xref: /openbsd/sys/dev/pci/if_iwn.c (revision 3bef86f7)
1 /*	$OpenBSD: if_iwn.c,v 1.260 2022/06/19 18:27:06 stsp Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
21  * adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/rwlock.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/task.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_ra.h>
59 #include <net80211/ieee80211_radiotap.h>
60 #include <net80211/ieee80211_priv.h> /* for SEQ_LT */
61 #undef DPRINTF /* defined in ieee80211_priv.h */
62 
63 #include <dev/pci/if_iwnreg.h>
64 #include <dev/pci/if_iwnvar.h>
65 
66 static const struct pci_matchid iwn_devices[] = {
67 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
83 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
84 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
85 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
86 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
87 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
88 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
89 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
90 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
91 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
92 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 },
93 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 },
94 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 },
95 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 },
96 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 },
97 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 },
98 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 },
99 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 },
100 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 },
101 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 },
102 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 },
103 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 },
104 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 },
105 };
106 
107 int		iwn_match(struct device *, void *, void *);
108 void		iwn_attach(struct device *, struct device *, void *);
109 int		iwn4965_attach(struct iwn_softc *, pci_product_id_t);
110 int		iwn5000_attach(struct iwn_softc *, pci_product_id_t);
111 #if NBPFILTER > 0
112 void		iwn_radiotap_attach(struct iwn_softc *);
113 #endif
114 int		iwn_detach(struct device *, int);
115 int		iwn_activate(struct device *, int);
116 void		iwn_wakeup(struct iwn_softc *);
117 void		iwn_init_task(void *);
118 int		iwn_nic_lock(struct iwn_softc *);
119 int		iwn_eeprom_lock(struct iwn_softc *);
120 int		iwn_init_otprom(struct iwn_softc *);
121 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
122 int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
123 		    void **, bus_size_t, bus_size_t);
124 void		iwn_dma_contig_free(struct iwn_dma_info *);
125 int		iwn_alloc_sched(struct iwn_softc *);
126 void		iwn_free_sched(struct iwn_softc *);
127 int		iwn_alloc_kw(struct iwn_softc *);
128 void		iwn_free_kw(struct iwn_softc *);
129 int		iwn_alloc_ict(struct iwn_softc *);
130 void		iwn_free_ict(struct iwn_softc *);
131 int		iwn_alloc_fwmem(struct iwn_softc *);
132 void		iwn_free_fwmem(struct iwn_softc *);
133 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
134 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
135 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
136 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
137 		    int);
138 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
139 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
140 void		iwn5000_ict_reset(struct iwn_softc *);
141 int		iwn_read_eeprom(struct iwn_softc *);
142 void		iwn4965_read_eeprom(struct iwn_softc *);
143 void		iwn4965_print_power_group(struct iwn_softc *, int);
144 void		iwn5000_read_eeprom(struct iwn_softc *);
145 void		iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
146 void		iwn_read_eeprom_enhinfo(struct iwn_softc *);
147 struct		ieee80211_node *iwn_node_alloc(struct ieee80211com *);
148 void		iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
149 		    int);
150 int		iwn_media_change(struct ifnet *);
151 int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
152 void		iwn_iter_func(void *, struct ieee80211_node *);
153 void		iwn_calib_timeout(void *);
154 int		iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
155 		    struct ieee80211_node *);
156 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
157 		    struct iwn_rx_data *);
158 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
159 		    struct iwn_rx_data *, struct mbuf_list *);
160 void		iwn_ra_choose(struct iwn_softc *, struct ieee80211_node *);
161 void		iwn_ampdu_rate_control(struct iwn_softc *, struct ieee80211_node *,
162 		    struct iwn_tx_ring *, uint16_t, uint16_t);
163 void		iwn_ht_single_rate_control(struct iwn_softc *,
164 		    struct ieee80211_node *, uint8_t, uint8_t, uint8_t, int);
165 void		iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
166 		    struct iwn_rx_data *);
167 void		iwn5000_rx_calib_results(struct iwn_softc *,
168 		    struct iwn_rx_desc *, struct iwn_rx_data *);
169 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 void		iwn_ampdu_txq_advance(struct iwn_softc *, struct iwn_tx_ring *,
172 		    int, int);
173 void		iwn_ampdu_tx_done(struct iwn_softc *, struct iwn_tx_ring *,
174 		    struct iwn_rx_desc *, uint16_t, uint8_t, uint8_t, uint8_t,
175 		    int, uint32_t, struct iwn_txagg_status *);
176 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 void		iwn_tx_done_free_txdata(struct iwn_softc *,
181 		    struct iwn_tx_data *);
182 void		iwn_clear_oactive(struct iwn_softc *, struct iwn_tx_ring *);
183 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    uint8_t, uint8_t, uint8_t, int, int, uint16_t);
185 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
186 void		iwn_notif_intr(struct iwn_softc *);
187 void		iwn_wakeup_intr(struct iwn_softc *);
188 void		iwn_fatal_intr(struct iwn_softc *);
189 int		iwn_intr(void *);
190 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
191 		    uint16_t);
192 void		iwn4965_reset_sched(struct iwn_softc *, int, int);
193 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
196 int		iwn_tx(struct iwn_softc *, struct mbuf *,
197 		    struct ieee80211_node *);
198 int		iwn_rval2ridx(int);
199 void		iwn_start(struct ifnet *);
200 void		iwn_watchdog(struct ifnet *);
201 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
202 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
203 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
204 		    int);
205 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
206 		    int);
207 int		iwn_set_link_quality(struct iwn_softc *,
208 		    struct ieee80211_node *);
209 int		iwn_add_broadcast_node(struct iwn_softc *, int, int);
210 void		iwn_updateedca(struct ieee80211com *);
211 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
212 int		iwn_set_critical_temp(struct iwn_softc *);
213 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
214 void		iwn4965_power_calibration(struct iwn_softc *, int);
215 int		iwn4965_set_txpower(struct iwn_softc *, int);
216 int		iwn5000_set_txpower(struct iwn_softc *, int);
217 int		iwn4965_get_rssi(const struct iwn_rx_stat *);
218 int		iwn5000_get_rssi(const struct iwn_rx_stat *);
219 int		iwn_get_noise(const struct iwn_rx_general_stats *);
220 int		iwn4965_get_temperature(struct iwn_softc *);
221 int		iwn5000_get_temperature(struct iwn_softc *);
222 int		iwn_init_sensitivity(struct iwn_softc *);
223 void		iwn_collect_noise(struct iwn_softc *,
224 		    const struct iwn_rx_general_stats *);
225 int		iwn4965_init_gains(struct iwn_softc *);
226 int		iwn5000_init_gains(struct iwn_softc *);
227 int		iwn4965_set_gains(struct iwn_softc *);
228 int		iwn5000_set_gains(struct iwn_softc *);
229 void		iwn_tune_sensitivity(struct iwn_softc *,
230 		    const struct iwn_rx_stats *);
231 int		iwn_send_sensitivity(struct iwn_softc *);
232 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
233 int		iwn_send_temperature_offset(struct iwn_softc *);
234 int		iwn_send_btcoex(struct iwn_softc *);
235 int		iwn_send_advanced_btcoex(struct iwn_softc *);
236 int		iwn5000_runtime_calib(struct iwn_softc *);
237 int		iwn_config(struct iwn_softc *);
238 uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t);
239 uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
240 uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
241 int		iwn_scan(struct iwn_softc *, uint16_t, int);
242 void		iwn_scan_abort(struct iwn_softc *);
243 int		iwn_bgscan(struct ieee80211com *);
244 void		iwn_rxon_configure_ht40(struct ieee80211com *,
245 		    struct ieee80211_node *);
246 int		iwn_rxon_ht40_enabled(struct iwn_softc *);
247 int		iwn_auth(struct iwn_softc *, int);
248 int		iwn_run(struct iwn_softc *);
249 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
250 		    struct ieee80211_key *);
251 void		iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
252 		    struct ieee80211_key *);
253 void		iwn_updatechan(struct ieee80211com *);
254 void		iwn_updateprot(struct ieee80211com *);
255 void		iwn_updateslot(struct ieee80211com *);
256 void		iwn_update_rxon_restore_power(struct iwn_softc *);
257 void		iwn5000_update_rxon(struct iwn_softc *);
258 void		iwn4965_update_rxon(struct iwn_softc *);
259 int		iwn_ampdu_rx_start(struct ieee80211com *,
260 		    struct ieee80211_node *, uint8_t);
261 void		iwn_ampdu_rx_stop(struct ieee80211com *,
262 		    struct ieee80211_node *, uint8_t);
263 int		iwn_ampdu_tx_start(struct ieee80211com *,
264 		    struct ieee80211_node *, uint8_t);
265 void		iwn_ampdu_tx_stop(struct ieee80211com *,
266 		    struct ieee80211_node *, uint8_t);
267 void		iwn4965_ampdu_tx_start(struct iwn_softc *,
268 		    struct ieee80211_node *, uint8_t, uint16_t);
269 void		iwn4965_ampdu_tx_stop(struct iwn_softc *,
270 		    uint8_t, uint16_t);
271 void		iwn5000_ampdu_tx_start(struct iwn_softc *,
272 		    struct ieee80211_node *, uint8_t, uint16_t);
273 void		iwn5000_ampdu_tx_stop(struct iwn_softc *,
274 		    uint8_t, uint16_t);
275 int		iwn5000_query_calibration(struct iwn_softc *);
276 int		iwn5000_send_calibration(struct iwn_softc *);
277 int		iwn5000_send_wimax_coex(struct iwn_softc *);
278 int		iwn5000_crystal_calib(struct iwn_softc *);
279 int		iwn6000_temp_offset_calib(struct iwn_softc *);
280 int		iwn2000_temp_offset_calib(struct iwn_softc *);
281 int		iwn4965_post_alive(struct iwn_softc *);
282 int		iwn5000_post_alive(struct iwn_softc *);
283 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
284 		    int);
285 int		iwn4965_load_firmware(struct iwn_softc *);
286 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
287 		    const uint8_t *, int);
288 int		iwn5000_load_firmware(struct iwn_softc *);
289 int		iwn_read_firmware_leg(struct iwn_softc *,
290 		    struct iwn_fw_info *);
291 int		iwn_read_firmware_tlv(struct iwn_softc *,
292 		    struct iwn_fw_info *, uint16_t);
293 int		iwn_read_firmware(struct iwn_softc *);
294 int		iwn_clock_wait(struct iwn_softc *);
295 int		iwn_apm_init(struct iwn_softc *);
296 void		iwn_apm_stop_master(struct iwn_softc *);
297 void		iwn_apm_stop(struct iwn_softc *);
298 int		iwn4965_nic_config(struct iwn_softc *);
299 int		iwn5000_nic_config(struct iwn_softc *);
300 int		iwn_hw_prepare(struct iwn_softc *);
301 int		iwn_hw_init(struct iwn_softc *);
302 void		iwn_hw_stop(struct iwn_softc *);
303 int		iwn_init(struct ifnet *);
304 void		iwn_stop(struct ifnet *);
305 
306 #ifdef IWN_DEBUG
307 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
308 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
309 int iwn_debug = 1;
310 #else
311 #define DPRINTF(x)
312 #define DPRINTFN(n, x)
313 #endif
314 
315 struct cfdriver iwn_cd = {
316 	NULL, "iwn", DV_IFNET
317 };
318 
319 const struct cfattach iwn_ca = {
320 	sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
321 	iwn_activate
322 };
323 
324 int
325 iwn_match(struct device *parent, void *match, void *aux)
326 {
327 	return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
328 	    nitems(iwn_devices));
329 }
330 
331 void
332 iwn_attach(struct device *parent, struct device *self, void *aux)
333 {
334 	struct iwn_softc *sc = (struct iwn_softc *)self;
335 	struct ieee80211com *ic = &sc->sc_ic;
336 	struct ifnet *ifp = &ic->ic_if;
337 	struct pci_attach_args *pa = aux;
338 	const char *intrstr;
339 	pci_intr_handle_t ih;
340 	pcireg_t memtype, reg;
341 	int i, error;
342 
343 	sc->sc_pct = pa->pa_pc;
344 	sc->sc_pcitag = pa->pa_tag;
345 	sc->sc_dmat = pa->pa_dmat;
346 
347 	/*
348 	 * Get the offset of the PCI Express Capability Structure in PCI
349 	 * Configuration Space.
350 	 */
351 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
352 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
353 	if (error == 0) {
354 		printf(": PCIe capability structure not found!\n");
355 		return;
356 	}
357 
358 	/* Clear device-specific "PCI retry timeout" register (41h). */
359 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
360 	if (reg & 0xff00)
361 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
362 
363 	/* Hardware bug workaround. */
364 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
365 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
366 		DPRINTF(("PCIe INTx Disable set\n"));
367 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
368 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
369 		    PCI_COMMAND_STATUS_REG, reg);
370 	}
371 
372 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
373 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
374 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
375 	if (error != 0) {
376 		printf(": can't map mem space\n");
377 		return;
378 	}
379 
380 	/* Install interrupt handler. */
381 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
382 		printf(": can't map interrupt\n");
383 		return;
384 	}
385 	intrstr = pci_intr_string(sc->sc_pct, ih);
386 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
387 	    sc->sc_dev.dv_xname);
388 	if (sc->sc_ih == NULL) {
389 		printf(": can't establish interrupt");
390 		if (intrstr != NULL)
391 			printf(" at %s", intrstr);
392 		printf("\n");
393 		return;
394 	}
395 	printf(": %s", intrstr);
396 
397 	/* Read hardware revision and attach. */
398 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f;
399 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
400 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
401 	else
402 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
403 	if (error != 0) {
404 		printf(": could not attach device\n");
405 		return;
406 	}
407 
408 	if ((error = iwn_hw_prepare(sc)) != 0) {
409 		printf(": hardware not ready\n");
410 		return;
411 	}
412 
413 	/* Read MAC address, channels, etc from EEPROM. */
414 	if ((error = iwn_read_eeprom(sc)) != 0) {
415 		printf(": could not read EEPROM\n");
416 		return;
417 	}
418 
419 	/* Allocate DMA memory for firmware transfers. */
420 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
421 		printf(": could not allocate memory for firmware\n");
422 		return;
423 	}
424 
425 	/* Allocate "Keep Warm" page. */
426 	if ((error = iwn_alloc_kw(sc)) != 0) {
427 		printf(": could not allocate keep warm page\n");
428 		goto fail1;
429 	}
430 
431 	/* Allocate ICT table for 5000 Series. */
432 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
433 	    (error = iwn_alloc_ict(sc)) != 0) {
434 		printf(": could not allocate ICT table\n");
435 		goto fail2;
436 	}
437 
438 	/* Allocate TX scheduler "rings". */
439 	if ((error = iwn_alloc_sched(sc)) != 0) {
440 		printf(": could not allocate TX scheduler rings\n");
441 		goto fail3;
442 	}
443 
444 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
445 	for (i = 0; i < sc->ntxqs; i++) {
446 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
447 			printf(": could not allocate TX ring %d\n", i);
448 			goto fail4;
449 		}
450 	}
451 
452 	/* Allocate RX ring. */
453 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
454 		printf(": could not allocate RX ring\n");
455 		goto fail4;
456 	}
457 
458 	/* Clear pending interrupts. */
459 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
460 
461 	/* Count the number of available chains. */
462 	sc->ntxchains =
463 	    ((sc->txchainmask >> 2) & 1) +
464 	    ((sc->txchainmask >> 1) & 1) +
465 	    ((sc->txchainmask >> 0) & 1);
466 	sc->nrxchains =
467 	    ((sc->rxchainmask >> 2) & 1) +
468 	    ((sc->rxchainmask >> 1) & 1) +
469 	    ((sc->rxchainmask >> 0) & 1);
470 	printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
471 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
472 
473 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
474 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
475 	ic->ic_state = IEEE80211_S_INIT;
476 
477 	/* Set device capabilities. */
478 	ic->ic_caps =
479 	    IEEE80211_C_WEP |		/* WEP */
480 	    IEEE80211_C_RSN |		/* WPA/RSN */
481 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
482 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
483 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
484 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
485 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
486 	    IEEE80211_C_PMGT;		/* power saving supported */
487 
488 	/* No optional HT features supported for now, */
489 	ic->ic_htcaps = 0;
490 	ic->ic_htxcaps = 0;
491 	ic->ic_txbfcaps = 0;
492 	ic->ic_aselcaps = 0;
493 	ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
494 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
495 		ic->ic_caps |= (IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU);
496 		/* Set HT capabilities. */
497 		ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
498 		/* 6200 devices have issues with SGI40 for some reason. */
499 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0)
500 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI40;
501 		ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40;
502 #ifdef notyet
503 		ic->ic_htcaps |=
504 #if IWN_RBUF_SIZE == 8192
505 		    IEEE80211_HTCAP_AMSDU7935 |
506 #endif
507 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
508 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
509 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
510 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
511 		else
512 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
513 #endif	/* notyet */
514 	}
515 
516 	/* Set supported legacy rates. */
517 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
518 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
519 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
520 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
521 		    ieee80211_std_rateset_11a;
522 	}
523 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
524 		/* Set supported HT rates. */
525 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
526 #ifdef notyet
527 		if (sc->nrxchains > 1)
528 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 8-15 */
529 		if (sc->nrxchains > 2)
530 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
531 #endif
532 	}
533 
534 	/* IBSS channel undefined for now. */
535 	ic->ic_ibss_chan = &ic->ic_channels[0];
536 
537 	ifp->if_softc = sc;
538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 	ifp->if_ioctl = iwn_ioctl;
540 	ifp->if_start = iwn_start;
541 	ifp->if_watchdog = iwn_watchdog;
542 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
543 
544 	if_attach(ifp);
545 	ieee80211_ifattach(ifp);
546 	ic->ic_node_alloc = iwn_node_alloc;
547 	ic->ic_bgscan_start = iwn_bgscan;
548 	ic->ic_newassoc = iwn_newassoc;
549 	ic->ic_updateedca = iwn_updateedca;
550 	ic->ic_set_key = iwn_set_key;
551 	ic->ic_delete_key = iwn_delete_key;
552 	ic->ic_updatechan = iwn_updatechan;
553 	ic->ic_updateprot = iwn_updateprot;
554 	ic->ic_updateslot = iwn_updateslot;
555 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
556 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
557 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
558 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
559 
560 	/* Override 802.11 state transition machine. */
561 	sc->sc_newstate = ic->ic_newstate;
562 	ic->ic_newstate = iwn_newstate;
563 	ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
564 
565 	sc->amrr.amrr_min_success_threshold =  1;
566 	sc->amrr.amrr_max_success_threshold = 15;
567 
568 #if NBPFILTER > 0
569 	iwn_radiotap_attach(sc);
570 #endif
571 	timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
572 	rw_init(&sc->sc_rwlock, "iwnlock");
573 	task_set(&sc->init_task, iwn_init_task, sc);
574 	return;
575 
576 	/* Free allocated memory if something failed during attachment. */
577 fail4:	while (--i >= 0)
578 		iwn_free_tx_ring(sc, &sc->txq[i]);
579 	iwn_free_sched(sc);
580 fail3:	if (sc->ict != NULL)
581 		iwn_free_ict(sc);
582 fail2:	iwn_free_kw(sc);
583 fail1:	iwn_free_fwmem(sc);
584 }
585 
586 int
587 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
588 {
589 	struct iwn_ops *ops = &sc->ops;
590 
591 	ops->load_firmware = iwn4965_load_firmware;
592 	ops->read_eeprom = iwn4965_read_eeprom;
593 	ops->post_alive = iwn4965_post_alive;
594 	ops->nic_config = iwn4965_nic_config;
595 	ops->reset_sched = iwn4965_reset_sched;
596 	ops->update_sched = iwn4965_update_sched;
597 	ops->update_rxon = iwn4965_update_rxon;
598 	ops->get_temperature = iwn4965_get_temperature;
599 	ops->get_rssi = iwn4965_get_rssi;
600 	ops->set_txpower = iwn4965_set_txpower;
601 	ops->init_gains = iwn4965_init_gains;
602 	ops->set_gains = iwn4965_set_gains;
603 	ops->add_node = iwn4965_add_node;
604 	ops->tx_done = iwn4965_tx_done;
605 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
606 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
607 	sc->ntxqs = IWN4965_NTXQUEUES;
608 	sc->first_agg_txq = IWN4965_FIRST_AGG_TXQUEUE;
609 	sc->ndmachnls = IWN4965_NDMACHNLS;
610 	sc->broadcast_id = IWN4965_ID_BROADCAST;
611 	sc->rxonsz = IWN4965_RXONSZ;
612 	sc->schedsz = IWN4965_SCHEDSZ;
613 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
614 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
615 	sc->fwsz = IWN4965_FWSZ;
616 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
617 	sc->limits = &iwn4965_sensitivity_limits;
618 	sc->fwname = "iwn-4965";
619 	/* Override chains masks, ROM is known to be broken. */
620 	sc->txchainmask = IWN_ANT_AB;
621 	sc->rxchainmask = IWN_ANT_ABC;
622 
623 	return 0;
624 }
625 
626 int
627 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
628 {
629 	struct iwn_ops *ops = &sc->ops;
630 
631 	ops->load_firmware = iwn5000_load_firmware;
632 	ops->read_eeprom = iwn5000_read_eeprom;
633 	ops->post_alive = iwn5000_post_alive;
634 	ops->nic_config = iwn5000_nic_config;
635 	ops->reset_sched = iwn5000_reset_sched;
636 	ops->update_sched = iwn5000_update_sched;
637 	ops->update_rxon = iwn5000_update_rxon;
638 	ops->get_temperature = iwn5000_get_temperature;
639 	ops->get_rssi = iwn5000_get_rssi;
640 	ops->set_txpower = iwn5000_set_txpower;
641 	ops->init_gains = iwn5000_init_gains;
642 	ops->set_gains = iwn5000_set_gains;
643 	ops->add_node = iwn5000_add_node;
644 	ops->tx_done = iwn5000_tx_done;
645 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
646 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
647 	sc->ntxqs = IWN5000_NTXQUEUES;
648 	sc->first_agg_txq = IWN5000_FIRST_AGG_TXQUEUE;
649 	sc->ndmachnls = IWN5000_NDMACHNLS;
650 	sc->broadcast_id = IWN5000_ID_BROADCAST;
651 	sc->rxonsz = IWN5000_RXONSZ;
652 	sc->schedsz = IWN5000_SCHEDSZ;
653 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
654 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
655 	sc->fwsz = IWN5000_FWSZ;
656 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
657 
658 	switch (sc->hw_type) {
659 	case IWN_HW_REV_TYPE_5100:
660 		sc->limits = &iwn5000_sensitivity_limits;
661 		sc->fwname = "iwn-5000";
662 		/* Override chains masks, ROM is known to be broken. */
663 		sc->txchainmask = IWN_ANT_B;
664 		sc->rxchainmask = IWN_ANT_AB;
665 		break;
666 	case IWN_HW_REV_TYPE_5150:
667 		sc->limits = &iwn5150_sensitivity_limits;
668 		sc->fwname = "iwn-5150";
669 		break;
670 	case IWN_HW_REV_TYPE_5300:
671 	case IWN_HW_REV_TYPE_5350:
672 		sc->limits = &iwn5000_sensitivity_limits;
673 		sc->fwname = "iwn-5000";
674 		break;
675 	case IWN_HW_REV_TYPE_1000:
676 		sc->limits = &iwn1000_sensitivity_limits;
677 		sc->fwname = "iwn-1000";
678 		break;
679 	case IWN_HW_REV_TYPE_6000:
680 		sc->limits = &iwn6000_sensitivity_limits;
681 		sc->fwname = "iwn-6000";
682 		if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
683 		    pid == PCI_PRODUCT_INTEL_WL_6200_2) {
684 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
685 			/* Override chains masks, ROM is known to be broken. */
686 			sc->txchainmask = IWN_ANT_BC;
687 			sc->rxchainmask = IWN_ANT_BC;
688 		}
689 		break;
690 	case IWN_HW_REV_TYPE_6050:
691 		sc->limits = &iwn6000_sensitivity_limits;
692 		sc->fwname = "iwn-6050";
693 		break;
694 	case IWN_HW_REV_TYPE_6005:
695 		sc->limits = &iwn6000_sensitivity_limits;
696 		if (pid != PCI_PRODUCT_INTEL_WL_6005_1 &&
697 		    pid != PCI_PRODUCT_INTEL_WL_6005_2) {
698 			sc->fwname = "iwn-6030";
699 			sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
700 		} else
701 			sc->fwname = "iwn-6005";
702 		break;
703 	case IWN_HW_REV_TYPE_2030:
704 		sc->limits = &iwn2000_sensitivity_limits;
705 		sc->fwname = "iwn-2030";
706 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
707 		break;
708 	case IWN_HW_REV_TYPE_2000:
709 		sc->limits = &iwn2000_sensitivity_limits;
710 		sc->fwname = "iwn-2000";
711 		break;
712 	case IWN_HW_REV_TYPE_135:
713 		sc->limits = &iwn2000_sensitivity_limits;
714 		sc->fwname = "iwn-135";
715 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
716 		break;
717 	case IWN_HW_REV_TYPE_105:
718 		sc->limits = &iwn2000_sensitivity_limits;
719 		sc->fwname = "iwn-105";
720 		break;
721 	default:
722 		printf(": adapter type %d not supported\n", sc->hw_type);
723 		return ENOTSUP;
724 	}
725 	return 0;
726 }
727 
728 #if NBPFILTER > 0
729 /*
730  * Attach the interface to 802.11 radiotap.
