goto err; 597 } 598 ptr = bus_space_vaddr(dev_priv->bst, vma->bsh); 599 } 600 #endif 601 } else { 602 ptr = (void __iomem *) 603 i915_gem_object_pin_map(vma->obj, I915_MAP_WC); 604 if (IS_ERR(ptr)) { 605 err = PTR_ERR(ptr); 606 goto err; 607 } 608 ptr = page_pack_bits(ptr, 1); 609 } 610 611 if (ptr == NULL) { 612 err = -ENOMEM; 613 goto err; 614 } 615 616 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 617 if (page_unmask_bits(ptr)) 618 __i915_gem_object_release_map(vma->obj); 619 #ifdef __linux__ 620 else 621 io_mapping_unmap(ptr); 622 #endif 623 ptr = vma->iomap; 624 } 625 } 626 627 __i915_vma_pin(vma); 628 629 err = i915_vma_pin_fence(vma); 630 if (err) 631 goto err_unpin; 632 633 i915_vma_set_ggtt_write(vma); 634 635 /* NB Access through the GTT requires the device to be awake. */ 636 return page_mask_bits(ptr); 637 638 err_unpin: 639 __i915_vma_unpin(vma); 640 err: 641 return IOMEM_ERR_PTR(err); 642 } 643 644 void i915_vma_flush_writes(struct i915_vma *vma) 645 { 646 if (i915_vma_unset_ggtt_write(vma)) 647 intel_gt_flush_ggtt_writes(vma->vm->gt); 648 } 649 650 void i915_vma_unpin_iomap(struct i915_vma *vma) 651 { 652 GEM_BUG_ON(vma->iomap == NULL); 653 654 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */ 655 656 i915_vma_flush_writes(vma); 657 658 i915_vma_unpin_fence(vma); 659 i915_vma_unpin(vma); 660 } 661 662 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 663 { 664 struct i915_vma *vma; 665 struct drm_i915_gem_object *obj; 666 667 vma = fetch_and_zero(p_vma); 668 if (!vma) 669 return; 670 671 obj = vma->obj; 672 GEM_BUG_ON(!obj); 673 674 i915_vma_unpin(vma); 675 676 if (flags & I915_VMA_RELEASE_MAP) 677 i915_gem_object_unpin_map(obj); 678 679 i915_gem_object_put(obj); 680 } 681 682 bool i915_vma_misplaced(const struct i915_vma *vma, 683 u64 size, u64 alignment, u64 flags) 684 { 685 if (!drm_mm_node_allocated(&vma->node)) 686 return false; 687 688 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 689 return true; 690 691 if (i915_vma_size(vma) < size) 692 return true; 693 694 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 695 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment)) 696 return true; 697 698 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 699 return true; 700 701 if (flags & PIN_OFFSET_BIAS && 702 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK)) 703 return true; 704 705 if (flags & PIN_OFFSET_FIXED && 706 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK)) 707 return true; 708 709 if (flags & PIN_OFFSET_GUARD && 710 vma->guard < (flags & PIN_OFFSET_MASK)) 711 return true; 712 713 return false; 714 } 715 716 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 717 { 718 bool mappable, fenceable; 719 720 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 721 GEM_BUG_ON(!vma->fence_size); 722 723 fenceable = (i915_vma_size(vma) >= vma->fence_size && 724 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment)); 725 726 mappable = i915_ggtt_offset(vma) + vma->fence_size <= 727 i915_vm_to_ggtt(vma->vm)->mappable_end; 728 729 if (mappable && fenceable) 730 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 731 else 732 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 733 } 734 735 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 736 { 737 struct drm_mm_node *node = &vma->node; 738 struct drm_mm_node *other; 739 740 /* 741 * On some machines we have to be careful when putting differing types 742 * of snoopable memory together to avoid the prefetcher crossing memory 743 * domains and dying. During vm initialisation, we decide whether or not 744 * these constraints apply and set the drm_mm.color_adjust 745 * appropriately. 746 */ 747 if (!i915_vm_has_cache_coloring(vma->vm)) 748 return true; 749 750 /* Only valid to be called on an already inserted vma */ 751 GEM_BUG_ON(!drm_mm_node_allocated(node)); 752 GEM_BUG_ON(list_empty(&node->node_list)); 753 754 other = list_prev_entry(node, node_list); 755 if (i915_node_color_differs(other, color) && 756 !drm_mm_hole_follows(other)) 757 return false; 758 759 other = list_next_entry(node, node_list); 760 if (i915_node_color_differs(other, color) && 761 !drm_mm_hole_follows(node)) 762 return false; 763 764 return true; 765 } 766 767 /** 768 * i915_vma_insert - finds a slot for the vma in its address space 769 * @vma: the vma 770 * @ww: An optional struct i915_gem_ww_ctx 771 * @size: requested size in bytes (can be larger than the VMA) 772 * @alignment: required alignment 773 * @flags: mask of PIN_* flags to use 774 * 775 * First we try to allocate some free space that meets the requirements for 776 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 777 * preferrably the oldest idle entry to make room for the new VMA. 778 * 779 * Returns: 780 * 0 on success, negative error code otherwise. 781 */ 782 static int 783 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 784 u64 size, u64 alignment, u64 flags) 785 { 786 unsigned long color, guard; 787 u64 start, end; 788 int ret; 789 790 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 791 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 792 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1); 793 794 size = max(size, vma->size); 795 alignment = max_t(typeof(alignment), alignment, vma->display_alignment); 796 if (flags & PIN_MAPPABLE) { 797 size = max_t(typeof(size), size, vma->fence_size); 798 alignment = max_t(typeof(alignment), 799 alignment, vma->fence_alignment); 800 } 801 802 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 803 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 804 GEM_BUG_ON(!is_power_of_2(alignment)); 805 806 guard = vma->guard; /* retain guard across rebinds */ 807 if (flags & PIN_OFFSET_GUARD) { 808 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32)); 809 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK); 810 } 811 /* 812 * As we align the node upon insertion, but the hardware gets 813 * node.start + guard, the easiest way to make that work is 814 * to make the guard a multiple of the alignment size. 815 */ 816 guard = ALIGN(guard, alignment); 817 818 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 819 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 820 821 end = vma->vm->total; 822 if (flags & PIN_MAPPABLE) 823 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 824 if (flags & PIN_ZONE_4G) 825 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 826 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 827 828 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 829 830 /* 831 * If binding the object/GGTT view requires more space than the entire 832 * aperture has, reject it early before evicting everything in a vain 833 * attempt to find space. 