1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_vma_manager.h> 35 #include <linux/io.h> 36 #include <linux/highmem.h> 37 #include <linux/wait.h> 38 #include <linux/slab.h> 39 #include <linux/vmalloc.h> 40 #include <linux/module.h> 41 #include <linux/dma-resv.h> 42 43 struct ttm_transfer_obj { 44 struct ttm_buffer_object base; 45 struct ttm_buffer_object *bo; 46 }; 47 48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo) 49 { 50 ttm_resource_free(bo, &bo->mem); 51 } 52 53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo, 54 struct ttm_operation_ctx *ctx, 55 struct ttm_resource *new_mem) 56 { 57 struct ttm_tt *ttm = bo->ttm; 58 struct ttm_resource *old_mem = &bo->mem; 59 int ret; 60 61 if (old_mem->mem_type != TTM_PL_SYSTEM) { 62 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); 63 64 if (unlikely(ret != 0)) { 65 if (ret != -ERESTARTSYS) 66 pr_err("Failed to expire sync object before unbinding TTM\n"); 67 return ret; 68 } 69 70 ttm_bo_tt_unbind(bo); 71 ttm_bo_free_old_node(bo); 72 old_mem->mem_type = TTM_PL_SYSTEM; 73 } 74 75 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); 76 if (unlikely(ret != 0)) 77 return ret; 78 79 if (new_mem->mem_type != TTM_PL_SYSTEM) { 80 81 ret = ttm_tt_populate(bo->bdev, ttm, ctx); 82 if (unlikely(ret != 0)) 83 return ret; 84 85 ret = ttm_bo_tt_bind(bo, new_mem); 86 if (unlikely(ret != 0)) 87 return ret; 88 } 89 90 ttm_bo_assign_mem(bo, new_mem); 91 return 0; 92 } 93 EXPORT_SYMBOL(ttm_bo_move_ttm); 94 95 int ttm_mem_io_reserve(struct ttm_bo_device *bdev, 96 struct ttm_resource *mem) 97 { 98 if (mem->bus.offset || mem->bus.addr) 99 return 0; 100 101 mem->bus.is_iomem = false; 102 if (!bdev->driver->io_mem_reserve) 103 return 0; 104 105 return bdev->driver->io_mem_reserve(bdev, mem); 106 } 107 108 void ttm_mem_io_free(struct ttm_bo_device *bdev, 109 struct ttm_resource *mem) 110 { 111 if (!mem->bus.offset && !mem->bus.addr) 112 return; 113 114 if (bdev->driver->io_mem_free) 115 bdev->driver->io_mem_free(bdev, mem); 116 117 mem->bus.offset = 0; 118 mem->bus.addr = NULL; 119 } 120 121 static int ttm_resource_ioremap(struct ttm_bo_device *bdev, 122 struct ttm_resource *mem, 123 void **virtual) 124 { 125 int ret; 126 void *addr; 127 int flags; 128 129 *virtual = NULL; 130 ret = ttm_mem_io_reserve(bdev, mem); 131 if (ret || !mem->bus.is_iomem) 132 return ret; 133 134 if (mem->bus.addr) { 135 addr = mem->bus.addr; 136 } else { 137 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 138 139 if (mem->placement & TTM_PL_FLAG_WC) 140 flags = BUS_SPACE_MAP_PREFETCHABLE; 141 else 142 flags = 0; 143 144 if (bus_space_map(bdev->memt, mem->bus.offset, 145 bus_size, BUS_SPACE_MAP_LINEAR | flags, 146 &mem->bus.bsh)) { 147 printf("%s bus_space_map failed\n", __func__); 148 return -ENOMEM; 149 } 150 151 addr = bus_space_vaddr(bdev->memt, mem->bus.bsh); 152 153 if (!addr) { 154 ttm_mem_io_free(bdev, mem); 155 return -ENOMEM; 156 } 157 } 158 *virtual = addr; 159 return 0; 160 } 161 162 static void ttm_resource_iounmap(struct ttm_bo_device *bdev, 163 struct ttm_resource *mem, 164 void *virtual) 165 { 166 if (virtual && mem->bus.addr == NULL) 167 bus_space_unmap(bdev->memt, mem->bus.bsh, 168 (size_t)mem->num_pages << PAGE_SHIFT); 169 ttm_mem_io_free(bdev, mem); 170 } 171 172 static int ttm_copy_io_page(void *dst, void *src, unsigned long page) 173 { 174 uint32_t *dstP = 175 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); 176 uint32_t *srcP = 177 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); 178 179 int i; 180 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) 181 iowrite32(ioread32(srcP++), dstP++); 182 return 0; 183 } 184 185 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, 186 unsigned long page, 187 pgprot_t prot) 188 { 189 struct vm_page *d = ttm->pages[page]; 190 void *dst; 191 192 if (!d) 193 return -ENOMEM; 194 195 src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); 196 dst = kmap_atomic_prot(d, prot); 197 if (!dst) 198 return -ENOMEM; 199 200 memcpy_fromio(dst, src, PAGE_SIZE); 201 202 kunmap_atomic(dst); 203 204 return 0; 205 } 206 207 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, 208 unsigned long page, 209 pgprot_t prot) 210 { 211 struct vm_page *s = ttm->pages[page]; 212 void *src; 213 214 if (!s) 215 return -ENOMEM; 216 217 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); 218 src = kmap_atomic_prot(s, prot); 219 if (!src) 220 return -ENOMEM; 221 222 memcpy_toio(dst, src, PAGE_SIZE); 223 224 kunmap_atomic(src); 225 226 return 0; 227 } 228 229 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 230 struct ttm_operation_ctx *ctx, 231 struct ttm_resource *new_mem) 232 { 233 struct ttm_bo_device *bdev = bo->bdev; 234 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 235 struct ttm_tt *ttm = bo->ttm; 236 struct ttm_resource *old_mem = &bo->mem; 237 struct ttm_resource old_copy = *old_mem; 238 void *old_iomap; 239 void *new_iomap; 240 int ret; 241 unsigned long i; 242 unsigned long page; 243 unsigned long add = 0; 244 int dir; 245 246 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); 247 if (ret) 248 return ret; 249 250 ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap); 251 if (ret) 252 return ret; 253 ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap); 254 if (ret) 255 goto out; 256 257 /* 258 * Single TTM move. NOP. 259 */ 260 if (old_iomap == NULL && new_iomap == NULL) 261 goto out2; 262 263 /* 264 * Don't move nonexistent data. Clear destination instead. 265 */ 266 if (old_iomap == NULL && 267 (ttm == NULL || (!ttm_tt_is_populated(ttm) && 268 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) { 269 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE); 270 goto out2; 271 } 272 273 /* 274 * TTM might be null for moves within the same region. 275 */ 276 if (ttm) { 277 ret = ttm_tt_populate(bdev, ttm, ctx); 278 if (ret) 279 goto out1; 280 } 281 282 add = 0; 283 dir = 1; 284 285 if ((old_mem->mem_type == new_mem->mem_type) && 286 (new_mem->start < old_mem->start + old_mem->size)) { 287 dir = -1; 288 add = new_mem->num_pages - 1; 289 } 290 291 for (i = 0; i < new_mem->num_pages; ++i) { 292 page = i * dir + add; 293 if (old_iomap == NULL) { 294 pgprot_t prot = ttm_io_prot(old_mem->placement, 295 PAGE_KERNEL); 296 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, 297 prot); 298 } else if (new_iomap == NULL) { 299 pgprot_t prot = ttm_io_prot(new_mem->placement, 300 PAGE_KERNEL); 301 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, 302 prot); 303 } else { 304 ret = ttm_copy_io_page(new_iomap, old_iomap, page); 305 } 306 if (ret) 307 goto out1; 308 } 309 mb(); 310 out2: 311 old_copy = *old_mem; 312 313 ttm_bo_assign_mem(bo, new_mem); 