xref: /openbsd/sys/dev/pci/if_bnx.c (revision 9b7c3dbb)
1 /*	$OpenBSD: if_bnx.c,v 1.122 2016/05/05 23:01:28 jmatthew Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Broadcom Corporation
5  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written consent.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, C0
40  *   BCM5709S A1, C0
41  *   BCM5716  C0
42  *
43  * The following controllers are not supported by this driver:
44  *   BCM5706C A0, A1
45  *   BCM5706S A0, A1
46  *   BCM5708C A0, B0
47  *   BCM5708S A0, B0
48  *   BCM5709C A0  B0, B1, B2 (pre-production)
49  *   BCM5709S A0, B0, B1, B2 (pre-production)
50  */
51 
52 #include <dev/pci/if_bnxreg.h>
53 
54 struct bnx_firmware {
55 	char *filename;
56 	struct bnx_firmware_header *fw;
57 
58 	u_int32_t *bnx_COM_FwText;
59 	u_int32_t *bnx_COM_FwData;
60 	u_int32_t *bnx_COM_FwRodata;
61 	u_int32_t *bnx_COM_FwBss;
62 	u_int32_t *bnx_COM_FwSbss;
63 
64 	u_int32_t *bnx_RXP_FwText;
65 	u_int32_t *bnx_RXP_FwData;
66 	u_int32_t *bnx_RXP_FwRodata;
67 	u_int32_t *bnx_RXP_FwBss;
68 	u_int32_t *bnx_RXP_FwSbss;
69 
70 	u_int32_t *bnx_TPAT_FwText;
71 	u_int32_t *bnx_TPAT_FwData;
72 	u_int32_t *bnx_TPAT_FwRodata;
73 	u_int32_t *bnx_TPAT_FwBss;
74 	u_int32_t *bnx_TPAT_FwSbss;
75 
76 	u_int32_t *bnx_TXP_FwText;
77 	u_int32_t *bnx_TXP_FwData;
78 	u_int32_t *bnx_TXP_FwRodata;
79 	u_int32_t *bnx_TXP_FwBss;
80 	u_int32_t *bnx_TXP_FwSbss;
81 };
82 
83 struct bnx_firmware bnx_firmwares[] = {
84 	{ "bnx-b06",		NULL },
85 	{ "bnx-b09",		NULL }
86 };
87 #define	BNX_FW_B06	0
88 #define	BNX_FW_B09	1
89 
90 struct bnx_rv2p {
91 	char *filename;
92 	struct bnx_rv2p_header *fw;
93 
94 	u_int32_t *bnx_rv2p_proc1;
95 	u_int32_t *bnx_rv2p_proc2;
96 };
97 
98 struct bnx_rv2p bnx_rv2ps[] = {
99 	{ "bnx-rv2p",		NULL },
100 	{ "bnx-xi-rv2p",	NULL },
101 	{ "bnx-xi90-rv2p",	NULL }
102 };
103 #define BNX_RV2P	0
104 #define BNX_XI_RV2P	1
105 #define BNX_XI90_RV2P	2
106 
107 void	nswaph(u_int32_t *p, int wcount);
108 
109 /****************************************************************************/
110 /* BNX Driver Version                                                       */
111 /****************************************************************************/
112 
113 #define BNX_DRIVER_VERSION	"v0.9.6"
114 
115 /****************************************************************************/
116 /* BNX Debug Options                                                        */
117 /****************************************************************************/
118 #ifdef BNX_DEBUG
119 	u_int32_t bnx_debug = BNX_WARN;
120 
121 	/*          0 = Never              */
122 	/*          1 = 1 in 2,147,483,648 */
123 	/*        256 = 1 in     8,388,608 */
124 	/*       2048 = 1 in     1,048,576 */
125 	/*      65536 = 1 in        32,768 */
126 	/*    1048576 = 1 in         2,048 */
127 	/*  268435456 =	1 in             8 */
128 	/*  536870912 = 1 in             4 */
129 	/* 1073741824 = 1 in             2 */
130 
131 	/* Controls how often the l2_fhdr frame error check will fail. */
132 	int bnx_debug_l2fhdr_status_check = 0;
133 
134 	/* Controls how often the unexpected attention check will fail. */
135 	int bnx_debug_unexpected_attention = 0;
136 
137 	/* Controls how often to simulate an mbuf allocation failure. */
138 	int bnx_debug_mbuf_allocation_failure = 0;
139 
140 	/* Controls how often to simulate a DMA mapping failure. */
141 	int bnx_debug_dma_map_addr_failure = 0;
142 
143 	/* Controls how often to simulate a bootcode failure. */
144 	int bnx_debug_bootcode_running_failure = 0;
145 #endif
146 
147 /****************************************************************************/
148 /* PCI Device ID Table                                                      */
149 /*                                                                          */
150 /* Used by bnx_probe() to identify the devices supported by this driver.    */
151 /****************************************************************************/
152 const struct pci_matchid bnx_devices[] = {
153 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706 },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S },
155 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708 },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S },
157 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709 },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S },
159 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716 },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S }
161 };
162 
163 /****************************************************************************/
164 /* Supported Flash NVRAM device data.                                       */
165 /****************************************************************************/
166 static struct flash_spec flash_table[] =
167 {
168 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
169 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
170 
171 	/* Slow EEPROM */
172 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
173 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
174 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
175 	 "EEPROM - slow"},
176 	/* Expansion entry 0001 */
177 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
178 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 	 "Entry 0001"},
181 	/* Saifun SA25F010 (non-buffered flash) */
182 	/* strap, cfg1, & write1 need updates */
183 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
184 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
185 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
186 	 "Non-buffered flash (128kB)"},
187 	/* Saifun SA25F020 (non-buffered flash) */
188 	/* strap, cfg1, & write1 need updates */
189 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
190 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
191 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
192 	 "Non-buffered flash (256kB)"},
193 	/* Expansion entry 0100 */
194 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 	 "Entry 0100"},
198 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
199 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
200 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
201 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
202 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
203 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
204 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
206 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
208 	/* Saifun SA25F005 (non-buffered flash) */
209 	/* strap, cfg1, & write1 need updates */
210 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
213 	 "Non-buffered flash (64kB)"},
214 	/* Fast EEPROM */
215 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
216 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
217 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
218 	 "EEPROM - fast"},
219 	/* Expansion entry 1001 */
220 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
221 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 	 "Entry 1001"},
224 	/* Expansion entry 1010 */
225 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 	 "Entry 1010"},
229 	/* ATMEL AT45DB011B (buffered flash) */
230 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
231 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
233 	 "Buffered flash (128kB)"},
234 	/* Expansion entry 1100 */
235 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1100"},
239 	/* Expansion entry 1101 */
240 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1101"},
244 	/* Ateml Expansion entry 1110 */
245 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
248 	 "Entry 1110 (Atmel)"},
249 	/* ATMEL AT45DB021B (buffered flash) */
250 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
251 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
252 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
253 	 "Buffered flash (256kB)"},
254 };
255 
256 /*
257  * The BCM5709 controllers transparently handle the
258  * differences between Atmel 264 byte pages and all
259  * flash devices which use 256 byte pages, so no
260  * logical-to-physical mapping is required in the
261  * driver.
262  */
263 static struct flash_spec flash_5709 = {
264 	.flags		= BNX_NV_BUFFERED,
265 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
266 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
267 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
268 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
269 	.name		= "5709 buffered flash (256kB)",
270 };
271 
272 /****************************************************************************/
273 /* OpenBSD device entry points.                                             */
274 /****************************************************************************/
275 int	bnx_probe(struct device *, void *, void *);
276 void	bnx_attach(struct device *, struct device *, void *);
277 void	bnx_attachhook(struct device *);
278 int	bnx_read_firmware(struct bnx_softc *sc, int);
279 int	bnx_read_rv2p(struct bnx_softc *sc, int);
280 #if 0
281 void	bnx_detach(void *);
282 #endif
283 
284 /****************************************************************************/
285 /* BNX Debug Data Structure Dump Routines                                   */
286 /****************************************************************************/
287 #ifdef BNX_DEBUG
288 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
289 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
290 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
291 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
292 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
293 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
294 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
295 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
296 void	bnx_dump_status_block(struct bnx_softc *);
297 void	bnx_dump_stats_block(struct bnx_softc *);
298 void	bnx_dump_driver_state(struct bnx_softc *);
299 void	bnx_dump_hw_state(struct bnx_softc *);
300 void	bnx_breakpoint(struct bnx_softc *);
301 #endif
302 
303 /****************************************************************************/
304 /* BNX Register/Memory Access Routines                                      */
305 /****************************************************************************/
306 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
307 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
308 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
309 int	bnx_miibus_read_reg(struct device *, int, int);
310 void	bnx_miibus_write_reg(struct device *, int, int, int);
311 void	bnx_miibus_statchg(struct device *);
312 
313 /****************************************************************************/
314 /* BNX NVRAM Access Routines                                                */
315 /****************************************************************************/
316 int	bnx_acquire_nvram_lock(struct bnx_softc *);
317 int	bnx_release_nvram_lock(struct bnx_softc *);
318 void	bnx_enable_nvram_access(struct bnx_softc *);
319 void	bnx_disable_nvram_access(struct bnx_softc *);
320 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
321 	    u_int32_t);
322 int	bnx_init_nvram(struct bnx_softc *);
323 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
324 int	bnx_nvram_test(struct bnx_softc *);
325 #ifdef BNX_NVRAM_WRITE_SUPPORT
326 int	bnx_enable_nvram_write(struct bnx_softc *);
327 void	bnx_disable_nvram_write(struct bnx_softc *);
328 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
329 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
330 	    u_int32_t);
331 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
332 #endif
333 
334 /****************************************************************************/
335 /*                                                                          */
336 /****************************************************************************/
337 void	bnx_get_media(struct bnx_softc *);
338 void	bnx_init_media(struct bnx_softc *);
339 int	bnx_dma_alloc(struct bnx_softc *);
340 void	bnx_dma_free(struct bnx_softc *);
341 void	bnx_release_resources(struct bnx_softc *);
342 
343 /****************************************************************************/
344 /* BNX Firmware Synchronization and Load                                    */
345 /****************************************************************************/
346 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
347 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
348 	    u_int32_t);
349 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
350 	    struct fw_info *);
351 void	bnx_init_cpus(struct bnx_softc *);
352 
353 void	bnx_stop(struct bnx_softc *);
354 int	bnx_reset(struct bnx_softc *, u_int32_t);
355 int	bnx_chipinit(struct bnx_softc *);
356 int	bnx_blockinit(struct bnx_softc *);
357 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
358 
359 int	bnx_init_tx_chain(struct bnx_softc *);
360 void	bnx_init_tx_context(struct bnx_softc *);
361 int	bnx_fill_rx_chain(struct bnx_softc *);
362 void	bnx_init_rx_context(struct bnx_softc *);
363 int	bnx_init_rx_chain(struct bnx_softc *);
364 void	bnx_free_rx_chain(struct bnx_softc *);
365 void	bnx_free_tx_chain(struct bnx_softc *);
366 void	bnx_rxrefill(void *);
367 
368 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *, int *);
369 void	bnx_start(struct ifnet *);
370 int	bnx_ioctl(struct ifnet *, u_long, caddr_t);
371 void	bnx_watchdog(struct ifnet *);
372 int	bnx_ifmedia_upd(struct ifnet *);
373 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
374 void	bnx_init(void *);
375 void	bnx_mgmt_init(struct bnx_softc *sc);
376 
377 void	bnx_init_context(struct bnx_softc *);
378 void	bnx_get_mac_addr(struct bnx_softc *);
379 void	bnx_set_mac_addr(struct bnx_softc *);
380 void	bnx_phy_intr(struct bnx_softc *);
381 void	bnx_rx_intr(struct bnx_softc *);
382 void	bnx_tx_intr(struct bnx_softc *);
383 void	bnx_disable_intr(struct bnx_softc *);
384 void	bnx_enable_intr(struct bnx_softc *);
385 
386 int	bnx_intr(void *);
387 void	bnx_iff(struct bnx_softc *);
388 void	bnx_stats_update(struct bnx_softc *);
389 void	bnx_tick(void *);
390 
391 /****************************************************************************/
392 /* OpenBSD device dispatch table.                                           */
393 /****************************************************************************/
394 struct cfattach bnx_ca = {
395 	sizeof(struct bnx_softc), bnx_probe, bnx_attach
396 };
397 
398 struct cfdriver bnx_cd = {
399 	NULL, "bnx", DV_IFNET
400 };
401 
402 /****************************************************************************/
403 /* Device probe function.                                                   */
404 /*                                                                          */
405 /* Compares the device to the driver's list of supported devices and        */
406 /* reports back to the OS whether this is the right driver for the device.  */
407 /*                                                                          */
408 /* Returns:                                                                 */
409 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
410 /****************************************************************************/
411 int
412 bnx_probe(struct device *parent, void *match, void *aux)
413 {
414 	return (pci_matchbyid((struct pci_attach_args *)aux, bnx_devices,
415 	    nitems(bnx_devices)));
416 }
417 
418 void
419 nswaph(u_int32_t *p, int wcount)
420 {
421 	for (; wcount; wcount -=4) {
422 		*p = ntohl(*p);
423 		p++;
424 	}
425 }
426 
427 int
428 bnx_read_firmware(struct bnx_softc *sc, int idx)
429 {
430 	struct bnx_firmware *bfw = &bnx_firmwares[idx];
431 	struct bnx_firmware_header *hdr = bfw->fw;
432 	u_char *p, *q;
433 	size_t size;
434 	int error;
435 
436 	if (hdr != NULL)
437 		return (0);
438 
439 	if ((error = loadfirmware(bfw->filename, &p, &size)) != 0)
440 		return (error);
441 
442 	if (size < sizeof(struct bnx_firmware_header)) {
443 		free(p, M_DEVBUF, size);
444 		return (EINVAL);
445 	}
446 
447 	hdr = (struct bnx_firmware_header *)p;
448 
449 	hdr->bnx_COM_FwReleaseMajor = ntohl(hdr->bnx_COM_FwReleaseMajor);
450 	hdr->bnx_COM_FwReleaseMinor = ntohl(hdr->bnx_COM_FwReleaseMinor);
451 	hdr->bnx_COM_FwReleaseFix = ntohl(hdr->bnx_COM_FwReleaseFix);
452 	hdr->bnx_COM_FwStartAddr = ntohl(hdr->bnx_COM_FwStartAddr);
453 	hdr->bnx_COM_FwTextAddr = ntohl(hdr->bnx_COM_FwTextAddr);
454 	hdr->bnx_COM_FwTextLen = ntohl(hdr->bnx_COM_FwTextLen);
455 	hdr->bnx_COM_FwDataAddr = ntohl(hdr->bnx_COM_FwDataAddr);
456 	hdr->bnx_COM_FwDataLen = ntohl(hdr->bnx_COM_FwDataLen);
457 	hdr->bnx_COM_FwRodataAddr = ntohl(hdr->bnx_COM_FwRodataAddr);
458 	hdr->bnx_COM_FwRodataLen = ntohl(hdr->bnx_COM_FwRodataLen);
459 	hdr->bnx_COM_FwBssAddr = ntohl(hdr->bnx_COM_FwBssAddr);
460 	hdr->bnx_COM_FwBssLen = ntohl(hdr->bnx_COM_FwBssLen);
461 	hdr->bnx_COM_FwSbssAddr = ntohl(hdr->bnx_COM_FwSbssAddr);
462 	hdr->bnx_COM_FwSbssLen = ntohl(hdr->bnx_COM_FwSbssLen);
463 
464 	hdr->bnx_RXP_FwReleaseMajor = ntohl(hdr->bnx_RXP_FwReleaseMajor);
465 	hdr->bnx_RXP_FwReleaseMinor = ntohl(hdr->bnx_RXP_FwReleaseMinor);
466 	hdr->bnx_RXP_FwReleaseFix = ntohl(hdr->bnx_RXP_FwReleaseFix);
467 	hdr->bnx_RXP_FwStartAddr = ntohl(hdr->bnx_RXP_FwStartAddr);
468 	hdr->bnx_RXP_FwTextAddr = ntohl(hdr->bnx_RXP_FwTextAddr);
469 	hdr->bnx_RXP_FwTextLen = ntohl(hdr->bnx_RXP_FwTextLen);
470 	hdr->bnx_RXP_FwDataAddr = ntohl(hdr->bnx_RXP_FwDataAddr);
471 	hdr->bnx_RXP_FwDataLen = ntohl(hdr->bnx_RXP_FwDataLen);
472 	hdr->bnx_RXP_FwRodataAddr = ntohl(hdr->bnx_RXP_FwRodataAddr);
473 	hdr->bnx_RXP_FwRodataLen = ntohl(hdr->bnx_RXP_FwRodataLen);
474 	hdr->bnx_RXP_FwBssAddr = ntohl(hdr->bnx_RXP_FwBssAddr);
475 	hdr->bnx_RXP_FwBssLen = ntohl(hdr->bnx_RXP_FwBssLen);
476 	hdr->bnx_RXP_FwSbssAddr = ntohl(hdr->bnx_RXP_FwSbssAddr);
477 	hdr->bnx_RXP_FwSbssLen = ntohl(hdr->bnx_RXP_FwSbssLen);
478 
479 	hdr->bnx_TPAT_FwReleaseMajor = ntohl(hdr->bnx_TPAT_FwReleaseMajor);
480 	hdr->bnx_TPAT_FwReleaseMinor = ntohl(hdr->bnx_TPAT_FwReleaseMinor);
481 	hdr->bnx_TPAT_FwReleaseFix = ntohl(hdr->bnx_TPAT_FwReleaseFix);
482 	hdr->bnx_TPAT_FwStartAddr = ntohl(hdr->bnx_TPAT_FwStartAddr);
483 	hdr->bnx_TPAT_FwTextAddr = ntohl(hdr->bnx_TPAT_FwTextAddr);
484 	hdr->bnx_TPAT_FwTextLen = ntohl(hdr->bnx_TPAT_FwTextLen);
485 	hdr->bnx_TPAT_FwDataAddr = ntohl(hdr->bnx_TPAT_FwDataAddr);
486 	hdr->bnx_TPAT_FwDataLen = ntohl(hdr->bnx_TPAT_FwDataLen);
487 	hdr->bnx_TPAT_FwRodataAddr = ntohl(hdr->bnx_TPAT_FwRodataAddr);
488 	hdr->bnx_TPAT_FwRodataLen = ntohl(hdr->bnx_TPAT_FwRodataLen);
489 	hdr->bnx_TPAT_FwBssAddr = ntohl(hdr->bnx_TPAT_FwBssAddr);
490 	hdr->bnx_TPAT_FwBssLen = ntohl(hdr->bnx_TPAT_FwBssLen);
491 	hdr->bnx_TPAT_FwSbssAddr = ntohl(hdr->bnx_TPAT_FwSbssAddr);
492 	hdr->bnx_TPAT_FwSbssLen = ntohl(hdr->bnx_TPAT_FwSbssLen);
493 
494 	hdr->bnx_TXP_FwReleaseMajor = ntohl(hdr->bnx_TXP_FwReleaseMajor);
495 	hdr->bnx_TXP_FwReleaseMinor = ntohl(hdr->bnx_TXP_FwReleaseMinor);
496 	hdr->bnx_TXP_FwReleaseFix = ntohl(hdr->bnx_TXP_FwReleaseFix);
497 	hdr->bnx_TXP_FwStartAddr = ntohl(hdr->bnx_TXP_FwStartAddr);
498 	hdr->bnx_TXP_FwTextAddr = ntohl(hdr->bnx_TXP_FwTextAddr);
499 	hdr->bnx_TXP_FwTextLen = ntohl(hdr->bnx_TXP_FwTextLen);
500 	hdr->bnx_TXP_FwDataAddr = ntohl(hdr->bnx_TXP_FwDataAddr);
501 	hdr->bnx_TXP_FwDataLen = ntohl(hdr->bnx_TXP_FwDataLen);
502 	hdr->bnx_TXP_FwRodataAddr = ntohl(hdr->bnx_TXP_FwRodataAddr);
503 	hdr->bnx_TXP_FwRodataLen = ntohl(hdr->bnx_TXP_FwRodataLen);
504 	hdr->bnx_TXP_FwBssAddr = ntohl(hdr->bnx_TXP_FwBssAddr);
505 	hdr->bnx_TXP_FwBssLen = ntohl(hdr->bnx_TXP_FwBssLen);
506 	hdr->bnx_TXP_FwSbssAddr = ntohl(hdr->bnx_TXP_FwSbssAddr);
507 	hdr->bnx_TXP_FwSbssLen = ntohl(hdr->bnx_TXP_FwSbssLen);
508 
509 	q = p + sizeof(*hdr);
510 
511 	bfw->bnx_COM_FwText = (u_int32_t *)q;
512 	q += hdr->bnx_COM_FwTextLen;
513 	nswaph(bfw->bnx_COM_FwText, hdr->bnx_COM_FwTextLen);
514 	bfw->bnx_COM_FwData = (u_int32_t *)q;
515 	q += hdr->bnx_COM_FwDataLen;
516 	nswaph(bfw->bnx_COM_FwData, hdr->bnx_COM_FwDataLen);
517 	bfw->bnx_COM_FwRodata = (u_int32_t *)q;
518 	q += hdr->bnx_COM_FwRodataLen;
519 	nswaph(bfw->bnx_COM_FwRodata, hdr->bnx_COM_FwRodataLen);
520 	bfw->bnx_COM_FwBss = (u_int32_t *)q;
521 	q += hdr->bnx_COM_FwBssLen;
522 	nswaph(bfw->bnx_COM_FwBss, hdr->bnx_COM_FwBssLen);
523 	bfw->bnx_COM_FwSbss = (u_int32_t *)q;
524 	q += hdr->bnx_COM_FwSbssLen;
525 	nswaph(bfw->bnx_COM_FwSbss, hdr->bnx_COM_FwSbssLen);
526 
527 	bfw->bnx_RXP_FwText = (u_int32_t *)q;
528 	q += hdr->bnx_RXP_FwTextLen;
529 	nswaph(bfw->bnx_RXP_FwText, hdr->bnx_RXP_FwTextLen);
530 	bfw->bnx_RXP_FwData = (u_int32_t *)q;
531 	q += hdr->bnx_RXP_FwDataLen;
532 	nswaph(bfw->bnx_RXP_FwData, hdr->bnx_RXP_FwDataLen);
533 	bfw->bnx_RXP_FwRodata = (u_int32_t *)q;
534 	q += hdr->bnx_RXP_FwRodataLen;
535 	nswaph(bfw->bnx_RXP_FwRodata, hdr->bnx_RXP_FwRodataLen);
536 	bfw->bnx_RXP_FwBss = (u_int32_t *)q;
537 	q += hdr->bnx_RXP_FwBssLen;
538 	nswaph(bfw->bnx_RXP_FwBss, hdr->bnx_RXP_FwBssLen);
539 	bfw->bnx_RXP_FwSbss = (u_int32_t *)q;
540 	q += hdr->bnx_RXP_FwSbssLen;
541 	nswaph(bfw->bnx_RXP_FwSbss, hdr->bnx_RXP_FwSbssLen);
542 
543 	bfw->bnx_TPAT_FwText = (u_int32_t *)q;
544 	q += hdr->bnx_TPAT_FwTextLen;
545 	nswaph(bfw->bnx_TPAT_FwText, hdr->bnx_TPAT_FwTextLen);
546 	bfw->bnx_TPAT_FwData = (u_int32_t *)q;
547 	q += hdr->bnx_TPAT_FwDataLen;
548 	nswaph(bfw->bnx_TPAT_FwData, hdr->bnx_TPAT_FwDataLen);
549 	bfw->bnx_TPAT_FwRodata = (u_int32_t *)q;
550 	q += hdr->bnx_TPAT_FwRodataLen;
551 	nswaph(bfw->bnx_TPAT_FwRodata, hdr->bnx_TPAT_FwRodataLen);
552 	bfw->bnx_TPAT_FwBss = (u_int32_t *)q;
553 	q += hdr->bnx_TPAT_FwBssLen;
554 	nswaph(bfw->bnx_TPAT_FwBss, hdr->bnx_TPAT_FwBssLen);
555 	bfw->bnx_TPAT_FwSbss = (u_int32_t *)q;
556 	q += hdr->bnx_TPAT_FwSbssLen;
557 	nswaph(bfw->bnx_TPAT_FwSbss, hdr->bnx_TPAT_FwSbssLen);
558 
559 	bfw->bnx_TXP_FwText = (u_int32_t *)q;
560 	q += hdr->bnx_TXP_FwTextLen;
561 	nswaph(bfw->bnx_TXP_FwText, hdr->bnx_TXP_FwTextLen);
562 	bfw->bnx_TXP_FwData = (u_int32_t *)q;
563 	q += hdr->bnx_TXP_FwDataLen;
564 	nswaph(bfw->bnx_TXP_FwData, hdr->bnx_TXP_FwDataLen);
565 	bfw->bnx_TXP_FwRodata = (u_int32_t *)q;
566 	q += hdr->bnx_TXP_FwRodataLen;
567 	nswaph(bfw->bnx_TXP_FwRodata, hdr->bnx_TXP_FwRodataLen);
568 	bfw->bnx_TXP_FwBss = (u_int32_t *)q;
569 	q += hdr->bnx_TXP_FwBssLen;
570 	nswaph(bfw->bnx_TXP_FwBss, hdr->bnx_TXP_FwBssLen);
571 	bfw->bnx_TXP_FwSbss = (u_int32_t *)q;
572 	q += hdr->bnx_TXP_FwSbssLen;
573 	nswaph(bfw->bnx_TXP_FwSbss, hdr->bnx_TXP_FwSbssLen);
574 
575 	if (q - p != size) {
576 		free(p, M_DEVBUF, size);
577 		hdr = NULL;
578 		return EINVAL;
579 	}
580 
581 	bfw->fw = hdr;
582 
583 	return (0);
584 }
585 
586 int
587 bnx_read_rv2p(struct bnx_softc *sc, int idx)
588 {
589 	struct bnx_rv2p *rv2p = &bnx_rv2ps[idx];
590 	struct bnx_rv2p_header *hdr = rv2p->fw;
591 	u_char *p, *q;
592 	size_t size;
593 	int error;
594 
595 	if (hdr != NULL)
596 		return (0);
597 
598 	if ((error = loadfirmware(rv2p->filename, &p, &size)) != 0)
599 		return (error);
600 
601 	if (size < sizeof(struct bnx_rv2p_header)) {
602 		free(p, M_DEVBUF, size);
603 		return (EINVAL);
604 	}
605 
606 	hdr = (struct bnx_rv2p_header *)p;
607 
608 	hdr->bnx_rv2p_proc1len = ntohl(hdr->bnx_rv2p_proc1len);
609 	hdr->bnx_rv2p_proc2len = ntohl(hdr->bnx_rv2p_proc2len);
610 
611 	q = p + sizeof(*hdr);
612 
613 	rv2p->bnx_rv2p_proc1 = (u_int32_t *)q;
614 	q += hdr->bnx_rv2p_proc1len;
615 	nswaph(rv2p->bnx_rv2p_proc1, hdr->bnx_rv2p_proc1len);
616 	rv2p->bnx_rv2p_proc2 = (u_int32_t *)q;
617 	q += hdr->bnx_rv2p_proc2len;
618 	nswaph(rv2p->bnx_rv2p_proc2, hdr->bnx_rv2p_proc2len);
619 
620 	if (q - p != size) {
621 		free(p, M_DEVBUF, size);
622 		return EINVAL;
623 	}
624 
625 	rv2p->fw = hdr;
626 
627 	return (0);
628 }
629 
630 
631 /****************************************************************************/
632 /* Device attach function.                                                  */
633 /*                                                                          */
634 /* Allocates device resources, performs secondary chip identification,      */
635 /* resets and initializes the hardware, and initializes driver instance     */
636 /* variables.                                                               */
637 /*                                                                          */
638 /* Returns:                                                                 */
639 /*   0 on success, positive value on failure.                               */
640 /****************************************************************************/
641 void
642 bnx_attach(struct device *parent, struct device *self, void *aux)
643 {
644 	struct bnx_softc	*sc = (struct bnx_softc *)self;
645 	struct pci_attach_args	*pa = aux;
646 	pci_chipset_tag_t	pc = pa->pa_pc;
647 	u_int32_t		val;
648 	pcireg_t		memtype;
649 	const char 		*intrstr = NULL;
650 
651 	sc->bnx_pa = *pa;
652 
653 	/*
654 	 * Map control/status registers.