834 */ 835 if (size > end - 2 * guard) { 836 drm_dbg(vma->obj->base.dev, 837 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 838 size, flags & PIN_MAPPABLE ? "mappable" : "total", end); 839 return -ENOSPC; 840 } 841 842 color = 0; 843 844 if (i915_vm_has_cache_coloring(vma->vm)) 845 color = vma->obj->pat_index; 846 847 if (flags & PIN_OFFSET_FIXED) { 848 u64 offset = flags & PIN_OFFSET_MASK; 849 if (!IS_ALIGNED(offset, alignment) || 850 range_overflows(offset, size, end)) 851 return -EINVAL; 852 /* 853 * The caller knows not of the guard added by others and 854 * requests for the offset of the start of its buffer 855 * to be fixed, which may not be the same as the position 856 * of the vma->node due to the guard pages. 857 */ 858 if (offset < guard || offset + size > end - guard) 859 return -ENOSPC; 860 861 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 862 size + 2 * guard, 863 offset - guard, 864 color, flags); 865 if (ret) 866 return ret; 867 } else { 868 size += 2 * guard; 869 /* 870 * We only support huge gtt pages through the 48b PPGTT, 871 * however we also don't want to force any alignment for 872 * objects which need to be tightly packed into the low 32bits. 873 * 874 * Note that we assume that GGTT are limited to 4GiB for the 875 * forseeable future. See also i915_ggtt_offset(). 876 */ 877 if (upper_32_bits(end - 1) && 878 vma->page_sizes.sg > I915_GTT_PAGE_SIZE && 879 !HAS_64K_PAGES(vma->vm->i915)) { 880 /* 881 * We can't mix 64K and 4K PTEs in the same page-table 882 * (2M block), and so to avoid the ugliness and 883 * complexity of coloring we opt for just aligning 64K 884 * objects to 2M. 885 */ 886 u64 page_alignment = 887 rounddown_pow_of_two(vma->page_sizes.sg | 888 I915_GTT_PAGE_SIZE_2M); 889 890 /* 891 * Check we don't expand for the limited Global GTT 892 * (mappable aperture is even more precious!). This 893 * also checks that we exclude the aliasing-ppgtt. 894 */ 895 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 896 897 alignment = max(alignment, page_alignment); 898 899 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 900 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 901 } 902 903 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 904 size, alignment, color, 905 start, end, flags); 906 if (ret) 907 return ret; 908 909 GEM_BUG_ON(vma->node.start < start); 910 GEM_BUG_ON(vma->node.start + vma->node.size > end); 911 } 912 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 913 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 914 915 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 916 vma->guard = guard; 917 918 return 0; 919 } 920 921 static void 922 i915_vma_detach(struct i915_vma *vma) 923 { 924 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 925 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 926 927 /* 928 * And finally now the object is completely decoupled from this 929 * vma, we can drop its hold on the backing storage and allow 930 * it to be reaped by the shrinker. 931 */ 932 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 933 } 934 935 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 936 { 937 unsigned int bound; 938 939 bound = atomic_read(&vma->flags); 940 941 if (flags & PIN_VALIDATE) { 942 flags &= I915_VMA_BIND_MASK; 943 944 return (flags & bound) == flags; 945 } 946 947 /* with the lock mandatory for unbind, we don't race here */ 948 flags &= I915_VMA_BIND_MASK; 949 do { 950 if (unlikely(flags & ~bound)) 951 return false; 952 953 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 954 return false; 955 956 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 957 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 958 959 return true; 960 } 961 962 static struct scatterlist * 963 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 964 unsigned int width, unsigned int height, 965 unsigned int src_stride, unsigned int dst_stride, 966 struct sg_table *st, struct scatterlist *sg) 967 { 968 unsigned int column, row; 969 pgoff_t src_idx; 970 971 for (column = 0; column < width; column++) { 972 unsigned int left; 973 974 src_idx = src_stride * (height - 1) + column + offset; 975 for (row = 0; row < height; row++) { 976 st->nents++; 977 /* 978 * We don't need the pages, but need to initialize 979 * the entries so the sg list can be happily traversed. 980 * The only thing we need are DMA addresses. 981 */ 982 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 983 sg_dma_address(sg) = 984 i915_gem_object_get_dma_address(obj, src_idx); 985 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 986 sg = sg_next(sg); 987 src_idx -= src_stride; 988 } 989 990 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 991 992 if (!left) 993 continue; 994 995 st->nents++; 996 997 /* 998 * The DE ignores the PTEs for the padding tiles, the sg entry 999 * here is just a conenience to indicate how many padding PTEs 1000 * to insert at this spot. 1001 */ 1002 sg_set_page(sg, NULL, left, 0); 1003 sg_dma_address(sg) = 0; 1004 sg_dma_len(sg) = left; 1005 sg = sg_next(sg); 1006 } 1007 1008 return sg; 1009 } 1010 1011 static noinline struct sg_table * 1012 intel_rotate_pages(struct intel_rotation_info *rot_info, 1013 struct drm_i915_gem_object *obj) 1014 { 1015 unsigned int size = intel_rotation_info_size(rot_info); 