731  */
732 void
733 iwn_radiotap_attach(struct iwn_softc *sc)
734 {
735 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
736 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
737 
738 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
739 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
740 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
741 
742 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
743 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
744 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
745 }
746 #endif
747 
748 int
749 iwn_detach(struct device *self, int flags)
750 {
751 	struct iwn_softc *sc = (struct iwn_softc *)self;
752 	struct ifnet *ifp = &sc->sc_ic.ic_if;
753 	int qid;
754 
755 	timeout_del(&sc->calib_to);
756 	task_del(systq, &sc->init_task);
757 
758 	/* Uninstall interrupt handler. */
759 	if (sc->sc_ih != NULL)
760 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
761 
762 	/* Free DMA resources. */
763 	iwn_free_rx_ring(sc, &sc->rxq);
764 	for (qid = 0; qid < sc->ntxqs; qid++)
765 		iwn_free_tx_ring(sc, &sc->txq[qid]);
766 	iwn_free_sched(sc);
767 	iwn_free_kw(sc);
768 	if (sc->ict != NULL)
769 		iwn_free_ict(sc);
770 	iwn_free_fwmem(sc);
771 
772 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
773 
774 	ieee80211_ifdetach(ifp);
775 	if_detach(ifp);
776 
777 	return 0;
778 }
779 
780 int
781 iwn_activate(struct device *self, int act)
782 {
783 	struct iwn_softc *sc = (struct iwn_softc *)self;
784 	struct ifnet *ifp = &sc->sc_ic.ic_if;
785 
786 	switch (act) {
787 	case DVACT_SUSPEND:
788 		if (ifp->if_flags & IFF_RUNNING)
789 			iwn_stop(ifp);
790 		break;
791 	case DVACT_WAKEUP:
792 		iwn_wakeup(sc);
793 		break;
794 	}
795 
796 	return 0;
797 }
798 
799 void
800 iwn_wakeup(struct iwn_softc *sc)
801 {
802 	pcireg_t reg;
803 
804 	/* Clear device-specific "PCI retry timeout" register (41h). */
805 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
806 	if (reg & 0xff00)
807 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
808 	iwn_init_task(sc);
809 }
810 
811 void
812 iwn_init_task(void *arg1)
813 {
814 	struct iwn_softc *sc = arg1;
815 	struct ifnet *ifp = &sc->sc_ic.ic_if;
816 	int s;
817 
818 	rw_enter_write(&sc->sc_rwlock);
819 	s = splnet();
820 
821 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
822 		iwn_init(ifp);
823 
824 	splx(s);
825 	rw_exit_write(&sc->sc_rwlock);
826 }
827 
828 int
829 iwn_nic_lock(struct iwn_softc *sc)
830 {
831 	int ntries;
832 
833 	/* Request exclusive access to NIC. */
834 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
835 
836 	/* Spin until we actually get the lock. */
837 	for (ntries = 0; ntries < 1000; ntries++) {
838 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
839 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
840 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
841 			return 0;
842 		DELAY(10);
843 	}
844 	return ETIMEDOUT;
845 }
846 
847 static __inline void
848 iwn_nic_unlock(struct iwn_softc *sc)
849 {
850 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
851 }
852 
853 static __inline uint32_t
854 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
855 {
856 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
857 	IWN_BARRIER_READ_WRITE(sc);
858 	return IWN_READ(sc, IWN_PRPH_RDATA);
859 }
860 
861 static __inline void
862 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
863 {
864 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
865 	IWN_BARRIER_WRITE(sc);
866 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
867 }
868 
869 static __inline void
870 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
871 {
872 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
873 }
874 
875 static __inline void
876 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
877 {
878 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
879 }
880 
881 static __inline void
882 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
883     const uint32_t *data, int count)
884 {
885 	for (; count > 0; count--, data++, addr += 4)
886 		iwn_prph_write(sc, addr, *data);
887 }
888 
889 static __inline uint32_t
890 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
891 {
892 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
893 	IWN_BARRIER_READ_WRITE(sc);
894 	return IWN_READ(sc, IWN_MEM_RDATA);
895 }
896 
897 static __inline void
898 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
899 {
900 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
901 	IWN_BARRIER_WRITE(sc);
902 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
903 }
904 
905 static __inline void
906 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
907 {
908 	uint32_t tmp;
909 
910 	tmp = iwn_mem_read(sc, addr & ~3);
911 	if (addr & 3)
912 		tmp = (tmp & 0x0000ffff) | data << 16;
913 	else
914 		tmp = (tmp & 0xffff0000) | data;
915 	iwn_mem_write(sc, addr & ~3, tmp);
916 }
917 
918 static __inline void
919 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
920     int count)
921 {
922 	for (; count > 0; count--, addr += 4)
923 		*data++ = iwn_mem_read(sc, addr);
924 }
925 
926 static __inline void
927 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
928     int count)
929 {
930 	for (; count > 0; count--, addr += 4)
931 		iwn_mem_write(sc, addr, val);
932 }
933 
934 int
935 iwn_eeprom_lock(struct iwn_softc *sc)
936 {
937 	int i, ntries;
938 
939 	for (i = 0; i < 100; i++) {
940 		/* Request exclusive access to EEPROM. */
941 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
942 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
943 
944 		/* Spin until we actually get the lock. */
945 		for (ntries = 0; ntries < 100; ntries++) {
946 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
947 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
948 				return 0;
949 			DELAY(10);
950 		}
951 	}
952 	return ETIMEDOUT;
953 }
954 
955 static __inline void
956 iwn_eeprom_unlock(struct iwn_softc *sc)
957 {
958 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
959 }
960 
961 /*
962  * Initialize access by host to One Time Programmable ROM.
963  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
964  */
965 int
966 iwn_init_otprom(struct iwn_softc *sc)
967 {
968 	uint16_t prev, base, next;
969 	int count, error;
970 
971 	/* Wait for clock stabilization before accessing prph. */
972 	if ((error = iwn_clock_wait(sc)) != 0)
973 		return error;
974 
975 	if ((error = iwn_nic_lock(sc)) != 0)
976 		return error;
977 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
978 	DELAY(5);
979 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
980 	iwn_nic_unlock(sc);
981 
982 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
983 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
984 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
985 		    IWN_RESET_LINK_PWR_MGMT_DIS);
986 	}
987 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
988 	/* Clear ECC status. */
989 	IWN_SETBITS(sc, IWN_OTP_GP,
990 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
991 
992 	/*
993 	 * Find the block before last block (contains the EEPROM image)
994 	 * for HW without OTP shadow RAM.
995 	 */
996 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
997 		/* Switch to absolute addressing mode. */
998 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
999 		base = 0;
1000 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1001 			error = iwn_read_prom_data(sc, base, &next, 2);
1002 			if (error != 0)
1003 				return error;
1004 			if (next == 0)	/* End of linked-list. */
1005 				break;
1006 			prev = base;
1007 			base = letoh16(next);
1008 		}
1009 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1010 			return EIO;
1011 		/* Skip "next" word. */
1012 		sc->prom_base = prev + 1;
1013 	}
1014 	return 0;
1015 }
1016 
1017 int
1018 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1019 {
1020 	uint8_t *out = data;
1021 	uint32_t val, tmp;
1022 	int ntries;
1023 
1024 	addr += sc->prom_base;
1025 	for (; count > 0; count -= 2, addr++) {
1026 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1027 		for (ntries = 0; ntries < 10; ntries++) {
1028 			val = IWN_READ(sc, IWN_EEPROM);
1029 			if (val & IWN_EEPROM_READ_VALID)
1030 				break;
1031 			DELAY(5);
1032 		}
1033 		if (ntries == 10) {
1034 			printf("%s: timeout reading ROM at 0x%x\n",
1035 			    sc->sc_dev.dv_xname, addr);
1036 			return ETIMEDOUT;
1037 		}
1038 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1039 			/* OTPROM, check for ECC errors. */
1040 			tmp = IWN_READ(sc, IWN_OTP_GP);
1041 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1042 				printf("%s: OTPROM ECC error at 0x%x\n",
1043 				    sc->sc_dev.dv_xname, addr);
1044 				return EIO;
1045 			}
1046 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1047 				/* Correctable ECC error, clear bit. */
1048 				IWN_SETBITS(sc, IWN_OTP_GP,
1049 				    IWN_OTP_GP_ECC_CORR_STTS);
1050 			}
1051 		}
1052 		*out++ = val >> 16;
1053 		if (count > 1)
1054 			*out++ = val >> 24;
1055 	}
1056 	return 0;
1057 }
1058 
1059 int
1060 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1061     bus_size_t size, bus_size_t alignment)
1062 {
1063 	int nsegs, error;
1064 
1065 	dma->tag = tag;
1066 	dma->size = size;
1067 
1068 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1069 	    &dma->map);
1070 	if (error != 0)
1071 		goto fail;
1072 
1073 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1074 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
1075 	if (error != 0)
1076 		goto fail;
1077 
1078 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1079 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1080 	if (error != 0)
1081 		goto fail;
1082 
1083 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
1084 	    BUS_DMA_NOWAIT);
1085 	if (error != 0)
1086 		goto fail;
1087 
1088 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1089 
1090 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1091 	if (kvap != NULL)
1092 		*kvap = dma->vaddr;
1093 
1094 	return 0;
1095 
1096 fail:	iwn_dma_contig_free(dma);
1097 	return error;
1098 }
1099 
1100 void
1101 iwn_dma_contig_free(struct iwn_dma_info *dma)
1102 {
1103 	if (dma->map != NULL) {
1104 		if (dma->vaddr != NULL) {
1105 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1106 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1107 			bus_dmamap_unload(dma->tag, dma->map);
1108 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1109 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1110 			dma->vaddr = NULL;
1111 		}
1112 		bus_dmamap_destroy(dma->tag, dma->map);
1113 		dma->map = NULL;
1114 	}
1115 }
1116 
1117 int
1118 iwn_alloc_sched(struct iwn_softc *sc)
1119 {
1120 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1121 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1122 	    (void **)&sc->sched, sc->schedsz, 1024);
1123 }
1124 
1125 void
1126 iwn_free_sched(struct iwn_softc *sc)
1127 {
1128 	iwn_dma_contig_free(&sc->sched_dma);
1129 }
1130 
1131 int
1132 iwn_alloc_kw(struct iwn_softc *sc)
1133 {
1134 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1135 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1136 	    4096);
1137 }
1138 
1139 void
1140 iwn_free_kw(struct iwn_softc *sc)
1141 {
1142 	iwn_dma_contig_free(&sc->kw_dma);
1143 }
1144 
1145 int
1146 iwn_alloc_ict(struct iwn_softc *sc)
1147 {
1148 	/* ICT table must be aligned on a 4KB boundary. */
1149 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1150 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1151 }
1152 
1153 void
1154 iwn_free_ict(struct iwn_softc *sc)
1155 {
1156 	iwn_dma_contig_free(&sc->ict_dma);
1157 }
1158 
1159 int
1160 iwn_alloc_fwmem(struct iwn_softc *sc)
1161 {
1162 	/* Must be aligned on a 16-byte boundary. */
1163 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1164 	    sc->fwsz, 16);
1165 }
1166 
1167 void
1168 iwn_free_fwmem(struct iwn_softc *sc)
1169 {
1170 	iwn_dma_contig_free(&sc->fw_dma);
1171 }
1172 
1173 int
1174 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1175 {
1176 	bus_size_t size;
1177 	int i, error;
1178 
1179 	ring->cur = 0;
1180 
1181 	/* Allocate RX descriptors (256-byte aligned). */
1182 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1183 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1184 	    (void **)&ring->desc, size, 256);
1185 	if (error != 0) {
1186 		printf("%s: could not allocate RX ring DMA memory\n",
1187 		    sc->sc_dev.dv_xname);
1188 		goto fail;
1189 	}
1190 
1191 	/* Allocate RX status area (16-byte aligned). */
1192 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1193 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1194 	if (error != 0) {
1195 		printf("%s: could not allocate RX status DMA memory\n",
1196 		    sc->sc_dev.dv_xname);
1197 		goto fail;
1198 	}
1199 
1200 	/*
1201 	 * Allocate and map RX buffers.