655 	*/
656 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
657 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
658 	    &sc->bnx_bhandle, NULL, &sc->bnx_size, 0)) {
659 		printf(": can't find mem space\n");
660 		return;
661 	}
662 
663 	if (pci_intr_map(pa, &sc->bnx_ih)) {
664 		printf(": couldn't map interrupt\n");
665 		goto bnx_attach_fail;
666 	}
667 	intrstr = pci_intr_string(pc, sc->bnx_ih);
668 
669 	/*
670 	 * Configure byte swap and enable indirect register access.
671 	 * Rely on CPU to do target byte swapping on big endian systems.
672 	 * Access to registers outside of PCI configurtion space are not
673 	 * valid until this is done.
674 	 */
675 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
676 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
677 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
678 
679 	/* Save ASIC revsion info. */
680 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
681 
682 	/*
683 	 * Find the base address for shared memory access.
684 	 * Newer versions of bootcode use a signature and offset
685 	 * while older versions use a fixed address.
686 	 */
687 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
688 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
689 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
690 		    (sc->bnx_pa.pa_function << 2));
691 	else
692 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
693 
694 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
695 
696 	/* Set initial device and PHY flags */
697 	sc->bnx_flags = 0;
698 	sc->bnx_phy_flags = 0;
699 
700 	/* Get PCI bus information (speed and type). */
701 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
702 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
703 		u_int32_t clkreg;
704 
705 		sc->bnx_flags |= BNX_PCIX_FLAG;
706 
707 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
708 
709 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
710 		switch (clkreg) {
711 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
712 			sc->bus_speed_mhz = 133;
713 			break;
714 
715 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
716 			sc->bus_speed_mhz = 100;
717 			break;
718 
719 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
720 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
721 			sc->bus_speed_mhz = 66;
722 			break;
723 
724 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
725 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
726 			sc->bus_speed_mhz = 50;
727 			break;
728 
729 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
730 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
731 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
732 			sc->bus_speed_mhz = 33;
733 			break;
734 		}
735 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
736 			sc->bus_speed_mhz = 66;
737 		else
738 			sc->bus_speed_mhz = 33;
739 
740 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
741 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
742 
743 	/* Hookup IRQ last. */
744 	sc->bnx_intrhand = pci_intr_establish(pc, sc->bnx_ih,
745 	    IPL_NET | IPL_MPSAFE, bnx_intr, sc, sc->bnx_dev.dv_xname);
746 	if (sc->bnx_intrhand == NULL) {
747 		printf(": couldn't establish interrupt");
748 		if (intrstr != NULL)
749 			printf(" at %s", intrstr);
750 		printf("\n");
751 		goto bnx_attach_fail;
752 	}
753 
754 	printf(": %s\n", intrstr);
755 
756 	config_mountroot(self, bnx_attachhook);
757 	return;
758 
759 bnx_attach_fail:
760 	bnx_release_resources(sc);
761 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
762 }
763 
764 void
765 bnx_attachhook(struct device *self)
766 {
767 	struct bnx_softc *sc = (struct bnx_softc *)self;
768 	struct pci_attach_args *pa = &sc->bnx_pa;
769 	struct ifnet		*ifp;
770 	int			error, mii_flags = 0;
771 	int			fw = BNX_FW_B06;
772 	int			rv2p = BNX_RV2P;
773 
774 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
775 		fw = BNX_FW_B09;
776 		if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax))
777 			rv2p = BNX_XI90_RV2P;
778 		else
779 			rv2p = BNX_XI_RV2P;
780 	}
781 
782 	if ((error = bnx_read_firmware(sc, fw)) != 0) {
783 		printf("%s: error %d, could not read firmware\n",
784 		    sc->bnx_dev.dv_xname, error);
785 		return;
786 	}
787 
788 	if ((error = bnx_read_rv2p(sc, rv2p)) != 0) {
789 		printf("%s: error %d, could not read rv2p\n",
790 		    sc->bnx_dev.dv_xname, error);
791 		return;
792 	}
793 
794 	/* Reset the controller. */
795 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
796 		goto bnx_attach_fail;
797 
798 	/* Initialize the controller. */
799 	if (bnx_chipinit(sc)) {
800 		printf("%s: Controller initialization failed!\n",
801 		    sc->bnx_dev.dv_xname);
802 		goto bnx_attach_fail;
803 	}
804 
805 	/* Perform NVRAM test. */
806 	if (bnx_nvram_test(sc)) {
807 		printf("%s: NVRAM test failed!\n",
808 		    sc->bnx_dev.dv_xname);
809 		goto bnx_attach_fail;
810 	}
811 
812 	/* Fetch the permanent Ethernet MAC address. */
813 	bnx_get_mac_addr(sc);
814 
815 	/*
816 	 * Trip points control how many BDs
817 	 * should be ready before generating an
818 	 * interrupt while ticks control how long
819 	 * a BD can sit in the chain before
820 	 * generating an interrupt.  Set the default
821 	 * values for the RX and TX rings.
822 	 */
823 
824 #ifdef BNX_DEBUG
825 	/* Force more frequent interrupts. */
826 	sc->bnx_tx_quick_cons_trip_int = 1;
827 	sc->bnx_tx_quick_cons_trip     = 1;
828 	sc->bnx_tx_ticks_int           = 0;
829 	sc->bnx_tx_ticks               = 0;
830 
831 	sc->bnx_rx_quick_cons_trip_int = 1;
832 	sc->bnx_rx_quick_cons_trip     = 1;
833 	sc->bnx_rx_ticks_int           = 0;
834 	sc->bnx_rx_ticks               = 0;
835 #else
836 	sc->bnx_tx_quick_cons_trip_int = 20;
837 	sc->bnx_tx_quick_cons_trip     = 20;
838 	sc->bnx_tx_ticks_int           = 80;
839 	sc->bnx_tx_ticks               = 80;
840 
841 	sc->bnx_rx_quick_cons_trip_int = 6;
842 	sc->bnx_rx_quick_cons_trip     = 6;
843 	sc->bnx_rx_ticks_int           = 18;
844 	sc->bnx_rx_ticks               = 18;
845 #endif
846 
847 	/* Update statistics once every second. */
848 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
849 
850 	/* Find the media type for the adapter. */
851 	bnx_get_media(sc);
852 
853 	/*
854 	 * Store config data needed by the PHY driver for
855 	 * backplane applications
856 	 */
857 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
858 		BNX_SHARED_HW_CFG_CONFIG);
859 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
860 		BNX_PORT_HW_CFG_CONFIG);
861 
862 	/* Allocate DMA memory resources. */
863 	sc->bnx_dmatag = pa->pa_dmat;
864 	if (bnx_dma_alloc(sc)) {
865 		printf("%s: DMA resource allocation failed!\n",
866 		    sc->bnx_dev.dv_xname);
867 		goto bnx_attach_fail;
868 	}
869 
870 	/* Initialize the ifnet interface. */
871 	ifp = &sc->arpcom.ac_if;
872 	ifp->if_softc = sc;
873 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
874 	ifp->if_xflags = IFXF_MPSAFE;
875 	ifp->if_ioctl = bnx_ioctl;
876 	ifp->if_start = bnx_start;
877 	ifp->if_watchdog = bnx_watchdog;
878 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
879 	bcopy(sc->eaddr, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
880 	bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
881 
882 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_TCPv4 |
883 	    IFCAP_CSUM_UDPv4;
884 
885 #if NVLAN > 0
886 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
887 #endif
888 
889 	sc->mbuf_alloc_size = BNX_MAX_MRU;
890 
891 	printf("%s: address %s\n", sc->bnx_dev.dv_xname,
892 	    ether_sprintf(sc->arpcom.ac_enaddr));
893 
894 	sc->bnx_mii.mii_ifp = ifp;
895 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
896 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
897 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
898 
899 	/* Handle any special PHY initialization for SerDes PHYs. */
900 	bnx_init_media(sc);
901 
902 	/* Look for our PHY. */
903 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
904 	    bnx_ifmedia_sts);
905 	mii_flags |= MIIF_DOPAUSE;
906 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
907 		mii_flags |= MIIF_HAVEFIBER;
908 	mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
909 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
910 
911 	if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
912 		printf("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
913 		ifmedia_add(&sc->bnx_mii.mii_media,
914 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
915 		ifmedia_set(&sc->bnx_mii.mii_media,
916 		    IFM_ETHER|IFM_MANUAL);
917 	} else {
918 		ifmedia_set(&sc->bnx_mii.mii_media,
919 		    IFM_ETHER|IFM_AUTO);
920 	}
921 
922 	/* Attach to the Ethernet interface list. */
923 	if_attach(ifp);
924 	ether_ifattach(ifp);
925 
926 	timeout_set(&sc->bnx_timeout, bnx_tick, sc);
927 	timeout_set(&sc->bnx_rxrefill, bnx_rxrefill, sc);
928 
929 	/* Print some important debugging info. */
930 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
931 
932 	/* Get the firmware running so ASF still works. */
933 	bnx_mgmt_init(sc);
934 
935 	/* Handle interrupts */
936 	sc->bnx_flags |= BNX_ACTIVE_FLAG;
937 
938 	goto bnx_attach_exit;
939 
940 bnx_attach_fail:
941 	bnx_release_resources(sc);
942 
943 bnx_attach_exit:
944 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
945 }
946 
947 /****************************************************************************/
948 /* Device detach function.                                                  */
949 /*                                                                          */
950 /* Stops the controller, resets the controller, and releases resources.     */
951 /*                                                                          */
952 /* Returns:                                                                 */
953 /*   0 on success, positive value on failure.                               */
954 /****************************************************************************/
955 #if 0
956 void
957 bnx_detach(void *xsc)
958 {
959 	struct bnx_softc *sc;
960 	struct ifnet *ifp = &sc->arpcom.ac_if;
961 
962 	sc = device_get_softc(dev);
963 
964 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
965 
966 	/* Stop and reset the controller. */
967 	bnx_stop(sc);
968 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
969 
970 	ether_ifdetach(ifp);
971 
972 	/* If we have a child device on the MII bus remove it too. */
973 	bus_generic_detach(dev);
974 	device_delete_child(dev, sc->bnx_mii);
975 
976 	/* Release all remaining resources. */
977 	bnx_release_resources(sc);
978 
979 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
980 
981 	return(0);
982 }
983 #endif
984 
985 /****************************************************************************/
986 /* Indirect register read.                                                  */
987 /*                                                                          */
988 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
989 /* configuration space.  Using this mechanism avoids issues with posted     */
990 /* reads but is much slower than memory-mapped I/O.                         */
991 /*                                                                          */
992 /* Returns:                                                                 */
993 /*   The value of the register.                                             */
994 /****************************************************************************/
995 u_int32_t
996 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
997 {
998 	struct pci_attach_args	*pa = &(sc->bnx_pa);
999 
1000 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1001 	    offset);
1002 #ifdef BNX_DEBUG
1003 	{
1004 		u_int32_t val;
1005 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1006 		    BNX_PCICFG_REG_WINDOW);
1007 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1008 		    "val = 0x%08X\n", __FUNCTION__, offset, val);
1009 		return (val);
1010 	}
1011 #else
1012 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1013 #endif
1014 }
1015 
1016 /****************************************************************************/
1017 /* Indirect register write.                                                 */
1018 /*                                                                          */
1019 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1020 /* configuration space.  Using this mechanism avoids issues with posted     */
1021 /* writes but is muchh slower than memory-mapped I/O.                       */
1022 /*                                                                          */
1023 /* Returns:                                                                 */
1024 /*   Nothing.                                                               */
1025 /****************************************************************************/
1026 void
1027 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
1028 {
1029 	struct pci_attach_args  *pa = &(sc->bnx_pa);
1030 
1031 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1032 		__FUNCTION__, offset, val);
1033 
1034 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1035 	    offset);
1036 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1037 }
1038 
1039 /****************************************************************************/
1040 /* Context memory write.                                                    */
1041 /*                                                                          */
1042 /* The NetXtreme II controller uses context memory to track connection      */
1043 /* information for L2 and higher network protocols.                         */
1044 /*                                                                          */
1045 /* Returns:                                                                 */
1046 /*   Nothing.                                                               */
1047 /****************************************************************************/
1048 void
1049 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
1050     u_int32_t ctx_val)
1051 {
1052 	u_int32_t idx, offset = ctx_offset + cid_addr;
1053 	u_int32_t val, retry_cnt = 5;
1054 
1055 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1056 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1057 		REG_WR(sc, BNX_CTX_CTX_CTRL,
1058 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1059 
1060 		for (idx = 0; idx < retry_cnt; idx++) {
1061 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1062 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1063 				break;
1064 			DELAY(5);
1065 		}
1066 
1067 #if 0
1068 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1069 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1070 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1071 				__FILE__, __LINE__, cid_addr, ctx_offset);
1072 #endif
1073 
1074 	} else {
1075 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1076 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1077 	}
1078 }
1079 
1080 /****************************************************************************/
1081 /* PHY register read.                                                       */
1082 /*                                                                          */
1083 /* Implements register reads on the MII bus.                                */
1084 /*                                                                          */
1085 /* Returns:                                                                 */
1086 /*   The value of the register.                                             */
1087 /****************************************************************************/
1088 int
1089 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
1090 {
1091 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
1092 	u_int32_t		val;
1093 	int			i;
1094 
1095 	/*
1096 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1097 	 * with special mappings to work with IEEE
1098 	 * Clause 22 register accesses.
1099 	 */
1100 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1101 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1102 			reg += 0x10;
1103 	}
1104 
1105 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1106 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1107 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1108 
1109 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1110 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1111 
1112 		DELAY(40);
1113 	}
1114 
1115 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1116 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1117 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1118 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1119 
1120 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1121 		DELAY(10);
1122 
1123 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1124 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1125 			DELAY(5);
1126 
1127 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1128 			val &= BNX_EMAC_MDIO_COMM_DATA;
1129 
1130 			break;
1131 		}
1132 	}
1133 
1134 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1135 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1136 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1137 		val = 0x0;
1138 	} else
1139 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1140 
1141 	DBPRINT(sc, BNX_EXCESSIVE,
1142 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
1143 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1144 
1145 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1146 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1147 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1148 
1149 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1150 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1151 
1152 		DELAY(40);
1153 	}
1154 
1155 	return (val & 0xffff);
1156 }
1157 
1158 /****************************************************************************/
1159 /* PHY register write.                                                      */
1160 /*                                                                          */
1161 /* Implements register writes on the MII bus.                               */
1162 /*                                                                          */
1163 /* Returns:                                                                 */
1164 /*   The value of the register.                                             */
1165 /****************************************************************************/
1166 void
1167 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
1168 {
1169 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
1170 	u_int32_t		val1;
1171 	int			i;
1172 
1173 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1174 	    "val = 0x%04X\n", __FUNCTION__,
1175 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1176 
1177 	/*
1178 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1179 	 * with special mappings to work with IEEE
1180 	 * Clause 22 register accesses.
1181 	 */
1182 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1183 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1184 			reg += 0x10;
1185 	}
1186 
1187 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1188 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1189 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1190 
1191 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1192 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1193 
1194 		DELAY(40);
1195 	}
1196 
1197 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1198 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1199 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1200 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1201 
1202 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1203 		DELAY(10);
1204 
1205 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1206 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1207 			DELAY(5);
1208 			break;
1209 		}
1210 	}
1211 
1212 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1213 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1214 		    __LINE__);
1215 	}
1216 
1217 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1218 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1219 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1220 
1221 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1222 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1223 
1224 		DELAY(40);
1225 	}
1226 }
1227 
1228 /****************************************************************************/
1229 /* MII bus status change.                                                   */
1230 /*                                                                          */
1231 /* Called by the MII bus driver when the PHY establishes link to set the    */
1232 /* MAC interface registers.                                                 */
1233 /*                                                                          */
1234 /* Returns:                                                                 */
1235 /*   Nothing.                                                               */
1236 /****************************************************************************/
1237 void
1238 bnx_miibus_statchg(struct device *dev)
1239 {
1240 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
1241 	struct mii_data		*mii = &sc->bnx_mii;
1242 	u_int32_t		rx_mode = sc->rx_mode;
1243 	int			val;
1244 
1245 	val = REG_RD(sc, BNX_EMAC_MODE);
1246 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1247 		BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1248 		BNX_EMAC_MODE_25G);
1249 
1250 	/*
1251 	 * Get flow control negotiation result.
1252 	 */
1253 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1254 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1255 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1256 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1257 	}
1258 
1259 	/* Set MII or GMII interface based on the speed
1260 	 * negotiated by the PHY.
1261 	 */
1262 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1263 	case IFM_10_T:
1264 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1265 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1266 			val |= BNX_EMAC_MODE_PORT_MII_10;
1267 			break;
1268 		}
1269 		/* FALLTHROUGH */
1270 	case IFM_100_TX:
1271 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1272 		val |= BNX_EMAC_MODE_PORT_MII;
1273 		break;
1274 	case IFM_2500_SX:
1275 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1276 		val |= BNX_EMAC_MODE_25G;
1277 		/* FALLTHROUGH */
1278 	case IFM_1000_T:
1279 	case IFM_1000_SX:
1280 		DBPRINT(sc, BNX_INFO, "Enablinb GMII interface.\n");
1281 		val |= BNX_EMAC_MODE_PORT_GMII;
1282 		break;
1283 	default:
1284 		val |= BNX_EMAC_MODE_PORT_GMII;
1285 		break;
1286 	}
1287 
1288 	/* Set half or full duplex based on the duplicity
1289 	 * negotiated by the PHY.