1016 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1017 struct sg_table *st; 1018 struct scatterlist *sg; 1019 int ret = -ENOMEM; 1020 int i; 1021 1022 /* Allocate target SG list. */ 1023 st = kmalloc(sizeof(*st), GFP_KERNEL); 1024 if (!st) 1025 goto err_st_alloc; 1026 1027 ret = sg_alloc_table(st, size, GFP_KERNEL); 1028 if (ret) 1029 goto err_sg_alloc; 1030 1031 st->nents = 0; 1032 sg = st->sgl; 1033 1034 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1035 sg = rotate_pages(obj, rot_info->plane[i].offset, 1036 rot_info->plane[i].width, rot_info->plane[i].height, 1037 rot_info->plane[i].src_stride, 1038 rot_info->plane[i].dst_stride, 1039 st, sg); 1040 1041 return st; 1042 1043 err_sg_alloc: 1044 kfree(st); 1045 err_st_alloc: 1046 1047 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1048 obj->base.size, rot_info->plane[0].width, 1049 rot_info->plane[0].height, size); 1050 1051 return ERR_PTR(ret); 1052 } 1053 1054 static struct scatterlist * 1055 add_padding_pages(unsigned int count, 1056 struct sg_table *st, struct scatterlist *sg) 1057 { 1058 st->nents++; 1059 1060 /* 1061 * The DE ignores the PTEs for the padding tiles, the sg entry 1062 * here is just a convenience to indicate how many padding PTEs 1063 * to insert at this spot. 1064 */ 1065 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1066 sg_dma_address(sg) = 0; 1067 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1068 sg = sg_next(sg); 1069 1070 return sg; 1071 } 1072 1073 static struct scatterlist * 1074 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1075 unsigned long offset, unsigned int alignment_pad, 1076 unsigned int width, unsigned int height, 1077 unsigned int src_stride, unsigned int dst_stride, 1078 struct sg_table *st, struct scatterlist *sg, 1079 unsigned int *gtt_offset) 1080 { 1081 unsigned int row; 1082 1083 if (!width || !height) 1084 return sg; 1085 1086 if (alignment_pad) 1087 sg = add_padding_pages(alignment_pad, st, sg); 1088 1089 for (row = 0; row < height; row++) { 1090 unsigned int left = width * I915_GTT_PAGE_SIZE; 1091 1092 while (left) { 1093 dma_addr_t addr; 1094 unsigned int length; 1095 1096 /* 1097 * We don't need the pages, but need to initialize 1098 * the entries so the sg list can be happily traversed. 1099 * The only thing we need are DMA addresses. 1100 */ 1101 1102 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1103 1104 length = min(left, length); 1105 1106 st->nents++; 1107 1108 sg_set_page(sg, NULL, length, 0); 1109 sg_dma_address(sg) = addr; 1110 sg_dma_len(sg) = length; 1111 sg = sg_next(sg); 1112 1113 offset += length / I915_GTT_PAGE_SIZE; 1114 left -= length; 1115 } 1116 1117 offset += src_stride - width; 1118 1119 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1120 1121 if (!left) 1122 continue; 1123 1124 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1125 } 1126 1127 *gtt_offset += alignment_pad + dst_stride * height; 1128 1129 return sg; 1130 } 1131 1132 static struct scatterlist * 1133 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1134 pgoff_t obj_offset, 1135 unsigned int count, 1136 struct sg_table *st, struct scatterlist *sg) 1137 { 1138 struct scatterlist *iter; 1139 unsigned int offset; 1140 1141 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1142 GEM_BUG_ON(!iter); 1143 1144 do { 1145 unsigned int len; 1146 1147 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1148 count << PAGE_SHIFT); 1149 sg_set_page(sg, NULL, len, 0); 1150 sg_dma_address(sg) = 1151 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1152 sg_dma_len(sg) = len; 1153 1154 st->nents++; 1155 count -= len >> PAGE_SHIFT; 1156 if (count == 0) 1157 return sg; 1158 1159 sg = __sg_next(sg); 1160 iter = __sg_next(iter); 1161 offset = 0; 1162 } while (1); 1163 } 1164 1165 static struct scatterlist * 1166 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1167 pgoff_t obj_offset, unsigned int alignment_pad, 1168 unsigned int size, 1169 struct sg_table *st, struct scatterlist *sg, 1170 unsigned int *gtt_offset) 1171 { 1172 if (!size) 1173 return sg; 1174 1175 if (alignment_pad) 1176 sg = add_padding_pages(alignment_pad, st, sg); 1177 1178 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1179 sg = sg_next(sg); 1180 1181 *gtt_offset += alignment_pad + size; 1182 1183 return sg; 1184 } 1185 1186 static struct scatterlist * 1187 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1188 struct drm_i915_gem_object *obj, 1189 int color_plane, 1190 struct sg_table *st, struct scatterlist *sg, 1191 unsigned int *gtt_offset) 1192 { 1193 unsigned int alignment_pad = 0; 1194 1195 if (rem_info->plane_alignment) 1196 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1197 1198 if (rem_info->plane[color_plane].linear) 1199 sg = remap_linear_color_plane_pages(obj, 1200 rem_info->plane[color_plane].offset, 1201 alignment_pad, 1202 rem_info->plane[color_plane].size, 1203 st, sg, 1204 gtt_offset); 1205 1206 else 1207 sg = remap_tiled_color_plane_pages(obj, 1208 rem_info->plane[color_plane].offset, 1209 alignment_pad, 1210 rem_info->plane[color_plane].width, 1211 rem_info->plane[color_plane].height, 1212 rem_info->plane[color_plane].src_stride, 1213 rem_info->plane[color_plane].dst_stride, 1214 st, sg, 1215 gtt_offset); 1216 1217 return sg; 1218 } 1219 1220 static noinline struct sg_table * 1221 intel_remap_pages(struct intel_remapped_info *rem_info, 1222 struct drm_i915_gem_object *obj) 1223 { 1224 unsigned int size = intel_remapped_info_size(rem_info); 1225 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1226 struct sg_table *st; 1227 struct scatterlist *sg; 1228 unsigned int gtt_offset = 0; 1229 int ret = -ENOMEM; 1230 int i; 1231 1232 /* Allocate target SG list. */ 1233 st = kmalloc(sizeof(*st), GFP_KERNEL); 1234 if (!st) 1235 goto err_st_alloc; 1236 1237 ret = sg_alloc_table(st, size, GFP_KERNEL); 1238 if (ret) 1239 goto err_sg_alloc; 1240 1241 st->nents = 0; 1242 sg = st->sgl; 1243 1244 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1245 