1202 	 */
1203 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1204 		struct iwn_rx_data *data = &ring->data[i];
1205 
1206 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1207 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1208 		    &data->map);
1209 		if (error != 0) {
1210 			printf("%s: could not create RX buf DMA map\n",
1211 			    sc->sc_dev.dv_xname);
1212 			goto fail;
1213 		}
1214 
1215 		data->m = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
1216 		if (data->m == NULL) {
1217 			printf("%s: could not allocate RX mbuf\n",
1218 			    sc->sc_dev.dv_xname);
1219 			error = ENOBUFS;
1220 			goto fail;
1221 		}
1222 
1223 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1224 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1225 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1226 		if (error != 0) {
1227 			printf("%s: can't map mbuf (error %d)\n",
1228 			    sc->sc_dev.dv_xname, error);
1229 			goto fail;
1230 		}
1231 
1232 		/* Set physical address of RX buffer (256-byte aligned). */
1233 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1234 	}
1235 
1236 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1237 	    BUS_DMASYNC_PREWRITE);
1238 
1239 	return 0;
1240 
1241 fail:	iwn_free_rx_ring(sc, ring);
1242 	return error;
1243 }
1244 
1245 void
1246 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1247 {
1248 	int ntries;
1249 
1250 	if (iwn_nic_lock(sc) == 0) {
1251 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1252 		for (ntries = 0; ntries < 1000; ntries++) {
1253 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1254 			    IWN_FH_RX_STATUS_IDLE)
1255 				break;
1256 			DELAY(10);
1257 		}
1258 		iwn_nic_unlock(sc);
1259 	}
1260 	ring->cur = 0;
1261 	sc->last_rx_valid = 0;
1262 }
1263 
1264 void
1265 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1266 {
1267 	int i;
1268 
1269 	iwn_dma_contig_free(&ring->desc_dma);
1270 	iwn_dma_contig_free(&ring->stat_dma);
1271 
1272 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1273 		struct iwn_rx_data *data = &ring->data[i];
1274 
1275 		if (data->m != NULL) {
1276 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1277 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1278 			bus_dmamap_unload(sc->sc_dmat, data->map);
1279 			m_freem(data->m);
1280 		}
1281 		if (data->map != NULL)
1282 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1283 	}
1284 }
1285 
1286 int
1287 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1288 {
1289 	bus_addr_t paddr;
1290 	bus_size_t size;
1291 	int i, error;
1292 
1293 	ring->qid = qid;
1294 	ring->queued = 0;
1295 	ring->cur = 0;
1296 
1297 	/* Allocate TX descriptors (256-byte aligned). */
1298 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1299 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1300 	    (void **)&ring->desc, size, 256);
1301 	if (error != 0) {
1302 		printf("%s: could not allocate TX ring DMA memory\n",
1303 		    sc->sc_dev.dv_xname);
1304 		goto fail;
1305 	}
1306 
1307 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1308 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1309 	    (void **)&ring->cmd, size, 4);
1310 	if (error != 0) {
1311 		printf("%s: could not allocate TX cmd DMA memory\n",
1312 		    sc->sc_dev.dv_xname);
1313 		goto fail;
1314 	}
1315 
1316 	paddr = ring->cmd_dma.paddr;
1317 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1318 		struct iwn_tx_data *data = &ring->data[i];
1319 
1320 		data->cmd_paddr = paddr;
1321 		data->scratch_paddr = paddr + 12;
1322 		paddr += sizeof (struct iwn_tx_cmd);
1323 
1324 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1325 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1326 		    &data->map);
1327 		if (error != 0) {
1328 			printf("%s: could not create TX buf DMA map\n",
1329 			    sc->sc_dev.dv_xname);
1330 			goto fail;
1331 		}
1332 	}
1333 	return 0;
1334 
1335 fail:	iwn_free_tx_ring(sc, ring);
1336 	return error;
1337 }
1338 
1339 void
1340 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1341 {
1342 	int i;
1343 
1344 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1345 		struct iwn_tx_data *data = &ring->data[i];
1346 
1347 		if (data->m != NULL) {
1348 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1349 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1350 			bus_dmamap_unload(sc->sc_dmat, data->map);
1351 			m_freem(data->m);
1352 			data->m = NULL;
1353 		}
1354 	}
1355 	/* Clear TX descriptors. */
1356 	memset(ring->desc, 0, ring->desc_dma.size);
1357 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1358 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1359 	sc->qfullmsk &= ~(1 << ring->qid);
1360 	ring->queued = 0;
1361 	ring->cur = 0;
1362 }
1363 
1364 void
1365 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1366 {
1367 	int i;
1368 
1369 	iwn_dma_contig_free(&ring->desc_dma);
1370 	iwn_dma_contig_free(&ring->cmd_dma);
1371 
1372 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1373 		struct iwn_tx_data *data = &ring->data[i];
1374 
1375 		if (data->m != NULL) {
1376 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1377 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1378 			bus_dmamap_unload(sc->sc_dmat, data->map);
1379 			m_freem(data->m);
1380 		}
1381 		if (data->map != NULL)
1382 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1383 	}
1384 }
1385 
1386 void
1387 iwn5000_ict_reset(struct iwn_softc *sc)
1388 {
1389 	/* Disable interrupts. */
1390 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1391 
1392 	/* Reset ICT table. */
1393 	memset(sc->ict, 0, IWN_ICT_SIZE);
1394 	sc->ict_cur = 0;
1395 
1396 	/* Set physical address of ICT table (4KB aligned). */
1397 	DPRINTF(("enabling ICT\n"));
1398 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1399 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1400 
1401 	/* Enable periodic RX interrupt. */
1402 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1403 	/* Switch to ICT interrupt mode in driver. */
1404 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1405 
1406 	/* Re-enable interrupts. */
1407 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1408 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1409 }
1410 
1411 int
1412 iwn_read_eeprom(struct iwn_softc *sc)
1413 {
1414 	struct iwn_ops *ops = &sc->ops;
1415 	struct ieee80211com *ic = &sc->sc_ic;
1416 	uint16_t val;
1417 	int error;
1418 
1419 	/* Check whether adapter has an EEPROM or an OTPROM. */
1420 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1421 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1422 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1423 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1424 	    "OTPROM" : "EEPROM"));
1425 
1426 	/* Adapter has to be powered on for EEPROM access to work. */
1427 	if ((error = iwn_apm_init(sc)) != 0) {
1428 		printf("%s: could not power ON adapter\n",
1429 		    sc->sc_dev.dv_xname);
1430 		return error;
1431 	}
1432 
1433 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1434 		printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1435 		return EIO;
1436 	}
1437 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1438 		printf("%s: could not lock ROM (error=%d)\n",
1439 		    sc->sc_dev.dv_xname, error);
1440 		return error;
1441 	}
1442 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1443 		if ((error = iwn_init_otprom(sc)) != 0) {
1444 			printf("%s: could not initialize OTPROM\n",
1445 			    sc->sc_dev.dv_xname);
1446 			return error;
1447 		}
1448 	}
1449 
1450 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1451 	DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
1452 	/* Check if HT support is bonded out. */
1453 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1454 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1455 
1456 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1457 	sc->rfcfg = letoh16(val);
1458 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1459 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1460 	if (sc->txchainmask == 0)
1461 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1462 	if (sc->rxchainmask == 0)
1463 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1464 
1465 	/* Read MAC address. */
1466 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1467 
1468 	/* Read adapter-specific information from EEPROM. */
1469 	ops->read_eeprom(sc);
1470 
1471 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1472 
1473 	iwn_eeprom_unlock(sc);
1474 	return 0;
1475 }
1476 
1477 void
1478 iwn4965_read_eeprom(struct iwn_softc *sc)
1479 {
1480 	uint32_t addr;
1481 	uint16_t val;
1482 	int i;
1483 
1484 	/* Read regulatory domain (4 ASCII characters). */
1485 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1486 
1487 	/* Read the list of authorized channels. */
1488 	for (i = 0; i < 7; i++) {
1489 		addr = iwn4965_regulatory_bands[i];
1490 		iwn_read_eeprom_channels(sc, i, addr);
1491 	}
1492 
1493 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1494 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1495 	sc->maxpwr2GHz = val & 0xff;
1496 	sc->maxpwr5GHz = val >> 8;
1497 	/* Check that EEPROM values are within valid range. */
1498 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1499 		sc->maxpwr5GHz = 38;
1500 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1501 		sc->maxpwr2GHz = 38;
1502 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1503 
1504 	/* Read samples for each TX power group. */
1505 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1506 	    sizeof sc->bands);
1507 
1508 	/* Read voltage at which samples were taken. */
1509 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1510 	sc->eeprom_voltage = (int16_t)letoh16(val);
1511 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1512 
1513 #ifdef IWN_DEBUG
1514 	/* Print samples. */
1515 	if (iwn_debug > 0) {
1516 		for (i = 0; i < IWN_NBANDS; i++)
1517 			iwn4965_print_power_group(sc, i);
1518 	}
1519 #endif
1520 }
1521 
1522 #ifdef IWN_DEBUG
1523 void
1524 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1525 {
1526 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1527 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1528 	int j, c;
1529 
1530 	printf("===band %d===\n", i);
1531 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1532 	printf("chan1 num=%d\n", chans[0].num);
1533 	for (c = 0; c < 2; c++) {
1534 		for (j = 0; j < IWN_NSAMPLES; j++) {
1535 			printf("chain %d, sample %d: temp=%d gain=%d "
1536 			    "power=%d pa_det=%d\n", c, j,
1537 			    chans[0].samples[c][j].temp,
1538 			    chans[0].samples[c][j].gain,
1539 			    chans[0].samples[c][j].power,
1540 			    chans[0].samples[c][j].pa_det);
1541 		}
1542 	}
1543 	printf("chan2 num=%d\n", chans[1].num);
1544 	for (c = 0; c < 2; c++) {
1545 		for (j = 0; j < IWN_NSAMPLES; j++) {
1546 			printf("chain %d, sample %d: temp=%d gain=%d "
1547 			    "power=%d pa_det=%d\n", c, j,
1548 			    chans[1].samples[c][j].temp,
1549 			    chans[1].samples[c][j].gain,
1550 			    chans[1].samples[c][j].power,
1551 			    chans[1].samples[c][j].pa_det);
1552 		}
1553 	}
1554 }
1555 #endif
1556 
1557 void
1558 iwn5000_read_eeprom(struct iwn_softc *sc)
1559 {
1560 	struct iwn5000_eeprom_calib_hdr hdr;
1561 	int32_t volt;
1562 	uint32_t base, addr;
1563 	uint16_t val;
1564 	int i;
1565 
1566 	/* Read regulatory domain (4 ASCII characters). */
1567 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1568 	base = letoh16(val);
1569 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1570 	    sc->eeprom_domain, 4);
1571 
1572 	/* Read the list of authorized channels. */
1573 	for (i = 0; i < 7; i++) {
1574 		addr = base + iwn5000_regulatory_bands[i];
1575 		iwn_read_eeprom_channels(sc, i, addr);
1576 	}
1577 
1578 	/* Read enhanced TX power information for 6000 Series. */
1579 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1580 		iwn_read_eeprom_enhinfo(sc);
1581 
1582 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1583 	base = letoh16(val);
1584 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1585 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1586 	    hdr.version, hdr.pa_type, letoh16(hdr.volt)));
1587 	sc->calib_ver = hdr.version;
1588 
1589 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1590 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1591 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
1592 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1593 		sc->eeprom_voltage = letoh16(hdr.volt);
1594 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1595 		sc->eeprom_temp = letoh16(val);
1596 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1597 		sc->eeprom_rawtemp = letoh16(val);
1598 	}
1599 
1600 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1601 		/* Compute temperature offset. */
1602 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1603 		sc->eeprom_temp = letoh16(val);
1604 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1605 		volt = letoh16(val);
1606 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1607 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1608 		    sc->eeprom_temp, volt, sc->temp_off));
1609 	} else {
1610 		/* Read crystal calibration. */
1611 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1612 		    &sc->eeprom_crystal, sizeof (uint32_t));
1613 		DPRINTF(("crystal calibration 0x%08x\n",
1614 		    letoh32(sc->eeprom_crystal)));
1615 	}
1616 }
1617 
1618 void
1619 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1620 {
1621 	struct ieee80211com *ic = &sc->sc_ic;
1622 	const struct iwn_chan_band *band = &iwn_bands[n];
1623 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1624 	uint8_t chan;
1625 	int i;
1626 
1627 	iwn_read_prom_data(sc, addr, channels,
1628 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1629 
1630 	for (i = 0; i < band->nchan; i++) {
1631 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1632 			continue;
1633 
1634 		chan = band->chan[i];
1635 
1636 		if (n == 0) {	/* 2GHz band */
1637 			ic->ic_channels[chan].ic_freq =
1638 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1639 			ic->ic_channels[chan].ic_flags =
1640 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1641 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1642 
1643 		} else if (n < 5) {	/* 5GHz band */
1644 			/*
1645 			 * Some adapters support channels 7, 8, 11 and 12
1646 			 * both in the 2GHz and 4.9GHz bands.
1647 			 * Because of limitations in our net80211 layer,
1648 			 * we don't support them in the 4.9GHz band.
1649 			 */
1650 			if (chan <= 14)
1651 				continue;
1652 
1653 			ic->ic_channels[chan].ic_freq =
1654 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1655 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1656 			/* We have at least one valid 5GHz channel. */
1657 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1658 		} else  { /* 40 MHz */
1659 			sc->maxpwr40[chan] = channels[i].maxpwr;
1660 			ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_40MHZ;
1661 		}
1662 
1663 		if (n < 5) {
1664 			/* Is active scan allowed on this channel? */
1665 			if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1666 				ic->ic_channels[chan].ic_flags |=
1667 				    IEEE80211_CHAN_PASSIVE;
1668 			}
1669 
1670 			/* Save maximum allowed TX power for this channel. */
1671 			sc->maxpwr[chan] = channels[i].maxpwr;
1672 
1673 			if (sc->sc_flags & IWN_FLAG_HAS_11N)
1674 				ic->ic_channels[chan].ic_flags |=
1675 				    IEEE80211_CHAN_HT;
1676 		}
1677 
1678 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d maxpwr40=%d\n",
1679 		    chan, channels[i].flags, sc->maxpwr[chan],
1680 		    sc->maxpwr40[chan]));
1681 	}
1682 }
1683 
1684 void
1685 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1686 {
1687 	struct iwn_eeprom_enhinfo enhinfo[35];
1688 	uint16_t val, base;
1689 	int8_t maxpwr;
1690 	int i;
1691 
1692 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1693 	base = letoh16(val);
1694 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1695 	    enhinfo, sizeof enhinfo);
1696 
1697 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1698 	for (i = 0; i < nitems(enhinfo); i++) {
1699 		if ((enhinfo[i].flags & IWN_TXP_VALID) == 0)
1700 			continue;	/* Skip invalid entries. */
1701 
1702 		maxpwr = 0;
1703 		if (sc->txchainmask & IWN_ANT_A)
1704 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1705 		if (sc->txchainmask & IWN_ANT_B)
1706 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1707 		if (sc->txchainmask & IWN_ANT_C)
1708 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1709 		if (sc->ntxchains == 2)
1710 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1711 		else if (sc->ntxchains == 3)
1712 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1713 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1714 
1715 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1716 		sc->enh_maxpwr[i] = maxpwr;
1717 	}
1718 }
1719 
1720 struct ieee80211_node *
1721 iwn_node_alloc(struct ieee80211com *ic)
1722 {
1723 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1724 }
1725 
1726 void
1727 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1728 {
1729 	struct iwn_softc *sc = ic->ic_if.if_softc;
1730 	struct iwn_node *wn = (void *)ni;
1731 	uint8_t rate;
1732 	int ridx, i;
1733 
1734 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1735 		ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1736 
1737 	/* Start at lowest available bit-rate, AMRR/MiRA will raise. */
1738 	ni->ni_txrate = 0;
1739 	ni->ni_txmcs = 0;
1740 
1741 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1742 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1743 		/* Map 802.11 rate to HW rate index. */
1744 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
1745 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1746 			    iwn_rates[ridx].rate == rate)
1747 				break;
1748 		}
1749 		wn->ridx[i] = ridx;
1750 	}
1751 }
1752 
1753 int
1754 iwn_media_change(struct ifnet *ifp)
1755 {
1756 	struct iwn_softc *sc = ifp->if_softc;
1757 	struct ieee80211com *ic = &sc->sc_ic;
1758 	uint8_t rate, ridx;
1759 	int error;
1760 
1761 	error = ieee80211_media_change(ifp);
1762 	if (error != ENETRESET)
1763 		return error;
1764 
1765 	if (ic->ic_fixed_mcs != -1)
1766 		sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs];
1767 	if (ic->ic_fixed_rate != -1) {
1768 		rate = ic->ic_sup_rates[ic->ic_curmode].
1769 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1770 		/* Map 802.11 rate to HW rate index. */
1771 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1772 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1773 			    iwn_rates[ridx].rate == rate)
1774 				break;
1775 		sc->fixed_ridx = ridx;
1776 	}
1777 
1778 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1779 	    (IFF_UP | IFF_RUNNING)) {
1780 		iwn_stop(ifp);
1781 		error = iwn_init(ifp);
1782 	}
1783 	return error;
1784 }
1785 
1786 int
1787 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1788 {
1789 	struct ifnet *ifp = &ic->ic_if;
1790 	struct iwn_softc *sc = ifp->if_softc;
1791 	struct ieee80211_node *ni = ic->ic_bss;
1792 	int error;
1793 
1794 	if (ic->ic_state == IEEE80211_S_RUN) {
1795 		if (nstate == IEEE80211_S_SCAN) {
1796 			/*
1797 			 * During RUN->SCAN we don't call sc_newstate() so
1798 			 * we must stop A-MPDU Tx ourselves in this case.
1799 			 */
1800 			ieee80211_stop_ampdu_tx(ic, ni, -1);
1801 			ieee80211_ba_del(ni);
1802 		}
1803 		timeout_del(&sc->calib_to);
1804 		sc->calib.state = IWN_CALIB_STATE_INIT;
1805 		if (sc->sc_flags & IWN_FLAG_BGSCAN)
1806 			iwn_scan_abort(sc);
1807 	}
1808 
1809 	if (ic->ic_state == IEEE80211_S_SCAN) {
1810 		if (nstate == IEEE80211_S_SCAN) {
1811 			if (sc->sc_flags & IWN_FLAG_SCANNING)
1812 				return 0;
1813 		} else
1814 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
1815 		/* Turn LED off when leaving scan state. */
1816 		iwn_set_led(sc, IWN_LED_LINK, 1, 0);
1817 	}
1818 
1819 	if (ic->ic_state >= IEEE80211_S_ASSOC &&
1820 	    nstate <= IEEE80211_S_ASSOC) {
1821 		/* Reset state to handle re- and disassociations. */
1822 		sc->rxon.associd = 0;
1823 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1824 		sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
1825 		    IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
1826 		sc->calib.state = IWN_CALIB_STATE_INIT;
1827 		error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
1828 		if (error != 0)
1829 			printf("%s: RXON command failed\n",
1830 			    sc->sc_dev.dv_xname);
1831 	}
1832 
1833 	switch (nstate) {
1834 	case IEEE80211_S_SCAN:
1835 		/* Make the link LED blink while we're scanning. */
1836 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1837 
1838 		if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) {
1839 			ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1840 			ieee80211_node_cleanup(ic, ic->ic_bss);
1841 		}
1842 		if (ifp->if_flags & IFF_DEBUG)
1843 			printf("%s: %s -> %s\n", ifp->if_xname,
1844 			    ieee80211_state_name[ic->ic_state],
1845 			    ieee80211_state_name[nstate]);
1846 		ic->ic_state = nstate;
1847 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) {
1848 			printf("%s: could not initiate scan\n",
1849 			    sc->sc_dev.dv_xname);
1850 		}
1851 		return error;
1852 
1853 	case IEEE80211_S_ASSOC:
1854 		if (ic->ic_state != IEEE80211_S_RUN)
1855 			break;
1856 		/* FALLTHROUGH */
1857 	case IEEE80211_S_AUTH:
1858 		if ((error = iwn_auth(sc, arg)) != 0) {
1859 			printf("%s: could not move to auth state\n",
1860 			    sc->sc_dev.dv_xname);
1861 			return error;
1862 		}
1863 		break;
1864 
1865 	case IEEE80211_S_RUN:
1866 		if ((error = iwn_run(sc)) != 0) {
1867 			printf("%s: could not move to run state\n",
1868 			    sc->sc_dev.dv_xname);
1869 			return error;
1870 		}
1871 		break;
1872 
1873 	case IEEE80211_S_INIT:
1874 		sc->calib.state = IWN_CALIB_STATE_INIT;
1875 		break;
1876 	}
1877 
1878 	return sc->sc_newstate(ic, nstate, arg);
1879 }
1880 
1881 void
1882 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1883 {
1884 	struct iwn_softc *sc = arg;
1885 	struct iwn_node *wn = (void *)ni;
1886 
1887 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) {
1888 		int old_txrate = ni->ni_txrate;
1889 		ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1890 		if (old_txrate != ni->ni_txrate)
1891 			iwn_set_link_quality(sc, ni);
1892 	}
1893 }
1894 
1895 void
1896 iwn_calib_timeout(void *arg)
1897 {
1898 	struct iwn_softc *sc = arg;
1899 	struct ieee80211com *ic = &sc->sc_ic;
1900 	int s;
1901 
1902 	s = splnet();
1903 	if (ic->ic_fixed_rate == -1) {
1904 		if (ic->ic_opmode == IEEE80211_M_STA)
1905 			iwn_iter_func(sc, ic->ic_bss);
1906 		else
1907 			ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1908 	}
1909 	/* Force automatic TX power calibration every 60 secs. */
1910 	if (++sc->calib_cnt >= 120) {
1911 		uint32_t flags = 0;
1912 
1913 		DPRINTFN(2, ("sending request for statistics\n"));
1914 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1915 		    sizeof flags, 1);
1916 		sc->calib_cnt = 0;
1917 	}
1918 	splx(s);
1919 
1920 	/* Automatic rate control triggered every 500ms. */
1921 	timeout_add_msec(&sc->calib_to, 500);
1922 }
1923 
1924 int
1925 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1926 {
1927 	struct ieee80211com *ic = &sc->sc_ic;
1928 	struct ieee80211_key *k = &ni->ni_pairwise_key;
1929 	struct ieee80211_frame *wh;
1930 	uint64_t pn, *prsc;
1931 	uint8_t *ivp;
1932 	uint8_t tid;
1933 	int hdrlen, hasqos;
1934 
1935 	wh = mtod(m, struct ieee80211_frame *);
1936 	hdrlen = ieee80211_get_hdrlen(wh);
1937 	ivp = (uint8_t *)wh + hdrlen;
1938 
1939 	/* Check that ExtIV bit is set. */
1940 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1941 		DPRINTF(("CCMP decap ExtIV not set\n"));
1942 		return 1;
1943 	}
1944 	hasqos = ieee80211_has_qos(wh);
1945 	tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1946 	prsc = &k->k_rsc[tid];
1947 
1948 	/* Extract the 48-bit PN from the CCMP header. */
1949 	pn = (uint64_t)ivp[0]       |
1950 	     (uint64_t)ivp[1] <<  8 |
1951 	     (uint64_t)ivp[4] << 16 |
1952 	     (uint64_t)ivp[5] << 24 |
1953 	     (uint64_t)ivp[6] << 32 |
1954 	     (uint64_t)ivp[7] << 40;
1955 	if (pn <= *prsc) {
1956 		DPRINTF(("CCMP replayed\n"));
1957 		ic->ic_stats.is_ccmp_replays++;
1958 		return 1;
1959 	}
1960 	/* Last seen packet number is updated in ieee80211_inputm(). */
1961 
1962 	/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
1963 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1964 	return 0;
1965 }
1966 
1967 /*
1968  * Process an RX_PHY firmware notification.  This is usually immediately
1969  * followed by an MPDU_RX_DONE notification.