1290 	 */
1291 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1292 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1293 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1294 	} else
1295 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1296 
1297 	REG_WR(sc, BNX_EMAC_MODE, val);
1298 
1299 	/*
1300 	 * 802.3x flow control
1301 	 */
1302 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1303 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1304 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1305 	} else {
1306 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1307 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1308 	}
1309 
1310 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1311 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1312 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1313 	} else {
1314 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1315 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1316 	}
1317 
1318 	/* Only make changes if the recive mode has actually changed. */
1319 	if (rx_mode != sc->rx_mode) {
1320 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1321 		    rx_mode);
1322 
1323 		sc->rx_mode = rx_mode;
1324 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1325 	}
1326 }
1327 
1328 /****************************************************************************/
1329 /* Acquire NVRAM lock.                                                      */
1330 /*                                                                          */
1331 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1332 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1333 /* for use by the driver.                                                   */
1334 /*                                                                          */
1335 /* Returns:                                                                 */
1336 /*   0 on success, positive value on failure.                               */
1337 /****************************************************************************/
1338 int
1339 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1340 {
1341 	u_int32_t		val;
1342 	int			j;
1343 
1344 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1345 
1346 	/* Request access to the flash interface. */
1347 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1348 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1349 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1350 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1351 			break;
1352 
1353 		DELAY(5);
1354 	}
1355 
1356 	if (j >= NVRAM_TIMEOUT_COUNT) {
1357 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1358 		return (EBUSY);
1359 	}
1360 
1361 	return (0);
1362 }
1363 
1364 /****************************************************************************/
1365 /* Release NVRAM lock.                                                      */
1366 /*                                                                          */
1367 /* When the caller is finished accessing NVRAM the lock must be released.   */
1368 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1369 /* for use by the driver.                                                   */
1370 /*                                                                          */
1371 /* Returns:                                                                 */
1372 /*   0 on success, positive value on failure.                               */
1373 /****************************************************************************/
1374 int
1375 bnx_release_nvram_lock(struct bnx_softc *sc)
1376 {
1377 	int			j;
1378 	u_int32_t		val;
1379 
1380 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1381 
1382 	/* Relinquish nvram interface. */
1383 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1384 
1385 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1386 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1387 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1388 			break;
1389 
1390 		DELAY(5);
1391 	}
1392 
1393 	if (j >= NVRAM_TIMEOUT_COUNT) {
1394 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1395 		return (EBUSY);
1396 	}
1397 
1398 	return (0);
1399 }
1400 
1401 #ifdef BNX_NVRAM_WRITE_SUPPORT
1402 /****************************************************************************/
1403 /* Enable NVRAM write access.                                               */
1404 /*                                                                          */
1405 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1406 /*                                                                          */
1407 /* Returns:                                                                 */
1408 /*   0 on success, positive value on failure.                               */
1409 /****************************************************************************/
1410 int
1411 bnx_enable_nvram_write(struct bnx_softc *sc)
1412 {
1413 	u_int32_t		val;
1414 
1415 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1416 
1417 	val = REG_RD(sc, BNX_MISC_CFG);
1418 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1419 
1420 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1421 		int j;
1422 
1423 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1424 		REG_WR(sc, BNX_NVM_COMMAND,
1425 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1426 
1427 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1428 			DELAY(5);
1429 
1430 			val = REG_RD(sc, BNX_NVM_COMMAND);
1431 			if (val & BNX_NVM_COMMAND_DONE)
1432 				break;
1433 		}
1434 
1435 		if (j >= NVRAM_TIMEOUT_COUNT) {
1436 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1437 			return (EBUSY);
1438 		}
1439 	}
1440 
1441 	return (0);
1442 }
1443 
1444 /****************************************************************************/
1445 /* Disable NVRAM write access.                                              */
1446 /*                                                                          */
1447 /* When the caller is finished writing to NVRAM write access must be        */
1448 /* disabled.                                                                */
1449 /*                                                                          */
1450 /* Returns:                                                                 */
1451 /*   Nothing.                                                               */
1452 /****************************************************************************/
1453 void
1454 bnx_disable_nvram_write(struct bnx_softc *sc)
1455 {
1456 	u_int32_t		val;
1457 
1458 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1459 
1460 	val = REG_RD(sc, BNX_MISC_CFG);
1461 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1462 }
1463 #endif
1464 
1465 /****************************************************************************/
1466 /* Enable NVRAM access.                                                     */
1467 /*                                                                          */
1468 /* Before accessing NVRAM for read or write operations the caller must      */
1469 /* enabled NVRAM access.                                                    */
1470 /*                                                                          */
1471 /* Returns:                                                                 */
1472 /*   Nothing.                                                               */
1473 /****************************************************************************/
1474 void
1475 bnx_enable_nvram_access(struct bnx_softc *sc)
1476 {
1477 	u_int32_t		val;
1478 
1479 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1480 
1481 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1482 	/* Enable both bits, even on read. */
1483 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1484 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1485 }
1486 
1487 /****************************************************************************/
1488 /* Disable NVRAM access.                                                    */
1489 /*                                                                          */
1490 /* When the caller is finished accessing NVRAM access must be disabled.     */
1491 /*                                                                          */
1492 /* Returns:                                                                 */
1493 /*   Nothing.                                                               */
1494 /****************************************************************************/
1495 void
1496 bnx_disable_nvram_access(struct bnx_softc *sc)
1497 {
1498 	u_int32_t		val;
1499 
1500 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1501 
1502 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1503 
1504 	/* Disable both bits, even after read. */
1505 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1506 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1507 }
1508 
1509 #ifdef BNX_NVRAM_WRITE_SUPPORT
1510 /****************************************************************************/
1511 /* Erase NVRAM page before writing.                                         */
1512 /*                                                                          */
1513 /* Non-buffered flash parts require that a page be erased before it is      */
1514 /* written.                                                                 */
1515 /*                                                                          */
1516 /* Returns:                                                                 */
1517 /*   0 on success, positive value on failure.                               */
1518 /****************************************************************************/
1519 int
1520 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1521 {
1522 	u_int32_t		cmd;
1523 	int			j;
1524 
1525 	/* Buffered flash doesn't require an erase. */
1526 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1527 		return (0);
1528 
1529 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1530 
1531 	/* Build an erase command. */
1532 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1533 	    BNX_NVM_COMMAND_DOIT;
1534 
1535 	/*
1536 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1537 	 * and issue the erase command.
1538 	 */
1539 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1540 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1541 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1542 
1543 	/* Wait for completion. */
1544 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1545 		u_int32_t val;
1546 
1547 		DELAY(5);
1548 
1549 		val = REG_RD(sc, BNX_NVM_COMMAND);
1550 		if (val & BNX_NVM_COMMAND_DONE)
1551 			break;
1552 	}
1553 
1554 	if (j >= NVRAM_TIMEOUT_COUNT) {
1555 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1556 		return (EBUSY);
1557 	}
1558 
1559 	return (0);
1560 }
1561 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1562 
1563 /****************************************************************************/
1564 /* Read a dword (32 bits) from NVRAM.                                       */
1565 /*                                                                          */
1566 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1567 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1568 /*                                                                          */
1569 /* Returns:                                                                 */
1570 /*   0 on success and the 32 bit value read, positive value on failure.     */
1571 /****************************************************************************/
1572 int
1573 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1574     u_int8_t *ret_val, u_int32_t cmd_flags)
1575 {
1576 	u_int32_t		cmd;
1577 	int			i, rc = 0;
1578 
1579 	/* Build the command word. */
1580 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1581 
1582 	/* Calculate the offset for buffered flash if translation is used. */
1583 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1584 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1585 		    sc->bnx_flash_info->page_bits) +
1586 		    (offset % sc->bnx_flash_info->page_size);
1587 	}
1588 
1589 	/*
1590 	 * Clear the DONE bit separately, set the address to read,
1591 	 * and issue the read.
1592 	 */
1593 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1594 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1595 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1596 
1597 	/* Wait for completion. */
1598 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1599 		u_int32_t val;
1600 
1601 		DELAY(5);
1602 
1603 		val = REG_RD(sc, BNX_NVM_COMMAND);
1604 		if (val & BNX_NVM_COMMAND_DONE) {
1605 			val = REG_RD(sc, BNX_NVM_READ);
1606 
1607 			val = bnx_be32toh(val);
1608 			memcpy(ret_val, &val, 4);
1609 			break;
1610 		}
1611 	}
1612 
1613 	/* Check for errors. */
1614 	if (i >= NVRAM_TIMEOUT_COUNT) {
1615 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1616 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1617 		rc = EBUSY;
1618 	}
1619 
1620 	return(rc);
1621 }
1622 
1623 #ifdef BNX_NVRAM_WRITE_SUPPORT
1624 /****************************************************************************/
1625 /* Write a dword (32 bits) to NVRAM.                                        */
1626 /*                                                                          */
1627 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1628 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1629 /* enabled NVRAM write access.                                              */
1630 /*                                                                          */
1631 /* Returns:                                                                 */
1632 /*   0 on success, positive value on failure.                               */
1633 /****************************************************************************/
1634 int
1635 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1636     u_int32_t cmd_flags)
1637 {
1638 	u_int32_t		cmd, val32;
1639 	int			j;
1640 
1641 	/* Build the command word. */
1642 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1643 
1644 	/* Calculate the offset for buffered flash if translation is used. */
1645 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1646 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1647 		    sc->bnx_flash_info->page_bits) +
1648 		    (offset % sc->bnx_flash_info->page_size);
1649 	}
1650 
1651 	/*
1652 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1653 	 * set the NVRAM address to write, and issue the write command
1654 	 */
1655 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1656 	memcpy(&val32, val, 4);
1657 	val32 = htobe32(val32);
1658 	REG_WR(sc, BNX_NVM_WRITE, val32);
1659 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1660 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1661 
1662 	/* Wait for completion. */
1663 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1664 		DELAY(5);
1665 
1666 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1667 			break;
1668 	}
1669 	if (j >= NVRAM_TIMEOUT_COUNT) {
1670 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1671 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1672 		return (EBUSY);
1673 	}
1674 
1675 	return (0);
1676 }
1677 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1678 
1679 /****************************************************************************/
1680 /* Initialize NVRAM access.                                                 */
1681 /*                                                                          */
1682 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1683 /* access that device.                                                      */
1684 /*                                                                          */
1685 /* Returns:                                                                 */
1686 /*   0 on success, positive value on failure.                               */
1687 /****************************************************************************/
1688 int
1689 bnx_init_nvram(struct bnx_softc *sc)
1690 {
1691 	u_int32_t		val;
1692 	int			j, entry_count, rc = 0;
1693 	struct flash_spec	*flash;
1694 
1695 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1696 
1697 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1698 		sc->bnx_flash_info = &flash_5709;
1699 		goto bnx_init_nvram_get_flash_size;
1700 	}
1701 
1702 	/* Determine the selected interface. */
1703 	val = REG_RD(sc, BNX_NVM_CFG1);
1704 
1705 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1706 
1707 	/*
1708 	 * Flash reconfiguration is required to support additional
1709 	 * NVRAM devices not directly supported in hardware.
1710 	 * Check if the flash interface was reconfigured
1711 	 * by the bootcode.
1712 	 */
1713 
1714 	if (val & 0x40000000) {
1715 		/* Flash interface reconfigured by bootcode. */
1716 
1717 		DBPRINT(sc,BNX_INFO_LOAD,
1718 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1719 
1720 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1721 		     j++, flash++) {
1722 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1723 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1724 				sc->bnx_flash_info = flash;
1725 				break;
1726 			}
1727 		}
1728 	} else {
1729 		/* Flash interface not yet reconfigured. */
1730 		u_int32_t mask;
1731 
1732 		DBPRINT(sc,BNX_INFO_LOAD,
1733 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1734 
1735 		if (val & (1 << 23))
1736 			mask = FLASH_BACKUP_STRAP_MASK;
1737 		else
1738 			mask = FLASH_STRAP_MASK;
1739 
1740 		/* Look for the matching NVRAM device configuration data. */
1741 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1742 		    j++, flash++) {
1743 			/* Check if the dev matches any of the known devices. */
1744 			if ((val & mask) == (flash->strapping & mask)) {
1745 				/* Found a device match. */
1746 				sc->bnx_flash_info = flash;
1747 
1748 				/* Request access to the flash interface. */
1749 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1750 					return (rc);
1751 
1752 				/* Reconfigure the flash interface. */
1753 				bnx_enable_nvram_access(sc);
1754 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1755 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1756 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1757 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1758 				bnx_disable_nvram_access(sc);
1759 				bnx_release_nvram_lock(sc);
1760 
1761 				break;
1762 			}
1763 		}
1764 	}
1765 
1766 	/* Check if a matching device was found. */
1767 	if (j == entry_count) {
1768 		sc->bnx_flash_info = NULL;
1769 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1770 			__FILE__, __LINE__);
1771 		rc = ENODEV;
1772 	}
1773 
1774 bnx_init_nvram_get_flash_size:
1775 	/* Write the flash config data to the shared memory interface. */
1776 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1777 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1778 	if (val)
1779 		sc->bnx_flash_size = val;
1780 	else
1781 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1782 
1783 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1784 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1785 
1786 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1787 
1788 	return (rc);
1789 }
1790 
1791 /****************************************************************************/
1792 /* Read an arbitrary range of data from NVRAM.                              */
1793 /*                                                                          */
1794 /* Prepares the NVRAM interface for access and reads the requested data     */
1795 /* into the supplied buffer.                                                */
1796 /*                                                                          */
1797 /* Returns:                                                                 */
1798 /*   0 on success and the data read, positive value on failure.             */
1799 /****************************************************************************/
1800 int
1801 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1802     int buf_size)
1803 {
1804 	int			rc = 0;
1805 	u_int32_t		cmd_flags, offset32, len32, extra;
1806 
1807 	if (buf_size == 0)
1808 		return (0);
1809 
1810 	/* Request access to the flash interface. */
1811 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1812 		return (rc);
1813 
1814 	/* Enable access to flash interface */
1815 	bnx_enable_nvram_access(sc);
1816 
1817 	len32 = buf_size;
1818 	offset32 = offset;
1819 	extra = 0;
1820 
1821 	cmd_flags = 0;
1822 
1823 	if (offset32 & 3) {
1824 		u_int8_t buf[4];
1825 		u_int32_t pre_len;
1826 
1827 		offset32 &= ~3;
1828 		pre_len = 4 - (offset & 3);
1829 
1830 		if (pre_len >= len32) {
1831 			pre_len = len32;
1832 			cmd_flags =
1833 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1834 		} else
1835 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1836 
1837 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1838 
1839 		if (rc)
1840 			return (rc);
1841 
1842 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1843 
1844 		offset32 += 4;
1845 		ret_buf += pre_len;
1846 		len32 -= pre_len;
1847 	}
1848 
1849 	if (len32 & 3) {
1850 		extra = 4 - (len32 & 3);
1851 		len32 = (len32 + 4) & ~3;
1852 	}
1853 
1854 	if (len32 == 4) {
1855 		u_int8_t buf[4];
1856 
1857 		if (cmd_flags)
1858 			cmd_flags = BNX_NVM_COMMAND_LAST;
1859 		else
1860 			cmd_flags =
1861 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1862 
1863 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1864 
1865 		memcpy(ret_buf, buf, 4 - extra);
1866 	} else if (len32 > 0) {
1867 		u_int8_t buf[4];
1868 
1869 		/* Read the first word. */
1870 		if (cmd_flags)
1871 			cmd_flags = 0;
1872 		else
1873 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1874 
1875 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1876 
1877 		/* Advance to the next dword. */
1878 		offset32 += 4;
1879 		ret_buf += 4;
1880 		len32 -= 4;
1881 
1882 		while (len32 > 4 && rc == 0) {
1883 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1884 
1885 			/* Advance to the next dword. */
1886 			offset32 += 4;
1887 			ret_buf += 4;
1888 			len32 -= 4;
1889 		}
1890 
1891 		if (rc)
1892 			return (rc);
1893 
1894 		cmd_flags = BNX_NVM_COMMAND_LAST;
1895 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1896 
1897 		memcpy(ret_buf, buf, 4 - extra);
1898 	}
1899 
1900 	/* Disable access to flash interface and release the lock. */
1901 	bnx_disable_nvram_access(sc);
1902 	bnx_release_nvram_lock(sc);
1903 
1904 	return (rc);
1905 }
1906 
1907 #ifdef BNX_NVRAM_WRITE_SUPPORT
1908 /****************************************************************************/
1909 /* Write an arbitrary range of data from NVRAM.                             */
1910 /*                                                                          */
1911 /* Prepares the NVRAM interface for write access and writes the requested   */
1912 /* data from the supplied buffer.  The caller is responsible for            */
1913 /* calculating any appropriate CRCs.                                        */
1914 /*                                                                          */
1915 /* Returns:                                                                 */
1916 /*   0 on success, positive value on failure.                               */
1917 /****************************************************************************/
1918 int
1919 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1920     int buf_size)
1921 {
1922 	u_int32_t		written, offset32, len32;
1923 	u_int8_t		*buf, start[4], end[4];
1924 	int			rc = 0;
1925 	int			align_start, align_end;
1926 
1927 	buf = data_buf;
1928 	offset32 = offset;
1929 	len32 = buf_size;
1930 	align_start = align_end = 0;
1931 
1932 	if ((align_start = (offset32 & 3))) {
1933 		offset32 &= ~3;
1934 		len32 += align_start;
1935 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1936 			return (rc);
1937 	}
1938 
1939 	if (len32 & 3) {
1940 		if ((len32 > 4) || !align_start) {
1941 			align_end = 4 - (len32 & 3);
1942 			len32 += align_end;
1943 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1944 			    end, 4))) {
1945 				return (rc);
1946 			}
1947 		}
1948 	}
1949 
1950 	if (align_start || align_end) {
1951 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1952 		if (buf == 0)
1953 			return (ENOMEM);
1954 
1955 		if (align_start)
1956 			memcpy(buf, start, 4);
1957 
1958 		if (align_end)
1959 			memcpy(buf + len32 - 4, end, 4);
1960 
1961 		memcpy(buf + align_start, data_buf, buf_size);
1962 	}
1963 
1964 	written = 0;
1965 	while ((written < len32) && (rc == 0)) {
1966 		u_int32_t page_start, page_end, data_start, data_end;
1967 		u_int32_t addr, cmd_flags;
1968 		int i;
1969 		u_int8_t flash_buffer[264];
1970 
1971 	    /* Find the page_start addr */
1972 		page_start = offset32 + written;
1973 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1974 		/* Find the page_end addr */
1975 		page_end = page_start + sc->bnx_flash_info->page_size;
1976 		/* Find the data_start addr */
1977 		data_start = (written == 0) ? offset32 : page_start;
1978 		/* Find the data_end addr */
1979 		data_end = (page_end > offset32 + len32) ?
1980 		    (offset32 + len32) : page_end;
1981 
1982 		/* Request access to the flash interface. */
1983 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1984 			goto nvram_write_end;
1985 
1986 		/* Enable access to flash interface */
1987 		bnx_enable_nvram_access(sc);
1988 
1989 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1990 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1991 			int j;
1992 
1993 			/* Read the whole page into the buffer
1994 			 * (non-buffer flash only) */
1995 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1996 				if (j == (sc->bnx_flash_info->page_size - 4))
1997 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1998 
1999 				rc = bnx_nvram_read_dword(sc,
2000 					page_start + j,
2001 					&flash_buffer[j],
2002 					cmd_flags);
2003 
2004 				if (rc)
2005 					goto nvram_write_end;
2006 
2007 				cmd_flags = 0;
2008 			}
2009 		}
2010 
2011 		/* Enable writes to flash interface (unlock write-protect) */
2012 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
2013 			goto nvram_write_end;
2014 
2015 		/* Erase the page */
2016 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2017 			goto nvram_write_end;
2018 
2019 		/* Re-enable the write again for the actual write */
2020 		bnx_enable_nvram_write(sc);
2021 
2022 		/* Loop to write back the buffer data from page_start to
2023 		 * data_start */
2024 		i = 0;
2025 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2026 			for (addr = page_start; addr < data_start;
2027 				addr += 4, i += 4) {
2028 
2029 				rc = bnx_nvram_write_dword(sc, addr,
2030 				    &flash_buffer[i], cmd_flags);
2031 
2032 				if (rc != 0)
2033 					goto nvram_write_end;
2034 
2035 				cmd_flags = 0;
2036 			}
2037 		}
2038 
2039 		/* Loop to write the new data from data_start to data_end */
2040 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2041 			if ((addr == page_end - 4) ||
2042 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2043 			    && (addr == data_end - 4))) {
2044 
2045 				cmd_flags |= BNX_NVM_COMMAND_LAST;
2046 			}
2047 
2048 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2049 
2050 			if (rc != 0)
2051 				goto nvram_write_end;
2052 
2053 			cmd_flags = 0;
2054 			buf += 4;
2055 		}
2056 
2057 		/* Loop to write back the buffer data from data_end
2058 		 * to page_end */
2059 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2060 			for (addr = data_end; addr < page_end;
2061 			    addr += 4, i += 4) {
2062 
2063 				if (addr == page_end-4)
2064 					cmd_flags = BNX_NVM_COMMAND_LAST;
2065 
2066 				rc = bnx_nvram_write_dword(sc, addr,
2067 				    &flash_buffer[i], cmd_flags);
2068 
2069 				if (rc != 0)
2070 					goto nvram_write_end;
2071 
2072 				cmd_flags = 0;
2073 			}
2074 		}
2075 
2076 		/* Disable writes to flash interface (lock write-protect) */
2077 		bnx_disable_nvram_write(sc);
2078 
2079 		/* Disable access to flash interface */
2080 		bnx_disable_nvram_access(sc);
2081 		bnx_release_nvram_lock(sc);
2082 
2083 		/* Increment written */
2084 		written += data_end - data_start;
2085 	}
2086 
2087 nvram_write_end:
2088 	if (align_start || align_end)
2089 		free(buf, M_DEVBUF, len32);
2090 
2091 	return (rc);
2092 }
2093 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2094 
2095 /****************************************************************************/
2096 /* Verifies that NVRAM is accessible and contains valid data.               */
2097 /*                                                                          */
2098 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2099 /* correct.                                                                 */
2100 /*                                                                          */
2101 /* Returns:                                                                 */
2102 /*   0 on success, positive value on failure.                               */
2103 /****************************************************************************/
2104 int
2105 bnx_nvram_test(struct bnx_softc *sc)
2106 {
2107 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
2108 	u_int8_t		*data = (u_int8_t *) buf;
2109 	int			rc = 0;
2110 	u_int32_t		magic, csum;
2111 
2112 	/*
2113 	 * Check that the device NVRAM is valid by reading
2114 	 * the magic value at offset 0.
2115 	 */
2116 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2117 		goto bnx_nvram_test_done;
2118 
2119 	magic = bnx_be32toh(buf[0]);
2120 	if (magic != BNX_NVRAM_MAGIC) {
2121 		rc = ENODEV;
2122 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2123 		    "Expected: 0x%08X, Found: 0x%08X\n",
2124 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2125 		goto bnx_nvram_test_done;
2126 	}
2127 
2128 	/*
2129 	 * Verify that the device NVRAM includes valid
2130 	 * configuration data.
2131 	 */
2132 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2133 		goto bnx_nvram_test_done;
2134 
2135 	csum = ether_crc32_le(data, 0x100);
2136 	if (csum != BNX_CRC32_RESIDUAL) {
2137 		rc = ENODEV;
2138 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2139 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2140 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2141 		goto bnx_nvram_test_done;
2142 	}
2143 
2144 	csum = ether_crc32_le(data + 0x100, 0x100);
2145 	if (csum != BNX_CRC32_RESIDUAL) {
2146 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2147 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2148 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2149 		rc = ENODEV;
2150 	}
2151 
2152 bnx_nvram_test_done:
2153 	return (rc);
2154 }
2155 
2156 /****************************************************************************/
2157 /* Identifies the current media type of the controller and sets the PHY     */
2158 /* address.                                                                 */
2159 /*                                                                          */
2160 /* Returns:                                                                 */
2161 /*   Nothing.                                                               */
2162 /****************************************************************************/
2163 void
2164 bnx_get_media(struct bnx_softc *sc)
2165 {
2166 	u_int32_t val;
2167 
2168 	sc->bnx_phy_addr = 1;
2169 
2170 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2171 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2172 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2173 		u_int32_t strap;
2174 
2175 		/*
2176 		 * The BCM5709S is software configurable
2177 		 * for Copper or SerDes operation.
2178 		 */
2179 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2180 			DBPRINT(sc, BNX_INFO_LOAD,
2181 			    "5709 bonded for copper.\n");
2182 			goto bnx_get_media_exit;
2183 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2184 			DBPRINT(sc, BNX_INFO_LOAD,
2185 			    "5709 bonded for dual media.\n");
2186 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2187 			goto bnx_get_media_exit;
2188 		}
2189 
2190 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2191 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2192 		else {
2193 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2194 			    >> 8;
2195 		}
2196 
2197 		if (sc->bnx_pa.pa_function == 0) {
2198 			switch (strap) {
2199 			case 0x4:
2200 			case 0x5:
2201 			case 0x6:
2202 				DBPRINT(sc, BNX_INFO_LOAD,
2203 					"BCM5709 s/w configured for SerDes.\n");
2204 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2205 				break;
2206 			default:
2207 				DBPRINT(sc, BNX_INFO_LOAD,
2208 					"BCM5709 s/w configured for Copper.\n");
2209 			}
2210 		} else {
2211 			switch (strap) {
2212 			case 0x1:
2213 			case 0x2:
2214 			case 0x4:
2215 				DBPRINT(sc, BNX_INFO_LOAD,
2216 					"BCM5709 s/w configured for SerDes.\n");
2217 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2218 				break;
2219 			default:
2220 				DBPRINT(sc, BNX_INFO_LOAD,
2221 					"BCM5709 s/w configured for Copper.\n");
2222 			}
2223 		}
2224 
2225 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2226 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2227 
2228 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2229 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2230 
2231 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2232 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2233 
2234 		/*
2235 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2236 		 * separate PHY for SerDes.
2237 		 */
2238 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2239 			sc->bnx_phy_addr = 2;
2240 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2241 				 BNX_SHARED_HW_CFG_CONFIG);
2242 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2243 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2244 				DBPRINT(sc, BNX_INFO_LOAD,
2245 				    "Found 2.5Gb capable adapter\n");
2246 			}
2247 		}
2248 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2249 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2250 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2251 
2252 bnx_get_media_exit:
2253 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2254 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2255 }
2256 
2257 /****************************************************************************/
2258 /* Performs PHY initialization required before MII drivers access the       */
2259 /* device.                                                                  */
2260 /*                                                                          */
2261 /* Returns:                                                                 */
2262 /*   Nothing.                                                               */
2263 /****************************************************************************/
2264 void
2265 bnx_init_media(struct bnx_softc *sc)
2266 {
2267 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2268 		/*
2269 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2270 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2271 		 * the PHY to the mii(4) layer. PHY specific configuration
2272 		 * is done by the mii(4) layer.