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1246 1247 i915_sg_trim(st); 1248 1249 return st; 1250 1251 err_sg_alloc: 1252 kfree(st); 1253 err_st_alloc: 1254 1255 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1256 obj->base.size, rem_info->plane[0].width, 1257 rem_info->plane[0].height, size); 1258 1259 return ERR_PTR(ret); 1260 } 1261 1262 static noinline struct sg_table * 1263 intel_partial_pages(const struct i915_gtt_view *view, 1264 struct drm_i915_gem_object *obj) 1265 { 1266 struct sg_table *st; 1267 struct scatterlist *sg; 1268 unsigned int count = view->partial.size; 1269 int ret = -ENOMEM; 1270 1271 st = kmalloc(sizeof(*st), GFP_KERNEL); 1272 if (!st) 1273 goto err_st_alloc; 1274 1275 ret = sg_alloc_table(st, count, GFP_KERNEL); 1276 if (ret) 1277 goto err_sg_alloc; 1278 1279 st->nents = 0; 1280 1281 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1282 1283 sg_mark_end(sg); 1284 i915_sg_trim(st); /* Drop any unused tail entries. */ 1285 1286 return st; 1287 1288 err_sg_alloc: 1289 kfree(st); 1290 err_st_alloc: 1291 return ERR_PTR(ret); 1292 } 1293 1294 static int 1295 __i915_vma_get_pages(struct i915_vma *vma) 1296 { 1297 struct sg_table *pages; 1298 1299 /* 1300 * The vma->pages are only valid within the lifespan of the borrowed 1301 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1302 * must be the vma->pages. A simple rule is that vma->pages must only 1303 * be accessed when the obj->mm.pages are pinned. 1304 */ 1305 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1306 1307 switch (vma->gtt_view.type) { 1308 default: 1309 GEM_BUG_ON(vma->gtt_view.type); 1310 fallthrough; 1311 case I915_GTT_VIEW_NORMAL: 1312 pages = vma->obj->mm.pages; 1313 break; 1314 1315 case I915_GTT_VIEW_ROTATED: 1316 pages = 1317 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj); 1318 break; 1319 1320 case I915_GTT_VIEW_REMAPPED: 1321 pages = 1322 intel_remap_pages(&vma->gtt_view.remapped, vma->obj); 1323 break; 1324 1325 case I915_GTT_VIEW_PARTIAL: 1326 pages = intel_partial_pages(&vma->gtt_view, vma->obj); 1327 break; 1328 } 1329 1330 if (IS_ERR(pages)) { 1331 drm_err(&vma->vm->i915->drm, 1332 "Failed to get pages for VMA view type %u (%ld)!\n", 1333 vma->gtt_view.type, PTR_ERR(pages)); 1334 return PTR_ERR(pages); 1335 } 1336 1337 vma->pages = pages; 1338 1339 return 0; 1340 } 1341 1342 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1343 { 1344 int err; 1345 1346 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1347 return 0; 1348 1349 err = i915_gem_object_pin_pages(vma->obj); 1350 if (err) 1351 return err; 1352 1353 err = __i915_vma_get_pages(vma); 1354 if (err) 1355 goto err_unpin; 1356 1357 vma->page_sizes = vma->obj->mm.page_sizes; 1358 atomic_inc(&vma->pages_count); 1359 1360 return 0; 1361 1362 err_unpin: 1363 __i915_gem_object_unpin_pages(vma->obj); 1364 1365 return err; 1366 } 1367 1368 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb) 1369 { 1370 struct intel_gt *gt; 1371 int id; 1372 1373 if (!tlb) 1374 return; 1375 1376 /* 1377 * Before we release the pages that were bound by this vma, we 1378 * must invalidate all the TLBs that may still have a reference 1379 * back to our physical address. It only needs to be done once, 1380 * so after updating the PTE to point away from the pages, record 1381 * the most recent TLB invalidation seqno, and if we have not yet 1382 * flushed the TLBs upon release, perform a full invalidation. 1383 */ 1384 for_each_gt(gt, vm->i915, id) 1385 WRITE_ONCE(tlb[id], 1386 intel_gt_next_invalidate_tlb_full(gt)); 1387 } 1388 1389 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1390 { 1391 /* We allocate under vma_get_pages, so beware the shrinker */ 1392 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1393 1394 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1395 if (vma->pages != vma->obj->mm.pages) { 1396 sg_free_table(vma->pages); 1397 kfree(vma->pages); 1398 } 1399 vma->pages = NULL; 1400 1401 i915_gem_object_unpin_pages(vma->obj); 1402 } 1403 } 1404 1405 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1406 { 1407 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1408 return; 1409 1410 __vma_put_pages(vma, 1); 1411 } 1412 1413 static void vma_unbind_pages(struct i915_vma *vma) 1414 { 1415 unsigned int count; 1416 1417 lockdep_assert_held(&vma->vm->mutex); 1418 1419 /* The upper portion of pages_count is the number of bindings */ 1420 count = atomic_read(&vma->pages_count); 1421 count >>= I915_VMA_PAGES_BIAS; 1422 GEM_BUG_ON(!count); 1423 1424 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1425 } 1426 1427 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1428 u64 size, u64 alignment, u64 flags) 1429 { 1430 struct i915_vma_work *work = NULL; 1431 struct dma_fence *moving = NULL; 1432 struct i915_vma_resource *vma_res = NULL; 1433 intel_wakeref_t wakeref = 0; 1434 unsigned int bound; 1435 int err; 1436 1437 assert_vma_held(vma); 1438 GEM_BUG_ON(!ww); 1439 1440 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1441 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1442 1443 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1444 1445 /* First try and grab the pin without rebinding the vma */ 1446 if (try_qad_pin(vma, flags)) 1447 return 0; 1448 1449 err = i915_vma_get_pages(vma); 1450 if (err) 1451 return err; 1452 1453 if (flags & PIN_GLOBAL) 1454 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1455 1456 if (flags & vma->vm->bind_async_flags) { 1457 /* lock VM */ 1458 err = i915_vm_lock_objects(vma->vm, ww); 1459 if (err) 1460 goto err_rpm; 1461 1462 work = i915_vma_work(); 1463 if (!work) { 1464 err = -ENOMEM; 1465 goto err_rpm; 1466 } 1467 1468 work->vm = vma->vm; 1469 1470 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1471 if (err) 1472 goto err_rpm; 1473 1474 dma_fence_work_chain(&work->base, moving); 1475 1476 /* Allocate enough page directories to used PTE */ 1477 if (vma->vm->allocate_va_range) { 1478 err = i915_vm_alloc_pt_stash(vma->vm, 1479 &work->stash, 1480 