1970  */
1971 void
1972 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1973     struct iwn_rx_data *data)
1974 {
1975 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1976 
1977 	DPRINTFN(2, ("received PHY stats\n"));
1978 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1979 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1980 
1981 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1982 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1983 	sc->last_rx_valid = IWN_LAST_RX_VALID;
1984 	/*
1985 	 * The firmware does not send separate RX_PHY
1986 	 * notifications for A-MPDU subframes.
1987 	 */
1988 	if (stat->flags & htole16(IWN_STAT_FLAG_AGG))
1989 		sc->last_rx_valid |= IWN_LAST_RX_AMPDU;
1990 }
1991 
1992 /*
1993  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1994  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1995  */
1996 void
1997 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1998     struct iwn_rx_data *data, struct mbuf_list *ml)
1999 {
2000 	struct iwn_ops *ops = &sc->ops;
2001 	struct ieee80211com *ic = &sc->sc_ic;
2002 	struct ifnet *ifp = &ic->ic_if;
2003 	struct iwn_rx_ring *ring = &sc->rxq;
2004 	struct ieee80211_frame *wh;
2005 	struct ieee80211_rxinfo rxi;
2006 	struct ieee80211_node *ni;
2007 	struct mbuf *m, *m1;
2008 	struct iwn_rx_stat *stat;
2009 	caddr_t head;
2010 	uint32_t flags;
2011 	int error, len, rssi;
2012 	uint16_t chan;
2013 
2014 	if (desc->type == IWN_MPDU_RX_DONE) {
2015 		/* Check for prior RX_PHY notification. */
2016 		if (!sc->last_rx_valid) {
2017 			DPRINTF(("missing RX_PHY\n"));
2018 			return;
2019 		}
2020 		sc->last_rx_valid &= ~IWN_LAST_RX_VALID;
2021 		stat = &sc->last_rx_stat;
2022 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) &&
2023 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) {
2024 			DPRINTF(("missing RX_PHY (expecting A-MPDU)\n"));
2025 			return;
2026 		}
2027 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 &&
2028 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG))) {
2029 			DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n"));
2030 			return;
2031 		}
2032 	} else
2033 		stat = (struct iwn_rx_stat *)(desc + 1);
2034 
2035 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2036 	    BUS_DMASYNC_POSTREAD);
2037 
2038 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2039 		printf("%s: invalid RX statistic header\n",
2040 		    sc->sc_dev.dv_xname);
2041 		return;
2042 	}
2043 	if (desc->type == IWN_MPDU_RX_DONE) {
2044 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2045 		head = (caddr_t)(mpdu + 1);
2046 		len = letoh16(mpdu->len);
2047 	} else {
2048 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2049 		len = letoh16(stat->len);
2050 	}
2051 
2052 	flags = letoh32(*(uint32_t *)(head + len));
2053 
2054 	/* Discard frames with a bad FCS early. */
2055 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2056 		DPRINTFN(2, ("RX flags error %x\n", flags));
2057 		ifp->if_ierrors++;
2058 		return;
2059 	}
2060 	/* Discard frames that are too short. */
2061 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2062 		/* Allow control frames in monitor mode. */
2063 		if (len < sizeof (struct ieee80211_frame_cts)) {
2064 			DPRINTF(("frame too short: %d\n", len));
2065 			ic->ic_stats.is_rx_tooshort++;
2066 			ifp->if_ierrors++;
2067 			return;
2068 		}
2069 	} else if (len < sizeof (*wh)) {
2070 		DPRINTF(("frame too short: %d\n", len));
2071 		ic->ic_stats.is_rx_tooshort++;
2072 		ifp->if_ierrors++;
2073 		return;
2074 	}
2075 
2076 	m1 = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
2077 	if (m1 == NULL) {
2078 		ic->ic_stats.is_rx_nombuf++;
2079 		ifp->if_ierrors++;
2080 		return;
2081 	}
2082 	bus_dmamap_unload(sc->sc_dmat, data->map);
2083 
2084 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2085 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2086 	if (error != 0) {
2087 		m_freem(m1);
2088 
2089 		/* Try to reload the old mbuf. */
2090 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2091 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2092 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2093 		if (error != 0) {
2094 			panic("%s: could not load old RX mbuf",
2095 			    sc->sc_dev.dv_xname);
2096 		}
2097 		/* Physical address may have changed. */
2098 		ring->desc[ring->cur] =
2099 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2100 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2101 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2102 		    BUS_DMASYNC_PREWRITE);
2103 		ifp->if_ierrors++;
2104 		return;
2105 	}
2106 
2107 	m = data->m;
2108 	data->m = m1;
2109 	/* Update RX descriptor. */
2110 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2111 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2112 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2113 	    BUS_DMASYNC_PREWRITE);
2114 
2115 	/* Finalize mbuf. */
2116 	m->m_data = head;
2117 	m->m_pkthdr.len = m->m_len = len;
2118 
2119 	/*
2120 	 * Grab a reference to the source node. Note that control frames are
2121 	 * shorter than struct ieee80211_frame but ieee80211_find_rxnode()
2122 	 * is being careful about control frames.
2123 	 */
2124 	wh = mtod(m, struct ieee80211_frame *);
2125 	if (len < sizeof (*wh) &&
2126 	   (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2127 		ic->ic_stats.is_rx_tooshort++;
2128 		ifp->if_ierrors++;
2129 		m_freem(m);
2130 		return;
2131 	}
2132 	ni = ieee80211_find_rxnode(ic, wh);
2133 
2134 	memset(&rxi, 0, sizeof(rxi));
2135 	if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL)
2136 	    && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2137 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2138 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2139 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2140 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2141 			ic->ic_stats.is_ccmp_dec_errs++;
2142 			ifp->if_ierrors++;
2143 			m_freem(m);
2144 			ieee80211_release_node(ic, ni);
2145 			return;
2146 		}
2147 		/* Check whether decryption was successful or not. */
2148 		if ((desc->type == IWN_MPDU_RX_DONE &&
2149 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2150 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2151 		    (desc->type != IWN_MPDU_RX_DONE &&
2152 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2153 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2154 			ic->ic_stats.is_ccmp_dec_errs++;
2155 			ifp->if_ierrors++;
2156 			m_freem(m);
2157 			ieee80211_release_node(ic, ni);
2158 			return;
2159 		}
2160 		if (iwn_ccmp_decap(sc, m, ni) != 0) {
2161 			ifp->if_ierrors++;
2162 			m_freem(m);
2163 			ieee80211_release_node(ic, ni);
2164 			return;
2165 		}
2166 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2167 	}
2168 
2169 	rssi = ops->get_rssi(stat);
2170 
2171 	chan = stat->chan;
2172 	if (chan > IEEE80211_CHAN_MAX)
2173 		chan = IEEE80211_CHAN_MAX;
2174 
2175 #if NBPFILTER > 0
2176 	if (sc->sc_drvbpf != NULL) {
2177 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2178 		uint16_t chan_flags;
2179 
2180 		tap->wr_flags = 0;
2181 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2182 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2183 		tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq);
2184 		chan_flags = ic->ic_channels[chan].ic_flags;
2185 		if (ic->ic_curmode != IEEE80211_MODE_11N)
2186 			chan_flags &= ~IEEE80211_CHAN_HT;
2187 		tap->wr_chan_flags = htole16(chan_flags);
2188 		tap->wr_dbm_antsignal = (int8_t)rssi;
2189 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2190 		tap->wr_tsft = stat->tstamp;
2191 		if (stat->rflags & IWN_RFLAG_MCS) {
2192 			tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */
2193 		} else {
2194 			switch (stat->rate) {
2195 			/* CCK rates. */
2196 			case  10: tap->wr_rate =   2; break;
2197 			case  20: tap->wr_rate =   4; break;
2198 			case  55: tap->wr_rate =  11; break;
2199 			case 110: tap->wr_rate =  22; break;
2200 			/* OFDM rates. */
2201 			case 0xd: tap->wr_rate =  12; break;
2202 			case 0xf: tap->wr_rate =  18; break;
2203 			case 0x5: tap->wr_rate =  24; break;
2204 			case 0x7: tap->wr_rate =  36; break;
2205 			case 0x9: tap->wr_rate =  48; break;
2206 			case 0xb: tap->wr_rate =  72; break;
2207 			case 0x1: tap->wr_rate =  96; break;
2208 			case 0x3: tap->wr_rate = 108; break;
2209 			/* Unknown rate: should not happen. */
2210 			default:  tap->wr_rate =  0;
2211 			}
2212 		}
2213 
2214 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
2215 		    m, BPF_DIRECTION_IN);
2216 	}
2217 #endif
2218 
2219 	/* Send the frame to the 802.11 layer. */
2220 	rxi.rxi_rssi = rssi;
2221 	rxi.rxi_chan = chan;
2222 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
2223 
2224 	/* Node is no longer needed. */
2225 	ieee80211_release_node(ic, ni);
2226 }
2227 
2228 void
2229 iwn_ra_choose(struct iwn_softc *sc, struct ieee80211_node *ni)
2230 {
2231 	struct ieee80211com *ic = &sc->sc_ic;
2232 	struct iwn_node *wn = (void *)ni;
2233 	int old_txmcs = ni->ni_txmcs;
2234 
2235 	ieee80211_ra_choose(&wn->rn, ic, ni);
2236 
2237 	/* Update firmware's LQ retry table if RA has chosen a new MCS. */
2238 	if (ni->ni_txmcs != old_txmcs)
2239 		iwn_set_link_quality(sc, ni);
2240 }
2241 
2242 void
2243 iwn_ampdu_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
2244     struct iwn_tx_ring *txq, uint16_t seq, uint16_t ssn)
2245 {
2246 	struct ieee80211com *ic = &sc->sc_ic;
2247 	struct iwn_node *wn = (void *)ni;
2248 	int idx, end_idx;
2249 
2250 	/*
2251 	 * Update Tx rate statistics for A-MPDUs before firmware's BA window.
2252 	 */
2253 	idx = IWN_AGG_SSN_TO_TXQ_IDX(seq);
2254 	end_idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
2255 	while (idx != end_idx) {
2256 		struct iwn_tx_data *txdata = &txq->data[idx];
2257 		if (txdata->m != NULL && txdata->ampdu_nframes > 1) {
2258 			/*
2259 			 * We can assume that this subframe has been ACKed
2260 			 * because ACK failures come as single frames and
2261 			 * before failing an A-MPDU subframe the firmware
2262 			 * sends it as a single frame at least once.
2263 			 */
2264 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
2265 			    txdata->ampdu_txmcs, 1, 0);
2266 
2267 			/* Report this frame only once. */
2268 			txdata->ampdu_nframes = 0;
2269 		}
2270 
2271 		idx = (idx + 1) % IWN_TX_RING_COUNT;
2272 	}
2273 
2274 	iwn_ra_choose(sc, ni);
2275 }
2276 
2277 void
2278 iwn_ht_single_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
2279     uint8_t rate, uint8_t rflags, uint8_t ackfailcnt, int txfail)
2280 {
2281 	struct ieee80211com *ic = &sc->sc_ic;
2282 	struct iwn_node *wn = (void *)ni;
2283 	int mcs = rate;
2284 	const struct ieee80211_ht_rateset *rs =
2285 	    ieee80211_ra_get_ht_rateset(rate,
2286 		ieee80211_node_supports_ht_chan40(ni),
2287 		ieee80211_ra_use_ht_sgi(ni));
2288 	unsigned int retries = 0, i;
2289 
2290 	/*
2291 	 * Ignore Tx reports which don't match our last LQ command.
2292 	 */
2293 	if (rate != ni->ni_txmcs) {
2294 		if (++wn->lq_rate_mismatch > 15) {
2295 			/* Try to sync firmware with driver. */
2296 			iwn_set_link_quality(sc, ni);
2297 			wn->lq_rate_mismatch = 0;
2298 		}
2299 		return;
2300 	}
2301 
2302 	wn->lq_rate_mismatch = 0;
2303 
2304 	/*
2305 	 * Firmware has attempted rates in this rate set in sequence.
2306 	 * Retries at a basic rate are counted against the minimum MCS.
2307 	 */
2308 	for (i = 0; i < ackfailcnt; i++) {
2309 		if (mcs > rs->min_mcs) {
2310 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
2311 			mcs--;
2312 		} else
2313 			retries++;
2314 	}
2315 
2316 	if (txfail && ackfailcnt == 0)
2317 		ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
2318 	else
2319 		ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, retries + 1, retries);
2320 
2321 	iwn_ra_choose(sc, ni);
2322 }
2323 
2324 /*
2325  * Process an incoming Compressed BlockAck.
2326  * Note that these block ack notifications are generated by firmware and do
2327  * not necessarily correspond to contents of block ack frames seen on the air.
2328  */
2329 void
2330 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2331     struct iwn_rx_data *data)
2332 {
2333 	struct iwn_compressed_ba *cba = (struct iwn_compressed_ba *)(desc + 1);
2334 	struct ieee80211com *ic = &sc->sc_ic;
2335 	struct ieee80211_node *ni;
2336 	struct ieee80211_tx_ba *ba;
2337 	struct iwn_tx_ring *txq;
2338 	uint16_t seq, ssn;
2339 	int qid;
2340 
2341 	if (ic->ic_state != IEEE80211_S_RUN)
2342 		return;
2343 
2344 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*cba),
2345 	    BUS_DMASYNC_POSTREAD);
2346 
2347 	if (!IEEE80211_ADDR_EQ(ic->ic_bss->ni_macaddr, cba->macaddr))
2348 		return;
2349 
2350 	ni = ic->ic_bss;
2351 
2352 	qid = le16toh(cba->qid);
2353 	if (qid < sc->first_agg_txq || qid >= sc->ntxqs)
2354 		return;
2355 
2356 	txq = &sc->txq[qid];
2357 
2358 	/* Protect against a firmware bug where the queue/TID are off. */
2359 	if (qid != sc->first_agg_txq + cba->tid)
2360 		return;
2361 
2362 	ba = &ni->ni_tx_ba[cba->tid];
2363 	if (ba->ba_state != IEEE80211_BA_AGREED)
2364 		return;
2365 
2366 	/*
2367 	 * The first bit in cba->bitmap corresponds to the sequence number
2368 	 * stored in the sequence control field cba->seq.
2369 	 * Multiple BA notifications in a row may be using this number, with
2370 	 * additional bits being set in cba->bitmap. It is unclear how the
2371 	 * firmware decides to shift this window forward.
2372 	 * We rely on ba->ba_winstart instead.
2373 	 */
2374 	seq = le16toh(cba->seq) >> IEEE80211_SEQ_SEQ_SHIFT;
2375 
2376 	/*
2377 	 * The firmware's new BA window starting sequence number
2378 	 * corresponds to the first hole in cba->bitmap, implying
2379 	 * that all frames between 'seq' and 'ssn' (non-inclusive)
2380 	 * have been acked.
2381 	 */
2382 	ssn = le16toh(cba->ssn);
2383 
2384 	if (SEQ_LT(ssn, ba->ba_winstart))
2385 		return;
2386 
2387 	/* Skip rate control if our Tx rate is fixed. */
2388 	if (ic->ic_fixed_mcs == -1)
2389 		iwn_ampdu_rate_control(sc, ni, txq, ba->ba_winstart, ssn);
2390 
2391 	/*
2392 	 * SSN corresponds to the first (perhaps not yet transmitted) frame
2393 	 * in firmware's BA window. Firmware is not going to retransmit any
2394 	 * frames before its BA window so mark them all as done.
2395 	 */
2396 	ieee80211_output_ba_move_window(ic, ni, cba->tid, ssn);
2397 	iwn_ampdu_txq_advance(sc, txq, qid,
2398 	    IWN_AGG_SSN_TO_TXQ_IDX(ssn));
2399 	iwn_clear_oactive(sc, txq);
2400 }
2401 
2402 /*
2403  * Process a CALIBRATION_RESULT notification sent by the initialization
2404  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2405  */
2406 void
2407 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2408     struct iwn_rx_data *data)
2409 {
2410 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2411 	int len, idx = -1;
2412 
2413 	/* Runtime firmware should not send such a notification. */
2414 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2415 		return;
2416 
2417 	len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK) - 4;
2418 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2419 	    BUS_DMASYNC_POSTREAD);
2420 
2421 	switch (calib->code) {
2422 	case IWN5000_PHY_CALIB_DC:
2423 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2424 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2425 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2426 		    sc->hw_type == IWN_HW_REV_TYPE_135 ||
2427 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2428 			idx = 0;
2429 		break;
2430 	case IWN5000_PHY_CALIB_LO:
2431 		idx = 1;
2432 		break;
2433 	case IWN5000_PHY_CALIB_TX_IQ:
2434 		idx = 2;
2435 		break;
2436 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2437 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2438 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2439 			idx = 3;
2440 		break;
2441 	case IWN5000_PHY_CALIB_BASE_BAND:
2442 		idx = 4;
2443 		break;
2444 	}
2445 	if (idx == -1)	/* Ignore other results. */
2446 		return;
2447 
2448 	/* Save calibration result. */
2449 	if (sc->calibcmd[idx].buf != NULL)
2450 		free(sc->calibcmd[idx].buf, M_DEVBUF, 0);
2451 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2452 	if (sc->calibcmd[idx].buf == NULL) {
2453 		DPRINTF(("not enough memory for calibration result %d\n",
2454 		    calib->code));
2455 		return;
2456 	}
2457 	DPRINTF(("saving calibration result code=%d len=%d\n",
2458 	    calib->code, len));
2459 	sc->calibcmd[idx].len = len;
2460 	memcpy(sc->calibcmd[idx].buf, calib, len);
2461 }
2462 
2463 /*
2464  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2465  * The latter is sent by the firmware after each received beacon.