2273 		 */
2274 
2275 		/* Select auto-negotiation MMD of the PHY. */
2276 		bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr,
2277 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2278 
2279 		bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr,
2280 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2281 
2282 		bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr,
2283 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2284 	}
2285 }
2286 
2287 /****************************************************************************/
2288 /* Free any DMA memory owned by the driver.                                 */
2289 /*                                                                          */
2290 /* Scans through each data structre that requires DMA memory and frees      */
2291 /* the memory if allocated.                                                 */
2292 /*                                                                          */
2293 /* Returns:                                                                 */
2294 /*   Nothing.                                                               */
2295 /****************************************************************************/
2296 void
2297 bnx_dma_free(struct bnx_softc *sc)
2298 {
2299 	int			i;
2300 
2301 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2302 
2303 	/* Destroy the status block. */
2304 	if (sc->status_block != NULL && sc->status_map != NULL) {
2305 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2306 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2307 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2308 		bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block,
2309 		    BNX_STATUS_BLK_SZ);
2310 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2311 		    sc->status_rseg);
2312 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2313 		sc->status_block = NULL;
2314 		sc->status_map = NULL;
2315 	}
2316 
2317 	/* Destroy the statistics block. */
2318 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2319 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2320 		bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block,
2321 		    BNX_STATS_BLK_SZ);
2322 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2323 		    sc->stats_rseg);
2324 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2325 		sc->stats_block = NULL;
2326 		sc->stats_map = NULL;
2327 	}
2328 
2329 	/* Free, unmap and destroy all context memory pages. */
2330 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2331 		for (i = 0; i < sc->ctx_pages; i++) {
2332 			if (sc->ctx_block[i] != NULL) {
2333 				bus_dmamap_unload(sc->bnx_dmatag,
2334 				    sc->ctx_map[i]);
2335 				bus_dmamem_unmap(sc->bnx_dmatag,
2336 				    (caddr_t)sc->ctx_block[i],
2337 				    BCM_PAGE_SIZE);
2338 				bus_dmamem_free(sc->bnx_dmatag,
2339 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2340 				bus_dmamap_destroy(sc->bnx_dmatag,
2341 				    sc->ctx_map[i]);
2342 				sc->ctx_block[i] = NULL;
2343 			}
2344 		}
2345 	}
2346 
2347 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2348 	for (i = 0; i < TX_PAGES; i++ ) {
2349 		if (sc->tx_bd_chain[i] != NULL &&
2350 		    sc->tx_bd_chain_map[i] != NULL) {
2351 			bus_dmamap_unload(sc->bnx_dmatag,
2352 			    sc->tx_bd_chain_map[i]);
2353 			bus_dmamem_unmap(sc->bnx_dmatag,
2354 			    (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2355 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2356 			    sc->tx_bd_chain_rseg[i]);
2357 			bus_dmamap_destroy(sc->bnx_dmatag,
2358 			    sc->tx_bd_chain_map[i]);
2359 			sc->tx_bd_chain[i] = NULL;
2360 			sc->tx_bd_chain_map[i] = NULL;
2361 		}
2362 	}
2363 
2364 	/* Unload and destroy the TX mbuf maps. */
2365 	for (i = 0; i < TOTAL_TX_BD; i++) {
2366 		bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
2367 		bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
2368 	}
2369 
2370 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2371 	for (i = 0; i < RX_PAGES; i++ ) {
2372 		if (sc->rx_bd_chain[i] != NULL &&
2373 		    sc->rx_bd_chain_map[i] != NULL) {
2374 			bus_dmamap_unload(sc->bnx_dmatag,
2375 			    sc->rx_bd_chain_map[i]);
2376 			bus_dmamem_unmap(sc->bnx_dmatag,
2377 			    (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2378 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2379 			    sc->rx_bd_chain_rseg[i]);
2380 
2381 			bus_dmamap_destroy(sc->bnx_dmatag,
2382 			    sc->rx_bd_chain_map[i]);
2383 			sc->rx_bd_chain[i] = NULL;
2384 			sc->rx_bd_chain_map[i] = NULL;
2385 		}
2386 	}
2387 
2388 	/* Unload and destroy the RX mbuf maps. */
2389 	for (i = 0; i < TOTAL_RX_BD; i++) {
2390 		if (sc->rx_mbuf_map[i] != NULL) {
2391 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2392 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2393 		}
2394 	}
2395 
2396 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2397 }
2398 
2399 /****************************************************************************/
2400 /* Allocate any DMA memory needed by the driver.                            */
2401 /*                                                                          */
2402 /* Allocates DMA memory needed for the various global structures needed by  */
2403 /* hardware.                                                                */
2404 /*                                                                          */
2405 /* Returns:                                                                 */
2406 /*   0 for success, positive value for failure.                             */
2407 /****************************************************************************/
2408 int
2409 bnx_dma_alloc(struct bnx_softc *sc)
2410 {
2411 	int			i, rc = 0;
2412 
2413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2414 
2415 	/*
2416 	 * Create DMA maps for the TX buffer mbufs.
2417 	 */
2418 	for (i = 0; i < TOTAL_TX_BD; i++) {
2419 		if (bus_dmamap_create(sc->bnx_dmatag,
2420 		    MCLBYTES * BNX_MAX_SEGMENTS, BNX_MAX_SEGMENTS,
2421 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_mbuf_map[i])) {
2422 			printf(": Could not create Tx mbuf %d DMA map!\n", 1);
2423 			rc = ENOMEM;
2424 			goto bnx_dma_alloc_exit;
2425 		}
2426 	}
2427 
2428 	/*
2429 	 * Allocate DMA memory for the status block, map the memory into DMA
2430 	 * space, and fetch the physical address of the block.
2431 	 */
2432 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2433 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2434 		printf(": Could not create status block DMA map!\n");
2435 		rc = ENOMEM;
2436 		goto bnx_dma_alloc_exit;
2437 	}
2438 
2439 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2440 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2441 	    &sc->status_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
2442 		printf(": Could not allocate status block DMA memory!\n");
2443 		rc = ENOMEM;
2444 		goto bnx_dma_alloc_exit;
2445 	}
2446 
2447 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2448 	    BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)) {
2449 		printf(": Could not map status block DMA memory!\n");
2450 		rc = ENOMEM;
2451 		goto bnx_dma_alloc_exit;
2452 	}
2453 
2454 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2455 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2456 		printf(": Could not load status block DMA memory!\n");
2457 		rc = ENOMEM;
2458 		goto bnx_dma_alloc_exit;
2459 	}
2460 
2461 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2462 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2463 
2464 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2465 
2466 	/* DRC - Fix for 64 bit addresses. */
2467 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2468 		(u_int32_t) sc->status_block_paddr);
2469 
2470 	/* BCM5709 uses host memory as cache for context memory. */
2471 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2472 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2473 		if (sc->ctx_pages == 0)
2474 			sc->ctx_pages = 1;
2475 		if (sc->ctx_pages > 4) /* XXX */
2476 			sc->ctx_pages = 4;
2477 
2478 		DBRUNIF((sc->ctx_pages > 512),
2479 			BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
2480 				__FILE__, __LINE__, sc->ctx_pages));
2481 
2482 
2483 		for (i = 0; i < sc->ctx_pages; i++) {
2484 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2485 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2486 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2487 			    &sc->ctx_map[i]) != 0) {
2488 				rc = ENOMEM;
2489 				goto bnx_dma_alloc_exit;
2490 			}
2491 
2492 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2493 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2494 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2495 				rc = ENOMEM;
2496 				goto bnx_dma_alloc_exit;
2497 			}
2498 
2499 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2500 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2501 			    (caddr_t *)&sc->ctx_block[i],
2502 			    BUS_DMA_NOWAIT) != 0) {
2503 				rc = ENOMEM;
2504 				goto bnx_dma_alloc_exit;
2505 			}
2506 
2507 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2508 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2509 			    BUS_DMA_NOWAIT) != 0) {
2510 				rc = ENOMEM;
2511 				goto bnx_dma_alloc_exit;
2512 			}
2513 
2514 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * Allocate DMA memory for the statistics block, map the memory into
2520 	 * DMA space, and fetch the physical address of the block.
2521 	 */
2522 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2523 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2524 		printf(": Could not create stats block DMA map!\n");
2525 		rc = ENOMEM;
2526 		goto bnx_dma_alloc_exit;
2527 	}
2528 
2529 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2530 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2531 	    &sc->stats_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
2532 		printf(": Could not allocate stats block DMA memory!\n");
2533 		rc = ENOMEM;
2534 		goto bnx_dma_alloc_exit;
2535 	}
2536 
2537 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2538 	    BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)) {
2539 		printf(": Could not map stats block DMA memory!\n");
2540 		rc = ENOMEM;
2541 		goto bnx_dma_alloc_exit;
2542 	}
2543 
2544 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2545 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2546 		printf(": Could not load status block DMA memory!\n");
2547 		rc = ENOMEM;
2548 		goto bnx_dma_alloc_exit;
2549 	}
2550 
2551 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2552 
2553 	/* DRC - Fix for 64 bit address. */
2554 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2555 	    (u_int32_t) sc->stats_block_paddr);
2556 
2557 	/*
2558 	 * Allocate DMA memory for the TX buffer descriptor chain,
2559 	 * and fetch the physical address of the block.
2560 	 */
2561 	for (i = 0; i < TX_PAGES; i++) {
2562 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2563 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2564 		    &sc->tx_bd_chain_map[i])) {
2565 			printf(": Could not create Tx desc %d DMA map!\n", i);
2566 			rc = ENOMEM;
2567 			goto bnx_dma_alloc_exit;
2568 		}
2569 
2570 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2571 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2572 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2573 			printf(": Could not allocate TX desc %d DMA memory!\n",
2574 			    i);
2575 			rc = ENOMEM;
2576 			goto bnx_dma_alloc_exit;
2577 		}
2578 
2579 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2580 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2581 		    (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2582 			printf(": Could not map TX desc %d DMA memory!\n", i);
2583 			rc = ENOMEM;
2584 			goto bnx_dma_alloc_exit;
2585 		}
2586 
2587 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2588 		    (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2589 		    BUS_DMA_NOWAIT)) {
2590 			printf(": Could not load TX desc %d DMA memory!\n", i);
2591 			rc = ENOMEM;
2592 			goto bnx_dma_alloc_exit;
2593 		}
2594 
2595 		sc->tx_bd_chain_paddr[i] =
2596 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2597 
2598 		/* DRC - Fix for 64 bit systems. */
2599 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2600 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2601 	}
2602 
2603 	/*
2604 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2605 	 * and fetch the physical address of the block.
2606 	 */
2607 	for (i = 0; i < RX_PAGES; i++) {
2608 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2609 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2610 		    &sc->rx_bd_chain_map[i])) {
2611 			printf(": Could not create Rx desc %d DMA map!\n", i);
2612 			rc = ENOMEM;
2613 			goto bnx_dma_alloc_exit;
2614 		}
2615 
2616 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2617 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2618 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
2619 			printf(": Could not allocate Rx desc %d DMA memory!\n",
2620 			    i);
2621 			rc = ENOMEM;
2622 			goto bnx_dma_alloc_exit;
2623 		}
2624 
2625 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2626 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2627 		    (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2628 			printf(": Could not map Rx desc %d DMA memory!\n", i);
2629 			rc = ENOMEM;
2630 			goto bnx_dma_alloc_exit;
2631 		}
2632 
2633 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2634 		    (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2635 		    BUS_DMA_NOWAIT)) {
2636 			printf(": Could not load Rx desc %d DMA memory!\n", i);
2637 			rc = ENOMEM;
2638 			goto bnx_dma_alloc_exit;
2639 		}
2640 
2641 		sc->rx_bd_chain_paddr[i] =
2642 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2643 
2644 		/* DRC - Fix for 64 bit systems. */
2645 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2646 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2647 	}
2648 
2649 	/*
2650 	 * Create DMA maps for the Rx buffer mbufs.
2651 	 */
2652 	for (i = 0; i < TOTAL_RX_BD; i++) {
2653 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2654 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2655 		    &sc->rx_mbuf_map[i])) {
2656 			printf(": Could not create Rx mbuf %d DMA map!\n", i);
2657 			rc = ENOMEM;
2658 			goto bnx_dma_alloc_exit;
2659 		}
2660 	}
2661 
2662  bnx_dma_alloc_exit:
2663 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2664 
2665 	return(rc);
2666 }
2667 
2668 /****************************************************************************/
2669 /* Release all resources used by the driver.                                */
2670 /*                                                                          */
2671 /* Releases all resources acquired by the driver including interrupts,      */
2672 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2673 /*                                                                          */
2674 /* Returns:                                                                 */
2675 /*   Nothing.                                                               */
2676 /****************************************************************************/
2677 void
2678 bnx_release_resources(struct bnx_softc *sc)
2679 {
2680 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2681 
2682 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2683 
2684 	bnx_dma_free(sc);
2685 
2686 	if (sc->bnx_intrhand != NULL)
2687 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2688 
2689 	if (sc->bnx_size)
2690 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2691 
2692 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2693 }
2694 
2695 /****************************************************************************/
2696 /* Firmware synchronization.                                                */
2697 /*                                                                          */
2698 /* Before performing certain events such as a chip reset, synchronize with  */
2699 /* the firmware first.                                                      */
2700 /*                                                                          */
2701 /* Returns:                                                                 */
2702 /*   0 for success, positive value for failure.                             */
2703 /****************************************************************************/
2704 int
2705 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2706 {
2707 	int			i, rc = 0;
2708 	u_int32_t		val;
2709 
2710 	/* Don't waste any time if we've timed out before. */
2711 	if (sc->bnx_fw_timed_out) {
2712 		rc = EBUSY;
2713 		goto bnx_fw_sync_exit;
2714 	}
2715 
2716 	/* Increment the message sequence number. */
2717 	sc->bnx_fw_wr_seq++;
2718 	msg_data |= sc->bnx_fw_wr_seq;
2719 
2720  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2721 	    msg_data);
2722 
2723 	/* Send the message to the bootcode driver mailbox. */
2724 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2725 
2726 	/* Wait for the bootcode to acknowledge the message. */
2727 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2728 		/* Check for a response in the bootcode firmware mailbox. */
2729 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2730 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2731 			break;
2732 		DELAY(1000);
2733 	}
2734 
2735 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2736 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2737 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2738 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2739 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2740 
2741 		msg_data &= ~BNX_DRV_MSG_CODE;
2742 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2743 
2744 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2745 
2746 		sc->bnx_fw_timed_out = 1;
2747 		rc = EBUSY;
2748 	}
2749 
2750 bnx_fw_sync_exit:
2751 	return (rc);
2752 }
2753 
2754 /****************************************************************************/
2755 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2756 /*                                                                          */
2757 /* Returns:                                                                 */
2758 /*   Nothing.                                                               */
2759 /****************************************************************************/
2760 void
2761 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2762     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2763 {
2764 	int			i;
2765 	u_int32_t		val;
2766 
2767 	/* Set the page size used by RV2P. */
2768 	if (rv2p_proc == RV2P_PROC2) {
2769 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2770 		    USABLE_RX_BD_PER_PAGE);
2771 	}
2772 
2773 	for (i = 0; i < rv2p_code_len; i += 8) {
2774 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2775 		rv2p_code++;
2776 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2777 		rv2p_code++;
2778 
2779 		if (rv2p_proc == RV2P_PROC1) {
2780 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2781 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2782 		} else {
2783 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2784 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2785 		}
2786 	}
2787 
2788 	/* Reset the processor, un-stall is done later. */
2789 	if (rv2p_proc == RV2P_PROC1)
2790 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2791 	else
2792 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2793 }
2794 
2795 /****************************************************************************/
2796 /* Load RISC processor firmware.                                            */
2797 /*                                                                          */
2798 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2799 /* associated with a particular processor.                                  */
2800 /*                                                                          */
2801 /* Returns:                                                                 */
2802 /*   Nothing.                                                               */
2803 /****************************************************************************/
2804 void
2805 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2806     struct fw_info *fw)
2807 {
2808 	u_int32_t		offset;
2809 	u_int32_t		val;
2810 
2811 	/* Halt the CPU. */
2812 	val = REG_RD_IND(sc, cpu_reg->mode);
2813 	val |= cpu_reg->mode_value_halt;
2814 	REG_WR_IND(sc, cpu_reg->mode, val);
2815 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2816 
2817 	/* Load the Text area. */
2818 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2819 	if (fw->text) {
2820 		int j;
2821 
2822 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2823 			REG_WR_IND(sc, offset, fw->text[j]);
2824 	}
2825 
2826 	/* Load the Data area. */
2827 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2828 	if (fw->data) {
2829 		int j;
2830 
2831 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2832 			REG_WR_IND(sc, offset, fw->data[j]);
2833 	}
2834 
2835 	/* Load the SBSS area. */
2836 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2837 	if (fw->sbss) {
2838 		int j;
2839 
2840 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2841 			REG_WR_IND(sc, offset, fw->sbss[j]);
2842 	}
2843 
2844 	/* Load the BSS area. */
2845 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2846 	if (fw->bss) {
2847 		int j;
2848 
2849 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2850 			REG_WR_IND(sc, offset, fw->bss[j]);
2851 	}
2852 
2853 	/* Load the Read-Only area. */
2854 	offset = cpu_reg->spad_base +
2855 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2856 	if (fw->rodata) {
2857 		int j;
2858 
2859 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2860 			REG_WR_IND(sc, offset, fw->rodata[j]);
2861 	}
2862 
2863 	/* Clear the pre-fetch instruction. */
2864 	REG_WR_IND(sc, cpu_reg->inst, 0);
2865 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2866 
2867 	/* Start the CPU. */
2868 	val = REG_RD_IND(sc, cpu_reg->mode);
2869 	val &= ~cpu_reg->mode_value_halt;
2870 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2871 	REG_WR_IND(sc, cpu_reg->mode, val);
2872 }
2873 
2874 /****************************************************************************/
2875 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2876 /*                                                                          */
2877 /* Loads the firmware for each CPU and starts the CPU.                      */
2878 /*                                                                          */
2879 /* Returns:                                                                 */
2880 /*   Nothing.                                                               */
2881 /****************************************************************************/
2882 void
2883 bnx_init_cpus(struct bnx_softc *sc)
2884 {
2885 	struct bnx_firmware *bfw = &bnx_firmwares[BNX_FW_B06];
2886 	struct bnx_rv2p *rv2p = &bnx_rv2ps[BNX_RV2P];
2887 	struct cpu_reg cpu_reg;
2888 	struct fw_info fw;
2889 
2890 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2891 		bfw = &bnx_firmwares[BNX_FW_B09];
2892 		if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax))
2893 			rv2p = &bnx_rv2ps[BNX_XI90_RV2P];
2894 		else
2895 			rv2p = &bnx_rv2ps[BNX_XI_RV2P];
2896 	}
2897 
2898 	/* Initialize the RV2P processor. */
2899 	bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc1,
2900 	    rv2p->fw->bnx_rv2p_proc1len, RV2P_PROC1);
2901 	bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc2,
2902 	    rv2p->fw->bnx_rv2p_proc2len, RV2P_PROC2);
2903 
2904 	/* Initialize the RX Processor. */
2905 	cpu_reg.mode = BNX_RXP_CPU_MODE;
2906 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2907 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2908 	cpu_reg.state = BNX_RXP_CPU_STATE;
2909 	cpu_reg.state_value_clear = 0xffffff;
2910 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2911 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2912 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2913 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2914 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2915 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
2916 	cpu_reg.mips_view_base = 0x8000000;
2917 
2918 	fw.ver_major = bfw->fw->bnx_RXP_FwReleaseMajor;
2919 	fw.ver_minor = bfw->fw->bnx_RXP_FwReleaseMinor;
2920 	fw.ver_fix = bfw->fw->bnx_RXP_FwReleaseFix;
2921 	fw.start_addr = bfw->fw->bnx_RXP_FwStartAddr;
2922 
2923 	fw.text_addr = bfw->fw->bnx_RXP_FwTextAddr;
2924 	fw.text_len = bfw->fw->bnx_RXP_FwTextLen;
2925 	fw.text_index = 0;
2926 	fw.text = bfw->bnx_RXP_FwText;
2927 
2928 	fw.data_addr = bfw->fw->bnx_RXP_FwDataAddr;
2929 	fw.data_len = bfw->fw->bnx_RXP_FwDataLen;
2930 	fw.data_index = 0;
2931 	fw.data = bfw->bnx_RXP_FwData;
2932 
2933 	fw.sbss_addr = bfw->fw->bnx_RXP_FwSbssAddr;
2934 	fw.sbss_len = bfw->fw->bnx_RXP_FwSbssLen;
2935 	fw.sbss_index = 0;
2936 	fw.sbss = bfw->bnx_RXP_FwSbss;
2937 
2938 	fw.bss_addr = bfw->fw->bnx_RXP_FwBssAddr;
2939 	fw.bss_len = bfw->fw->bnx_RXP_FwBssLen;
2940 	fw.bss_index = 0;
2941 	fw.bss = bfw->bnx_RXP_FwBss;
2942 
2943 	fw.rodata_addr = bfw->fw->bnx_RXP_FwRodataAddr;
2944 	fw.rodata_len = bfw->fw->bnx_RXP_FwRodataLen;
2945 	fw.rodata_index = 0;
2946 	fw.rodata = bfw->bnx_RXP_FwRodata;
2947 
2948 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2949 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2950 
2951 	/* Initialize the TX Processor. */
2952 	cpu_reg.mode = BNX_TXP_CPU_MODE;
2953 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2954 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2955 	cpu_reg.state = BNX_TXP_CPU_STATE;
2956 	cpu_reg.state_value_clear = 0xffffff;
2957 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2958 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2959 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2960 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2961 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2962 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
2963 	cpu_reg.mips_view_base = 0x8000000;
2964 
2965 	fw.ver_major = bfw->fw->bnx_TXP_FwReleaseMajor;
2966 	fw.ver_minor = bfw->fw->bnx_TXP_FwReleaseMinor;
2967 	fw.ver_fix = bfw->fw->bnx_TXP_FwReleaseFix;
2968 	fw.start_addr = bfw->fw->bnx_TXP_FwStartAddr;
2969 
2970 	fw.text_addr = bfw->fw->bnx_TXP_FwTextAddr;
2971 	fw.text_len = bfw->fw->bnx_TXP_FwTextLen;
2972 	fw.text_index = 0;
2973 	fw.text = bfw->bnx_TXP_FwText;
2974 
2975 	fw.data_addr = bfw->fw->bnx_TXP_FwDataAddr;
2976 	fw.data_len = bfw->fw->bnx_TXP_FwDataLen;
2977 	fw.data_index = 0;
2978 	fw.data = bfw->bnx_TXP_FwData;
2979 
2980 	fw.sbss_addr = bfw->fw->bnx_TXP_FwSbssAddr;
2981 	fw.sbss_len = bfw->fw->bnx_TXP_FwSbssLen;
2982 	fw.sbss_index = 0;
2983 	fw.sbss = bfw->bnx_TXP_FwSbss;
2984 
2985 	fw.bss_addr = bfw->fw->bnx_TXP_FwBssAddr;
2986 	fw.bss_len = bfw->fw->bnx_TXP_FwBssLen;
2987 	fw.bss_index = 0;
2988 	fw.bss = bfw->bnx_TXP_FwBss;
2989 
2990 	fw.rodata_addr = bfw->fw->bnx_TXP_FwRodataAddr;
2991 	fw.rodata_len = bfw->fw->bnx_TXP_FwRodataLen;
2992 	fw.rodata_index = 0;
2993 	fw.rodata = bfw->bnx_TXP_FwRodata;
2994 
2995 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2996 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2997 
2998 	/* Initialize the TX Patch-up Processor. */
2999 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
3000 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3001 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3002 	cpu_reg.state = BNX_TPAT_CPU_STATE;
3003 	cpu_reg.state_value_clear = 0xffffff;
3004 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3005 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3006 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3007 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3008 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3009 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3010 	cpu_reg.mips_view_base = 0x8000000;
3011 
3012 	fw.ver_major = bfw->fw->bnx_TPAT_FwReleaseMajor;
3013 	fw.ver_minor = bfw->fw->bnx_TPAT_FwReleaseMinor;
3014 	fw.ver_fix = bfw->fw->bnx_TPAT_FwReleaseFix;
3015 	fw.start_addr = bfw->fw->bnx_TPAT_FwStartAddr;
3016 
3017 	fw.text_addr = bfw->fw->bnx_TPAT_FwTextAddr;
3018 	fw.text_len = bfw->fw->bnx_TPAT_FwTextLen;
3019 	fw.text_index = 0;
3020 	fw.text = bfw->bnx_TPAT_FwText;
3021 
3022 	fw.data_addr = bfw->fw->bnx_TPAT_FwDataAddr;
3023 	fw.data_len = bfw->fw->bnx_TPAT_FwDataLen;
3024 	fw.data_index = 0;
3025 	fw.data = bfw->bnx_TPAT_FwData;
3026 
3027 	fw.sbss_addr = bfw->fw->bnx_TPAT_FwSbssAddr;
3028 	fw.sbss_len = bfw->fw->bnx_TPAT_FwSbssLen;
3029 	fw.sbss_index = 0;
3030 	fw.sbss = bfw->bnx_TPAT_FwSbss;
3031 
3032 	fw.bss_addr = bfw->fw->bnx_TPAT_FwBssAddr;
3033 	fw.bss_len = bfw->fw->bnx_TPAT_FwBssLen;
3034 	fw.bss_index = 0;
3035 	fw.bss = bfw->bnx_TPAT_FwBss;
3036 
3037 	fw.rodata_addr = bfw->fw->bnx_TPAT_FwRodataAddr;
3038 	fw.rodata_len = bfw->fw->bnx_TPAT_FwRodataLen;
3039 	fw.rodata_index = 0;
3040 	fw.rodata = bfw->bnx_TPAT_FwRodata;
3041 
3042 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3043 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3044 
3045 	/* Initialize the Completion Processor. */
3046 	cpu_reg.mode = BNX_COM_CPU_MODE;
3047 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3048 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3049 	cpu_reg.state = BNX_COM_CPU_STATE;
3050 	cpu_reg.state_value_clear = 0xffffff;
3051 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3052 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3053 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3054 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3055 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3056 	cpu_reg.spad_base = BNX_COM_SCRATCH;
3057 	cpu_reg.mips_view_base = 0x8000000;
3058 
3059 	fw.ver_major = bfw->fw->bnx_COM_FwReleaseMajor;
3060 	fw.ver_minor = bfw->fw->bnx_COM_FwReleaseMinor;
3061 	fw.ver_fix = bfw->fw->bnx_COM_FwReleaseFix;
3062 	fw.start_addr = bfw->fw->bnx_COM_FwStartAddr;
3063 
3064 	fw.text_addr = bfw->fw->bnx_COM_FwTextAddr;
3065 	fw.text_len = bfw->fw->bnx_COM_FwTextLen;
3066 	fw.text_index = 0;
3067 	fw.text = bfw->bnx_COM_FwText;
3068 
3069 	fw.data_addr = bfw->fw->bnx_COM_FwDataAddr;
3070 	fw.data_len = bfw->fw->bnx_COM_FwDataLen;
3071 	fw.data_index = 0;
3072 	fw.data = bfw->bnx_COM_FwData;
3073 
3074 	fw.sbss_addr = bfw->fw->bnx_COM_FwSbssAddr;
3075 	fw.sbss_len = bfw->fw->bnx_COM_FwSbssLen;
3076 	fw.sbss_index = 0;
3077 	fw.sbss = bfw->bnx_COM_FwSbss;
3078 
3079 	fw.bss_addr = bfw->fw->bnx_COM_FwBssAddr;
3080 	fw.bss_len = bfw->fw->bnx_COM_FwBssLen;
3081 	fw.bss_index = 0;
3082 	fw.bss = bfw->bnx_COM_FwBss;
3083 
3084 	fw.rodata_addr = bfw->fw->bnx_COM_FwRodataAddr;
3085 	fw.rodata_len = bfw->fw->bnx_COM_FwRodataLen;
3086 	fw.rodata_index = 0;
3087 	fw.rodata = bfw->bnx_COM_FwRodata;
3088 
3089 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3090 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3091 }
3092 
3093 /****************************************************************************/
3094 /* Initialize context memory.                                               */
3095 /*                                                                          */
3096 /* Clears the memory associated with each Context ID (CID).                 */
3097 /*                                                                          */
3098 /* Returns:                                                                 */
3099 /*   Nothing.                                                               */
3100 /****************************************************************************/
3101 void
3102 bnx_init_context(struct bnx_softc *sc)
3103 {
3104 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3105 		/* DRC: Replace this constant value with a #define. */
3106 		int i, retry_cnt = 10;
3107 		u_int32_t val;
3108 
3109 		/*
3110 		 * BCM5709 context memory may be cached
3111 		 * in host memory so prepare the host memory
3112 		 * for access.