vma->size); 1481 if (err) 1482 goto err_fence; 1483 1484 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1485 if (err) 1486 goto err_fence; 1487 } 1488 } 1489 1490 vma_res = i915_vma_resource_alloc(); 1491 if (IS_ERR(vma_res)) { 1492 err = PTR_ERR(vma_res); 1493 goto err_fence; 1494 } 1495 1496 /* 1497 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1498 * 1499 * We conflate the Global GTT with the user's vma when using the 1500 * aliasing-ppgtt, but it is still vitally important to try and 1501 * keep the use cases distinct. For example, userptr objects are 1502 * not allowed inside the Global GTT as that will cause lock 1503 * inversions when we have to evict them the mmu_notifier callbacks - 1504 * but they are allowed to be part of the user ppGTT which can never 1505 * be mapped. As such we try to give the distinct users of the same 1506 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1507 * and i915_ppgtt separate]. 1508 * 1509 * NB this may cause us to mask real lock inversions -- while the 1510 * code is safe today, lockdep may not be able to spot future 1511 * transgressions. 1512 */ 1513 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1514 !(flags & PIN_GLOBAL)); 1515 if (err) 1516 goto err_vma_res; 1517 1518 /* No more allocations allowed now we hold vm->mutex */ 1519 1520 if (unlikely(i915_vma_is_closed(vma))) { 1521 err = -ENOENT; 1522 goto err_unlock; 1523 } 1524 1525 bound = atomic_read(&vma->flags); 1526 if (unlikely(bound & I915_VMA_ERROR)) { 1527 err = -ENOMEM; 1528 goto err_unlock; 1529 } 1530 1531 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1532 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1533 goto err_unlock; 1534 } 1535 1536 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1537 if (!(flags & PIN_VALIDATE)) 1538 __i915_vma_pin(vma); 1539 goto err_unlock; 1540 } 1541 1542 err = i915_active_acquire(&vma->active); 1543 if (err) 1544 goto err_unlock; 1545 1546 if (!(bound & I915_VMA_BIND_MASK)) { 1547 err = i915_vma_insert(vma, ww, size, alignment, flags); 1548 if (err) 1549 goto err_active; 1550 1551 if (i915_is_ggtt(vma->vm)) 1552 __i915_vma_set_map_and_fenceable(vma); 1553 } 1554 1555 GEM_BUG_ON(!vma->pages); 1556 err = i915_vma_bind(vma, 1557 vma->obj->pat_index, 1558 flags, work, vma_res); 1559 vma_res = NULL; 1560 if (err) 1561 goto err_remove; 1562 1563 /* There should only be at most 2 active bindings (user, global) */ 1564 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1565 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1566 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1567 1568 if (!(flags & PIN_VALIDATE)) { 1569 __i915_vma_pin(vma); 1570 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1571 } 1572 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1573 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1574 1575 err_remove: 1576 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1577 i915_vma_detach(vma); 1578 drm_mm_remove_node(&vma->node); 1579 } 1580 err_active: 1581 i915_active_release(&vma->active); 1582 err_unlock: 1583 mutex_unlock(&vma->vm->mutex); 1584 err_vma_res: 1585 i915_vma_resource_free(vma_res); 1586 err_fence: 1587 if (work) 1588 dma_fence_work_commit_imm(&work->base); 1589 err_rpm: 1590 if (wakeref) 1591 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1592 1593 if (moving) 1594 dma_fence_put(moving); 1595 1596 i915_vma_put_pages(vma); 1597 return err; 1598 } 1599 1600 static void flush_idle_contexts(struct intel_gt *gt) 1601 { 1602 struct intel_engine_cs *engine; 1603 enum intel_engine_id id; 1604 1605 for_each_engine(engine, gt, id) 1606 intel_engine_flush_barriers(engine); 1607 1608 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1609 } 1610 1611 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1612 u32 align, unsigned int flags) 1613 { 1614 struct i915_address_space *vm = vma->vm; 1615 struct intel_gt *gt; 1616 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 1617 int err; 1618 1619 do { 1620 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1621 1622 if (err != -ENOSPC) { 1623 if (!err) { 1624 err = i915_vma_wait_for_bind(vma); 1625 if (err) 1626 i915_vma_unpin(vma); 1627 } 1628 return err; 1629 } 1630 1631 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1632 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1633 flush_idle_contexts(gt); 1634 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1635 /* 1636 * We pass NULL ww here, as we don't want to unbind 1637 * locked objects when called from execbuf when pinning 1638 * is removed. This would probably regress badly. 1639 */ 1640 i915_gem_evict_vm(vm, NULL, NULL); 1641 mutex_unlock(&vm->mutex); 1642 } 1643 } while (1); 1644 } 1645 1646 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1647 u32 align, unsigned int flags) 1648 { 1649 struct i915_gem_ww_ctx _ww; 1650 int err; 1651 1652 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1653 1654 if (ww) 1655 return __i915_ggtt_pin(vma, ww, align, flags); 1656 1657 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1658 1659 for_i915_gem_ww(&_ww, err, true) { 1660 err = i915_gem_object_lock(vma->obj, &_ww); 1661 if (!err) 1662 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1663 } 1664 1665 return err; 1666 } 1667 1668 /** 1669 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas 1670 * @obj: i915 GEM object 1671 * This function clears scanout flags for objects ggtt vmas. These flags are set 1672 * when object is pinned for display use and this function to clear them all is 1673 * targeted to be called by frontbuffer tracking code when the frontbuffer is 1674 * about to be released. 