2466  */
2467 void
2468 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2469     struct iwn_rx_data *data)
2470 {
2471 	struct iwn_ops *ops = &sc->ops;
2472 	struct ieee80211com *ic = &sc->sc_ic;
2473 	struct iwn_calib_state *calib = &sc->calib;
2474 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2475 	int temp;
2476 
2477 	/* Ignore statistics received during a scan. */
2478 	if (ic->ic_state != IEEE80211_S_RUN)
2479 		return;
2480 
2481 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2482 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2483 
2484 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2485 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2486 
2487 	sc->rx_stats_flags = htole32(stats->flags);
2488 
2489 	/* Test if temperature has changed. */
2490 	if (stats->general.temp != sc->rawtemp) {
2491 		/* Convert "raw" temperature to degC. */
2492 		sc->rawtemp = stats->general.temp;
2493 		temp = ops->get_temperature(sc);
2494 		DPRINTFN(2, ("temperature=%dC\n", temp));
2495 
2496 		/* Update TX power if need be (4965AGN only). */
2497 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2498 			iwn4965_power_calibration(sc, temp);
2499 	}
2500 
2501 	if (desc->type != IWN_BEACON_STATISTICS)
2502 		return;	/* Reply to a statistics request. */
2503 
2504 	sc->noise = iwn_get_noise(&stats->rx.general);
2505 
2506 	/* Test that RSSI and noise are present in stats report. */
2507 	if (sc->noise == -127)
2508 		return;
2509 
2510 	if (letoh32(stats->rx.general.flags) != 1) {
2511 		DPRINTF(("received statistics without RSSI\n"));
2512 		return;
2513 	}
2514 
2515 	/*
2516 	 * XXX Differential gain calibration makes the 6005 firmware
2517 	 * crap out, so skip it for now.  This effectively disables
2518 	 * sensitivity tuning as well.
2519 	 */
2520 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2521 		return;
2522 
2523 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2524 		iwn_collect_noise(sc, &stats->rx.general);
2525 	else if (calib->state == IWN_CALIB_STATE_RUN)
2526 		iwn_tune_sensitivity(sc, &stats->rx);
2527 }
2528 
2529 void
2530 iwn_ampdu_txq_advance(struct iwn_softc *sc, struct iwn_tx_ring *txq, int qid,
2531     int idx)
2532 {
2533 	struct iwn_ops *ops = &sc->ops;
2534 
2535 	DPRINTFN(3, ("%s: txq->cur=%d txq->read=%d txq->queued=%d qid=%d "
2536 	    "idx=%d\n", __func__, txq->cur, txq->read, txq->queued, qid, idx));
2537 
2538 	while (txq->read != idx) {
2539 		struct iwn_tx_data *txdata = &txq->data[txq->read];
2540 		if (txdata->m != NULL) {
2541 			ops->reset_sched(sc, qid, txq->read);
2542 			iwn_tx_done_free_txdata(sc, txdata);
2543 			txq->queued--;
2544 		}
2545 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2546 	}
2547 }
2548 
2549 /*
2550  * Handle A-MPDU Tx queue status report.
2551  * Tx failures come as single frames (perhaps out of order), and before failing
2552  * an A-MPDU subframe the firmware transmits it as a single frame at least once.
2553  * Frames successfully transmitted in an A-MPDU are completed when a compressed
2554  * block ack notification is received.
2555  */
2556 void
2557 iwn_ampdu_tx_done(struct iwn_softc *sc, struct iwn_tx_ring *txq,
2558     struct iwn_rx_desc *desc, uint16_t status, uint8_t ackfailcnt,
2559     uint8_t rate, uint8_t rflags, int nframes, uint32_t ssn,
2560     struct iwn_txagg_status *agg_status)
2561 {
2562 	struct ieee80211com *ic = &sc->sc_ic;
2563 	int tid = desc->qid - sc->first_agg_txq;
2564 	struct iwn_tx_data *txdata = &txq->data[desc->idx];
2565 	struct ieee80211_node *ni = txdata->ni;
2566 	int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2567 	    status != IWN_TX_STATUS_DIRECT_DONE);
2568 	struct ieee80211_tx_ba *ba;
2569 	uint16_t seq;
2570 
2571 	sc->sc_tx_timer = 0;
2572 
2573 	if (ic->ic_state != IEEE80211_S_RUN)
2574 		return;
2575 
2576 	if (nframes > 1) {
2577 		int i;
2578 
2579  		/*
2580 		 * Collect information about this A-MPDU.
2581 		 */
2582 		for (i = 0; i < nframes; i++) {
2583 			uint8_t qid = agg_status[i].qid;
2584 			uint8_t idx = agg_status[i].idx;
2585 			uint16_t txstatus = (le16toh(agg_status[i].status) &
2586 			    IWN_AGG_TX_STATUS_MASK);
2587 
2588 			if (txstatus != IWN_AGG_TX_STATE_TRANSMITTED)
2589 				continue;
2590 
2591 			if (qid != desc->qid)
2592 				continue;
2593 
2594 			txdata = &txq->data[idx];
2595 			if (txdata->ni == NULL)
2596 				continue;
2597 
2598 			/* The Tx rate was the same for all subframes. */
2599 			txdata->ampdu_txmcs = rate;
2600 			txdata->ampdu_nframes = nframes;
2601 		}
2602 		return;
2603 	}
2604 
2605 	if (ni == NULL)
2606 		return;
2607 
2608 	ba = &ni->ni_tx_ba[tid];
2609 	if (ba->ba_state != IEEE80211_BA_AGREED)
2610 		return;
2611 	if (SEQ_LT(ssn, ba->ba_winstart))
2612 		return;
2613 
2614 	/* This was a final single-frame Tx attempt for frame SSN-1. */
2615 	seq = (ssn - 1) & 0xfff;
2616 
2617 	/*
2618 	 * Skip rate control if our Tx rate is fixed.
2619 	 */
2620 	if (ic->ic_fixed_mcs == -1) {
2621 		if (txdata->ampdu_nframes > 1) {
2622 			struct iwn_node *wn = (void *)ni;
2623 			/*
2624 			 * This frame was once part of an A-MPDU.
2625 			 * Report one failed A-MPDU Tx attempt.
2626 			 * The firmware might have made several such
2627 			 * attempts but we don't keep track of this.
2628 			 */
2629 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
2630 			    txdata->ampdu_txmcs, 1, 1);
2631 		}
2632 
2633 		/* Report the final single-frame Tx attempt. */
2634 		if (rflags & IWN_RFLAG_MCS)
2635 			iwn_ht_single_rate_control(sc, ni, rate, rflags,
2636 			    ackfailcnt, txfail);
2637 	}
2638 
2639 	if (txfail)
2640 		ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
2641 
2642 	/*
2643 	 * SSN corresponds to the first (perhaps not yet transmitted) frame
2644 	 * in firmware's BA window. Firmware is not going to retransmit any
2645 	 * frames before its BA window so mark them all as done.
2646 	 */
2647 	ieee80211_output_ba_move_window(ic, ni, tid, ssn);
2648 	iwn_ampdu_txq_advance(sc, txq, desc->qid, IWN_AGG_SSN_TO_TXQ_IDX(ssn));
2649 	iwn_clear_oactive(sc, txq);
2650 }
2651 
2652 /*
2653  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2654  * and 5000 adapters have different incompatible TX status formats.
2655  */
2656 void
2657 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2658     struct iwn_rx_data *data)
2659 {
2660 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2661 	struct iwn_tx_ring *ring;
2662 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2663 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2664 	uint32_t ssn;
2665 
2666 	if (desc->qid > IWN4965_NTXQUEUES)
2667 		return;
2668 
2669 	ring = &sc->txq[desc->qid];
2670 
2671 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2672 	    len, BUS_DMASYNC_POSTREAD);
2673 
2674 	/* Sanity checks. */
2675 	if (sizeof(*stat) > len)
2676 		return;
2677 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2678 		return;
2679 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2680 		return;
2681 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2682 	    stat->nframes * sizeof(stat->stat) > len)
2683 		return;
2684 
2685 	if (desc->qid < sc->first_agg_txq) {
2686 		/* XXX 4965 does not report byte count */
2687 		struct iwn_tx_data *txdata = &ring->data[desc->idx];
2688 		uint16_t framelen = txdata->totlen + IEEE80211_CRC_LEN;
2689 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2690 		    status != IWN_TX_STATUS_DIRECT_DONE);
2691 
2692 		iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
2693 		    stat->rflags, txfail, desc->qid, framelen);
2694 	} else {
2695 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2696 		ssn = le32toh(ssn) & 0xfff;
2697 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
2698 		    stat->rate, stat->rflags, stat->nframes, ssn,
2699 		    stat->stat.agg_status);
2700 	}
2701 }
2702 
2703 void
2704 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2705     struct iwn_rx_data *data)
2706 {
2707 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2708 	struct iwn_tx_ring *ring;
2709 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2710 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2711 	uint32_t ssn;
2712 
2713 	if (desc->qid > IWN5000_NTXQUEUES)
2714 		return;
2715 
2716 	ring = &sc->txq[desc->qid];
2717 
2718 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2719 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2720 
2721 	/* Sanity checks. */
2722 	if (sizeof(*stat) > len)
2723 		return;
2724 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2725 		return;
2726 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2727 		return;
2728 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2729 	    stat->nframes * sizeof(stat->stat) > len)
2730 		return;
2731 
2732 	/* If this was not an aggregated frame, complete it now. */
2733 	if (desc->qid < sc->first_agg_txq) {
2734 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2735 		    status != IWN_TX_STATUS_DIRECT_DONE);
2736 
2737 		/* Reset TX scheduler slot. */
2738 		iwn5000_reset_sched(sc, desc->qid, desc->idx);
2739 
2740 		iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
2741 		    stat->rflags, txfail, desc->qid, letoh16(stat->len));
2742 	} else {
2743 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2744 		ssn = le32toh(ssn) & 0xfff;
2745 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
2746 		    stat->rate, stat->rflags, stat->nframes, ssn,
2747 		    stat->stat.agg_status);
2748 	}
2749 }
2750 
2751 void
2752 iwn_tx_done_free_txdata(struct iwn_softc *sc, struct iwn_tx_data *data)
2753 {
2754 	struct ieee80211com *ic = &sc->sc_ic;
2755 
2756 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2757 	    BUS_DMASYNC_POSTWRITE);
2758 	bus_dmamap_unload(sc->sc_dmat, data->map);
2759 	m_freem(data->m);
2760 	data->m = NULL;
2761 	ieee80211_release_node(ic, data->ni);
2762 	data->ni = NULL;
2763 	data->totlen = 0;
2764 	data->ampdu_nframes = 0;
2765 	data->ampdu_txmcs = 0;
2766 }
2767 
2768 void
2769 iwn_clear_oactive(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2770 {
2771 	struct ieee80211com *ic = &sc->sc_ic;
2772 	struct ifnet *ifp = &ic->ic_if;
2773 
2774 	if (ring->queued < IWN_TX_RING_LOMARK) {
2775 		sc->qfullmsk &= ~(1 << ring->qid);
2776 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
2777 			ifq_clr_oactive(&ifp->if_snd);
2778 			(*ifp->if_start)(ifp);
2779 		}
2780 	}
2781 }
2782 
2783 /*
2784  * Adapter-independent backend for TX_DONE firmware notifications.
2785  * This handles Tx status for non-aggregation queues.
2786  */
2787 void
2788 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2789     uint8_t ackfailcnt, uint8_t rate, uint8_t rflags, int txfail,
2790     int qid, uint16_t len)
2791 {
2792 	struct ieee80211com *ic = &sc->sc_ic;
2793 	struct ifnet *ifp = &ic->ic_if;
2794 	struct iwn_tx_ring *ring = &sc->txq[qid];
2795 	struct iwn_tx_data *data = &ring->data[desc->idx];
2796 	struct iwn_node *wn = (void *)data->ni;
2797 
2798 	if (data->ni == NULL)
2799 		return;
2800 
2801 	if (data->ni->ni_flags & IEEE80211_NODE_HT) {
2802 		if (ic->ic_state == IEEE80211_S_RUN &&
2803 		    ic->ic_fixed_mcs == -1 && (rflags & IWN_RFLAG_MCS)) {
2804 			iwn_ht_single_rate_control(sc, data->ni, rate, rflags,
2805 			    ackfailcnt, txfail);
2806 		}
2807 	} else {
2808 		if (rate != data->ni->ni_txrate) {
2809 			if (++wn->lq_rate_mismatch > 15) {
2810 				/* Try to sync firmware with driver. */
2811 				iwn_set_link_quality(sc, data->ni);
2812 				wn->lq_rate_mismatch = 0;
2813 			}
2814 		} else {
2815 			wn->lq_rate_mismatch = 0;
2816 
2817 			wn->amn.amn_txcnt++;
2818 			if (ackfailcnt > 0)
2819 				wn->amn.amn_retrycnt++;
2820 			if (txfail)
2821 				wn->amn.amn_retrycnt++;
2822 		}
2823 	}
2824 	if (txfail)
2825 		ifp->if_oerrors++;
2826 
2827 	iwn_tx_done_free_txdata(sc, data);
2828 
2829 	sc->sc_tx_timer = 0;
2830 	ring->queued--;
2831 	iwn_clear_oactive(sc, ring);
2832 }
2833 
2834 /*
2835  * Process a "command done" firmware notification.  This is where we wakeup
2836  * processes waiting for a synchronous command completion.
2837  */
2838 void
2839 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2840 {
2841 	struct iwn_tx_ring *ring = &sc->txq[4];
2842 	struct iwn_tx_data *data;
2843 
2844 	if ((desc->qid & 0xf) != 4)
2845 		return;	/* Not a command ack. */
2846 
2847 	data = &ring->data[desc->idx];
2848 
2849 	/* If the command was mapped in an mbuf, free it. */
2850 	if (data->m != NULL) {
2851 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2852 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2853 		bus_dmamap_unload(sc->sc_dmat, data->map);
2854 		m_freem(data->m);
2855 		data->m = NULL;
2856 	}
2857 	wakeup(&ring->desc[desc->idx]);
2858 }
2859 
2860 /*
2861  * Process an INT_FH_RX or INT_SW_RX interrupt.
2862  */
2863 void
2864 iwn_notif_intr(struct iwn_softc *sc)
2865 {
2866 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2867 	struct iwn_ops *ops = &sc->ops;
2868 	struct ieee80211com *ic = &sc->sc_ic;
2869 	struct ifnet *ifp = &ic->ic_if;
2870 	uint16_t hw;
2871 
2872 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2873 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2874 
2875 	hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2876 	while (sc->rxq.cur != hw) {
2877 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2878 		struct iwn_rx_desc *desc;
2879 
2880 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2881 		    BUS_DMASYNC_POSTREAD);
2882 		desc = mtod(data->m, struct iwn_rx_desc *);
2883 
2884 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2885 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2886 
2887 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2888 			iwn_cmd_done(sc, desc);
2889 
2890 		switch (desc->type) {
2891 		case IWN_RX_PHY:
2892 			iwn_rx_phy(sc, desc, data);
2893 			break;
2894 
2895 		case IWN_RX_DONE:		/* 4965AGN only. */
2896 		case IWN_MPDU_RX_DONE:
2897 			/* An 802.11 frame has been received. */
2898 			iwn_rx_done(sc, desc, data, &ml);
2899 			break;
2900 		case IWN_RX_COMPRESSED_BA:
2901 			/* A Compressed BlockAck has been received. */
2902 			iwn_rx_compressed_ba(sc, desc, data);
2903 			break;
2904 		case IWN_TX_DONE:
2905 			/* An 802.11 frame has been transmitted. */
2906 			ops->tx_done(sc, desc, data);
2907 			break;
2908 
2909 		case IWN_RX_STATISTICS:
2910 		case IWN_BEACON_STATISTICS:
2911 			iwn_rx_statistics(sc, desc, data);
2912 			break;
2913 
2914 		case IWN_BEACON_MISSED:
2915 		{
2916 			struct iwn_beacon_missed *miss =
2917 			    (struct iwn_beacon_missed *)(desc + 1);
2918 			uint32_t missed;
2919 
2920 			if ((ic->ic_opmode != IEEE80211_M_STA) ||
2921 			    (ic->ic_state != IEEE80211_S_RUN))
2922 				break;
2923 
2924 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2925 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2926 			missed = letoh32(miss->consecutive);
2927 
2928 			/*
2929 			 * If more than 5 consecutive beacons are missed,
2930 			 * reinitialize the sensitivity state machine.
2931 			 */
2932 			if (missed > 5)
2933 				(void)iwn_init_sensitivity(sc);
2934 
2935 			/*
2936 			 * Rather than go directly to scan state, try to send a
2937 			 * directed probe request first. If that fails then the
2938 			 * state machine will drop us into scanning after timing
2939 			 * out waiting for a probe response.
2940 			 */
2941 			if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) {
2942 				if (ic->ic_if.if_flags & IFF_DEBUG)
2943 					printf("%s: receiving no beacons from "
2944 					    "%s; checking if this AP is still "
2945 					    "responding to probe requests\n",
2946 					    sc->sc_dev.dv_xname, ether_sprintf(
2947 					    ic->ic_bss->ni_macaddr));
2948 				IEEE80211_SEND_MGMT(ic, ic->ic_bss,
2949 				    IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
2950 			}
2951 			break;
2952 		}
2953 		case IWN_UC_READY:
2954 		{
2955 			struct iwn_ucode_info *uc =
2956 			    (struct iwn_ucode_info *)(desc + 1);
2957 
2958 			/* The microcontroller is ready. */
2959 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2960 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2961 			DPRINTF(("microcode alive notification version=%d.%d "
2962 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2963 			    uc->subtype, letoh32(uc->valid)));
2964 
2965 			if (letoh32(uc->valid) != 1) {
2966 				printf("%s: microcontroller initialization "
2967 				    "failed\n", sc->sc_dev.dv_xname);
2968 				break;
2969 			}
2970 			if (uc->subtype == IWN_UCODE_INIT) {
2971 				/* Save microcontroller report. */
2972 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2973 			}
2974 			/* Save the address of the error log in SRAM. */
2975 			sc->errptr = letoh32(uc->errptr);
2976 			break;
2977 		}
2978 		case IWN_STATE_CHANGED:
2979 		{
2980 			uint32_t *status = (uint32_t *)(desc + 1);
2981 
2982 			/* Enabled/disabled notification. */
2983 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2984 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2985 			DPRINTF(("state changed to %x\n", letoh32(*status)));
2986 
2987 			if (letoh32(*status) & 1) {
2988 				/* Radio transmitter is off, power down. */
2989 				iwn_stop(ifp);
2990 				return;	/* No further processing. */
2991 			}
2992 			break;
2993 		}
2994 		case IWN_START_SCAN:
2995 		{
2996 			struct iwn_start_scan *scan =
2997 			    (struct iwn_start_scan *)(desc + 1);
2998 
2999 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
3000 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
3001 			DPRINTFN(2, ("scan start: chan %d status %x\n",
3002 			    scan->chan, letoh32(scan->status)));
3003 
3004 			if (sc->sc_flags & IWN_FLAG_BGSCAN)
3005 				break;
3006 
3007 			/* Fix current channel. */
3008 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
3009 			break;
3010 		}
3011 		case IWN_STOP_SCAN:
3012 		{
3013 			struct iwn_stop_scan *scan =
3014 			    (struct iwn_stop_scan *)(desc + 1);
3015 
3016 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
3017 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
3018 			DPRINTFN(2, ("scan stop: nchan=%d status=%d chan=%d\n",
3019 			    scan->nchan, scan->status, scan->chan));
3020 
3021 			if (scan->status == 1 && scan->chan <= 14 &&
3022 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
3023 			    	int error;
3024 				/*
3025 				 * We just finished scanning 2GHz channels,
3026 				 * start scanning 5GHz ones.