314 315 if (!man->use_tt) 316 ttm_bo_tt_destroy(bo); 317 318 out1: 319 ttm_resource_iounmap(bdev, old_mem, new_iomap); 320 out: 321 ttm_resource_iounmap(bdev, &old_copy, old_iomap); 322 323 /* 324 * On error, keep the mm node! 325 */ 326 if (!ret) 327 ttm_resource_free(bo, &old_copy); 328 return ret; 329 } 330 EXPORT_SYMBOL(ttm_bo_move_memcpy); 331 332 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 333 { 334 struct ttm_transfer_obj *fbo; 335 336 fbo = container_of(bo, struct ttm_transfer_obj, base); 337 ttm_bo_put(fbo->bo); 338 kfree(fbo); 339 } 340 341 /** 342 * ttm_buffer_object_transfer 343 * 344 * @bo: A pointer to a struct ttm_buffer_object. 345 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 346 * holding the data of @bo with the old placement. 347 * 348 * This is a utility function that may be called after an accelerated move 349 * has been scheduled. A new buffer object is created as a placeholder for 350 * the old data while it's being copied. When that buffer object is idle, 351 * it can be destroyed, releasing the space of the old placement. 352 * Returns: 353 * !0: Failure. 354 */ 355 356 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 357 struct ttm_buffer_object **new_obj) 358 { 359 struct ttm_transfer_obj *fbo; 360 int ret; 361 362 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 363 if (!fbo) 364 return -ENOMEM; 365 366 fbo->base = *bo; 367 fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT; 368 369 ttm_bo_get(bo); 370 fbo->bo = bo; 371 372 /** 373 * Fix up members that we shouldn't copy directly: 374 * TODO: Explicit member copy would probably be better here. 375 */ 376 377 atomic_inc(&ttm_bo_glob.bo_count); 378 INIT_LIST_HEAD(&fbo->base.ddestroy); 379 INIT_LIST_HEAD(&fbo->base.lru); 380 INIT_LIST_HEAD(&fbo->base.swap); 381 fbo->base.moving = NULL; 382 drm_vma_node_reset(&fbo->base.base.vma_node); 383 384 kref_init(&fbo->base.kref); 385 fbo->base.destroy = &ttm_transfered_destroy; 386 fbo->base.acc_size = 0; 387 if (bo->type != ttm_bo_type_sg) 388 fbo->base.base.resv = &fbo->base.base._resv; 389 390 dma_resv_init(&fbo->base.base._resv); 391 fbo->base.base.dev = NULL; 392 ret = dma_resv_trylock(&fbo->base.base._resv); 393 WARN_ON(!ret); 394 395 *new_obj = &fbo->base; 396 return 0; 397 } 398 399 #ifdef __linux__ 400 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) 401 { 402 /* Cached mappings need no adjustment */ 403 if (caching_flags & TTM_PL_FLAG_CACHED) 404 return tmp; 405 406 #if defined(__i386__) || defined(__x86_64__) 407 if (caching_flags & TTM_PL_FLAG_WC) 408 tmp = pgprot_writecombine(tmp); 409 else if (boot_cpu_data.x86 > 3) 410 tmp = pgprot_noncached(tmp); 411 #endif 412 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \ 413 defined(__powerpc__) || defined(__mips__) 414 if (caching_flags & TTM_PL_FLAG_WC) 415 tmp = pgprot_writecombine(tmp); 416 else 417 tmp = pgprot_noncached(tmp); 418 #endif 419 #if defined(__sparc__) 420 tmp = pgprot_noncached(tmp); 421 #endif 422 return tmp; 423 } 424 EXPORT_SYMBOL(ttm_io_prot); 425 #endif 426 427 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) 428 { 429 /* Cached mappings need no adjustment */ 430 if (caching_flags & TTM_PL_FLAG_CACHED) 431 return tmp; 432 433 if (caching_flags & TTM_PL_FLAG_WC) 434 tmp = pgprot_writecombine(tmp); 435 else 436 tmp = pgprot_noncached(tmp); 