1675 */ 1676 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj) 1677 { 1678 struct i915_vma *vma; 1679 1680 spin_lock(&obj->vma.lock); 1681 for_each_ggtt_vma(vma, obj) { 1682 i915_vma_clear_scanout(vma); 1683 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 1684 } 1685 spin_unlock(&obj->vma.lock); 1686 } 1687 1688 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1689 { 1690 /* 1691 * We defer actually closing, unbinding and destroying the VMA until 1692 * the next idle point, or if the object is freed in the meantime. By 1693 * postponing the unbind, we allow for it to be resurrected by the 1694 * client, avoiding the work required to rebind the VMA. This is 1695 * advantageous for DRI, where the client/server pass objects 1696 * between themselves, temporarily opening a local VMA to the 1697 * object, and then closing it again. The same object is then reused 1698 * on the next frame (or two, depending on the depth of the swap queue) 1699 * causing us to rebind the VMA once more. This ends up being a lot 1700 * of wasted work for the steady state. 1701 */ 1702 GEM_BUG_ON(i915_vma_is_closed(vma)); 1703 list_add(&vma->closed_link, >->closed_vma); 1704 } 1705 1706 void i915_vma_close(struct i915_vma *vma) 1707 { 1708 struct intel_gt *gt = vma->vm->gt; 1709 unsigned long flags; 1710 1711 if (i915_vma_is_ggtt(vma)) 1712 return; 1713 1714 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1715 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1716 >->closed_lock, 1717 flags)) { 1718 __vma_close(vma, gt); 1719 spin_unlock_irqrestore(>->closed_lock, flags); 1720 } 1721 } 1722 1723 static void __i915_vma_remove_closed(struct i915_vma *vma) 1724 { 1725 list_del_init(&vma->closed_link); 1726 } 1727 1728 void i915_vma_reopen(struct i915_vma *vma) 1729 { 1730 struct intel_gt *gt = vma->vm->gt; 1731 1732 spin_lock_irq(>->closed_lock); 1733 if (i915_vma_is_closed(vma)) 1734 __i915_vma_remove_closed(vma); 1735 spin_unlock_irq(>->closed_lock); 1736 } 1737 1738 static void force_unbind(struct i915_vma *vma) 1739 { 1740 if (!drm_mm_node_allocated(&vma->node)) 1741 return; 1742 1743 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1744 WARN_ON(__i915_vma_unbind(vma)); 1745 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1746 } 1747 1748 static void release_references(struct i915_vma *vma, struct intel_gt *gt, 1749 bool vm_ddestroy) 1750 { 1751 struct drm_i915_gem_object *obj = vma->obj; 1752 1753 GEM_BUG_ON(i915_vma_is_active(vma)); 1754 1755 spin_lock(&obj->vma.lock); 1756 list_del(&vma->obj_link); 1757 if (!RB_EMPTY_NODE(&vma->obj_node)) 1758 rb_erase(&vma->obj_node, &obj->vma.tree); 1759 1760 spin_unlock(&obj->vma.lock); 1761 1762 spin_lock_irq(>->closed_lock); 1763 __i915_vma_remove_closed(vma); 1764 spin_unlock_irq(>->closed_lock); 1765 1766 if (vm_ddestroy) 1767 i915_vm_resv_put(vma->vm); 1768 1769 /* Wait for async active retire */ 1770 i915_active_wait(&vma->active); 1771 i915_active_fini(&vma->active); 1772 GEM_WARN_ON(vma->resource); 1773 i915_vma_free(vma); 1774 } 1775 1776 /* 1777 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1778 * the initial reference. 1779 * 1780 * This function should be called when it's decided the vma isn't needed 1781 * anymore. The caller must assure that it doesn't race with another lookup 1782 * plus destroy, typically by taking an appropriate reference. 1783 * 1784 * Current callsites are 1785 * - __i915_gem_object_pages_fini() 1786 * - __i915_vm_close() - Blocks the above function by taking a reference on 1787 * the object. 1788 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1789 * on the vm and a reference on the object. Also takes the object lock so 1790 * destruction from __i915_vma_parked() can be blocked by holding the 1791 * object lock. Since the object lock is only allowed from within i915 with 1792 * an object refcount, holding the object lock also implicitly blocks the 1793 * vma freeing from __i915_gem_object_pages_fini(). 1794 * 1795 * Because of locks taken during destruction, a vma is also guaranteed to 1796 * stay alive while the following locks are held if it was looked up while 1797 * holding one of the locks: 1798 * - vm->mutex 1799 * - obj->vma.lock 1800 * - gt->closed_lock 1801 */ 1802 void i915_vma_destroy_locked(struct i915_vma *vma) 1803 { 1804 lockdep_assert_held(&vma->vm->mutex); 1805 1806 force_unbind(vma); 1807 list_del_init(&vma->vm_link); 1808 release_references(vma, vma->vm->gt, false); 1809 } 1810 1811 void i915_vma_destroy(struct i915_vma *vma) 1812 { 1813 struct intel_gt *gt; 1814 bool vm_ddestroy; 1815 1816 mutex_lock(&vma->vm->mutex); 1817 force_unbind(vma); 1818 list_del_init(&vma->vm_link); 1819 vm_ddestroy = vma->vm_ddestroy; 1820 vma->vm_ddestroy = false; 1821 1822 /* vma->vm may be freed when releasing vma->vm->mutex. */ 1823 gt = vma->vm->gt; 1824 mutex_unlock(&vma->vm->mutex); 1825 release_references(vma, gt, vm_ddestroy); 1826 } 1827 1828 void i915_vma_parked(struct intel_gt *gt) 1829 { 1830 struct i915_vma *vma, *next; 1831 DRM_LIST_HEAD(closed); 1832 1833 spin_lock_irq(>->closed_lock); 1834 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1835 struct drm_i915_gem_object *obj = vma->obj; 1836 struct i915_address_space *vm = vma->vm; 1837 1838 /* XXX All to avoid keeping a reference on i915_vma itself */ 1839 1840 if (!kref_get_unless_zero(&obj->base.refcount)) 1841 continue; 1842 1843 if (!i915_vm_tryget(vm)) { 1844 i915_gem_object_put(obj); 1845 continue; 1846 } 1847 1848 list_move(&vma->closed_link, &closed); 1849 } 1850 spin_unlock_irq(>->closed_lock); 1851 1852 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1853 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1854 struct drm_i915_gem_object *obj = vma->obj; 1855 struct i915_address_space *vm = vma->vm; 1856 1857 if (i915_gem_object_trylock(obj, NULL)) { 1858 INIT_LIST_HEAD(&vma->closed_link); 1859 i915_vma_destroy(vma); 1860 i915_gem_object_unlock(obj); 1861 } else { 1862 /* back you go.. */ 1863 spin_lock_irq(>->closed_lock); 1864 list_add(&vma->closed_link, >->closed_vma); 1865 spin_unlock_irq(>->closed_lock); 1866 } 1867 1868 i915_gem_object_put(obj); 1869 i915_vm_put(vm); 1870 } 1871 } 1872 1873 static void __i915_vma_iounmap(struct i915_vma *vma) 1874 { 1875 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1876 1877 if (vma->iomap == NULL) 1878 return; 1879 