3027 				 */
3028 				error = iwn_scan(sc, IEEE80211_CHAN_5GHZ,
3029 				    (sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0);
3030 				if (error == 0)
3031 					break;
3032 			}
3033 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
3034 			sc->sc_flags &= ~IWN_FLAG_BGSCAN;
3035 			ieee80211_end_scan(ifp);
3036 			break;
3037 		}
3038 		case IWN5000_CALIBRATION_RESULT:
3039 			iwn5000_rx_calib_results(sc, desc, data);
3040 			break;
3041 
3042 		case IWN5000_CALIBRATION_DONE:
3043 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3044 			wakeup(sc);
3045 			break;
3046 		}
3047 
3048 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3049 	}
3050 	if_input(&sc->sc_ic.ic_if, &ml);
3051 
3052 	/* Tell the firmware what we have processed. */
3053 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3054 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3055 }
3056 
3057 /*
3058  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3059  * from power-down sleep mode.
3060  */
3061 void
3062 iwn_wakeup_intr(struct iwn_softc *sc)
3063 {
3064 	int qid;
3065 
3066 	DPRINTF(("ucode wakeup from power-down sleep\n"));
3067 
3068 	/* Wakeup RX and TX rings. */
3069 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3070 	for (qid = 0; qid < sc->ntxqs; qid++) {
3071 		struct iwn_tx_ring *ring = &sc->txq[qid];
3072 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3073 	}
3074 }
3075 
3076 /*
3077  * Dump the error log of the firmware when a firmware panic occurs.  Although
3078  * we can't debug the firmware because it is neither open source nor free, it
3079  * can help us to identify certain classes of problems.
3080  */
3081 void
3082 iwn_fatal_intr(struct iwn_softc *sc)
3083 {
3084 	struct iwn_fw_dump dump;
3085 	int i;
3086 
3087 	/* Check that the error log address is valid. */
3088 	if (sc->errptr < IWN_FW_DATA_BASE ||
3089 	    sc->errptr + sizeof (dump) >
3090 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3091 		printf("%s: bad firmware error log address 0x%08x\n",
3092 		    sc->sc_dev.dv_xname, sc->errptr);
3093 		return;
3094 	}
3095 	if (iwn_nic_lock(sc) != 0) {
3096 		printf("%s: could not read firmware error log\n",
3097 		    sc->sc_dev.dv_xname);
3098 		return;
3099 	}
3100 	/* Read firmware error log from SRAM. */
3101 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3102 	    sizeof (dump) / sizeof (uint32_t));
3103 	iwn_nic_unlock(sc);
3104 
3105 	if (dump.valid == 0) {
3106 		printf("%s: firmware error log is empty\n",
3107 		    sc->sc_dev.dv_xname);
3108 		return;
3109 	}
3110 	printf("firmware error log:\n");
3111 	printf("  error type      = \"%s\" (0x%08X)\n",
3112 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3113 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3114 	    dump.id);
3115 	printf("  program counter = 0x%08X\n", dump.pc);
3116 	printf("  source line     = 0x%08X\n", dump.src_line);
3117 	printf("  error data      = 0x%08X%08X\n",
3118 	    dump.error_data[0], dump.error_data[1]);
3119 	printf("  branch link     = 0x%08X%08X\n",
3120 	    dump.branch_link[0], dump.branch_link[1]);
3121 	printf("  interrupt link  = 0x%08X%08X\n",
3122 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3123 	printf("  time            = %u\n", dump.time[0]);
3124 
3125 	/* Dump driver status (TX and RX rings) while we're here. */
3126 	printf("driver status:\n");
3127 	for (i = 0; i < sc->ntxqs; i++) {
3128 		struct iwn_tx_ring *ring = &sc->txq[i];
3129 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3130 		    i, ring->qid, ring->cur, ring->queued);
3131 	}
3132 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3133 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
3134 }
3135 
3136 int
3137 iwn_intr(void *arg)
3138 {
3139 	struct iwn_softc *sc = arg;
3140 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3141 	uint32_t r1, r2, tmp;
3142 
3143 	/* Disable interrupts. */
3144 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3145 
3146 	/* Read interrupts from ICT (fast) or from registers (slow). */
3147 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3148 		tmp = 0;
3149 		while (sc->ict[sc->ict_cur] != 0) {
3150 			tmp |= sc->ict[sc->ict_cur];
3151 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3152 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3153 		}
3154 		tmp = letoh32(tmp);
3155 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3156 			tmp = 0;
3157 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3158 			tmp |= 0x8000;
3159 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3160 		r2 = 0;	/* Unused. */
3161 	} else {
3162 		r1 = IWN_READ(sc, IWN_INT);
3163 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3164 			return 0;	/* Hardware gone! */
3165 		r2 = IWN_READ(sc, IWN_FH_INT);
3166 	}
3167 	if (r1 == 0 && r2 == 0) {
3168 		if (ifp->if_flags & IFF_UP)
3169 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3170 		return 0;	/* Interrupt not for us. */
3171 	}
3172 
3173 	/* Acknowledge interrupts. */
3174 	IWN_WRITE(sc, IWN_INT, r1);
3175 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3176 		IWN_WRITE(sc, IWN_FH_INT, r2);
3177 
3178 	if (r1 & IWN_INT_RF_TOGGLED) {
3179 		tmp = IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL;
3180 		printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
3181 		    tmp ? "enabled" : "disabled");
3182 		if (tmp)
3183 			task_add(systq, &sc->init_task);
3184 	}
3185 	if (r1 & IWN_INT_CT_REACHED) {
3186 		printf("%s: critical temperature reached!\n",
3187 		    sc->sc_dev.dv_xname);
3188 	}
3189 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3190 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
3191 
3192 		/* Force a complete recalibration on next init. */
3193 		sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3194 
3195 		/* Dump firmware error log and stop. */
3196 		if (ifp->if_flags & IFF_DEBUG)
3197 			iwn_fatal_intr(sc);
3198 		iwn_stop(ifp);
3199 		task_add(systq, &sc->init_task);
3200 		return 1;
3201 	}
3202 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3203 	    (r2 & IWN_FH_INT_RX)) {
3204 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3205 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3206 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3207 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3208 			    IWN_INT_PERIODIC_DIS);
3209 			iwn_notif_intr(sc);
3210 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3211 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3212 				    IWN_INT_PERIODIC_ENA);
3213 			}
3214 		} else
3215 			iwn_notif_intr(sc);
3216 	}
3217 
3218 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3219 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3220 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3221 		wakeup(sc);	/* FH DMA transfer completed. */
3222 	}
3223 
3224 	if (r1 & IWN_INT_ALIVE)
3225 		wakeup(sc);	/* Firmware is alive. */
3226 
3227 	if (r1 & IWN_INT_WAKEUP)
3228 		iwn_wakeup_intr(sc);
3229 
3230 	/* Re-enable interrupts. */
3231 	if (ifp->if_flags & IFF_UP)
3232 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3233 
3234 	return 1;
3235 }
3236 
3237 /*
3238  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3239  * 5000 adapters use a slightly different format).
3240  */
3241 void
3242 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3243     uint16_t len)
3244 {
3245 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3246 
3247 	*w = htole16(len + 8);
3248 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3249 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3250 	    BUS_DMASYNC_PREWRITE);
3251 	if (idx < IWN_SCHED_WINSZ) {
3252 		*(w + IWN_TX_RING_COUNT) = *w;
3253 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3254 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3255 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3256 	}
3257 }
3258 
3259 void
3260 iwn4965_reset_sched(struct iwn_softc *sc, int qid, int idx)
3261 {
3262 	/* TBD */
3263 }
3264 
3265 void
3266 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3267     uint16_t len)
3268 {
3269 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3270 
3271 	*w = htole16(id << 12 | (len + 8));
3272 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3273 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3274 	    BUS_DMASYNC_PREWRITE);
3275 	if (idx < IWN_SCHED_WINSZ) {
3276 		*(w + IWN_TX_RING_COUNT) = *w;
3277 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3278 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3279 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3280 	}
3281 }
3282 
3283 void
3284 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3285 {
3286 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3287 
3288 	*w = (*w & htole16(0xf000)) | htole16(1);
3289 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3290 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3291 	    BUS_DMASYNC_PREWRITE);
3292 	if (idx < IWN_SCHED_WINSZ) {
3293 		*(w + IWN_TX_RING_COUNT) = *w;
3294 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3295 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3296 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3297 	}
3298 }
3299 
3300 int
3301 iwn_rval2ridx(int rval)
3302 {
3303 	int ridx;
3304 
3305 	for (ridx = 0; ridx < nitems(iwn_rates); ridx++) {
3306 		if (rval == iwn_rates[ridx].rate)
3307 			break;
3308 	}
3309 
3310 	return ridx;
3311 }
3312 
3313 int
3314 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3315 {
3316 	struct iwn_ops *ops = &sc->ops;
3317 	struct ieee80211com *ic = &sc->sc_ic;
3318 	struct iwn_node *wn = (void *)ni;
3319 	struct iwn_tx_ring *ring;
3320 	struct iwn_tx_desc *desc;
3321 	struct iwn_tx_data *data;
3322 	struct iwn_tx_cmd *cmd;
3323 	struct iwn_cmd_data *tx;
3324 	const struct iwn_rate *rinfo;
3325 	struct ieee80211_frame *wh;
3326 	struct ieee80211_key *k = NULL;
3327 	enum ieee80211_edca_ac ac;
3328 	int qid;
3329 	uint32_t flags;
3330 	uint16_t qos;
3331 	u_int hdrlen;
3332 	bus_dma_segment_t *seg;
3333 	uint8_t *ivp, tid, ridx, txant, type, subtype;
3334 	int i, totlen, hasqos, error, pad;
3335 
3336 	wh = mtod(m, struct ieee80211_frame *);
3337 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3338 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3339 	if (type == IEEE80211_FC0_TYPE_CTL)
3340 		hdrlen = sizeof(struct ieee80211_frame_min);
3341 	else
3342 		hdrlen = ieee80211_get_hdrlen(wh);
3343 
3344 	if ((hasqos = ieee80211_has_qos(wh))) {
3345 		/* Select EDCA Access Category and TX ring for this frame. */
3346 		struct ieee80211_tx_ba *ba;
3347 		qos = ieee80211_get_qos(wh);
3348 		tid = qos & IEEE80211_QOS_TID;
3349 		ac = ieee80211_up_to_ac(ic, tid);
3350 		qid = ac;
3351 
3352 		/* If possible, put this frame on an aggregation queue. */
3353 		if (sc->sc_tx_ba[tid].wn == wn) {
3354 			ba = &ni->ni_tx_ba[tid];
3355 			if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3356 			    ba->ba_state == IEEE80211_BA_AGREED) {
3357 				qid = sc->first_agg_txq + tid;
3358 				if (sc->qfullmsk & (1 << qid)) {
3359 					m_freem(m);
3360 					return ENOBUFS;
3361 				}
3362 			}
3363 		}
3364 	} else {
3365 		qos = 0;
3366 		tid = IWN_NONQOS_TID;
3367 		ac = EDCA_AC_BE;
3368 		qid = ac;
3369 	}
3370 
3371 	ring = &sc->txq[qid];
3372 	desc = &ring->desc[ring->cur];
3373 	data = &ring->data[ring->cur];
3374 
3375 	/* Choose a TX rate index. */
3376 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3377 	    type != IEEE80211_FC0_TYPE_DATA)
3378 		ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic));
3379 	else if (ic->ic_fixed_mcs != -1)
3380 		ridx = sc->fixed_ridx;
3381 	else if (ic->ic_fixed_rate != -1)
3382 		ridx = sc->fixed_ridx;
3383 	else {
3384 		if (ni->ni_flags & IEEE80211_NODE_HT)
3385 			ridx = iwn_mcs2ridx[ni->ni_txmcs];
3386 		else
3387 			ridx = wn->ridx[ni->ni_txrate];
3388 	}
3389 	rinfo = &iwn_rates[ridx];
3390 #if NBPFILTER > 0
3391 	if (sc->sc_drvbpf != NULL) {
3392 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3393 		uint16_t chan_flags;
3394 
3395 		tap->wt_flags = 0;
3396 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3397 		chan_flags = ni->ni_chan->ic_flags;
3398 		if (ic->ic_curmode != IEEE80211_MODE_11N)
3399 			chan_flags &= ~IEEE80211_CHAN_HT;
3400 		tap->wt_chan_flags = htole16(chan_flags);
3401 		if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3402 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3403 		    type == IEEE80211_FC0_TYPE_DATA) {
3404 			tap->wt_rate = (0x80 | ni->ni_txmcs);
3405 		} else
3406 			tap->wt_rate = rinfo->rate;
3407 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
3408 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
3409 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3410 
3411 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
3412 		    m, BPF_DIRECTION_OUT);
3413 	}
3414 #endif
3415 
3416 	totlen = m->m_pkthdr.len;
3417 
3418 	/* Encrypt the frame if need be. */
3419 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3420 		/* Retrieve key for TX. */
3421 		k = ieee80211_get_txkey(ic, wh, ni);
3422 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
3423 			/* Do software encryption. */
3424 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
3425 				return ENOBUFS;
3426 			/* 802.11 header may have moved. */
3427 			wh = mtod(m, struct ieee80211_frame *);
3428 			totlen = m->m_pkthdr.len;
3429 
3430 		} else	/* HW appends CCMP MIC. */
3431 			totlen += IEEE80211_CCMP_HDRLEN;
3432 	}
3433 
3434 	data->totlen = totlen;
3435 
3436 	/* Prepare TX firmware command. */
3437 	cmd = &ring->cmd[ring->cur];
3438 	cmd->code = IWN_CMD_TX_DATA;
3439 	cmd->flags = 0;
3440 	cmd->qid = ring->qid;
3441 	cmd->idx = ring->cur;
3442 
3443 	tx = (struct iwn_cmd_data *)cmd->data;
3444 	/* NB: No need to clear tx, all fields are reinitialized here. */
3445 	tx->scratch = 0;	/* clear "scratch" area */
3446 
3447 	flags = 0;
3448 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3449 		/* Unicast frame, check if an ACK is expected. */
3450 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
3451 		    IEEE80211_QOS_ACK_POLICY_NOACK)
3452 			flags |= IWN_TX_NEED_ACK;
3453 	}
3454 	if (type == IEEE80211_FC0_TYPE_CTL &&
3455 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
3456 		struct ieee80211_frame_min *mwh;
3457 		uint8_t *barfrm;
3458 		uint16_t ctl;
3459 		mwh = mtod(m, struct ieee80211_frame_min *);
3460 		barfrm = (uint8_t *)&mwh[1];
3461 		ctl = LE_READ_2(barfrm);
3462 		tid = (ctl & IEEE80211_BA_TID_INFO_MASK) >>
3463 		    IEEE80211_BA_TID_INFO_SHIFT;
3464 		flags |= (IWN_TX_NEED_ACK | IWN_TX_IMM_BA);
3465 	}
3466 
3467 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3468 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3469 
3470 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3471 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3472 		/* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */
3473 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3474 			flags |= IWN_TX_NEED_RTS;
3475 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3476 		    ridx >= IWN_RIDX_OFDM6) {
3477 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3478 				flags |= IWN_TX_NEED_CTS;
3479 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3480 				flags |= IWN_TX_NEED_RTS;
3481 		}
3482 
3483 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3484 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3485 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3486 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3487 				flags |= IWN_TX_NEED_PROTECTION;
3488 			} else
3489 				flags |= IWN_TX_FULL_TXOP;
3490 		}
3491 	}
3492 
3493 	if (type == IEEE80211_FC0_TYPE_CTL &&
3494 	    subtype == IEEE80211_FC0_SUBTYPE_BAR)
3495 		tx->id = wn->id;
3496 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3497 	    type != IEEE80211_FC0_TYPE_DATA)
3498 		tx->id = sc->broadcast_id;
3499 	else
3500 		tx->id = wn->id;
3501 
3502 	if (type == IEEE80211_FC0_TYPE_MGT) {
3503 #ifndef IEEE80211_STA_ONLY
3504 		/* Tell HW to set timestamp in probe responses. */
3505 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3506 			flags |= IWN_TX_INSERT_TSTAMP;
3507 #endif
3508 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3509 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3510 			tx->timeout = htole16(3);
3511 		else
3512 			tx->timeout = htole16(2);
3513 	} else
3514 		tx->timeout = htole16(0);
3515 
3516 	if (hdrlen & 3) {
3517 		/* First segment length must be a multiple of 4. */
3518 		flags |= IWN_TX_NEED_PADDING;
3519 		pad = 4 - (hdrlen & 3);
3520 	} else
3521 		pad = 0;
3522 
3523 	tx->len = htole16(totlen);
3524 	tx->tid = tid;
3525 	tx->rts_ntries = 60;
3526 	tx->data_ntries = 15;
3527 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3528 
3529 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3530 	    tx->id != sc->broadcast_id)
3531 		tx->plcp = rinfo->ht_plcp;
3532 	else
3533 		tx->plcp = rinfo->plcp;
3534 
3535 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3536 	    tx->id != sc->broadcast_id) {
3537 		tx->rflags = rinfo->ht_flags;
3538 		if (iwn_rxon_ht40_enabled(sc))
3539 			tx->rflags |= IWN_RFLAG_HT40;
3540 		if (ieee80211_ra_use_ht_sgi(ni))
3541 			tx->rflags |= IWN_RFLAG_SGI;
3542 	}
3543 	else
3544 		tx->rflags = rinfo->flags;
3545 	if (tx->id == sc->broadcast_id || ic->ic_fixed_mcs != -1 ||
3546 	    ic->ic_fixed_rate != -1) {
3547 		/* Group or management frame, or fixed Tx rate. */
3548 		tx->linkq = 0;
3549 		/* XXX Alternate between antenna A and B? */
3550 		txant = IWN_LSB(sc->txchainmask);
3551 		tx->rflags |= IWN_RFLAG_ANT(txant);
3552 	} else {
3553 		tx->linkq = 0; /* initial index into firmware LQ retry table */
3554 		flags |= IWN_TX_LINKQ;	/* enable multi-rate retry */
3555 	}
3556 	/* Set physical address of "scratch area". */
3557 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3558 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3559 
3560 	/* Copy 802.11 header in TX command. */
3561 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3562 
3563 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
3564 		/* Trim 802.11 header and prepend CCMP IV. */
3565 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
3566 		ivp = mtod(m, uint8_t *);
3567 		k->k_tsc++;
3568 		ivp[0] = k->k_tsc;
3569 		ivp[1] = k->k_tsc >> 8;
3570 		ivp[2] = 0;
3571 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
3572 		ivp[4] = k->k_tsc >> 16;
3573 		ivp[5] = k->k_tsc >> 24;
3574 		ivp[6] = k->k_tsc >> 32;
3575 		ivp[7] = k->k_tsc >> 40;
3576 
3577 		tx->security = IWN_CIPHER_CCMP;
3578 		if (qid >= sc->first_agg_txq)
3579 			flags |= IWN_TX_AMPDU_CCMP;
3580 		memcpy(tx->key, k->k_key, k->k_len);
3581 
3582 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
3583 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
3584 			totlen += IEEE80211_CCMP_MICLEN;
3585 	} else {
3586 		/* Trim 802.11 header. */
3587 		m_adj(m, hdrlen);
3588 		tx->security = 0;
3589 	}
3590 	tx->flags = htole32(flags);
3591 
3592 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3593 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3594 	if (error != 0 && error != EFBIG) {
3595 		printf("%s: can't map mbuf (error %d)\n",
3596 		    sc->sc_dev.dv_xname, error);
3597 		m_freem(m);
3598 		return error;
3599 	}
3600 	if (error != 0) {
3601 		/* Too many DMA segments, linearize mbuf. */
3602 		if (m_defrag(m, M_DONTWAIT)) {
3603 			m_freem(m);
3604 			return ENOBUFS;
3605 		}
3606 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3607 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3608 		if (error != 0) {
3609 			printf("%s: can't map mbuf (error %d)\n",
3610 			    sc->sc_dev.dv_xname, error);
3611 			m_freem(m);
3612 			return error;
3613 		}
3614 	}
3615 
3616 	data->m = m;
3617 	data->ni = ni;
3618 	data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */
3619 
3620 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3621 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3622 
3623 	/* Fill TX descriptor. */
3624 	desc->nsegs = 1 + data->map->dm_nsegs;
3625 	/* First DMA segment is used by the TX command. */
3626 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3627 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3628 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3629 	/* Other DMA segments are for data payload. */
3630 	seg = data->map->dm_segs;
3631 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3632 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3633 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3634 		    seg->ds_len << 4);
3635 		seg++;
3636 	}
3637 
3638 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3639 	    BUS_DMASYNC_PREWRITE);
3640 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3641 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
3642 	    BUS_DMASYNC_PREWRITE);
3643 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3644 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3645 	    BUS_DMASYNC_PREWRITE);
3646 
3647 	/* Update TX scheduler. */
3648 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3649 
3650 	/* Kick TX ring. */
3651 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3652 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3653 
3654 	/* Mark TX ring as full if we reach a certain threshold. */
3655 	if (++ring->queued > IWN_TX_RING_HIMARK)
3656 		sc->qfullmsk |= 1 << ring->qid;
3657 
3658 	return 0;
3659 }
3660 
3661 void
3662 iwn_start(struct ifnet *ifp)
3663 {
3664 	struct iwn_softc *sc = ifp->if_softc;
3665 	struct ieee80211com *ic = &sc->sc_ic;
3666 	struct ieee80211_node *ni;
3667 	struct mbuf *m;
3668 
3669 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
3670 		return;
3671 
3672 	for (;;) {
3673 		if (sc->qfullmsk != 0) {
3674 			ifq_set_oactive(&ifp->if_snd);
3675 			break;
3676 		}
3677 
3678 		/* Send pending management frames first. */
3679 		m = mq_dequeue(&ic->ic_mgtq);
3680 		if (m != NULL) {
3681 			ni = m->m_pkthdr.ph_cookie;
3682 			goto sendit;
3683 		}
3684 		if (ic->ic_state != IEEE80211_S_RUN ||
3685 		    (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
3686 			break;
3687 
3688 		/* Encapsulate and send data frames. */
3689 		m = ifq_dequeue(&ifp->if_snd);
3690 		if (m == NULL)
3691 			break;
3692 #if NBPFILTER > 0
3693 		if (ifp->if_bpf != NULL)
3694 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
3695 #endif
3696 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
3697 			continue;
3698 sendit:
3699 #if NBPFILTER > 0
3700 		if (ic->ic_rawbpf != NULL)
3701 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
3702 #endif
3703 		if (iwn_tx(sc, m, ni) != 0) {
3704 			ieee80211_release_node(ic, ni);
3705 			ifp->if_oerrors++;
3706 			continue;
3707 		}
3708 
3709 		sc->sc_tx_timer = 5;
3710 		ifp->if_timer = 1;
3711 	}
3712 }
3713 
3714 void
3715 iwn_watchdog(struct ifnet *ifp)
3716 {
3717 	struct iwn_softc *sc = ifp->if_softc;
3718 
3719 	ifp->if_timer = 0;
3720 
3721 	if (sc->sc_tx_timer > 0) {
3722 		if (--sc->sc_tx_timer == 0) {
3723 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
3724 			iwn_stop(ifp);
3725 			ifp->if_oerrors++;
3726 			return;
3727 		}
3728 		ifp->if_timer = 1;
3729 	}
3730 
3731 	ieee80211_watchdog(ifp);
3732 }
3733 
3734 int
3735 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3736 {
3737 	struct iwn_softc *sc = ifp->if_softc;
3738 	struct ieee80211com *ic = &sc->sc_ic;
3739 	int s, error = 0;
3740 
3741 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
3742 	if (error)
3743 		return error;
3744 	s = splnet();
3745 
3746 	switch (cmd) {
3747 	case SIOCSIFADDR:
3748 		ifp->if_flags |= IFF_UP;
3749 		/* FALLTHROUGH */
3750 	case SIOCSIFFLAGS:
3751 		if (ifp->if_flags & IFF_UP) {
3752 			if (!(ifp->if_flags & IFF_RUNNING))
3753 				error = iwn_init(ifp);
3754 		} else {
3755 			if (ifp->if_flags & IFF_RUNNING)
3756 				iwn_stop(ifp);
3757 		}
3758 		break;
3759 
3760 	case SIOCS80211POWER:
3761 		error = ieee80211_ioctl(ifp, cmd, data);
3762 		if (error != ENETRESET)
3763 			break;
3764 		if (ic->ic_state == IEEE80211_S_RUN &&
3765 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3766 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3767 				error = iwn_set_pslevel(sc, 0, 3, 0);
3768 			else	/* back to CAM */
3769 				error = iwn_set_pslevel(sc, 0, 0, 0);
3770 		} else {
3771 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3772 			error = 0;
3773 		}
3774 		break;
3775 
3776 	default:
3777 		error = ieee80211_ioctl(ifp, cmd, data);
3778 	}
3779 
3780 	if (error == ENETRESET) {
3781 		error = 0;
3782 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3783 		    (IFF_UP | IFF_RUNNING)) {
3784 			iwn_stop(ifp);
3785 			error = iwn_init(ifp);
3786 		}
3787 	}
3788 
3789 	splx(s);
3790 	rw_exit_write(&sc->sc_rwlock);
3791 	return error;
3792 }
3793 
3794 /*
3795  * Send a command to the firmware.