3113 		 */
3114 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3115 		    | (1 << 12);
3116 		val |= (BCM_PAGE_BITS - 8) << 16;
3117 		REG_WR(sc, BNX_CTX_COMMAND, val);
3118 
3119 		/* Wait for mem init command to complete. */
3120 		for (i = 0; i < retry_cnt; i++) {
3121 			val = REG_RD(sc, BNX_CTX_COMMAND);
3122 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3123 				break;
3124 			DELAY(2);
3125 		}
3126 
3127 		/* ToDo: Consider returning an error here. */
3128 
3129 		for (i = 0; i < sc->ctx_pages; i++) {
3130 			int j;
3131 
3132 			/* Set the physaddr of the context memory cache. */
3133 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3134 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3135 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3136 			val = (u_int32_t)
3137 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3138 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3139 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3140 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3141 
3142 			/* Verify that the context memory write was successful. */
3143 			for (j = 0; j < retry_cnt; j++) {
3144 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3145 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3146 					break;
3147 				DELAY(5);
3148 			}
3149 
3150 			/* ToDo: Consider returning an error here. */
3151 		}
3152 	} else {
3153 		u_int32_t vcid_addr, offset;
3154 
3155 		/*
3156 		 * For the 5706/5708, context memory is local to
3157 		 * the controller, so initialize the controller
3158 		 * context memory.
3159 		 */
3160 
3161 		vcid_addr = GET_CID_ADDR(96);
3162 		while (vcid_addr) {
3163 
3164 			vcid_addr -= PHY_CTX_SIZE;
3165 
3166 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3167 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3168 
3169 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
3170 				CTX_WR(sc, 0x00, offset, 0);
3171 			}
3172 
3173 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3174 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3175 		}
3176  	}
3177 }
3178 
3179 /****************************************************************************/
3180 /* Fetch the permanent MAC address of the controller.                       */
3181 /*                                                                          */
3182 /* Returns:                                                                 */
3183 /*   Nothing.                                                               */
3184 /****************************************************************************/
3185 void
3186 bnx_get_mac_addr(struct bnx_softc *sc)
3187 {
3188 	u_int32_t		mac_lo = 0, mac_hi = 0;
3189 
3190 	/*
3191 	 * The NetXtreme II bootcode populates various NIC
3192 	 * power-on and runtime configuration items in a
3193 	 * shared memory area.  The factory configured MAC
3194 	 * address is available from both NVRAM and the
3195 	 * shared memory area so we'll read the value from
3196 	 * shared memory for speed.
3197 	 */
3198 
3199 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3200 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3201 
3202 	if ((mac_lo == 0) && (mac_hi == 0)) {
3203 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3204 		    __FILE__, __LINE__);
3205 	} else {
3206 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3207 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3208 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3209 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3210 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3211 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3212 	}
3213 
3214 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3215 	    "%6D\n", sc->eaddr, ":");
3216 }
3217 
3218 /****************************************************************************/
3219 /* Program the MAC address.                                                 */
3220 /*                                                                          */
3221 /* Returns:                                                                 */
3222 /*   Nothing.                                                               */
3223 /****************************************************************************/
3224 void
3225 bnx_set_mac_addr(struct bnx_softc *sc)
3226 {
3227 	u_int32_t		val;
3228 	u_int8_t		*mac_addr = sc->eaddr;
3229 
3230 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3231 	    "%6D\n", sc->eaddr, ":");
3232 
3233 	val = (mac_addr[0] << 8) | mac_addr[1];
3234 
3235 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3236 
3237 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3238 		(mac_addr[4] << 8) | mac_addr[5];
3239 
3240 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3241 }
3242 
3243 /****************************************************************************/
3244 /* Stop the controller.                                                     */
3245 /*                                                                          */
3246 /* Returns:                                                                 */
3247 /*   Nothing.                                                               */
3248 /****************************************************************************/
3249 void
3250 bnx_stop(struct bnx_softc *sc)
3251 {
3252 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3253 	struct ifmedia_entry	*ifm;
3254 	struct mii_data		*mii;
3255 	int			mtmp, itmp;
3256 
3257 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3258 
3259 	timeout_del(&sc->bnx_timeout);
3260 	timeout_del(&sc->bnx_rxrefill);
3261 
3262 	ifp->if_flags &= ~IFF_RUNNING;
3263 	ifq_clr_oactive(&ifp->if_snd);
3264 
3265 	/* Disable the transmit/receive blocks. */
3266 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3267 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3268 	DELAY(20);
3269 
3270 	bnx_disable_intr(sc);
3271 
3272 	intr_barrier(sc->bnx_intrhand);
3273 	KASSERT((ifp->if_flags & IFF_RUNNING) == 0);
3274 
3275 	/* Tell firmware that the driver is going away. */
3276 	bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3277 
3278 	/* Free RX buffers. */
3279 	bnx_free_rx_chain(sc);
3280 
3281 	/* Free TX buffers. */
3282 	bnx_free_tx_chain(sc);
3283 
3284 	/*
3285 	 * Isolate/power down the PHY, but leave the media selection
3286 	 * unchanged so that things will be put back to normal when
3287 	 * we bring the interface back up.
3288 	 */
3289 	mii = &sc->bnx_mii;
3290 	itmp = ifp->if_flags;
3291 	ifp->if_flags |= IFF_UP;
3292 	ifm = mii->mii_media.ifm_cur;
3293 	mtmp = ifm->ifm_media;
3294 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
3295 	mii_mediachg(mii);
3296 	ifm->ifm_media = mtmp;
3297 	ifp->if_flags = itmp;
3298 
3299 	ifp->if_timer = 0;
3300 
3301 	sc->bnx_link = 0;
3302 
3303 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3304 
3305 	bnx_mgmt_init(sc);
3306 }
3307 
3308 int
3309 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3310 {
3311 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3312 	u_int32_t		val;
3313 	int			i, rc = 0;
3314 
3315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3316 
3317 	/* Wait for pending PCI transactions to complete. */
3318 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3319 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3320 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3321 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3322 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3323 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3324 	DELAY(5);
3325 
3326 	/* Disable DMA */
3327 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3328 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3329 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3330 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3331 	}
3332 
3333 	/* Assume bootcode is running. */
3334 	sc->bnx_fw_timed_out = 0;
3335 
3336 	/* Give the firmware a chance to prepare for the reset. */
3337 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3338 	if (rc)
3339 		goto bnx_reset_exit;
3340 
3341 	/* Set a firmware reminder that this is a soft reset. */
3342 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3343 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3344 
3345 	/* Dummy read to force the chip to complete all current transactions. */
3346 	val = REG_RD(sc, BNX_MISC_ID);
3347 
3348 	/* Chip reset. */
3349 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3350 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3351 		REG_RD(sc, BNX_MISC_COMMAND);
3352 		DELAY(5);
3353 
3354 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3355 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3356 
3357 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3358 		    val);
3359 	} else {
3360 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3361 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3362 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3363 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3364 
3365 		/* Allow up to 30us for reset to complete. */
3366 		for (i = 0; i < 10; i++) {
3367 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3368 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3369 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3370 				break;
3371 			}
3372 			DELAY(10);
3373 		}
3374 
3375 		/* Check that reset completed successfully. */
3376 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3377 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3378 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3379 			    __FILE__, __LINE__);
3380 			rc = EBUSY;
3381 			goto bnx_reset_exit;
3382 		}
3383 	}
3384 
3385 	/* Make sure byte swapping is properly configured. */
3386 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3387 	if (val != 0x01020304) {
3388 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3389 		    __FILE__, __LINE__);
3390 		rc = ENODEV;
3391 		goto bnx_reset_exit;
3392 	}
3393 
3394 	/* Just completed a reset, assume that firmware is running again. */
3395 	sc->bnx_fw_timed_out = 0;
3396 
3397 	/* Wait for the firmware to finish its initialization. */
3398 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3399 	if (rc)
3400 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3401 		    "initialization!\n", __FILE__, __LINE__);
3402 
3403 bnx_reset_exit:
3404 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3405 
3406 	return (rc);
3407 }
3408 
3409 int
3410 bnx_chipinit(struct bnx_softc *sc)
3411 {
3412 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3413 	u_int32_t		val;
3414 	int			rc = 0;
3415 
3416 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3417 
3418 	/* Make sure the interrupt is not active. */
3419 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3420 
3421 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3422 	/* channels and PCI clock compensation delay.                      */
3423 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3424 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3425 #if BYTE_ORDER == BIG_ENDIAN
3426 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3427 #endif
3428 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3429 	    DMA_READ_CHANS << 12 |
3430 	    DMA_WRITE_CHANS << 16;
3431 
3432 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3433 
3434 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3435 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3436 
3437 	/*
3438 	 * This setting resolves a problem observed on certain Intel PCI
3439 	 * chipsets that cannot handle multiple outstanding DMA operations.
3440 	 * See errata E9_5706A1_65.
3441 	 */
3442 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3443 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3444 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3445 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3446 
3447 	REG_WR(sc, BNX_DMA_CONFIG, val);
3448 
3449 #if 1
3450 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3451 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3452 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3453 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3454 		    val & ~0x20000);
3455 	}
3456 #endif
3457 
3458 	/* Enable the RX_V2P and Context state machines before access. */
3459 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3460 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3461 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3462 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3463 
3464 	/* Initialize context mapping and zero out the quick contexts. */
3465 	bnx_init_context(sc);
3466 
3467 	/* Initialize the on-boards CPUs */
3468 	bnx_init_cpus(sc);
3469 
3470 	/* Prepare NVRAM for access. */
3471 	if (bnx_init_nvram(sc)) {
3472 		rc = ENODEV;
3473 		goto bnx_chipinit_exit;
3474 	}
3475 
3476 	/* Set the kernel bypass block size */
3477 	val = REG_RD(sc, BNX_MQ_CONFIG);
3478 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3479 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3480 
3481 	/* Enable bins used on the 5709. */
3482 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3483 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3484 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3485 			val |= BNX_MQ_CONFIG_HALT_DIS;
3486 	}
3487 
3488 	REG_WR(sc, BNX_MQ_CONFIG, val);
3489 
3490 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3491 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3492 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3493 
3494 	val = (BCM_PAGE_BITS - 8) << 24;
3495 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3496 
3497 	/* Configure page size. */
3498 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3499 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3500 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3501 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3502 
3503 #if 0
3504 	/* Set the perfect match control register to default. */
3505 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3506 #endif
3507 
3508 bnx_chipinit_exit:
3509 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3510 
3511 	return(rc);
3512 }
3513 
3514 /****************************************************************************/
3515 /* Initialize the controller in preparation to send/receive traffic.        */
3516 /*                                                                          */
3517 /* Returns:                                                                 */
3518 /*   0 for success, positive value for failure.                             */
3519 /****************************************************************************/
3520 int
3521 bnx_blockinit(struct bnx_softc *sc)
3522 {
3523 	u_int32_t		reg, val;
3524 	int 			rc = 0;
3525 
3526 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3527 
3528 	/* Load the hardware default MAC address. */
3529 	bnx_set_mac_addr(sc);
3530 
3531 	/* Set the Ethernet backoff seed value */
3532 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3533 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3534 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3535 
3536 	sc->last_status_idx = 0;
3537 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3538 
3539 	/* Set up link change interrupt generation. */
3540 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3541 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3542 
3543 	/* Program the physical address of the status block. */
3544 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3545 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3546 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3547 
3548 	/* Program the physical address of the statistics block. */
3549 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3550 	    (u_int32_t)(sc->stats_block_paddr));
3551 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3552 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3553 
3554 	/* Program various host coalescing parameters. */
3555 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3556 	    << 16) | sc->bnx_tx_quick_cons_trip);
3557 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3558 	    << 16) | sc->bnx_rx_quick_cons_trip);
3559 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3560 	    sc->bnx_comp_prod_trip);
3561 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3562 	    sc->bnx_tx_ticks);
3563 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3564 	    sc->bnx_rx_ticks);
3565 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3566 	    sc->bnx_com_ticks);
3567 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3568 	    sc->bnx_cmd_ticks);
3569 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3570 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3571 	REG_WR(sc, BNX_HC_CONFIG,
3572 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3573 	    BNX_HC_CONFIG_COLLECT_STATS));
3574 
3575 	/* Clear the internal statistics counters. */
3576 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3577 
3578 	/* Verify that bootcode is running. */
3579 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3580 
3581 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3582 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3583 	    __FILE__, __LINE__); reg = 0);
3584 
3585 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3586 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3587 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3588 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3589 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3590 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3591 		rc = ENODEV;
3592 		goto bnx_blockinit_exit;
3593 	}
3594 
3595 	/* Check if any management firmware is running. */
3596 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3597 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3598 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3599 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3600 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3601 	}
3602 
3603 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3604 	    BNX_DEV_INFO_BC_REV);
3605 
3606 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3607 
3608 	/* Enable DMA */
3609 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3610 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3611 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3612 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3613 	}
3614 
3615 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3616 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3617 
3618 	/* Enable link state change interrupt generation. */
3619 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3620 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3621 		    BNX_MISC_ENABLE_DEFAULT_XI);
3622 	} else
3623 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3624 
3625 	/* Enable all remaining blocks in the MAC. */
3626 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3627 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3628 	DELAY(20);
3629 
3630 bnx_blockinit_exit:
3631 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3632 
3633 	return (rc);
3634 }
3635 
3636 /****************************************************************************/
3637 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3638 /*                                                                          */
3639 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3640 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3641 /* necessary.                                                               */
3642 /*                                                                          */
3643 /* Returns:                                                                 */
3644 /*   0 for success, positive value for failure.                             */
3645 /****************************************************************************/
3646 int
3647 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3648     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3649 {
3650 	bus_dmamap_t		map;
3651 	struct mbuf 		*m;
3652 	struct rx_bd		*rxbd;
3653 	int			i;
3654 	u_int32_t		addr;
3655 #ifdef BNX_DEBUG
3656 	u_int16_t		debug_chain_prod = *chain_prod;
3657 #endif
3658 	u_int16_t		first_chain_prod;
3659 
3660 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3661 	    __FUNCTION__);
3662 
3663 	/* Make sure the inputs are valid. */
3664 	DBRUNIF((*chain_prod > MAX_RX_BD),
3665 	    printf("%s: RX producer out of range: 0x%04X > 0x%04X\n",
3666 	    *chain_prod, (u_int16_t) MAX_RX_BD));
3667 
3668 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3669 	    "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
3670 	    *prod_bseq);
3671 
3672 	/* This is a new mbuf allocation. */
3673 	m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
3674 	if (!m)
3675 		return (0);
3676 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3677 	/* the chip aligns the ip header for us, no need to m_adj */
3678 
3679 	/* Map the mbuf cluster into device memory. */
3680 	map = sc->rx_mbuf_map[*chain_prod];
3681 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT)) {
3682 		m_freem(m);
3683 		return (0);
3684 	}
3685 	first_chain_prod = *chain_prod;
3686 
3687 #ifdef BNX_DEBUG
3688 	/* Track the distribution of buffer segments. */
3689 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3690 #endif
3691 
3692 	/* Setup the rx_bd for the first segment. */
3693 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3694 
3695 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3696 	rxbd->rx_bd_haddr_lo = addr;
3697 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3698 	rxbd->rx_bd_haddr_hi = addr;
3699 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3700 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3701 	*prod_bseq += map->dm_segs[0].ds_len;
3702 
3703 	for (i = 1; i < map->dm_nsegs; i++) {
3704 		*prod = NEXT_RX_BD(*prod);
3705 		*chain_prod = RX_CHAIN_IDX(*prod);
3706 
3707 		rxbd =
3708 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3709 
3710 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3711 		rxbd->rx_bd_haddr_lo = addr;
3712 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3713 		rxbd->rx_bd_haddr_hi = addr;
3714 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3715 		rxbd->rx_bd_flags = 0;
3716 		*prod_bseq += map->dm_segs[i].ds_len;
3717 	}
3718 
3719 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3720 
3721 	/*
3722 	 * Save the mbuf, adjust the map pointer (swap map for first and
3723 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3724 	 * and update our counter.
3725 	 */
3726 	sc->rx_mbuf_ptr[*chain_prod] = m;
3727 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3728 	sc->rx_mbuf_map[*chain_prod] = map;
3729 
3730 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3731 	    map->dm_nsegs));
3732 
3733 	return (map->dm_nsegs);
3734 }
3735 
3736 
3737 /****************************************************************************/
3738 /* Initialize the TX context memory.                                        */
3739 /*                                                                          */
3740 /* Returns:                                                                 */
3741 /*   Nothing                                                                */
3742 /****************************************************************************/
3743 void
3744 bnx_init_tx_context(struct bnx_softc *sc)
3745 {
3746 	u_int32_t val;
3747 
3748 	/* Initialize the context ID for an L2 TX chain. */
3749 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3750 		/* Set the CID type to support an L2 connection. */
3751 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3752 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3753 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3754 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3755 
3756 		/* Point the hardware to the first page in the chain. */
3757 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3758 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3759 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3760 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3761 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3762 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3763 	} else {
3764 		/* Set the CID type to support an L2 connection. */
3765 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3766 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3767 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3768 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3769 
3770 		/* Point the hardware to the first page in the chain. */
3771 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3772 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3773 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3774 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3775 	}
3776 }
3777 
3778 /****************************************************************************/
3779 /* Allocate memory and initialize the TX data structures.                   */
3780 /*                                                                          */
3781 /* Returns:                                                                 */
3782 /*   0 for success, positive value for failure.                             */
3783 /****************************************************************************/
3784 int
3785 bnx_init_tx_chain(struct bnx_softc *sc)
3786 {
3787 	struct tx_bd		*txbd;
3788 	u_int32_t		addr;
3789 	int			i, rc = 0;
3790 
3791 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3792 
3793 	/* Set the initial TX producer/consumer indices. */
3794 	sc->tx_prod = 0;
3795 	sc->tx_cons = 0;
3796 	sc->tx_prod_bseq = 0;
3797 	sc->used_tx_bd = 0;
3798 	sc->max_tx_bd =	USABLE_TX_BD;
3799 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3800 	DBRUNIF(1, sc->tx_full_count = 0);
3801 
3802 	/*
3803 	 * The NetXtreme II supports a linked-list structure called
3804 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3805 	 * consists of a series of 1 or more chain pages, each of which
3806 	 * consists of a fixed number of BD entries.
3807 	 * The last BD entry on each page is a pointer to the next page
3808 	 * in the chain, and the last pointer in the BD chain
3809 	 * points back to the beginning of the chain.
3810 	 */
3811 
3812 	/* Set the TX next pointer chain entries. */
3813 	for (i = 0; i < TX_PAGES; i++) {
3814 		int j;
3815 
3816 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3817 
3818 		/* Check if we've reached the last page. */
3819 		if (i == (TX_PAGES - 1))
3820 			j = 0;
3821 		else
3822 			j = i + 1;
3823 
3824 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3825 		txbd->tx_bd_haddr_lo = addr;
3826 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3827 		txbd->tx_bd_haddr_hi = addr;
3828 	}
3829 
3830 	/*
3831 	 * Initialize the context ID for an L2 TX chain.