1880 if (page_unmask_bits(vma->iomap)) 1881 __i915_gem_object_release_map(vma->obj); 1882 else { 1883 #ifdef __linux__ 1884 io_mapping_unmap(vma->iomap); 1885 #else 1886 struct drm_i915_private *dev_priv = vma->vm->i915; 1887 agp_unmap_subregion(dev_priv->agph, vma->bsh, vma->node.size); 1888 #endif 1889 } 1890 vma->iomap = NULL; 1891 } 1892 1893 void i915_vma_revoke_mmap(struct i915_vma *vma) 1894 { 1895 struct drm_vma_offset_node *node; 1896 u64 vma_offset; 1897 1898 if (!i915_vma_has_userfault(vma)) 1899 return; 1900 1901 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1902 GEM_BUG_ON(!vma->obj->userfault_count); 1903 1904 node = &vma->mmo->vma_node; 1905 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 1906 #ifdef __linux__ 1907 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1908 drm_vma_node_offset_addr(node) + vma_offset, 1909 vma->size, 1910 1); 1911 #else 1912 struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private; 1913 struct vm_page *pg; 1914 1915 for (pg = &dev_priv->pgs[atop(vma->node.start)]; 1916 pg != &dev_priv->pgs[atop(vma->node.start + vma->size)]; 1917 pg++) 1918 pmap_page_protect(pg, PROT_NONE); 1919 #endif 1920 1921 i915_vma_unset_userfault(vma); 1922 if (!--vma->obj->userfault_count) 1923 list_del(&vma->obj->userfault_link); 1924 } 1925 1926 static int 1927 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1928 { 1929 return __i915_request_await_exclusive(rq, &vma->active); 1930 } 1931 1932 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1933 { 1934 int err; 1935 1936 /* Wait for the vma to be bound before we start! */ 1937 err = __i915_request_await_bind(rq, vma); 1938 if (err) 1939 return err; 1940 1941 return i915_active_add_request(&vma->active, rq); 1942 } 1943 1944 int _i915_vma_move_to_active(struct i915_vma *vma, 1945 struct i915_request *rq, 1946 struct dma_fence *fence, 1947 unsigned int flags) 1948 { 1949 struct drm_i915_gem_object *obj = vma->obj; 1950 int err; 1951 1952 assert_object_held(obj); 1953 1954 GEM_BUG_ON(!vma->pages); 1955 1956 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) { 1957 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE); 1958 if (unlikely(err)) 1959 return err; 1960 } 1961 err = __i915_vma_move_to_active(vma, rq); 1962 if (unlikely(err)) 1963 return err; 1964 1965 /* 1966 * Reserve fences slot early to prevent an allocation after preparing 1967 * the workload and associating fences with dma_resv. 1968 */ 1969 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { 1970 struct dma_fence *curr; 1971 int idx; 1972 1973 dma_fence_array_for_each(curr, idx, fence) 1974 ; 1975 err = dma_resv_reserve_fences(vma->obj->base.resv, idx); 1976 if (unlikely(err)) 1977 return err; 1978 } 1979 1980 if (flags & EXEC_OBJECT_WRITE) { 1981 struct intel_frontbuffer *front; 1982 1983 front = i915_gem_object_get_frontbuffer(obj); 1984 if (unlikely(front)) { 1985 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1986 i915_active_add_request(&front->write, rq); 1987 intel_frontbuffer_put(front); 1988 } 1989 } 1990 1991 if (fence) { 1992 struct dma_fence *curr; 1993 enum dma_resv_usage usage; 1994 int idx; 1995 1996 if (flags & EXEC_OBJECT_WRITE) { 1997 usage = DMA_RESV_USAGE_WRITE; 1998 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1999 obj->read_domains = 0; 2000 } else { 2001 usage = DMA_RESV_USAGE_READ; 2002 obj->write_domain = 0; 2003 } 2004 2005 dma_fence_array_for_each(curr, idx, fence) 2006 dma_resv_add_fence(vma->obj->base.resv, curr, usage); 2007 } 2008 2009 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 2010 i915_active_add_request(&vma->fence->active, rq); 2011 2012 obj->read_domains |= I915_GEM_GPU_DOMAINS; 2013 obj->mm.dirty = true; 2014 2015 GEM_BUG_ON(!i915_vma_is_active(vma)); 2016 return 0; 2017 } 2018 2019 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 2020 { 2021 struct i915_vma_resource *vma_res = vma->resource; 2022 struct dma_fence *unbind_fence; 2023 2024 GEM_BUG_ON(i915_vma_is_pinned(vma)); 2025 assert_vma_held_evict(vma); 2026 2027 if (i915_vma_is_map_and_fenceable(vma)) { 2028 /* Force a pagefault for domain tracking on next user access */ 2029 i915_vma_revoke_mmap(vma); 2030 2031 /* 2032 * Check that we have flushed all writes through the GGTT 2033 * before the unbind, other due to non-strict nature of those 2034 * indirect writes they may end up referencing the GGTT PTE 2035 * after the unbind. 2036 * 2037 * Note that we may be concurrently poking at the GGTT_WRITE 2038 * bit from set-domain, as we mark all GGTT vma associated 2039 * with an object. We know this is for another vma, as we 2040 * are currently unbinding this one -- so if this vma will be 2041 * reused, it will be refaulted and have its dirty bit set 2042 * before the next write. 2043 */ 2044 i915_vma_flush_writes(vma); 2045 2046 /* release the fence reg _after_ flushing */ 2047 i915_vma_revoke_fence(vma); 2048 2049 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 2050 } 2051 2052 __i915_vma_iounmap(vma); 2053 2054 GEM_BUG_ON(vma->fence); 2055 GEM_BUG_ON(i915_vma_has_userfault(vma)); 2056 2057 /* Object backend must be async capable. */ 2058 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 2059 2060 /* If vm is not open, unbind is a nop. */ 2061 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 2062 kref_read(&vma->vm->ref); 2063 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 2064 vma->vm->skip_pte_rewrite; 2065 trace_i915_vma_unbind(vma); 2066 2067 if (async) 2068 unbind_fence = i915_vma_resource_unbind(vma_res, 2069 vma->obj->mm.tlb); 2070 else 2071 unbind_fence = i915_vma_resource_unbind(vma_res, NULL); 2072 2073 vma->resource = NULL; 2074 2075 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 2076 &vma->flags); 2077 2078 i915_vma_detach(vma); 2079 2080 if (!async) { 2081 if (unbind_fence) { 2082 dma_fence_wait(unbind_fence, false); 2083 dma_fence_put(unbind_fence); 2084 unbind_fence = NULL; 2085 } 2086 vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb); 2087 } 2088 2089 /* 2090 * Binding itself may not have completed until the unbind fence signals, 2091 * so don't drop the pages until that happens, unless the resource is 2092 * async_capable. 