437 438 return tmp; 439 } 440 441 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 442 unsigned long offset, 443 unsigned long size, 444 struct ttm_bo_kmap_obj *map) 445 { 446 int flags; 447 struct ttm_resource *mem = &bo->mem; 448 449 if (bo->mem.bus.addr) { 450 map->bo_kmap_type = ttm_bo_map_premapped; 451 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); 452 } else { 453 map->bo_kmap_type = ttm_bo_map_iomap; 454 if (mem->placement & TTM_PL_FLAG_WC) 455 flags = BUS_SPACE_MAP_PREFETCHABLE; 456 else 457 flags = 0; 458 if (bus_space_map(bo->bdev->memt, 459 bo->mem.bus.offset + offset, 460 size, BUS_SPACE_MAP_LINEAR | flags, 461 &bo->mem.bus.bsh)) { 462 printf("%s bus_space_map failed\n", __func__); 463 map->virtual = 0; 464 } else 465 map->virtual = bus_space_vaddr(bo->bdev->memt, 466 bo->mem.bus.bsh); 467 } 468 return (!map->virtual) ? -ENOMEM : 0; 469 } 470 471 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 472 unsigned long start_page, 473 unsigned long num_pages, 474 struct ttm_bo_kmap_obj *map) 475 { 476 struct ttm_resource *mem = &bo->mem; 477 struct ttm_operation_ctx ctx = { 478 .interruptible = false, 479 .no_wait_gpu = false 480 }; 481 struct ttm_tt *ttm = bo->ttm; 482 pgprot_t prot; 483 int ret; 484 485 BUG_ON(!ttm); 486 487 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 488 if (ret) 489 return ret; 490 491 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { 492 /* 493 * We're mapping a single page, and the desired 494 * page protection is consistent with the bo. 495 */ 496 497 map->bo_kmap_type = ttm_bo_map_kmap; 498 map->page = ttm->pages[start_page]; 499 map->virtual = kmap(map->page); 500 } else { 501 /* 502 * We need to use vmap to get the desired page protection 503 * or to make the buffer object look contiguous. 504 */ 505 prot = ttm_io_prot(mem->placement, PAGE_KERNEL); 506 map->bo_kmap_type = ttm_bo_map_vmap; 507 map->virtual = vmap(ttm->pages + start_page, num_pages, 508 0, prot); 509 } 510 return (!map->virtual) ? -ENOMEM : 0; 511 } 512 513 int ttm_bo_kmap(struct ttm_buffer_object *bo, 514 unsigned long start_page, unsigned long num_pages, 515 struct ttm_bo_kmap_obj *map) 516 { 517 unsigned long offset, size; 518 int ret; 519 520 map->virtual = NULL; 521 map->bo = bo; 522 if (num_pages > bo->num_pages) 523 return -EINVAL; 524 if (start_page > bo->num_pages) 525 return -EINVAL; 526 527 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); 528 if (ret) 529 return ret; 530 if (!bo->mem.bus.is_iomem) { 531 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 532 } else { 533 offset = start_page << PAGE_SHIFT; 534 size = num_pages << PAGE_SHIFT; 535 return ttm_bo_ioremap(bo, offset, size, map); 536 } 537 } 538 EXPORT_SYMBOL(ttm_bo_kmap); 539 540 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 541 { 542 if (!map->virtual) 543 return; 544 switch (map->bo_kmap_type) { 545 case ttm_bo_map_iomap: 546 bus_space_unmap(map->bo->bdev->memt, map->bo->mem.bus.bsh, 547 (size_t)map->bo->mem.num_pages << PAGE_SHIFT); 548 break; 549 case ttm_bo_map_vmap: 550 vunmap(map->virtual, 551 (size_t)map->bo->mem.num_pages << PAGE_SHIFT); 552 break; 553 case ttm_bo_map_kmap: 554 kunmap_va(map->virtual); 555 break; 556 case ttm_bo_map_premapped: 557 break; 558 default: 559 BUG(); 560 } 561 ttm_mem_io_free(map->bo->bdev, &map->bo->mem); 562 