3832 	 */
3833 	bnx_init_tx_context(sc);
3834 
3835 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3836 
3837 	return(rc);
3838 }
3839 
3840 /****************************************************************************/
3841 /* Free memory and clear the TX data structures.                            */
3842 /*                                                                          */
3843 /* Returns:                                                                 */
3844 /*   Nothing.                                                               */
3845 /****************************************************************************/
3846 void
3847 bnx_free_tx_chain(struct bnx_softc *sc)
3848 {
3849 	int			i;
3850 
3851 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3852 
3853 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3854 	for (i = 0; i < TOTAL_TX_BD; i++) {
3855 		if (sc->tx_mbuf_ptr[i] != NULL) {
3856 			if (sc->tx_mbuf_map[i] != NULL) {
3857 				bus_dmamap_sync(sc->bnx_dmatag,
3858 				    sc->tx_mbuf_map[i],	0,
3859 				    sc->tx_mbuf_map[i]->dm_mapsize,
3860 				    BUS_DMASYNC_POSTWRITE);
3861 				bus_dmamap_unload(sc->bnx_dmatag,
3862 				    sc->tx_mbuf_map[i]);
3863 			}
3864 			m_freem(sc->tx_mbuf_ptr[i]);
3865 			sc->tx_mbuf_ptr[i] = NULL;
3866 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3867 		}
3868 	}
3869 
3870 	/* Clear each TX chain page. */
3871 	for (i = 0; i < TX_PAGES; i++)
3872 		bzero(sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3873 
3874 	sc->used_tx_bd = 0;
3875 
3876 	/* Check if we lost any mbufs in the process. */
3877 	DBRUNIF((sc->tx_mbuf_alloc),
3878 	    printf("%s: Memory leak! Lost %d mbufs from tx chain!\n",
3879 	    sc->tx_mbuf_alloc));
3880 
3881 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3882 }
3883 
3884 /****************************************************************************/
3885 /* Initialize the RX context memory.                                        */
3886 /*                                                                          */
3887 /* Returns:                                                                 */
3888 /*   Nothing                                                                */
3889 /****************************************************************************/
3890 void
3891 bnx_init_rx_context(struct bnx_softc *sc)
3892 {
3893 	u_int32_t val;
3894 
3895 	/* Initialize the context ID for an L2 RX chain. */
3896 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3897 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3898 
3899 	/*
3900 	 * Set the level for generating pause frames
3901 	 * when the number of available rx_bd's gets
3902 	 * too low (the low watermark) and the level
3903 	 * when pause frames can be stopped (the high
3904 	 * watermark).
3905 	 */
3906 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3907 		u_int32_t lo_water, hi_water;
3908 
3909 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
3910 		hi_water = USABLE_RX_BD / 4;
3911 
3912 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
3913 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
3914 
3915 		if (hi_water > 0xf)
3916 			hi_water = 0xf;
3917 		else if (hi_water == 0)
3918 			lo_water = 0;
3919 
3920 		val |= (lo_water << BNX_L2CTX_RX_LO_WATER_MARK_SHIFT) |
3921 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
3922 	}
3923 
3924  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3925 
3926 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
3927 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3928 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
3929 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
3930 	}
3931 
3932 	/* Point the hardware to the first page in the chain. */
3933 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3934 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3935 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3936 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3937 }
3938 
3939 /****************************************************************************/
3940 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
3941 /* occurs.                                                                  */
3942 /*                                                                          */
3943 /* Returns:                                                                 */
3944 /*   Nothing                                                                */
3945 /****************************************************************************/
3946 int
3947 bnx_fill_rx_chain(struct bnx_softc *sc)
3948 {
3949 	u_int16_t		prod, chain_prod;
3950 	u_int32_t		prod_bseq;
3951 	u_int			slots, used;
3952 	int			ndesc = 0;
3953 #ifdef BNX_DEBUG
3954 	int rx_mbuf_alloc_before;
3955 #endif
3956 
3957 	DBPRINT(sc, BNX_EXCESSIVE_RECV, "Entering %s()\n", __FUNCTION__);
3958 
3959 	prod = sc->rx_prod;
3960 	prod_bseq = sc->rx_prod_bseq;
3961 
3962 #ifdef BNX_DEBUG
3963 	rx_mbuf_alloc_before = sc->rx_mbuf_alloc;
3964 #endif
3965 
3966 	/* Keep filling the RX chain until it's full. */
3967 	slots = if_rxr_get(&sc->rx_ring, sc->max_rx_bd);
3968 	while (slots > 0) {
3969 		chain_prod = RX_CHAIN_IDX(prod);
3970 
3971 		used = bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
3972 		if (used == 0) {
3973 			/* Bail out if we can't add an mbuf to the chain. */
3974 			break;
3975 		}
3976 		slots -= used;
3977 
3978 		prod = NEXT_RX_BD(prod);
3979 		ndesc++;
3980 	}
3981 	if_rxr_put(&sc->rx_ring, slots);
3982 
3983 	/* Save the RX chain producer index. */
3984 	sc->rx_prod = prod;
3985 	sc->rx_prod_bseq = prod_bseq;
3986 
3987 	/* Tell the chip about the waiting rx_bd's. */
3988 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3989 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3990 
3991 	DBPRINT(sc, BNX_EXCESSIVE_RECV, "Exiting %s()\n", __FUNCTION__);
3992 
3993 	return (ndesc);
3994 }
3995 
3996 /****************************************************************************/
3997 /* Allocate memory and initialize the RX data structures.                   */
3998 /*                                                                          */
3999 /* Returns:                                                                 */
4000 /*   0 for success, positive value for failure.                             */
4001 /****************************************************************************/
4002 int
4003 bnx_init_rx_chain(struct bnx_softc *sc)
4004 {
4005 	struct rx_bd		*rxbd;
4006 	int			i, rc = 0;
4007 	u_int32_t		addr;
4008 
4009 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4010 
4011 	/* Initialize the RX producer and consumer indices. */
4012 	sc->rx_prod = 0;
4013 	sc->rx_cons = 0;
4014 	sc->rx_prod_bseq = 0;
4015 	sc->max_rx_bd = USABLE_RX_BD;
4016 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4017 	DBRUNIF(1, sc->rx_empty_count = 0);
4018 
4019 	/* Initialize the RX next pointer chain entries. */
4020 	for (i = 0; i < RX_PAGES; i++) {
4021 		int j;
4022 
4023 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4024 
4025 		/* Check if we've reached the last page. */
4026 		if (i == (RX_PAGES - 1))
4027 			j = 0;
4028 		else
4029 			j = i + 1;
4030 
4031 		/* Setup the chain page pointers. */
4032 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4033 		rxbd->rx_bd_haddr_hi = addr;
4034 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4035 		rxbd->rx_bd_haddr_lo = addr;
4036 	}
4037 
4038 	if_rxr_init(&sc->rx_ring, 2, sc->max_rx_bd);
4039 
4040 	/* Fill up the RX chain. */
4041 	bnx_fill_rx_chain(sc);
4042 
4043 	for (i = 0; i < RX_PAGES; i++)
4044 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4045 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4046 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4047 
4048 	bnx_init_rx_context(sc);
4049 
4050 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4051 
4052 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4053 
4054 	return(rc);
4055 }
4056 
4057 /****************************************************************************/
4058 /* Free memory and clear the RX data structures.                            */
4059 /*                                                                          */
4060 /* Returns:                                                                 */
4061 /*   Nothing.                                                               */
4062 /****************************************************************************/
4063 void
4064 bnx_free_rx_chain(struct bnx_softc *sc)
4065 {
4066 	int			i;
4067 #ifdef BNX_DEBUG
4068 	int			rx_mbuf_alloc_before;
4069 #endif
4070 
4071 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4072 
4073 #ifdef BNX_DEBUG
4074 	rx_mbuf_alloc_before = sc->rx_mbuf_alloc;
4075 #endif
4076 
4077 	/* Free any mbufs still in the RX mbuf chain. */
4078 	for (i = 0; i < TOTAL_RX_BD; i++) {
4079 		if (sc->rx_mbuf_ptr[i] != NULL) {
4080 			if (sc->rx_mbuf_map[i] != NULL) {
4081 				bus_dmamap_sync(sc->bnx_dmatag,
4082 				    sc->rx_mbuf_map[i],	0,
4083 				    sc->rx_mbuf_map[i]->dm_mapsize,
4084 				    BUS_DMASYNC_POSTREAD);
4085 				bus_dmamap_unload(sc->bnx_dmatag,
4086 				    sc->rx_mbuf_map[i]);
4087 			}
4088 			m_freem(sc->rx_mbuf_ptr[i]);
4089 			sc->rx_mbuf_ptr[i] = NULL;
4090 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4091 		}
4092 	}
4093 
4094 	DBRUNIF((rx_mbuf_alloc_before - sc->rx_mbuf_alloc),
4095 		BNX_PRINTF(sc, "%s(): Released %d mbufs.\n",
4096 		__FUNCTION__, (rx_mbuf_alloc_before - sc->rx_mbuf_alloc)));
4097 
4098 	/* Clear each RX chain page. */
4099 	for (i = 0; i < RX_PAGES; i++)
4100 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
4101 
4102 	/* Check if we lost any mbufs in the process. */
4103 	DBRUNIF((sc->rx_mbuf_alloc),
4104 	    printf("%s: Memory leak! Lost %d mbufs from rx chain!\n",
4105 	    sc->rx_mbuf_alloc));
4106 
4107 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4108 }
4109 
4110 void
4111 bnx_rxrefill(void *xsc)
4112 {
4113 	struct bnx_softc	*sc = xsc;
4114 	int			s;
4115 
4116 	s = splnet();
4117 	if (!bnx_fill_rx_chain(sc))
4118 		timeout_add(&sc->bnx_rxrefill, 1);
4119 	splx(s);
4120 }
4121 
4122 /****************************************************************************/
4123 /* Set media options.                                                       */
4124 /*                                                                          */
4125 /* Returns:                                                                 */
4126 /*   0 for success, positive value for failure.                             */
4127 /****************************************************************************/
4128 int
4129 bnx_ifmedia_upd(struct ifnet *ifp)
4130 {
4131 	struct bnx_softc	*sc;
4132 	struct mii_data		*mii;
4133 	int			rc = 0;
4134 
4135 	sc = ifp->if_softc;
4136 
4137 	mii = &sc->bnx_mii;
4138 	sc->bnx_link = 0;
4139 	if (mii->mii_instance) {
4140 		struct mii_softc *miisc;
4141 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4142 			mii_phy_reset(miisc);
4143 	}
4144 	mii_mediachg(mii);
4145 
4146 	return(rc);
4147 }
4148 
4149 /****************************************************************************/
4150 /* Reports current media status.                                            */
4151 /*                                                                          */
4152 /* Returns:                                                                 */
4153 /*   Nothing.                                                               */
4154 /****************************************************************************/
4155 void
4156 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4157 {
4158 	struct bnx_softc	*sc;
4159 	struct mii_data		*mii;
4160 	int			s;
4161 
4162 	sc = ifp->if_softc;
4163 
4164 	s = splnet();
4165 
4166 	mii = &sc->bnx_mii;
4167 
4168 	mii_pollstat(mii);
4169 	ifmr->ifm_status = mii->mii_media_status;
4170 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4171 	    sc->bnx_flowflags;
4172 
4173 	splx(s);
4174 }
4175 
4176 /****************************************************************************/
4177 /* Handles PHY generated interrupt events.                                  */
4178 /*                                                                          */
4179 /* Returns:                                                                 */
4180 /*   Nothing.                                                               */
4181 /****************************************************************************/
4182 void
4183 bnx_phy_intr(struct bnx_softc *sc)
4184 {
4185 	u_int32_t		new_link_state, old_link_state;
4186 
4187 	new_link_state = sc->status_block->status_attn_bits &
4188 	    STATUS_ATTN_BITS_LINK_STATE;
4189 	old_link_state = sc->status_block->status_attn_bits_ack &
4190 	    STATUS_ATTN_BITS_LINK_STATE;
4191 
4192 	/* Handle any changes if the link state has changed. */
4193 	if (new_link_state != old_link_state) {
4194 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4195 
4196 		sc->bnx_link = 0;
4197 		timeout_del(&sc->bnx_timeout);
4198 		bnx_tick(sc);
4199 
4200 		/* Update the status_attn_bits_ack field in the status block. */
4201 		if (new_link_state) {
4202 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4203 			    STATUS_ATTN_BITS_LINK_STATE);
4204 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4205 		} else {
4206 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4207 			    STATUS_ATTN_BITS_LINK_STATE);
4208 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4209 		}
4210 	}
4211 
4212 	/* Acknowledge the link change interrupt. */
4213 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4214 }
4215 
4216 /****************************************************************************/
4217 /* Handles received frame interrupt events.                                 */
4218 /*                                                                          */
4219 /* Returns:                                                                 */
4220 /*   Nothing.                                                               */
4221 /****************************************************************************/
4222 void
4223 bnx_rx_intr(struct bnx_softc *sc)
4224 {
4225 	struct status_block	*sblk = sc->status_block;
4226 	struct ifnet		*ifp = &sc->arpcom.ac_if;
4227 	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
4228 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4229 	u_int16_t		sw_prod, sw_chain_prod;
4230 	u_int32_t		sw_prod_bseq;
4231 	struct l2_fhdr		*l2fhdr;
4232 	int			i;
4233 
4234 	DBRUNIF(1, sc->rx_interrupts++);
4235 
4236 	if (if_rxr_inuse(&sc->rx_ring) == 0)
4237 		return;
4238 
4239 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4240 	for (i = 0; i < RX_PAGES; i++)
4241 		bus_dmamap_sync(sc->bnx_dmatag,
4242 		    sc->rx_bd_chain_map[i], 0,
4243 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4244 		    BUS_DMASYNC_POSTWRITE);
4245 
4246 	/* Get the hardware's view of the RX consumer index. */
4247 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4248 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4249 		hw_cons++;
4250 
4251 	/* Get working copies of the driver's view of the RX indices. */
4252 	sw_cons = sc->rx_cons;
4253 	sw_prod = sc->rx_prod;
4254 	sw_prod_bseq = sc->rx_prod_bseq;
4255 
4256 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4257 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4258 	    __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
4259 
4260 	/* Prevent speculative reads from getting ahead of the status block. */
4261 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4262 	    BUS_SPACE_BARRIER_READ);
4263 
4264 	/*
4265 	 * Scan through the receive chain as long
4266 	 * as there is work to do.
4267 	 */
4268 	while (sw_cons != hw_cons) {
4269 		struct mbuf *m;
4270 		struct rx_bd *rxbd;
4271 		unsigned int len;
4272 		u_int32_t status;
4273 
4274 		/* Clear the mbuf pointer. */
4275 		m = NULL;
4276 
4277 		/* Convert the producer/consumer indices to an actual
4278 		 * rx_bd index.
4279 		 */
4280 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4281 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4282 
4283 		/* Get the used rx_bd. */
4284 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4285 		if_rxr_put(&sc->rx_ring, 1);
4286 
4287 		DBRUN(BNX_VERBOSE_RECV, printf("%s(): ", __FUNCTION__);
4288 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4289 
4290 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4291 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4292 			/* Validate that this is the last rx_bd. */
4293 			DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
4294 			    printf("%s: Unexpected mbuf found in "
4295 			        "rx_bd[0x%04X]!\n", sw_chain_cons);
4296 				bnx_breakpoint(sc));
4297 
4298 			/* DRC - ToDo: If the received packet is small, say less
4299 			 *             than 128 bytes, allocate a new mbuf here,
4300 			 *             copy the data to that mbuf, and recycle
4301 			 *             the mapped jumbo frame.
4302 			 */
4303 
4304 			/* Unmap the mbuf from DMA space. */
4305 			bus_dmamap_sync(sc->bnx_dmatag,
4306 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4307 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4308 			    BUS_DMASYNC_POSTREAD);
4309 			bus_dmamap_unload(sc->bnx_dmatag,
4310 			    sc->rx_mbuf_map[sw_chain_cons]);
4311 
4312 			/* Remove the mbuf from RX chain. */
4313 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4314 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4315 
4316 			/*
4317 			 * Frames received on the NetXteme II are prepended
4318 			 * with the l2_fhdr structure which provides status
4319 			 * information about the received frame (including
4320 			 * VLAN tags and checksum info) and are also
4321 			 * automatically adjusted to align the IP header
4322 			 * (i.e. two null bytes are inserted before the
4323 			 * Ethernet header).
4324 			 */
4325 			l2fhdr = mtod(m, struct l2_fhdr *);
4326 
4327 			len    = l2fhdr->l2_fhdr_pkt_len;
4328 			status = l2fhdr->l2_fhdr_status;
4329 
4330 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4331 			    printf("Simulating l2_fhdr status error.\n");
4332 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4333 
4334 			/* Watch for unusual sized frames. */
4335 			DBRUNIF(((len < BNX_MIN_MTU) ||
4336 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4337 			    printf("%s: Unusual frame size found. "
4338 			    "Min(%d), Actual(%d), Max(%d)\n", (int)BNX_MIN_MTU,
4339 			    len, (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4340 
4341 			bnx_dump_mbuf(sc, m);
4342 			bnx_breakpoint(sc));
4343 
4344 			len -= ETHER_CRC_LEN;
4345 
4346 			/* Check the received frame for errors. */
4347 			if (status &  (L2_FHDR_ERRORS_BAD_CRC |
4348 			    L2_FHDR_ERRORS_PHY_DECODE |
4349 			    L2_FHDR_ERRORS_ALIGNMENT |
4350 			    L2_FHDR_ERRORS_TOO_SHORT |
4351 			    L2_FHDR_ERRORS_GIANT_FRAME)) {
4352 				/* Log the error and release the mbuf. */
4353 				ifp->if_ierrors++;
4354 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4355 
4356 				m_freem(m);
4357 				m = NULL;
4358 				goto bnx_rx_int_next_rx;
4359 			}
4360 
4361 			/* Skip over the l2_fhdr when passing the data up
4362 			 * the stack.
4363 			 */
4364 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4365 
4366 			/* Adjust the pckt length to match the received data. */
4367 			m->m_pkthdr.len = m->m_len = len;
4368 
4369 			DBRUN(BNX_VERBOSE_RECV,
4370 			    struct ether_header *eh;
4371 			    eh = mtod(m, struct ether_header *);
4372 			    printf("%s: to: %6D, from: %6D, type: 0x%04X\n",
4373 			    __FUNCTION__, eh->ether_dhost, ":",
4374 			    eh->ether_shost, ":", htons(eh->ether_type)));
4375 
4376 			/* Validate the checksum. */
4377 
4378 			/* Check for an IP datagram. */
4379 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4380 				/* Check if the IP checksum is valid. */
4381 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4382 				    == 0)
4383 					m->m_pkthdr.csum_flags |=
4384 					    M_IPV4_CSUM_IN_OK;
4385 				else
4386 					DBPRINT(sc, BNX_WARN_SEND,
4387 					    "%s(): Invalid IP checksum "
4388 					        "= 0x%04X!\n",
4389 						__FUNCTION__,
4390 						l2fhdr->l2_fhdr_ip_xsum
4391 						);
4392 			}
4393 
4394 			/* Check for a valid TCP/UDP frame. */
4395 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4396 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4397 				/* Check for a good TCP/UDP checksum. */
4398 				if ((status &
4399 				    (L2_FHDR_ERRORS_TCP_XSUM |
4400 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4401 					m->m_pkthdr.csum_flags |=
4402 					    M_TCP_CSUM_IN_OK |
4403 					    M_UDP_CSUM_IN_OK;
4404 				} else {
4405 					DBPRINT(sc, BNX_WARN_SEND,
4406 					    "%s(): Invalid TCP/UDP "
4407 					    "checksum = 0x%04X!\n",
4408 					    __FUNCTION__,
4409 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4410 				}
4411 			}
4412 
4413 			/*
4414 			 * If we received a packet with a vlan tag,
4415 			 * attach that information to the packet.
4416 			 */
4417 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4418 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4419 #if NVLAN > 0
4420 				DBPRINT(sc, BNX_VERBOSE_SEND,
4421 				    "%s(): VLAN tag = 0x%04X\n",
4422 				    __FUNCTION__,
4423 				    l2fhdr->l2_fhdr_vlan_tag);
4424 
4425 				m->m_pkthdr.ether_vtag =
4426 				    l2fhdr->l2_fhdr_vlan_tag;
4427 				m->m_flags |= M_VLANTAG;
4428 #else
4429 				m_freem(m);
4430 				m = NULL;
4431 				goto bnx_rx_int_next_rx;
4432 #endif
4433 			}
4434 
4435 bnx_rx_int_next_rx:
4436 			sw_prod = NEXT_RX_BD(sw_prod);
4437 		}
4438 
4439 		sw_cons = NEXT_RX_BD(sw_cons);
4440 
4441 		/* If we have a packet, pass it up the stack */
4442 		if (m) {
4443 			sc->rx_cons = sw_cons;
4444 
4445 			DBPRINT(sc, BNX_VERBOSE_RECV,
4446 			    "%s(): Passing received frame up.\n", __FUNCTION__);
4447 			ml_enqueue(&ml, m);
4448 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4449 
4450 			sw_cons = sc->rx_cons;
4451 		}
4452 
4453 		/* Refresh hw_cons to see if there's new work */
4454 		if (sw_cons == hw_cons) {
4455 			hw_cons = sc->hw_rx_cons =
4456 			    sblk->status_rx_quick_consumer_index0;
4457 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4458 			    USABLE_RX_BD_PER_PAGE)
4459 				hw_cons++;
4460 		}
4461 
4462 		/* Prevent speculative reads from getting ahead of
4463 		 * the status block.
4464 		 */
4465 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4466 		    BUS_SPACE_BARRIER_READ);
4467 	}
4468 
4469 	/* No new packets to process.  Refill the RX chain and exit. */
4470 	sc->rx_cons = sw_cons;
4471 	if (!bnx_fill_rx_chain(sc))
4472 		timeout_add(&sc->bnx_rxrefill, 1);
4473 
4474 	for (i = 0; i < RX_PAGES; i++)
4475 		bus_dmamap_sync(sc->bnx_dmatag,
4476 		    sc->rx_bd_chain_map[i], 0,
4477 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4478 		    BUS_DMASYNC_PREWRITE);
4479 
4480 	if_input(ifp, &ml);
4481 
4482 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4483 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4484 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4485 }
4486 
4487 /****************************************************************************/
4488 /* Handles transmit completion interrupt events.                            */
4489 /*                                                                          */
4490 /* Returns:                                                                 */
4491 /*   Nothing.                                                               */
4492 /****************************************************************************/
4493 void
4494 bnx_tx_intr(struct bnx_softc *sc)
4495 {
4496 	struct status_block	*sblk = sc->status_block;
4497 	struct ifnet		*ifp = &sc->arpcom.ac_if;
4498 	bus_dmamap_t		map;
4499 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4500 	int			freed, used;
4501 
4502 	DBRUNIF(1, sc->tx_interrupts++);
4503 
4504 	/* Get the hardware's view of the TX consumer index. */
4505 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4506 
4507 	/* Skip to the next entry if this is a chain page pointer. */
4508 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4509 		hw_tx_cons++;
4510 
4511 	sw_tx_cons = sc->tx_cons;
4512 
4513 	/* Prevent speculative reads from getting ahead of the status block. */
4514 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4515 	    BUS_SPACE_BARRIER_READ);
4516 
4517 	/* Cycle through any completed TX chain page entries. */
4518 	freed = 0;
4519 	while (sw_tx_cons != hw_tx_cons) {
4520 #ifdef BNX_DEBUG
4521 		struct tx_bd *txbd = NULL;
4522 #endif
4523 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4524 
4525 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4526 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4527 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4528 
4529 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4530 		    printf("%s: TX chain consumer out of range! "
4531 		    " 0x%04X > 0x%04X\n", sw_tx_chain_cons, (int)MAX_TX_BD);
4532 		    bnx_breakpoint(sc));
4533 
4534 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4535 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4536 
4537 		DBRUNIF((txbd == NULL),
4538 		    printf("%s: Unexpected NULL tx_bd[0x%04X]!\n",
4539 		    sw_tx_chain_cons);
4540 		    bnx_breakpoint(sc));
4541 
4542 		DBRUN(BNX_INFO_SEND, printf("%s: ", __FUNCTION__);
4543 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4544 
4545 		map = sc->tx_mbuf_map[sw_tx_chain_cons];
4546 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4547 			/* Validate that this is the last tx_bd. */
4548 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
4549 			    printf("%s: tx_bd END flag not set but "
4550 			    "txmbuf == NULL!\n");
4551 			    bnx_breakpoint(sc));
4552 
4553 			DBRUN(BNX_INFO_SEND,
4554 			    printf("%s: Unloading map/freeing mbuf "
4555 			    "from tx_bd[0x%04X]\n",
4556 			    __FUNCTION__, sw_tx_chain_cons));
4557 
4558 			/* Unmap the mbuf. */
4559 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4560 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4561 			bus_dmamap_unload(sc->bnx_dmatag, map);
4562 
4563 			/* Free the mbuf. */
4564 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4565 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4566 
4567 			ifp->if_opackets++;
4568 		}
4569 
4570 		freed++;
4571 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4572 	}
4573 
4574 	used = atomic_sub_int_nv(&sc->used_tx_bd, freed);
4575 
4576 	sc->tx_cons = sw_tx_cons;
4577 
4578 	/* Clear the TX timeout timer. */
4579 	if (used == 0)
4580 		ifp->if_timer = 0;
4581 
4582 	if (ifq_is_oactive(&ifp->if_snd))
4583 		ifq_restart(&ifp->if_snd);
4584 }
4585 
4586 /****************************************************************************/
4587 /* Disables interrupt generation.                                           */
4588 /*                                                                          */
4589 /* Returns:                                                                 */
4590 /*   Nothing.                                                               */
4591 /****************************************************************************/
4592 void
4593 bnx_disable_intr(struct bnx_softc *sc)
4594 {
4595 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4596 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4597 }
4598 
4599 /****************************************************************************/
4600 /* Enables interrupt generation.                                            */
4601 /*                                                                          */
4602 /* Returns:                                                                 */
4603 /*   Nothing.                                                               */
4604 /****************************************************************************/
4605 void
4606 bnx_enable_intr(struct bnx_softc *sc)
4607 {
4608 	u_int32_t		val;
4609 
4610 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4611 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4612 
4613 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4614 	    sc->last_status_idx);
4615 
4616 	val = REG_RD(sc, BNX_HC_COMMAND);
4617 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4618 }
4619 
4620 /****************************************************************************/
4621 /* Handles controller initialization.                                       */
4622 /*                                                                          */
4623 /* Returns:                                                                 */
4624 /*   Nothing.                                                               */
4625 /****************************************************************************/
4626 void
4627 bnx_init(void *xsc)
4628 {
4629 	struct bnx_softc	*sc = (struct bnx_softc *)xsc;
4630 	struct ifnet		*ifp = &sc->arpcom.ac_if;
4631 	u_int32_t		ether_mtu;
4632 	int			s;
4633 
4634 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4635 
4636 	s = splnet();
4637 
4638 	bnx_stop(sc);
4639 
4640 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) {
4641 		BNX_PRINTF(sc, "Controller reset failed!\n");
4642 		goto bnx_init_exit;
4643 	}
4644 
4645 	if (bnx_chipinit(sc)) {
4646 		BNX_PRINTF(sc, "Controller initialization failed!\n");
4647 		goto bnx_init_exit;
4648 	}
4649 
4650 	if (bnx_blockinit(sc)) {
4651 		BNX_PRINTF(sc, "Block initialization failed!\n");
4652 		goto bnx_init_exit;
4653 	}
4654 
4655 	/* Load our MAC address. */
4656 	bcopy(sc->arpcom.ac_enaddr, sc->eaddr, ETHER_ADDR_LEN);
4657 	bnx_set_mac_addr(sc);
4658 
4659 	/* Calculate and program the Ethernet MRU size. */
4660 	ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4661 
4662 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4663 	    __FUNCTION__, ether_mtu);
4664 
4665 	/*
4666 	 * Program the MRU and enable Jumbo frame
4667 	 * support.