2093 */ 2094 2095 vma_unbind_pages(vma); 2096 return unbind_fence; 2097 } 2098 2099 int __i915_vma_unbind(struct i915_vma *vma) 2100 { 2101 int ret; 2102 2103 lockdep_assert_held(&vma->vm->mutex); 2104 assert_vma_held_evict(vma); 2105 2106 if (!drm_mm_node_allocated(&vma->node)) 2107 return 0; 2108 2109 if (i915_vma_is_pinned(vma)) { 2110 vma_print_allocator(vma, "is pinned"); 2111 return -EAGAIN; 2112 } 2113 2114 /* 2115 * After confirming that no one else is pinning this vma, wait for 2116 * any laggards who may have crept in during the wait (through 2117 * a residual pin skipping the vm->mutex) to complete. 2118 */ 2119 ret = i915_vma_sync(vma); 2120 if (ret) 2121 return ret; 2122 2123 GEM_BUG_ON(i915_vma_is_active(vma)); 2124 __i915_vma_evict(vma, false); 2125 2126 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2127 return 0; 2128 } 2129 2130 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 2131 { 2132 struct dma_fence *fence; 2133 2134 lockdep_assert_held(&vma->vm->mutex); 2135 2136 if (!drm_mm_node_allocated(&vma->node)) 2137 return NULL; 2138 2139 if (i915_vma_is_pinned(vma) || 2140 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 2141 return ERR_PTR(-EAGAIN); 2142 2143 /* 2144 * We probably need to replace this with awaiting the fences of the 2145 * object's dma_resv when the vma active goes away. When doing that 2146 * we need to be careful to not add the vma_resource unbind fence 2147 * immediately to the object's dma_resv, because then unbinding 2148 * the next vma from the object, in case there are many, will 2149 * actually await the unbinding of the previous vmas, which is 2150 * undesirable. 2151 */ 2152 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 2153 I915_ACTIVE_AWAIT_EXCL | 2154 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 2155 return ERR_PTR(-EBUSY); 2156 } 2157 2158 fence = __i915_vma_evict(vma, true); 2159 2160 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2161 2162 return fence; 2163 } 2164 2165 int i915_vma_unbind(struct i915_vma *vma) 2166 { 2167 struct i915_address_space *vm = vma->vm; 2168 intel_wakeref_t wakeref = 0; 2169 int err; 2170 2171 assert_object_held_shared(vma->obj); 2172 2173 /* Optimistic wait before taking the mutex */ 2174 err = i915_vma_sync(vma); 2175 if (err) 2176 return err; 2177 2178 if (!drm_mm_node_allocated(&vma->node)) 2179 return 0; 2180 2181 if (i915_vma_is_pinned(vma)) { 2182 vma_print_allocator(vma, "is pinned"); 2183 return -EAGAIN; 2184 } 2185 2186 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2187 /* XXX not always required: nop_clear_range */ 2188 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2189 2190 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2191 if (err) 2192 goto out_rpm; 2193 2194 err = __i915_vma_unbind(vma); 2195 mutex_unlock(&vm->mutex); 2196 2197 out_rpm: 2198 if (wakeref) 2199 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2200 return err; 2201 } 2202 2203 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2204 { 2205 struct drm_i915_gem_object *obj = vma->obj; 2206 struct i915_address_space *vm = vma->vm; 2207 intel_wakeref_t wakeref = 0; 2208 struct dma_fence *fence; 2209 int err; 2210 2211 /* 2212 * We need the dma-resv lock since we add the 2213 * unbind fence to the dma-resv object. 2214 */ 2215 assert_object_held(obj); 2216 2217 if (!drm_mm_node_allocated(&vma->node)) 2218 return 0; 2219 2220 if (i915_vma_is_pinned(vma)) { 2221 vma_print_allocator(vma, "is pinned"); 2222 return -EAGAIN; 2223 } 2224 2225 if (!obj->mm.rsgt) 2226 return -EBUSY; 2227 2228 err = dma_resv_reserve_fences(obj->base.resv, 2); 2229 if (err) 2230 return -EBUSY; 2231 2232 /* 2233 * It would be great if we could grab this wakeref from the 2234 * async unbind work if needed, but we can't because it uses 2235 * kmalloc and it's in the dma-fence signalling critical path. 2236 */ 2237 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2238 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2239 2240 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2241 err = -EBUSY; 2242 goto out_rpm; 2243 } else if (!trylock_vm) { 2244 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2245 if (err) 2246 goto out_rpm; 2247 } 2248 2249 fence = __i915_vma_unbind_async(vma); 2250 mutex_unlock(&vm->mutex); 2251 if (IS_ERR_OR_NULL(fence)) { 2252 err = PTR_ERR_OR_ZERO(fence); 2253 goto out_rpm; 2254 } 2255 2256 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2257 dma_fence_put(fence); 2258 2259 out_rpm: 2260 if (wakeref) 2261 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2262 return err; 2263 } 2264 2265 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2266 { 2267 int err; 2268 2269 i915_gem_object_lock(vma->obj, NULL); 2270 err = i915_vma_unbind(vma); 2271 i915_gem_object_unlock(vma->obj); 2272 2273 return err; 2274 } 2275 2276 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2277 { 2278 i915_gem_object_make_unshrinkable(vma->obj); 2279 return vma; 2280 } 2281 2282 void i915_vma_make_shrinkable(struct i915_vma *vma) 2283 { 2284 i915_gem_object_make_shrinkable(vma->obj); 2285 } 2286 2287 void i915_vma_make_purgeable(struct i915_vma *vma) 2288 { 2289 i915_gem_object_make_purgeable(vma->obj); 2290 } 2291 2292 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2293 #include "selftests/i915_vma.c" 2294 #endif 2295 2296 void i915_vma_module_exit(void) 2297 { 2298 #ifdef __linux__ 2299 kmem_cache_destroy(slab_vmas); 2300 #else 2301 pool_destroy(&slab_vmas); 2302 #endif 2303 } 2304 2305 int __init i915_vma_module_init(void) 2306 { 2307 #ifdef __linux__ 2308 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2309 if (!slab_vmas) 2310 return -ENOMEM; 2311 #else 2312 pool_init(&slab_vmas, sizeof(struct i915_vma), 2313 CACHELINESIZE, IPL_NONE, 0, "drmvma", NULL); 2314 #endif 2315 2316 return 0; 2317 } 2318