map->virtual = NULL; 563 map->page = NULL; 564 } 565 EXPORT_SYMBOL(ttm_bo_kunmap); 566 567 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 568 bool dst_use_tt) 569 { 570 int ret; 571 ret = ttm_bo_wait(bo, false, false); 572 if (ret) 573 return ret; 574 575 if (!dst_use_tt) 576 ttm_bo_tt_destroy(bo); 577 ttm_bo_free_old_node(bo); 578 return 0; 579 } 580 581 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 582 struct dma_fence *fence, 583 bool dst_use_tt) 584 { 585 struct ttm_buffer_object *ghost_obj; 586 int ret; 587 588 /** 589 * This should help pipeline ordinary buffer moves. 590 * 591 * Hang old buffer memory on a new buffer object, 592 * and leave it to be released when the GPU 593 * operation has completed. 594 */ 595 596 dma_fence_put(bo->moving); 597 bo->moving = dma_fence_get(fence); 598 599 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 600 if (ret) 601 return ret; 602 603 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 604 605 /** 606 * If we're not moving to fixed memory, the TTM object 607 * needs to stay alive. Otherwhise hang it on the ghost 608 * bo to be unbound and destroyed. 609 */ 610 611 if (dst_use_tt) 612 ghost_obj->ttm = NULL; 613 else 614 bo->ttm = NULL; 615 616 dma_resv_unlock(&ghost_obj->base._resv); 617 ttm_bo_put(ghost_obj); 618 return 0; 619 } 620 621 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 622 struct dma_fence *fence) 623 { 624 struct ttm_bo_device *bdev = bo->bdev; 625 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->mem.mem_type); 626 627 /** 628 * BO doesn't have a TTM we need to bind/unbind. Just remember 629 * this eviction and free up the allocation 630 */ 631 spin_lock(&from->move_lock); 632 if (!from->move || dma_fence_is_later(fence, from->move)) { 633 dma_fence_put(from->move); 634 from->move = dma_fence_get(fence); 635 } 636 spin_unlock(&from->move_lock); 637 638 ttm_bo_free_old_node(bo); 639 640 dma_fence_put(bo->moving); 641 bo->moving = dma_fence_get(fence); 642 } 643 644 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 645 struct dma_fence *fence, 646 bool evict, 647 bool pipeline, 648 struct ttm_resource *new_mem) 649 { 650 struct ttm_bo_device *bdev = bo->bdev; 651 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->mem.mem_type); 652 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 653 int ret = 0; 654 655 dma_resv_add_excl_fence(bo->base.resv, fence); 656 if (!evict) 657 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 658 else if (!from->use_tt && pipeline) 659 ttm_bo_move_pipeline_evict(bo, fence); 660 else 661 ret = ttm_bo_wait_free_node(bo, man->use_tt); 662 663 if (ret) 664 return ret; 665 666 ttm_bo_assign_mem(bo, new_mem); 667 668 return 0; 669 } 670 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 671 672 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 673 { 674 struct ttm_buffer_object *ghost; 675 int ret; 676 677 ret = ttm_buffer_object_transfer(bo, &ghost); 678 if (ret) 679 return ret; 680 681 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 682 /* Last resort, wait for the BO to be idle when we are OOM */ 683 if (ret) 684 ttm_bo_wait(bo, false, false); 685 686 memset(&bo->mem, 0, sizeof(bo->mem)); 687 bo->mem.mem_type = TTM_PL_SYSTEM; 688 bo->ttm = NULL; 689 690 dma_resv_unlock(&ghost->base._resv); 691 ttm_bo_put(ghost); 692 693 return 0; 694 } 695