4668 	 */
4669 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4670 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4671 
4672 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4673 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4674 
4675 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4676 	    "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
4677 	    sc->mbuf_alloc_size, sc->max_frame_size);
4678 
4679 	/* Program appropriate promiscuous/multicast filtering. */
4680 	bnx_iff(sc);
4681 
4682 	/* Init RX buffer descriptor chain. */
4683 	bnx_init_rx_chain(sc);
4684 
4685 	/* Init TX buffer descriptor chain. */
4686 	bnx_init_tx_chain(sc);
4687 
4688 	/* Enable host interrupts. */
4689 	bnx_enable_intr(sc);
4690 
4691 	bnx_ifmedia_upd(ifp);
4692 
4693 	ifp->if_flags |= IFF_RUNNING;
4694 	ifq_clr_oactive(&ifp->if_snd);
4695 
4696 	timeout_add_sec(&sc->bnx_timeout, 1);
4697 
4698 bnx_init_exit:
4699 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4700 
4701 	splx(s);
4702 
4703 	return;
4704 }
4705 
4706 void
4707 bnx_mgmt_init(struct bnx_softc *sc)
4708 {
4709 	struct ifnet	*ifp = &sc->arpcom.ac_if;
4710 	u_int32_t	val;
4711 
4712 	/* Check if the driver is still running and bail out if it is. */
4713 	if (ifp->if_flags & IFF_RUNNING)
4714 		goto bnx_mgmt_init_exit;
4715 
4716 	/* Initialize the on-boards CPUs */
4717 	bnx_init_cpus(sc);
4718 
4719 	val = (BCM_PAGE_BITS - 8) << 24;
4720 	REG_WR(sc, BNX_RV2P_CONFIG, val);
4721 
4722 	/* Enable all critical blocks in the MAC. */
4723 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
4724 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
4725 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
4726 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
4727 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
4728 	DELAY(20);
4729 
4730 	bnx_ifmedia_upd(ifp);
4731 
4732 bnx_mgmt_init_exit:
4733  	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4734 }
4735 
4736 /****************************************************************************/
4737 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4738 /* memory visible to the controller.                                        */
4739 /*                                                                          */
4740 /* Returns:                                                                 */
4741 /*   0 for success, positive value for failure.                             */
4742 /****************************************************************************/
4743 int
4744 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m, int *used)
4745 {
4746 	bus_dmamap_t		map;
4747 	struct tx_bd 		*txbd = NULL;
4748 	u_int16_t		vlan_tag = 0, flags = 0;
4749 	u_int16_t		chain_prod, chain_head, prod;
4750 #ifdef BNX_DEBUG
4751 	u_int16_t		debug_prod;
4752 #endif
4753 	u_int32_t		addr, prod_bseq;
4754 	int			i, error;
4755 
4756 	/* Transfer any checksum offload flags to the bd. */
4757 	if (m->m_pkthdr.csum_flags) {
4758 		if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
4759 			flags |= TX_BD_FLAGS_IP_CKSUM;
4760 		if (m->m_pkthdr.csum_flags &
4761 		    (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT))
4762 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4763 	}
4764 
4765 #if NVLAN > 0
4766 	/* Transfer any VLAN tags to the bd. */
4767 	if (m->m_flags & M_VLANTAG) {
4768 		flags |= TX_BD_FLAGS_VLAN_TAG;
4769 		vlan_tag = m->m_pkthdr.ether_vtag;
4770 	}
4771 #endif
4772 
4773 	/* Map the mbuf into DMAable memory. */
4774 	prod = sc->tx_prod;
4775 	chain_head = chain_prod = TX_CHAIN_IDX(prod);
4776 	map = sc->tx_mbuf_map[chain_head];
4777 
4778 	/* Map the mbuf into our DMA address space. */
4779 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m,
4780 	    BUS_DMA_NOWAIT);
4781 	switch (error) {
4782 	case 0:
4783 		break;
4784 
4785 	case EFBIG:
4786 		if ((error = m_defrag(m, M_DONTWAIT)) == 0 &&
4787 		    (error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m,
4788 		     BUS_DMA_NOWAIT)) == 0)
4789 			break;
4790 
4791 		/* FALLTHROUGH */
4792 	default:
4793 		sc->tx_dma_map_failures++;
4794 		return (ENOBUFS);
4795 	}
4796 
4797 	/* prod points to an empty tx_bd at this point. */
4798 	prod_bseq = sc->tx_prod_bseq;
4799 #ifdef BNX_DEBUG
4800 	debug_prod = chain_prod;
4801 #endif
4802 
4803 	DBPRINT(sc, BNX_INFO_SEND,
4804 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4805 		"prod_bseq = 0x%08X\n",
4806 		__FUNCTION__, prod, chain_prod, prod_bseq);
4807 
4808 	/*
4809 	 * Cycle through each mbuf segment that makes up
4810 	 * the outgoing frame, gathering the mapping info
4811 	 * for that segment and creating a tx_bd for the
4812 	 * mbuf.
4813 	 */
4814 	for (i = 0; i < map->dm_nsegs ; i++) {
4815 		chain_prod = TX_CHAIN_IDX(prod);
4816 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4817 
4818 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4819 		txbd->tx_bd_haddr_lo = addr;
4820 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4821 		txbd->tx_bd_haddr_hi = addr;
4822 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4823 		txbd->tx_bd_vlan_tag = vlan_tag;
4824 		txbd->tx_bd_flags = flags;
4825 		prod_bseq += map->dm_segs[i].ds_len;
4826 		if (i == 0)
4827 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4828 		prod = NEXT_TX_BD(prod);
4829  	}
4830 
4831 	/* Set the END flag on the last TX buffer descriptor. */
4832 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4833 
4834 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod,
4835 	    map->dm_nsegs));
4836 
4837 	DBPRINT(sc, BNX_INFO_SEND,
4838 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4839 		"prod_bseq = 0x%08X\n",
4840 		__FUNCTION__, prod, chain_prod, prod_bseq);
4841 
4842 	sc->tx_mbuf_ptr[chain_prod] = m;
4843 	sc->tx_mbuf_map[chain_head] = sc->tx_mbuf_map[chain_prod];
4844 	sc->tx_mbuf_map[chain_prod] = map;
4845 
4846 	*used += map->dm_nsegs;
4847 
4848 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4849 
4850 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4851 	    map->dm_nsegs));
4852 
4853 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4854 	    BUS_DMASYNC_PREWRITE);
4855 
4856 	/* prod points to the next free tx_bd at this point. */
4857 	sc->tx_prod = prod;
4858 	sc->tx_prod_bseq = prod_bseq;
4859 
4860 	return (0);
4861 }
4862 
4863 /****************************************************************************/
4864 /* Main transmit routine.                                                   */
4865 /*                                                                          */
4866 /* Returns:                                                                 */
4867 /*   Nothing.                                                               */
4868 /****************************************************************************/
4869 void
4870 bnx_start(struct ifnet *ifp)
4871 {
4872 	struct bnx_softc	*sc = ifp->if_softc;
4873 	struct mbuf		*m_head = NULL;
4874 	int			used;
4875 	u_int16_t		tx_prod, tx_chain_prod;
4876 
4877 	if (!sc->bnx_link) {
4878 		ifq_purge(&ifp->if_snd);
4879 		goto bnx_start_exit;
4880 	}
4881 
4882 	/* prod points to the next free tx_bd. */
4883 	tx_prod = sc->tx_prod;
4884 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4885 
4886 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4887 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4888 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4889 
4890 	/*
4891 	 * Keep adding entries while there is space in the ring.
4892 	 */
4893 	used = 0;
4894 	while (1) {
4895 		if (sc->used_tx_bd + used + BNX_MAX_SEGMENTS + 1 >=
4896 		    sc->max_tx_bd) {
4897 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4898 			    "business! Total tx_bd used = %d\n",
4899 			    sc->used_tx_bd + used);
4900 			ifq_set_oactive(&ifp->if_snd);
4901 			break;
4902 		}
4903 
4904 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4905 		if (m_head == NULL)
4906 			break;
4907 
4908 		if (bnx_tx_encap(sc, m_head, &used)) {
4909 			m_freem(m_head);
4910 			continue;
4911 		}
4912 
4913 #if NBPFILTER > 0
4914 		if (ifp->if_bpf)
4915 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
4916 #endif
4917 	}
4918 
4919 	if (used == 0) {
4920 		/* no packets were dequeued */
4921 		DBPRINT(sc, BNX_VERBOSE_SEND,
4922 		    "%s(): No packets were dequeued\n", __FUNCTION__);
4923 		goto bnx_start_exit;
4924 	}
4925 
4926 	/* Update the driver's counters. */
4927 	used = atomic_add_int_nv(&sc->used_tx_bd, used);
4928 
4929 	/* Update some debug statistics counters */
4930 	DBRUNIF((used > sc->tx_hi_watermark),
4931 	    sc->tx_hi_watermark = used);
4932 	DBRUNIF(used == sc->max_tx_bd, sc->tx_full_count++);
4933 
4934 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4935 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4936 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
4937 	    tx_chain_prod, sc->tx_prod_bseq);
4938 
4939 	/* Start the transmit. */
4940 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4941 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4942 
4943 	/* Set the tx timeout. */
4944 	ifp->if_timer = BNX_TX_TIMEOUT;
4945 
4946 bnx_start_exit:
4947 	return;
4948 }
4949 
4950 /****************************************************************************/
4951 /* Handles any IOCTL calls from the operating system.                       */
4952 /*                                                                          */
4953 /* Returns:                                                                 */
4954 /*   0 for success, positive value for failure.                             */
4955 /****************************************************************************/
4956 int
4957 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4958 {
4959 	struct bnx_softc	*sc = ifp->if_softc;
4960 	struct ifreq		*ifr = (struct ifreq *) data;
4961 	struct mii_data		*mii = &sc->bnx_mii;
4962 	int			s, error = 0;
4963 
4964 	s = splnet();
4965 
4966 	switch (command) {
4967 	case SIOCSIFADDR:
4968 		ifp->if_flags |= IFF_UP;
4969 		if (!(ifp->if_flags & IFF_RUNNING))
4970 			bnx_init(sc);
4971 		break;
4972 
4973 	case SIOCSIFFLAGS:
4974 		if (ifp->if_flags & IFF_UP) {
4975 			if (ifp->if_flags & IFF_RUNNING)
4976 				error = ENETRESET;
4977 			else
4978 				bnx_init(sc);
4979 		} else {
4980 			if (ifp->if_flags & IFF_RUNNING)
4981 				bnx_stop(sc);
4982 		}
4983 		break;
4984 
4985 	case SIOCSIFMEDIA:
4986 		/* Flow control requires full-duplex mode. */
4987 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4988 		    (ifr->ifr_media & IFM_FDX) == 0)
4989 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4990 
4991 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4992 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4993 				/* We can do both TXPAUSE and RXPAUSE. */
4994 				ifr->ifr_media |=
4995 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4996 			}
4997 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4998 		}
4999 		/* FALLTHROUGH */
5000 	case SIOCGIFMEDIA:
5001 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5002 		    sc->bnx_phy_flags);
5003 
5004 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5005 		break;
5006 
5007 	case SIOCGIFRXR:
5008 		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
5009 		    NULL, MCLBYTES, &sc->rx_ring);
5010 		break;
5011 
5012 	default:
5013 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
5014 	}
5015 
5016 	if (error == ENETRESET) {
5017 		if (ifp->if_flags & IFF_RUNNING)
5018 			bnx_iff(sc);
5019 		error = 0;
5020 	}
5021 
5022 	splx(s);
5023 	return (error);
5024 }
5025 
5026 /****************************************************************************/
5027 /* Transmit timeout handler.                                                */
5028 /*                                                                          */
5029 /* Returns:                                                                 */
5030 /*   Nothing.                                                               */
5031 /****************************************************************************/
5032 void
5033 bnx_watchdog(struct ifnet *ifp)
5034 {
5035 	struct bnx_softc	*sc = ifp->if_softc;
5036 
5037 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5038 	    bnx_dump_status_block(sc));
5039 
5040 	/*
5041 	 * If we are in this routine because of pause frames, then
5042 	 * don't reset the hardware.
5043 	 */
5044 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5045 		return;
5046 
5047 	printf("%s: Watchdog timeout occurred, resetting!\n",
5048 	    ifp->if_xname);
5049 
5050 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5051 
5052 	bnx_init(sc);
5053 
5054 	ifp->if_oerrors++;
5055 }
5056 
5057 /*
5058  * Interrupt handler.
5059  */
5060 /****************************************************************************/
5061 /* Main interrupt entry point.  Verifies that the controller generated the  */
5062 /* interrupt and then calls a separate routine for handle the various       */
5063 /* interrupt causes (PHY, TX, RX).                                          */
5064 /*                                                                          */
5065 /* Returns:                                                                 */
5066 /*   0 for success, positive value for failure.                             */
5067 /****************************************************************************/
5068 int
5069 bnx_intr(void *xsc)
5070 {
5071 	struct bnx_softc	*sc = xsc;
5072 	struct ifnet		*ifp = &sc->arpcom.ac_if;
5073 	u_int32_t		status_attn_bits;
5074 	u_int16_t		status_idx;
5075 	int			rv = 0;
5076 
5077 	if ((sc->bnx_flags & BNX_ACTIVE_FLAG) == 0)
5078 		return (0);
5079 
5080 	DBRUNIF(1, sc->interrupts_generated++);
5081 
5082 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5083 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5084 
5085 	/*
5086 	 * If the hardware status block index
5087 	 * matches the last value read by the
5088 	 * driver and we haven't asserted our
5089 	 * interrupt then there's nothing to do.
5090 	 */
5091 	status_idx = sc->status_block->status_idx;
5092 	if (status_idx != sc->last_status_idx ||
5093 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5094 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5095 		rv = 1;
5096 
5097 		/* Ack the interrupt */
5098 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5099 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5100 
5101 		status_attn_bits = sc->status_block->status_attn_bits;
5102 
5103 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5104 		    printf("Simulating unexpected status attention bit set.");
5105 		    status_attn_bits = status_attn_bits |
5106 		    STATUS_ATTN_BITS_PARITY_ERROR);
5107 
5108 		/* Was it a link change interrupt? */
5109 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5110 		    (sc->status_block->status_attn_bits_ack &
5111 		    STATUS_ATTN_BITS_LINK_STATE)) {
5112 			KERNEL_LOCK();
5113 			bnx_phy_intr(sc);
5114 			KERNEL_UNLOCK();
5115 		}
5116 
5117 		/* If any other attention is asserted then the chip is toast. */
5118 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5119 		    (sc->status_block->status_attn_bits_ack &
5120 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5121 			KERNEL_LOCK();
5122 			DBRUN(1, sc->unexpected_attentions++);
5123 
5124 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5125 			    sc->status_block->status_attn_bits);
5126 
5127 			DBRUN(BNX_FATAL,
5128 			    if (bnx_debug_unexpected_attention == 0)
5129 				bnx_breakpoint(sc));
5130 
5131 			bnx_init(sc);
5132 			KERNEL_UNLOCK();
5133 			goto out;
5134 		}
5135 
5136 		/* Check for any completed RX frames. */
5137 		if (sc->status_block->status_rx_quick_consumer_index0 !=
5138 		    sc->hw_rx_cons)
5139 			bnx_rx_intr(sc);
5140 
5141 		/* Check for any completed TX frames. */
5142 		if (sc->status_block->status_tx_quick_consumer_index0 !=
5143 		    sc->hw_tx_cons)
5144 			bnx_tx_intr(sc);
5145 
5146 		/*
5147 		 * Save the status block index value for use during the
5148 		 * next interrupt.
5149 		 */
5150 		sc->last_status_idx = status_idx;
5151 
5152 		/* Start moving packets again */
5153 		if (ifp->if_flags & IFF_RUNNING &&
5154 		    !IFQ_IS_EMPTY(&ifp->if_snd)) {
5155 			KERNEL_LOCK();
5156 			bnx_start(ifp);
5157 			KERNEL_UNLOCK();
5158 		}
5159 	}
5160 
5161 out:
5162 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5163 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5164 
5165 	return (rv);
5166 }
5167 
5168 /****************************************************************************/
5169 /* Programs the various packet receive modes (broadcast and multicast).     */
5170 /*                                                                          */
5171 /* Returns:                                                                 */
5172 /*   Nothing.                                                               */
5173 /****************************************************************************/
5174 void
5175 bnx_iff(struct bnx_softc *sc)
5176 {
5177 	struct arpcom		*ac = &sc->arpcom;
5178 	struct ifnet		*ifp = &ac->ac_if;
5179 	struct ether_multi	*enm;
5180 	struct ether_multistep	step;
5181 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5182 	u_int32_t		rx_mode, sort_mode;
5183 	int			h, i;
5184 
5185 	/* Initialize receive mode default settings. */
5186 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5187 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5188 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5189 	ifp->if_flags &= ~IFF_ALLMULTI;
5190 
5191 	/*
5192 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5193 	 * be enbled.
5194 	 */
5195 	if (!(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) &&
5196 	    (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG)))
5197 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5198 
5199 	/*
5200 	 * Check for promiscuous, all multicast, or selected
5201 	 * multicast address filtering.
5202 	 */
5203 	if (ifp->if_flags & IFF_PROMISC) {
5204 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5205 
5206 		ifp->if_flags |= IFF_ALLMULTI;
5207 		/* Enable promiscuous mode. */
5208 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5209 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5210 	} else if (ac->ac_multirangecnt > 0) {
5211 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5212 
5213 		ifp->if_flags |= IFF_ALLMULTI;
5214 		/* Enable all multicast addresses. */
5215 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5216 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5217 			    0xffffffff);
5218 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5219 	} else {
5220 		/* Accept one or more multicast(s). */
5221 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5222 
5223 		ETHER_FIRST_MULTI(step, ac, enm);
5224 		while (enm != NULL) {
5225 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5226 			    0xFF;
5227 
5228 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5229 
5230 			ETHER_NEXT_MULTI(step, enm);
5231 		}
5232 
5233 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5234 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5235 			    hashes[i]);
5236 
5237 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5238 	}
5239 
5240 	/* Only make changes if the recive mode has actually changed. */
5241 	if (rx_mode != sc->rx_mode) {
5242 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5243 		    rx_mode);
5244 
5245 		sc->rx_mode = rx_mode;
5246 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5247 	}
5248 
5249 	/* Disable and clear the exisitng sort before enabling a new sort. */
5250 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5251 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5252 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5253 }
5254 
5255 /****************************************************************************/
5256 /* Called periodically to updates statistics from the controllers           */
5257 /* statistics block.                                                        */
5258 /*                                                                          */
5259 /* Returns:                                                                 */
5260 /*   Nothing.                                                               */
5261 /****************************************************************************/
5262 void
5263 bnx_stats_update(struct bnx_softc *sc)
5264 {
5265 	struct ifnet		*ifp = &sc->arpcom.ac_if;
5266 	struct statistics_block	*stats;
5267 
5268 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
5269 
5270 	stats = (struct statistics_block *)sc->stats_block;
5271 
5272 	/*
5273 	 * Update the interface statistics from the
5274 	 * hardware statistics.
5275 	 */
5276 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5277 
5278 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5279 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5280 	    (u_long)stats->stat_IfInMBUFDiscards +
5281 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5282 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5283 
5284 	ifp->if_oerrors = (u_long)
5285 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5286 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5287 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5288 
5289 	/*
5290 	 * Certain controllers don't report
5291 	 * carrier sense errors correctly.
5292 	 * See errata E11_5708CA0_1165.
5293 	 */
5294 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5295 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5296 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5297 
5298 	/*
5299 	 * Update the sysctl statistics from the
5300 	 * hardware statistics.