3796  */
3797 int
3798 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3799 {
3800 	struct iwn_ops *ops = &sc->ops;
3801 	struct iwn_tx_ring *ring = &sc->txq[4];
3802 	struct iwn_tx_desc *desc;
3803 	struct iwn_tx_data *data;
3804 	struct iwn_tx_cmd *cmd;
3805 	struct mbuf *m;
3806 	bus_addr_t paddr;
3807 	int totlen, error;
3808 
3809 	desc = &ring->desc[ring->cur];
3810 	data = &ring->data[ring->cur];
3811 	totlen = 4 + size;
3812 
3813 	if (size > sizeof cmd->data) {
3814 		/* Command is too large to fit in a descriptor. */
3815 		if (totlen > MCLBYTES)
3816 			return EINVAL;
3817 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3818 		if (m == NULL)
3819 			return ENOMEM;
3820 		if (totlen > MHLEN) {
3821 			MCLGET(m, M_DONTWAIT);
3822 			if (!(m->m_flags & M_EXT)) {
3823 				m_freem(m);
3824 				return ENOMEM;
3825 			}
3826 		}
3827 		cmd = mtod(m, struct iwn_tx_cmd *);
3828 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3829 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3830 		if (error != 0) {
3831 			m_freem(m);
3832 			return error;
3833 		}
3834 		data->m = m;
3835 		paddr = data->map->dm_segs[0].ds_addr;
3836 	} else {
3837 		cmd = &ring->cmd[ring->cur];
3838 		paddr = data->cmd_paddr;
3839 	}
3840 
3841 	cmd->code = code;
3842 	cmd->flags = 0;
3843 	cmd->qid = ring->qid;
3844 	cmd->idx = ring->cur;
3845 	memcpy(cmd->data, buf, size);
3846 
3847 	desc->nsegs = 1;
3848 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3849 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3850 
3851 	if (size > sizeof cmd->data) {
3852 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3853 		    BUS_DMASYNC_PREWRITE);
3854 	} else {
3855 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3856 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
3857 		    BUS_DMASYNC_PREWRITE);
3858 	}
3859 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3860 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3861 	    BUS_DMASYNC_PREWRITE);
3862 
3863 	/* Update TX scheduler. */
3864 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3865 
3866 	/* Kick command ring. */
3867 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3868 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3869 
3870 	return async ? 0 : tsleep_nsec(desc, PCATCH, "iwncmd", SEC_TO_NSEC(1));
3871 }
3872 
3873 int
3874 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3875 {
3876 	struct iwn4965_node_info hnode;
3877 	caddr_t src, dst;
3878 
3879 	/*
3880 	 * We use the node structure for 5000 Series internally (it is
3881 	 * a superset of the one for 4965AGN). We thus copy the common
3882 	 * fields before sending the command.
3883 	 */
3884 	src = (caddr_t)node;
3885 	dst = (caddr_t)&hnode;
3886 	memcpy(dst, src, 48);
3887 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3888 	memcpy(dst + 48, src + 72, 20);
3889 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3890 }
3891 
3892 int
3893 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3894 {
3895 	/* Direct mapping. */
3896 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3897 }
3898 
3899 int
3900 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3901 {
3902 	struct ieee80211com *ic = &sc->sc_ic;
3903 	struct iwn_node *wn = (void *)ni;
3904 	struct iwn_cmd_link_quality linkq;
3905 	const struct iwn_rate *rinfo;
3906 	uint8_t txant;
3907 	int i;
3908 
3909 	/* Use the first valid TX antenna. */
3910 	txant = IWN_LSB(sc->txchainmask);
3911 
3912 	memset(&linkq, 0, sizeof linkq);
3913 	linkq.id = wn->id;
3914 	linkq.antmsk_1stream = txant;
3915 	linkq.antmsk_2stream = IWN_ANT_AB;
3916 	linkq.ampdu_max = IWN_AMPDU_MAX;
3917 	linkq.ampdu_threshold = 3;
3918 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3919 
3920 	i = 0;
3921 	if (ni->ni_flags & IEEE80211_NODE_HT) {
3922 		int txmcs;
3923 		for (txmcs = ni->ni_txmcs; txmcs >= 0; txmcs--) {
3924 			rinfo = &iwn_rates[iwn_mcs2ridx[txmcs]];
3925 			linkq.retry[i].plcp = rinfo->ht_plcp;
3926 			linkq.retry[i].rflags = rinfo->ht_flags;
3927 
3928 			/* XXX set correct ant mask for MIMO rates here */
3929 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3930 
3931 			/* First two Tx attempts may use 40MHz/SGI. */
3932 			if (i < 2) {
3933 				if (iwn_rxon_ht40_enabled(sc))
3934 					linkq.retry[i].rflags |= IWN_RFLAG_HT40;
3935 				if (ieee80211_ra_use_ht_sgi(ni))
3936 					linkq.retry[i].rflags |= IWN_RFLAG_SGI;
3937 			}
3938 
3939 			if (++i >= IWN_MAX_TX_RETRIES)
3940 				break;
3941 		}
3942 	} else {
3943 		int txrate;
3944 		for (txrate = ni->ni_txrate; txrate >= 0; txrate--) {
3945 			rinfo = &iwn_rates[wn->ridx[txrate]];
3946 			linkq.retry[i].plcp = rinfo->plcp;
3947 			linkq.retry[i].rflags = rinfo->flags;
3948 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3949 			if (++i >= IWN_MAX_TX_RETRIES)
3950 				break;
3951 		}
3952 	}
3953 
3954 	/* Fill the rest with the lowest basic rate. */
3955 	rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))];
3956 	while (i < IWN_MAX_TX_RETRIES) {
3957 		linkq.retry[i].plcp = rinfo->plcp;
3958 		linkq.retry[i].rflags = rinfo->flags;
3959 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3960 		i++;
3961 	}
3962 
3963 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3964 }
3965 
3966 /*
3967  * Broadcast node is used to send group-addressed and management frames.
3968  */
3969 int
3970 iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx)
3971 {
3972 	struct iwn_ops *ops = &sc->ops;
3973 	struct iwn_node_info node;
3974 	struct iwn_cmd_link_quality linkq;
3975 	const struct iwn_rate *rinfo;
3976 	uint8_t txant;
3977 	int i, error;
3978 
3979 	memset(&node, 0, sizeof node);
3980 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3981 	node.id = sc->broadcast_id;
3982 	DPRINTF(("adding broadcast node\n"));
3983 	if ((error = ops->add_node(sc, &node, async)) != 0)
3984 		return error;
3985 
3986 	/* Use the first valid TX antenna. */
3987 	txant = IWN_LSB(sc->txchainmask);
3988 
3989 	memset(&linkq, 0, sizeof linkq);
3990 	linkq.id = sc->broadcast_id;
3991 	linkq.antmsk_1stream = txant;
3992 	linkq.antmsk_2stream = IWN_ANT_AB;
3993 	linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG;
3994 	linkq.ampdu_threshold = 3;
3995 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3996 
3997 	/* Use lowest mandatory bit-rate. */
3998 	rinfo = &iwn_rates[ridx];
3999 	linkq.retry[0].plcp = rinfo->plcp;
4000 	linkq.retry[0].rflags = rinfo->flags;
4001 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
4002 	/* Use same bit-rate for all TX retries. */
4003 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4004 		linkq.retry[i].plcp = linkq.retry[0].plcp;
4005 		linkq.retry[i].rflags = linkq.retry[0].rflags;
4006 	}
4007 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4008 }
4009 
4010 void
4011 iwn_updateedca(struct ieee80211com *ic)
4012 {
4013 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4014 	struct iwn_softc *sc = ic->ic_softc;
4015 	struct iwn_edca_params cmd;
4016 	int aci;
4017 
4018 	memset(&cmd, 0, sizeof cmd);
4019 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4020 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
4021 		const struct ieee80211_edca_ac_params *ac =
4022 		    &ic->ic_edca_ac[aci];
4023 		cmd.ac[aci].aifsn = ac->ac_aifsn;
4024 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
4025 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
4026 		cmd.ac[aci].txoplimit =
4027 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
4028 	}
4029 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4030 #undef IWN_EXP2
4031 }
4032 
4033 void
4034 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4035 {
4036 	struct iwn_cmd_led led;
4037 
4038 	/* Clear microcode LED ownership. */
4039 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4040 
4041 	led.which = which;
4042 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4043 	led.off = off;
4044 	led.on = on;
4045 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4046 }
4047 
4048 /*
4049  * Set the critical temperature at which the firmware will stop the radio
4050  * and notify us.
4051  */
4052 int
4053 iwn_set_critical_temp(struct iwn_softc *sc)
4054 {
4055 	struct iwn_critical_temp crit;
4056 	int32_t temp;
4057 
4058 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4059 
4060 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4061 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4062 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4063 		temp = IWN_CTOK(110);
4064 	else
4065 		temp = 110;
4066 	memset(&crit, 0, sizeof crit);
4067 	crit.tempR = htole32(temp);
4068 	DPRINTF(("setting critical temperature to %d\n", temp));
4069 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4070 }
4071 
4072 int
4073 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4074 {
4075 	struct iwn_cmd_timing cmd;
4076 	uint64_t val, mod;
4077 
4078 	memset(&cmd, 0, sizeof cmd);
4079 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
4080 	cmd.bintval = htole16(ni->ni_intval);
4081 	cmd.lintval = htole16(10);
4082 
4083 	/* Compute remaining time until next beacon. */
4084 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4085 	mod = letoh64(cmd.tstamp) % val;
4086 	cmd.binitval = htole32((uint32_t)(val - mod));
4087 
4088 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
4089 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
4090 
4091 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4092 }
4093 
4094 void
4095 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4096 {
4097 	/* Adjust TX power if need be (delta >= 3 degC). */
4098 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
4099 	if (abs(temp - sc->temp) >= 3) {
4100 		/* Record temperature of last calibration. */
4101 		sc->temp = temp;
4102 		(void)iwn4965_set_txpower(sc, 1);
4103 	}
4104 }
4105 
4106 /*
4107  * Set TX power for current channel (each rate has its own power settings).
4108  * This function takes into account the regulatory information from EEPROM,
4109  * the current temperature and the current voltage.
4110  */
4111 int
4112 iwn4965_set_txpower(struct iwn_softc *sc, int async)
4113 {
4114 /* Fixed-point arithmetic division using a n-bit fractional part. */
4115 #define fdivround(a, b, n)	\
4116 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4117 /* Linear interpolation. */
4118 #define interpolate(x, x1, y1, x2, y2, n)	\
4119 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4120 
4121 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4122 	struct ieee80211com *ic = &sc->sc_ic;
4123 	struct iwn_ucode_info *uc = &sc->ucode_info;
4124 	struct ieee80211_channel *ch;
4125 	struct iwn4965_cmd_txpower cmd;
4126 	struct iwn4965_eeprom_chan_samples *chans;
4127 	const uint8_t *rf_gain, *dsp_gain;
4128 	int32_t vdiff, tdiff;
4129 	int i, c, grp, maxpwr, is_ht40 = 0;
4130 	uint8_t chan, ext_chan;
4131 
4132 	/* Retrieve current channel from last RXON. */
4133 	chan = sc->rxon.chan;
4134 	DPRINTF(("setting TX power for channel %d\n", chan));
4135 	ch = &ic->ic_channels[chan];
4136 
4137 	memset(&cmd, 0, sizeof cmd);
4138 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4139 	cmd.chan = chan;
4140 
4141 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4142 		maxpwr   = sc->maxpwr5GHz;
4143 		rf_gain  = iwn4965_rf_gain_5ghz;
4144 		dsp_gain = iwn4965_dsp_gain_5ghz;
4145 	} else {
4146 		maxpwr   = sc->maxpwr2GHz;
4147 		rf_gain  = iwn4965_rf_gain_2ghz;
4148 		dsp_gain = iwn4965_dsp_gain_2ghz;
4149 	}
4150 
4151 	/* Compute voltage compensation. */
4152 	vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
4153 	if (vdiff > 0)
4154 		vdiff *= 2;
4155 	if (abs(vdiff) > 2)
4156 		vdiff = 0;
4157 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4158 	    vdiff, letoh32(uc->volt), sc->eeprom_voltage));
4159 
4160 	/* Get channel attenuation group. */
4161 	if (chan <= 20)		/* 1-20 */
4162 		grp = 4;
4163 	else if (chan <= 43)	/* 34-43 */
4164 		grp = 0;
4165 	else if (chan <= 70)	/* 44-70 */
4166 		grp = 1;
4167 	else if (chan <= 124)	/* 71-124 */
4168 		grp = 2;
4169 	else			/* 125-200 */
4170 		grp = 3;
4171 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
4172 
4173 	/* Get channel sub-band. */
4174 	for (i = 0; i < IWN_NBANDS; i++)
4175 		if (sc->bands[i].lo != 0 &&
4176 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4177 			break;
4178 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4179 		return EINVAL;
4180 	chans = sc->bands[i].chans;
4181 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
4182 
4183 	if (iwn_rxon_ht40_enabled(sc)) {
4184 		is_ht40 = 1;
4185 		if (le32toh(sc->rxon.flags) & IWN_RXON_HT_HT40MINUS)
4186 			ext_chan = chan - 2;
4187 		else
4188 			ext_chan = chan + 2;
4189 	} else
4190 		ext_chan = chan;
4191 
4192 	for (c = 0; c < 2; c++) {
4193 		uint8_t power, gain, temp;
4194 		int maxchpwr, pwr, ridx, idx;
4195 
4196 		power = interpolate(ext_chan,
4197 		    chans[0].num, chans[0].samples[c][1].power,
4198 		    chans[1].num, chans[1].samples[c][1].power, 1);
4199 		gain  = interpolate(ext_chan,
4200 		    chans[0].num, chans[0].samples[c][1].gain,
4201 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4202 		temp  = interpolate(ext_chan,
4203 		    chans[0].num, chans[0].samples[c][1].temp,
4204 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4205 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
4206 		    c, power, gain, temp));
4207 
4208 		/* Compute temperature compensation. */
4209 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4210 		DPRINTF(("temperature compensation=%d (current=%d, "
4211 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
4212 
4213 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4214 			/* Convert dBm to half-dBm. */
4215 			if (is_ht40)
4216 				maxchpwr = sc->maxpwr40[chan] * 2;
4217 			else
4218 				maxchpwr = sc->maxpwr[chan] * 2;
4219 #ifdef notyet
4220 			if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16])
4221 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4222 #endif
4223 
4224 			pwr = maxpwr;
4225 
4226 			/* Adjust TX power based on rate. */
4227 			if ((ridx % 8) == 5)
4228 				pwr -= 15;	/* OFDM48: -7.5dB */
4229 			else if ((ridx % 8) == 6)
4230 				pwr -= 17;	/* OFDM54: -8.5dB */
4231 			else if ((ridx % 8) == 7)
4232 				pwr -= 20;	/* OFDM60: -10dB */
4233 			else
4234 				pwr -= 10;	/* Others: -5dB */
4235 
4236 			/* Do not exceed channel max TX power. */
4237 			if (pwr > maxchpwr)
4238 				pwr = maxchpwr;
4239 
4240 			idx = gain - (pwr - power) - tdiff - vdiff;
4241 			if (ridx > iwn_mcs2ridx[7]) /* MIMO */
4242 				idx += (int32_t)letoh32(uc->atten[grp][c]);
4243 
4244 			if (cmd.band == 0)
4245 				idx += 9;	/* 5GHz */
4246 			if (ridx == IWN_RIDX_MAX)
4247 				idx += 5;	/* CCK */
4248 
4249 			/* Make sure idx stays in a valid range. */
4250 			if (idx < 0)
4251 				idx = 0;
4252 			else if (idx > IWN4965_MAX_PWR_INDEX)
4253 				idx = IWN4965_MAX_PWR_INDEX;
4254 
4255 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
4256 			    c, ridx, idx));
4257 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4258 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4259 		}
4260 	}
4261 
4262 	DPRINTF(("setting TX power for chan %d\n", chan));
4263 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4264 
4265 #undef interpolate
4266 #undef fdivround
4267 }
4268 
4269 int
4270 iwn5000_set_txpower(struct iwn_softc *sc, int async)
4271 {
4272 	struct iwn5000_cmd_txpower cmd;
4273 
4274 	/*
4275 	 * TX power calibration is handled automatically by the firmware
4276 	 * for 5000 Series.