5301 	 */
5302 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5303 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5304 
5305 	sc->stat_IfHCInBadOctets =
5306 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5307 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5308 
5309 	sc->stat_IfHCOutOctets =
5310 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5311 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5312 
5313 	sc->stat_IfHCOutBadOctets =
5314 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5315 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5316 
5317 	sc->stat_IfHCInUcastPkts =
5318 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5319 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5320 
5321 	sc->stat_IfHCInMulticastPkts =
5322 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5323 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5324 
5325 	sc->stat_IfHCInBroadcastPkts =
5326 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5327 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5328 
5329 	sc->stat_IfHCOutUcastPkts =
5330 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5331 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5332 
5333 	sc->stat_IfHCOutMulticastPkts =
5334 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5335 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5336 
5337 	sc->stat_IfHCOutBroadcastPkts =
5338 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5339 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5340 
5341 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5342 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5343 
5344 	sc->stat_Dot3StatsCarrierSenseErrors =
5345 	    stats->stat_Dot3StatsCarrierSenseErrors;
5346 
5347 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5348 
5349 	sc->stat_Dot3StatsAlignmentErrors =
5350 	    stats->stat_Dot3StatsAlignmentErrors;
5351 
5352 	sc->stat_Dot3StatsSingleCollisionFrames =
5353 	    stats->stat_Dot3StatsSingleCollisionFrames;
5354 
5355 	sc->stat_Dot3StatsMultipleCollisionFrames =
5356 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5357 
5358 	sc->stat_Dot3StatsDeferredTransmissions =
5359 	    stats->stat_Dot3StatsDeferredTransmissions;
5360 
5361 	sc->stat_Dot3StatsExcessiveCollisions =
5362 	    stats->stat_Dot3StatsExcessiveCollisions;
5363 
5364 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5365 
5366 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5367 
5368 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5369 
5370 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5371 
5372 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5373 
5374 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5375 
5376 	sc->stat_EtherStatsPktsRx64Octets =
5377 	    stats->stat_EtherStatsPktsRx64Octets;
5378 
5379 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5380 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5381 
5382 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5383 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5384 
5385 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5386 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5387 
5388 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5389 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5390 
5391 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5392 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5393 
5394 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5395 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5396 
5397 	sc->stat_EtherStatsPktsTx64Octets =
5398 	    stats->stat_EtherStatsPktsTx64Octets;
5399 
5400 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5401 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5402 
5403 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5404 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5405 
5406 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5407 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5408 
5409 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5410 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5411 
5412 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5413 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5414 
5415 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5416 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5417 
5418 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5419 
5420 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5421 
5422 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5423 
5424 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5425 
5426 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5427 
5428 	sc->stat_MacControlFramesReceived =
5429 	    stats->stat_MacControlFramesReceived;
5430 
5431 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5432 
5433 	sc->stat_IfInFramesL2FilterDiscards =
5434 	    stats->stat_IfInFramesL2FilterDiscards;
5435 
5436 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5437 
5438 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5439 
5440 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5441 
5442 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5443 
5444 	sc->stat_CatchupInRuleCheckerDiscards =
5445 	    stats->stat_CatchupInRuleCheckerDiscards;
5446 
5447 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5448 
5449 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5450 
5451 	sc->stat_CatchupInRuleCheckerP4Hit =
5452 	    stats->stat_CatchupInRuleCheckerP4Hit;
5453 
5454 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
5455 }
5456 
5457 void
5458 bnx_tick(void *xsc)
5459 {
5460 	struct bnx_softc	*sc = xsc;
5461 	struct ifnet		*ifp = &sc->arpcom.ac_if;
5462 	struct mii_data		*mii = NULL;
5463 	u_int32_t		msg;
5464 
5465 	/* Tell the firmware that the driver is still running. */
5466 #ifdef BNX_DEBUG
5467 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5468 #else
5469 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5470 #endif
5471 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5472 
5473 	/* Update the statistics from the hardware statistics block. */
5474 	bnx_stats_update(sc);
5475 
5476 	/* Schedule the next tick. */
5477 	timeout_add_sec(&sc->bnx_timeout, 1);
5478 
5479 	/* If link is up already up then we're done. */
5480 	if (sc->bnx_link)
5481 		goto bnx_tick_exit;
5482 
5483 	mii = &sc->bnx_mii;
5484 	mii_tick(mii);
5485 
5486 	/* Check if the link has come up. */
5487 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5488 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5489 		sc->bnx_link++;
5490 		/* Now that link is up, handle any outstanding TX traffic. */
5491 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
5492 			bnx_start(ifp);
5493 	}
5494 
5495 bnx_tick_exit:
5496 	return;
5497 }
5498 
5499 /****************************************************************************/
5500 /* BNX Debug Routines                                                       */
5501 /****************************************************************************/
5502 #ifdef BNX_DEBUG
5503 
5504 /****************************************************************************/
5505 /* Prints out information about an mbuf.                                    */
5506 /*                                                                          */
5507 /* Returns:                                                                 */
5508 /*   Nothing.                                                               */
5509 /****************************************************************************/
5510 void
5511 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5512 {
5513 	struct mbuf		*mp = m;
5514 
5515 	if (m == NULL) {
5516 		/* Index out of range. */
5517 		printf("mbuf ptr is null!\n");
5518 		return;
5519 	}
5520 
5521 	while (mp) {
5522 		printf("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5523 		    mp, mp->m_len);
5524 
5525 		if (mp->m_flags & M_EXT)
5526 			printf("M_EXT ");
5527 		if (mp->m_flags & M_PKTHDR)
5528 			printf("M_PKTHDR ");
5529 		printf("\n");
5530 
5531 		if (mp->m_flags & M_EXT)
5532 			printf("- m_ext: vaddr = %p, ext_size = 0x%04X\n",
5533 			    mp, mp->m_ext.ext_size);
5534 
5535 		mp = mp->m_next;
5536 	}
5537 }
5538 
5539 /****************************************************************************/
5540 /* Prints out the mbufs in the TX mbuf chain.                               */
5541 /*                                                                          */
5542 /* Returns:                                                                 */
5543 /*   Nothing.                                                               */
5544 /****************************************************************************/
5545 void
5546 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5547 {
5548 	struct mbuf		*m;
5549 	int			i;
5550 
5551 	BNX_PRINTF(sc,
5552 	    "----------------------------"
5553 	    "  tx mbuf data  "
5554 	    "----------------------------\n");
5555 
5556 	for (i = 0; i < count; i++) {
5557 	 	m = sc->tx_mbuf_ptr[chain_prod];
5558 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5559 		bnx_dump_mbuf(sc, m);
5560 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5561 	}
5562 
5563 	BNX_PRINTF(sc,
5564 	    "--------------------------------------------"
5565 	    "----------------------------\n");
5566 }
5567 
5568 /*
5569  * This routine prints the RX mbuf chain.
5570  */
5571 void
5572 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5573 {
5574 	struct mbuf		*m;
5575 	int			i;
5576 
5577 	BNX_PRINTF(sc,
5578 	    "----------------------------"
5579 	    "  rx mbuf data  "
5580 	    "----------------------------\n");
5581 
5582 	for (i = 0; i < count; i++) {
5583 	 	m = sc->rx_mbuf_ptr[chain_prod];
5584 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5585 		bnx_dump_mbuf(sc, m);
5586 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5587 	}
5588 
5589 
5590 	BNX_PRINTF(sc,
5591 	    "--------------------------------------------"
5592 	    "----------------------------\n");
5593 }
5594 
5595 void
5596 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5597 {
5598 	if (idx > MAX_TX_BD)
5599 		/* Index out of range. */
5600 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5601 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5602 		/* TX Chain page pointer. */
5603 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5604 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5605 		    txbd->tx_bd_haddr_lo);
5606 	else
5607 		/* Normal tx_bd entry. */
5608 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5609 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5610 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5611 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5612 		    txbd->tx_bd_flags);
5613 }
5614 
5615 void
5616 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5617 {
5618 	if (idx > MAX_RX_BD)
5619 		/* Index out of range. */
5620 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5621 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5622 		/* TX Chain page pointer. */
5623 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5624 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5625 		    rxbd->rx_bd_haddr_lo);
5626 	else
5627 		/* Normal tx_bd entry. */
5628 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5629 		    "0x%08X, flags = 0x%08X\n", idx,
5630 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5631 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5632 }
5633 
5634 void
5635 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5636 {
5637 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5638 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5639 	    "tcp_udp_xsum = 0x%04X\n", idx,
5640 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5641 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5642 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5643 }
5644 
5645 /*
5646  * This routine prints the TX chain.
5647  */
5648 void
5649 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5650 {
5651 	struct tx_bd		*txbd;
5652 	int			i;
5653 
5654 	/* First some info about the tx_bd chain structure. */
5655 	BNX_PRINTF(sc,
5656 	    "----------------------------"
5657 	    "  tx_bd  chain  "
5658 	    "----------------------------\n");
5659 
5660 	BNX_PRINTF(sc,
5661 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5662 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5663 
5664 	BNX_PRINTF(sc,
5665 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5666 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5667 
5668 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5669 
5670 	BNX_PRINTF(sc, ""
5671 	    "-----------------------------"
5672 	    "   tx_bd data   "
5673 	    "-----------------------------\n");
5674 
5675 	/* Now print out the tx_bd's themselves. */
5676 	for (i = 0; i < count; i++) {
5677 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5678 		bnx_dump_txbd(sc, tx_prod, txbd);
5679 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5680 	}
5681 
5682 	BNX_PRINTF(sc,
5683 	    "-----------------------------"
5684 	    "--------------"
5685 	    "-----------------------------\n");
5686 }
5687 
5688 /*
5689  * This routine prints the RX chain.
5690  */
5691 void
5692 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5693 {
5694 	struct rx_bd		*rxbd;
5695 	int			i;
5696 
5697 	/* First some info about the tx_bd chain structure. */
5698 	BNX_PRINTF(sc,
5699 	    "----------------------------"
5700 	    "  rx_bd  chain  "
5701 	    "----------------------------\n");
5702 
5703 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5704 
5705 	BNX_PRINTF(sc,
5706 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5707 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5708 
5709 	BNX_PRINTF(sc,
5710 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5711 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5712 
5713 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5714 
5715 	BNX_PRINTF(sc,
5716 	    "----------------------------"
5717 	    "   rx_bd data   "
5718 	    "----------------------------\n");
5719 
5720 	/* Now print out the rx_bd's themselves. */
5721 	for (i = 0; i < count; i++) {
5722 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5723 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5724 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5725 	}
5726 
5727 	BNX_PRINTF(sc,
5728 	    "----------------------------"
5729 	    "--------------"
5730 	    "----------------------------\n");
5731 }
5732 
5733 /*
5734  * This routine prints the status block.
5735  */
5736 void
5737 bnx_dump_status_block(struct bnx_softc *sc)
5738 {
5739 	struct status_block	*sblk;
5740 
5741 	sblk = sc->status_block;
5742 
5743    	BNX_PRINTF(sc, "----------------------------- Status Block "
5744 	    "-----------------------------\n");
5745 
5746 	BNX_PRINTF(sc,
5747 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5748 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5749 	    sblk->status_idx);
5750 
5751 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5752 	    sblk->status_rx_quick_consumer_index0,
5753 	    sblk->status_tx_quick_consumer_index0);
5754 
5755 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5756 
5757 	/* Theses indices are not used for normal L2 drivers. */
5758 	if (sblk->status_rx_quick_consumer_index1 ||
5759 		sblk->status_tx_quick_consumer_index1)
5760 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5761 		    sblk->status_rx_quick_consumer_index1,
5762 		    sblk->status_tx_quick_consumer_index1);
5763 
5764 	if (sblk->status_rx_quick_consumer_index2 ||
5765 		sblk->status_tx_quick_consumer_index2)
5766 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5767 		    sblk->status_rx_quick_consumer_index2,
5768 		    sblk->status_tx_quick_consumer_index2);
5769 
5770 	if (sblk->status_rx_quick_consumer_index3 ||
5771 		sblk->status_tx_quick_consumer_index3)
5772 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5773 		    sblk->status_rx_quick_consumer_index3,
5774 		    sblk->status_tx_quick_consumer_index3);
5775 
5776 	if (sblk->status_rx_quick_consumer_index4 ||
5777 		sblk->status_rx_quick_consumer_index5)
5778 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5779 		    sblk->status_rx_quick_consumer_index4,
5780 		    sblk->status_rx_quick_consumer_index5);
5781 
5782 	if (sblk->status_rx_quick_consumer_index6 ||
5783 		sblk->status_rx_quick_consumer_index7)
5784 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5785 		    sblk->status_rx_quick_consumer_index6,
5786 		    sblk->status_rx_quick_consumer_index7);
5787 
5788 	if (sblk->status_rx_quick_consumer_index8 ||
5789 		sblk->status_rx_quick_consumer_index9)
5790 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5791 		    sblk->status_rx_quick_consumer_index8,
5792 		    sblk->status_rx_quick_consumer_index9);
5793 
5794 	if (sblk->status_rx_quick_consumer_index10 ||
5795 		sblk->status_rx_quick_consumer_index11)
5796 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5797 		    sblk->status_rx_quick_consumer_index10,
5798 		    sblk->status_rx_quick_consumer_index11);
5799 
5800 	if (sblk->status_rx_quick_consumer_index12 ||
5801 		sblk->status_rx_quick_consumer_index13)
5802 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5803 		    sblk->status_rx_quick_consumer_index12,
5804 		    sblk->status_rx_quick_consumer_index13);
5805 
5806 	if (sblk->status_rx_quick_consumer_index14 ||
5807 		sblk->status_rx_quick_consumer_index15)
5808 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5809 		    sblk->status_rx_quick_consumer_index14,
5810 		    sblk->status_rx_quick_consumer_index15);
5811 
5812 	if (sblk->status_completion_producer_index ||
5813 		sblk->status_cmd_consumer_index)
5814 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5815 		    sblk->status_completion_producer_index,
5816 		    sblk->status_cmd_consumer_index);
5817 
5818 	BNX_PRINTF(sc, "-------------------------------------------"
5819 	    "-----------------------------\n");
5820 }
5821 
5822 /*
5823  * This routine prints the statistics block.
5824  */
5825 void
5826 bnx_dump_stats_block(struct bnx_softc *sc)
5827 {
5828 	struct statistics_block	*sblk;
5829 
5830 	sblk = sc->stats_block;
5831 
5832 	BNX_PRINTF(sc, ""
5833 	    "-----------------------------"
5834 	    " Stats  Block "
5835 	    "-----------------------------\n");
5836 
5837 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5838 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5839 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5840 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5841 
5842 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5843 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5844 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5845 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5846 
5847 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5848 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5849 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5850 	    sblk->stat_IfHCInMulticastPkts_hi,
5851 	    sblk->stat_IfHCInMulticastPkts_lo);
5852 
5853 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5854 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5855 	    sblk->stat_IfHCInBroadcastPkts_hi,
5856 	    sblk->stat_IfHCInBroadcastPkts_lo,
5857 	    sblk->stat_IfHCOutUcastPkts_hi,
5858 	    sblk->stat_IfHCOutUcastPkts_lo);
5859 
5860 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5861 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5862 	    sblk->stat_IfHCOutMulticastPkts_hi,
5863 	    sblk->stat_IfHCOutMulticastPkts_lo,
5864 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5865 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5866 
5867 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5868 		BNX_PRINTF(sc, "0x%08X : "
5869 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5870 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5871 
5872 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5873 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5874 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5875 
5876 	if (sblk->stat_Dot3StatsFCSErrors)
5877 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5878 		    sblk->stat_Dot3StatsFCSErrors);
5879 
5880 	if (sblk->stat_Dot3StatsAlignmentErrors)
5881 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5882 		    sblk->stat_Dot3StatsAlignmentErrors);
5883 
5884 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5885 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5886 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5887 
5888 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5889 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5890 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
5891 
5892 	if (sblk->stat_Dot3StatsDeferredTransmissions)
5893 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5894 		    sblk->stat_Dot3StatsDeferredTransmissions);
5895 
5896 	if (sblk->stat_Dot3StatsExcessiveCollisions)
5897 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5898 		    sblk->stat_Dot3StatsExcessiveCollisions);
5899 
5900 	if (sblk->stat_Dot3StatsLateCollisions)
5901 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5902 		    sblk->stat_Dot3StatsLateCollisions);
5903 
5904 	if (sblk->stat_EtherStatsCollisions)
5905 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5906 		    sblk->stat_EtherStatsCollisions);
5907 
5908 	if (sblk->stat_EtherStatsFragments)
5909 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5910 		    sblk->stat_EtherStatsFragments);
5911 
5912 	if (sblk->stat_EtherStatsJabbers)
5913 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5914 		    sblk->stat_EtherStatsJabbers);
5915 
5916 	if (sblk->stat_EtherStatsUndersizePkts)
5917 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5918 		    sblk->stat_EtherStatsUndersizePkts);
5919 
5920 	if (sblk->stat_EtherStatsOverrsizePkts)
5921 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5922 		    sblk->stat_EtherStatsOverrsizePkts);
5923 
5924 	if (sblk->stat_EtherStatsPktsRx64Octets)
5925 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5926 		    sblk->stat_EtherStatsPktsRx64Octets);
5927 
5928 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5929 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5930 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5931 
5932 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5933 		BNX_PRINTF(sc, "0x%08X : "
5934 		    "EtherStatsPktsRx128Octetsto255Octets\n",
5935 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5936 
5937 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5938 		BNX_PRINTF(sc, "0x%08X : "
5939 		    "EtherStatsPktsRx256Octetsto511Octets\n",
5940 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5941 
5942 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5943 		BNX_PRINTF(sc, "0x%08X : "
5944 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
5945 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5946 
5947 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5948 		BNX_PRINTF(sc, "0x%08X : "
5949 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
5950 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5951 
5952 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5953 		BNX_PRINTF(sc, "0x%08X : "
5954 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
5955 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5956 
5957 	if (sblk->stat_EtherStatsPktsTx64Octets)
5958 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5959 		    sblk->stat_EtherStatsPktsTx64Octets);
5960 
5961 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5962 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5963 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5964 
5965 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5966 		BNX_PRINTF(sc, "0x%08X : "
5967 		    "EtherStatsPktsTx128Octetsto255Octets\n",
5968 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5969 
5970 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5971 		BNX_PRINTF(sc, "0x%08X : "
5972 		    "EtherStatsPktsTx256Octetsto511Octets\n",
5973 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5974 
5975 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5976 		BNX_PRINTF(sc, "0x%08X : "
5977 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
5978 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5979 
5980 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5981 		BNX_PRINTF(sc, "0x%08X : "
5982 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
5983 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5984 
5985 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5986 		BNX_PRINTF(sc, "0x%08X : "
5987 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
5988 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5989 
5990 	if (sblk->stat_XonPauseFramesReceived)
5991 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5992 		    sblk->stat_XonPauseFramesReceived);
5993 
5994 	if (sblk->stat_XoffPauseFramesReceived)
5995 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5996 		    sblk->stat_XoffPauseFramesReceived);
5997 
5998 	if (sblk->stat_OutXonSent)
5999 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6000 		    sblk->stat_OutXonSent);
6001 
6002 	if (sblk->stat_OutXoffSent)
6003 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6004 		    sblk->stat_OutXoffSent);
6005 
6006 	if (sblk->stat_FlowControlDone)
6007 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6008 		    sblk->stat_FlowControlDone);
6009 
6010 	if (sblk->stat_MacControlFramesReceived)
6011 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6012 		    sblk->stat_MacControlFramesReceived);
6013 
6014 	if (sblk->stat_XoffStateEntered)
6015 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6016 		    sblk->stat_XoffStateEntered);
6017 
6018 	if (sblk->stat_IfInFramesL2FilterDiscards)
6019 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6020 		    sblk->stat_IfInFramesL2FilterDiscards);
6021 
6022 	if (sblk->stat_IfInRuleCheckerDiscards)
6023 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6024 		    sblk->stat_IfInRuleCheckerDiscards);
6025 
6026 	if (sblk->stat_IfInFTQDiscards)
6027 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6028 		    sblk->stat_IfInFTQDiscards);
6029 
6030 	if (sblk->stat_IfInMBUFDiscards)
6031 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6032 		    sblk->stat_IfInMBUFDiscards);
6033 
6034 	if (sblk->stat_IfInRuleCheckerP4Hit)
6035 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6036 		    sblk->stat_IfInRuleCheckerP4Hit);
6037 
6038 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6039 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6040 		    sblk->stat_CatchupInRuleCheckerDiscards);
6041 
6042 	if (sblk->stat_CatchupInFTQDiscards)
6043 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6044 		    sblk->stat_CatchupInFTQDiscards);
6045 
6046 	if (sblk->stat_CatchupInMBUFDiscards)
6047 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6048 		    sblk->stat_CatchupInMBUFDiscards);
6049 
6050 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6051 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6052 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6053 
6054 	BNX_PRINTF(sc,
6055 	    "-----------------------------"
6056 	    "--------------"
6057 	    "-----------------------------\n");
6058 }
6059 
6060 void
6061 bnx_dump_driver_state(struct bnx_softc *sc)
6062 {
6063 	BNX_PRINTF(sc,
6064 	    "-----------------------------"
6065 	    " Driver State "
6066 	    "-----------------------------\n");
6067 
6068 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6069 	    "address\n", sc);
6070 
6071 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6072 	    sc->status_block);
6073 
6074 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6075 	    "address\n", sc->stats_block);
6076 
6077 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6078 	    "adddress\n", sc->tx_bd_chain);
6079 
6080 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6081 	    sc->rx_bd_chain);
6082 
6083 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6084 	    sc->tx_mbuf_ptr);
6085 
6086 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6087 	    sc->rx_mbuf_ptr);
6088 
6089 	BNX_PRINTF(sc,
6090 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6091 	    sc->interrupts_generated);
6092 
6093 	BNX_PRINTF(sc,
6094 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6095 	    sc->rx_interrupts);
6096 
6097 	BNX_PRINTF(sc,
6098 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6099 	    sc->tx_interrupts);
6100 
6101 	BNX_PRINTF(sc,
6102 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6103 	    sc->last_status_idx);
6104 
6105 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6106 	    sc->tx_prod);
6107 
6108 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6109 	    sc->tx_cons);
6110 
6111 	BNX_PRINTF(sc,
6112 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6113 	    sc->tx_prod_bseq);
6114 
6115 	BNX_PRINTF(sc,
6116 	    "         0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6117 	    sc->tx_mbuf_alloc);
6118 
6119 	BNX_PRINTF(sc,
6120 	    "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6121 	    sc->used_tx_bd);
6122 
6123 	BNX_PRINTF(sc,
6124 	    "         0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6125 	    sc->tx_hi_watermark, sc->max_tx_bd);
6126 
6127 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6128 	    sc->rx_prod);
6129 
6130 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6131 	    sc->rx_cons);
6132 
6133 	BNX_PRINTF(sc,
6134 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6135 	    sc->rx_prod_bseq);
6136 
6137 	BNX_PRINTF(sc,
6138 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6139 	    sc->rx_mbuf_alloc);
6140 
6141 	BNX_PRINTF(sc,
6142 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6143 	    sc->rx_low_watermark, sc->max_rx_bd);
6144 
6145 	BNX_PRINTF(sc,
6146 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6147 	    "mbuf alloc failures\n",
6148 	    sc->mbuf_alloc_failed);
6149 
6150 	BNX_PRINTF(sc,
6151 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6152 	    "simulated mbuf alloc failures\n",
6153 	    sc->mbuf_sim_alloc_failed);
6154 
6155 	BNX_PRINTF(sc, "-------------------------------------------"
6156 	    "-----------------------------\n");
6157 }
6158 
6159 void
6160 bnx_dump_hw_state(struct bnx_softc *sc)
6161 {
6162 	u_int32_t		val1;
6163 	int			i;
6164 
6165 	BNX_PRINTF(sc,
6166 	    "----------------------------"
6167 	    " Hardware State "
6168 	    "----------------------------\n");
6169 
6170 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6171 
6172 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6173 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6174 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6175 
6176 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6177 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6178 
6179 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6180 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6181 
6182 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6183 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6184 	    BNX_EMAC_STATUS);
6185 
6186 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6187 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6188 
6189 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6190 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6191 	    BNX_TBDR_STATUS);
6192 
6193 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6194 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6195 	    BNX_TDMA_STATUS);
6196 
6197 	val1 = REG_RD(sc, BNX_HC_STATUS);
6198 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6199 
6200 	BNX_PRINTF(sc,
6201 	    "----------------------------"
6202 	    "----------------"
6203 	    "----------------------------\n");
6204 
6205 	BNX_PRINTF(sc,
6206 	    "----------------------------"
6207 	    " Register  Dump "
6208 	    "----------------------------\n");
6209 
6210 	for (i = 0x400; i < 0x8000; i += 0x10)
6211 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6212 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6213 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6214 
6215 	BNX_PRINTF(sc,
6216 	    "----------------------------"
6217 	    "----------------"
6218 	    "----------------------------\n");
6219 }
6220 
6221 void
6222 bnx_breakpoint(struct bnx_softc *sc)
6223 {
6224 	/* Unreachable code to shut the compiler up about unused functions. */
6225 	if (0) {
6226    		bnx_dump_txbd(sc, 0, NULL);
6227 		bnx_dump_rxbd(sc, 0, NULL);
6228 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6229 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6230 		bnx_dump_l2fhdr(sc, 0, NULL);
6231 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6232 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6233 		bnx_dump_status_block(sc);
6234 		bnx_dump_stats_block(sc);
6235 		bnx_dump_driver_state(sc);
6236 		bnx_dump_hw_state(sc);
6237 	}
6238 
6239 	bnx_dump_driver_state(sc);
6240 	/* Print the important status block fields. */
6241 	bnx_dump_status_block(sc);
6242 
6243 #if 0
6244 	/* Call the debugger. */
6245 	breakpoint();
6246 #endif
6247 
6248 	return;
6249 }
6250 #endif
6251