4277 	 */
4278 	memset(&cmd, 0, sizeof cmd);
4279 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4280 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4281 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4282 	DPRINTF(("setting TX power\n"));
4283 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4284 }
4285 
4286 /*
4287  * Retrieve the maximum RSSI (in dBm) among receivers.
4288  */
4289 int
4290 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
4291 {
4292 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4293 	uint8_t mask, agc;
4294 	int rssi;
4295 
4296 	mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
4297 	agc  = (letoh16(phy->agc) >> 7) & 0x7f;
4298 
4299 	rssi = 0;
4300 	if (mask & IWN_ANT_A)
4301 		rssi = MAX(rssi, phy->rssi[0]);
4302 	if (mask & IWN_ANT_B)
4303 		rssi = MAX(rssi, phy->rssi[2]);
4304 	if (mask & IWN_ANT_C)
4305 		rssi = MAX(rssi, phy->rssi[4]);
4306 
4307 	return rssi - agc - IWN_RSSI_TO_DBM;
4308 }
4309 
4310 int
4311 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
4312 {
4313 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4314 	uint8_t agc;
4315 	int rssi;
4316 
4317 	agc = (letoh32(phy->agc) >> 9) & 0x7f;
4318 
4319 	rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
4320 		   letoh16(phy->rssi[1]) & 0xff);
4321 	rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
4322 
4323 	return rssi - agc - IWN_RSSI_TO_DBM;
4324 }
4325 
4326 /*
4327  * Retrieve the average noise (in dBm) among receivers.
4328  */
4329 int
4330 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4331 {
4332 	int i, total, nbant, noise;
4333 
4334 	total = nbant = 0;
4335 	for (i = 0; i < 3; i++) {
4336 		if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
4337 			continue;
4338 		total += noise;
4339 		nbant++;
4340 	}
4341 	/* There should be at least one antenna but check anyway. */
4342 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4343 }
4344 
4345 /*
4346  * Compute temperature (in degC) from last received statistics.
4347  */
4348 int
4349 iwn4965_get_temperature(struct iwn_softc *sc)
4350 {
4351 	struct iwn_ucode_info *uc = &sc->ucode_info;
4352 	int32_t r1, r2, r3, r4, temp;
4353 
4354 	if (sc->rx_stats_flags & IWN_STATS_FLAGS_BAND_HT40) {
4355 		r1 = letoh32(uc->temp[0].chan40MHz);
4356 		r2 = letoh32(uc->temp[1].chan40MHz);
4357 		r3 = letoh32(uc->temp[2].chan40MHz);
4358 	} else {
4359 		r1 = letoh32(uc->temp[0].chan20MHz);
4360 		r2 = letoh32(uc->temp[1].chan20MHz);
4361 		r3 = letoh32(uc->temp[2].chan20MHz);
4362 	}
4363 	r4 = letoh32(sc->rawtemp);
4364 
4365 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4366 		return 0;
4367 
4368 	/* Sign-extend 23-bit R4 value to 32-bit. */
4369 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4370 	/* Compute temperature in Kelvin. */
4371 	temp = (259 * (r4 - r2)) / (r3 - r1);
4372 	temp = (temp * 97) / 100 + 8;
4373 
4374 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
4375 	return IWN_KTOC(temp);
4376 }
4377 
4378 int
4379 iwn5000_get_temperature(struct iwn_softc *sc)
4380 {
4381 	int32_t temp;
4382 
4383 	/*
4384 	 * Temperature is not used by the driver for 5000 Series because
4385 	 * TX power calibration is handled by firmware.
4386 	 */
4387 	temp = letoh32(sc->rawtemp);
4388 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4389 		temp = (temp / -5) + sc->temp_off;
4390 		temp = IWN_KTOC(temp);
4391 	}
4392 	return temp;
4393 }
4394 
4395 /*
4396  * Initialize sensitivity calibration state machine.
4397  */
4398 int
4399 iwn_init_sensitivity(struct iwn_softc *sc)
4400 {
4401 	struct iwn_ops *ops = &sc->ops;
4402 	struct iwn_calib_state *calib = &sc->calib;
4403 	uint32_t flags;
4404 	int error;
4405 
4406 	/* Reset calibration state machine. */
4407 	memset(calib, 0, sizeof (*calib));
4408 	calib->state = IWN_CALIB_STATE_INIT;
4409 	calib->cck_state = IWN_CCK_STATE_HIFA;
4410 	/* Set initial correlation values. */
4411 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4412 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4413 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4414 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4415 	calib->cck_x4      = 125;
4416 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4417 	calib->energy_cck  = sc->limits->energy_cck;
4418 
4419 	/* Write initial sensitivity. */
4420 	if ((error = iwn_send_sensitivity(sc)) != 0)
4421 		return error;
4422 
4423 	/* Write initial gains. */
4424 	if ((error = ops->init_gains(sc)) != 0)
4425 		return error;
4426 
4427 	/* Request statistics at each beacon interval. */
4428 	flags = 0;
4429 	DPRINTFN(2, ("sending request for statistics\n"));
4430 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4431 }
4432 
4433 /*
4434  * Collect noise and RSSI statistics for the first 20 beacons received
4435  * after association and use them to determine connected antennas and
4436  * to set differential gains.
4437  */
4438 void
4439 iwn_collect_noise(struct iwn_softc *sc,
4440     const struct iwn_rx_general_stats *stats)
4441 {
4442 	struct iwn_ops *ops = &sc->ops;
4443 	struct iwn_calib_state *calib = &sc->calib;
4444 	uint32_t val;
4445 	int i;
4446 
4447 	/* Accumulate RSSI and noise for all 3 antennas. */
4448 	for (i = 0; i < 3; i++) {
4449 		calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
4450 		calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
4451 	}
4452 	/* NB: We update differential gains only once after 20 beacons. */
4453 	if (++calib->nbeacons < 20)
4454 		return;
4455 
4456 	/* Determine highest average RSSI. */
4457 	val = MAX(calib->rssi[0], calib->rssi[1]);
4458 	val = MAX(calib->rssi[2], val);
4459 
4460 	/* Determine which antennas are connected. */
4461 	sc->chainmask = sc->rxchainmask;
4462 	for (i = 0; i < 3; i++)
4463 		if (val - calib->rssi[i] > 15 * 20)
4464 			sc->chainmask &= ~(1 << i);
4465 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4466 	    sc->rxchainmask, sc->chainmask));
4467 
4468 	/* If none of the TX antennas are connected, keep at least one. */
4469 	if ((sc->chainmask & sc->txchainmask) == 0)
4470 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4471 
4472 	(void)ops->set_gains(sc);
4473 	calib->state = IWN_CALIB_STATE_RUN;
4474 
4475 #ifdef notyet
4476 	/* XXX Disable RX chains with no antennas connected. */
4477 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4478 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4479 #endif
4480 
4481 	/* Enable power-saving mode if requested by user. */
4482 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4483 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4484 }
4485 
4486 int
4487 iwn4965_init_gains(struct iwn_softc *sc)
4488 {
4489 	struct iwn_phy_calib_gain cmd;
4490 
4491 	memset(&cmd, 0, sizeof cmd);
4492 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4493 	/* Differential gains initially set to 0 for all 3 antennas. */
4494 	DPRINTF(("setting initial differential gains\n"));
4495 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4496 }
4497 
4498 int
4499 iwn5000_init_gains(struct iwn_softc *sc)
4500 {
4501 	struct iwn_phy_calib cmd;
4502 
4503 	memset(&cmd, 0, sizeof cmd);
4504 	cmd.code = sc->reset_noise_gain;
4505 	cmd.ngroups = 1;
4506 	cmd.isvalid = 1;
4507 	DPRINTF(("setting initial differential gains\n"));
4508 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4509 }
4510 
4511 int
4512 iwn4965_set_gains(struct iwn_softc *sc)
4513 {
4514 	struct iwn_calib_state *calib = &sc->calib;
4515 	struct iwn_phy_calib_gain cmd;
4516 	int i, delta, noise;
4517 
4518 	/* Get minimal noise among connected antennas. */
4519 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4520 	for (i = 0; i < 3; i++)
4521 		if (sc->chainmask & (1 << i))
4522 			noise = MIN(calib->noise[i], noise);
4523 
4524 	memset(&cmd, 0, sizeof cmd);
4525 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4526 	/* Set differential gains for connected antennas. */
4527 	for (i = 0; i < 3; i++) {
4528 		if (sc->chainmask & (1 << i)) {
4529 			/* Compute attenuation (in unit of 1.5dB). */
4530 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4531 			/* NB: delta <= 0 */
4532 			/* Limit to [-4.5dB,0]. */
4533 			cmd.gain[i] = MIN(abs(delta), 3);
4534 			if (delta < 0)
4535 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4536 		}
4537 	}
4538 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4539 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4540 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4541 }
4542 
4543 int
4544 iwn5000_set_gains(struct iwn_softc *sc)
4545 {
4546 	struct iwn_calib_state *calib = &sc->calib;
4547 	struct iwn_phy_calib_gain cmd;
4548 	int i, ant, div, delta;
4549 
4550 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4551 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4552 
4553 	memset(&cmd, 0, sizeof cmd);
4554 	cmd.code = sc->noise_gain;
4555 	cmd.ngroups = 1;
4556 	cmd.isvalid = 1;
4557 	/*
4558 	 * Get first available RX antenna as referential.
4559 	 * IWN_LSB() return values start with 1, but antenna gain array
4560 	 * cmd.gain[] and noise array calib->noise[] start with 0.
4561 	 */
4562 	ant = IWN_LSB(sc->rxchainmask) - 1;
4563 
4564 	/* Set differential gains for other antennas. */
4565 	for (i = ant + 1; i < 3; i++) {
4566 		if (sc->chainmask & (1 << i)) {
4567 			/* The delta is relative to antenna "ant". */
4568 			delta = ((int32_t)calib->noise[ant] -
4569 			    (int32_t)calib->noise[i]) / div;
4570 			DPRINTF(("Ant[%d] vs. Ant[%d]: delta %d\n", ant, i, delta));
4571 			/* Limit to [-4.5dB,+4.5dB]. */
4572 			cmd.gain[i] = MIN(abs(delta), 3);
4573 			if (delta < 0)
4574 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4575 			DPRINTF(("Setting differential gains for antenna %d: %x\n",
4576 				i, cmd.gain[i]));
4577 		}
4578 	}
4579 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4580 }
4581 
4582 /*
4583  * Tune RF RX sensitivity based on the number of false alarms detected
4584  * during the last beacon period.
4585  */
4586 void
4587 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4588 {
4589 #define inc(val, inc, max)			\
4590 	if ((val) < (max)) {			\
4591 		if ((val) < (max) - (inc))	\
4592 			(val) += (inc);		\
4593 		else				\
4594 			(val) = (max);		\
4595 		needs_update = 1;		\
4596 	}
4597 #define dec(val, dec, min)			\
4598 	if ((val) > (min)) {			\
4599 		if ((val) > (min) + (dec))	\
4600 			(val) -= (dec);		\
4601 		else				\
4602 			(val) = (min);		\
4603 		needs_update = 1;		\
4604 	}
4605 
4606 	const struct iwn_sensitivity_limits *limits = sc->limits;
4607 	struct iwn_calib_state *calib = &sc->calib;
4608 	uint32_t val, rxena, fa;
4609 	uint32_t energy[3], energy_min;
4610 	uint8_t noise[3], noise_ref;
4611 	int i, needs_update = 0;
4612 
4613 	/* Check that we've been enabled long enough. */
4614 	if ((rxena = letoh32(stats->general.load)) == 0)
4615 		return;
4616 
4617 	/* Compute number of false alarms since last call for OFDM. */
4618 	fa  = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4619 	fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
4620 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4621 
4622 	/* Save counters values for next call. */
4623 	calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
4624 	calib->fa_ofdm = letoh32(stats->ofdm.fa);
4625 
4626 	if (fa > 50 * rxena) {
4627 		/* High false alarm count, decrease sensitivity. */
4628 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4629 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4630 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4631 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4632 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4633 
4634 	} else if (fa < 5 * rxena) {
4635 		/* Low false alarm count, increase sensitivity. */
4636 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4637 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4638 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4639 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4640 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4641 	}
4642 
4643 	/* Compute maximum noise among 3 receivers. */
4644 	for (i = 0; i < 3; i++)
4645 		noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
4646 	val = MAX(noise[0], noise[1]);
4647 	val = MAX(noise[2], val);
4648 	/* Insert it into our samples table. */
4649 	calib->noise_samples[calib->cur_noise_sample] = val;
4650 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4651 
4652 	/* Compute maximum noise among last 20 samples. */
4653 	noise_ref = calib->noise_samples[0];
4654 	for (i = 1; i < 20; i++)
4655 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4656 
4657 	/* Compute maximum energy among 3 receivers. */
4658 	for (i = 0; i < 3; i++)
4659 		energy[i] = letoh32(stats->general.energy[i]);
4660 	val = MIN(energy[0], energy[1]);
4661 	val = MIN(energy[2], val);
4662 	/* Insert it into our samples table. */
4663 	calib->energy_samples[calib->cur_energy_sample] = val;
4664 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4665 
4666 	/* Compute minimum energy among last 10 samples. */
4667 	energy_min = calib->energy_samples[0];
4668 	for (i = 1; i < 10; i++)
4669 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4670 	energy_min += 6;
4671 
4672 	/* Compute number of false alarms since last call for CCK. */
4673 	fa  = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4674 	fa += letoh32(stats->cck.fa) - calib->fa_cck;
4675 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4676 
4677 	/* Save counters values for next call. */
4678 	calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
4679 	calib->fa_cck = letoh32(stats->cck.fa);
4680 
4681 	if (fa > 50 * rxena) {
4682 		/* High false alarm count, decrease sensitivity. */
4683 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4684 		calib->cck_state = IWN_CCK_STATE_HIFA;
4685 		calib->low_fa = 0;
4686 
4687 		if (calib->cck_x4 > 160) {
4688 			calib->noise_ref = noise_ref;
4689 			if (calib->energy_cck > 2)
4690 				dec(calib->energy_cck, 2, energy_min);
4691 		}
4692 		if (calib->cck_x4 < 160) {
4693 			calib->cck_x4 = 161;
4694 			needs_update = 1;
4695 		} else
4696 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4697 
4698 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4699 
4700 	} else if (fa < 5 * rxena) {
4701 		/* Low false alarm count, increase sensitivity. */
4702 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4703 		calib->cck_state = IWN_CCK_STATE_LOFA;
4704 		calib->low_fa++;
4705 
4706 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4707 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4708 		     calib->low_fa > 100)) {
4709 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4710 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4711 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4712 		}
4713 	} else {
4714 		/* Not worth to increase or decrease sensitivity. */
4715 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4716 		calib->low_fa = 0;
4717 		calib->noise_ref = noise_ref;
4718 
4719 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4720 			/* Previous interval had many false alarms. */
4721 			dec(calib->energy_cck, 8, energy_min);
4722 		}
4723 		calib->cck_state = IWN_CCK_STATE_INIT;
4724 	}
4725 
4726 	if (needs_update)
4727 		(void)iwn_send_sensitivity(sc);
4728 #undef dec
4729 #undef inc
4730 }
4731 
4732 int
4733 iwn_send_sensitivity(struct iwn_softc *sc)
4734 {
4735 	struct iwn_calib_state *calib = &sc->calib;
4736 	struct iwn_enhanced_sensitivity_cmd cmd;
4737 	int len;
4738 
4739 	memset(&cmd, 0, sizeof cmd);
4740 	len = sizeof (struct iwn_sensitivity_cmd);
4741 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4742 	/* OFDM modulation. */
4743 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4744 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4745 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4746 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4747 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4748 	cmd.energy_ofdm_th     = htole16(62);
4749 	/* CCK modulation. */
4750 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4751 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4752 	cmd.energy_cck         = htole16(calib->energy_cck);
4753 	/* Barker modulation: use default values. */
4754 	cmd.corr_barker        = htole16(190);
4755 	cmd.corr_barker_mrc    = htole16(390);
4756 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4757 		goto send;
4758 	/* Enhanced sensitivity settings. */
4759 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4760 	cmd.ofdm_det_slope_mrc = htole16(668);
4761 	cmd.ofdm_det_icept_mrc = htole16(4);
4762 	cmd.ofdm_det_slope     = htole16(486);
4763 	cmd.ofdm_det_icept     = htole16(37);
4764 	cmd.cck_det_slope_mrc  = htole16(853);
4765 	cmd.cck_det_icept_mrc  = htole16(4);
4766 	cmd.cck_det_slope      = htole16(476);
4767 	cmd.cck_det_icept      = htole16(99);
4768 send:
4769 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4770 }
4771 
4772 /*
4773  * Set STA mode power saving level (between 0 and 5).
4774  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4775  */
4776 int
4777 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4778 {
4779 	struct iwn_pmgt_cmd cmd;
4780 	const struct iwn_pmgt *pmgt;
4781 	uint32_t max, skip_dtim;
4782 	pcireg_t reg;
4783 	int i;
4784 
4785 	/* Select which PS parameters to use. */
4786 	if (dtim <= 2)
4787 		pmgt = &iwn_pmgt[0][level];
4788 	else if (dtim <= 10)
4789 		pmgt = &iwn_pmgt[1][level];
4790 	else
4791 		pmgt = &iwn_pmgt[2][level];
4792 
4793 	memset(&cmd, 0, sizeof cmd);
4794 	if (level != 0)	/* not CAM */
4795 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4796 	if (level == 5)
4797 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4798 	/* Retrieve PCIe Active State Power Management (ASPM). */
4799 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4800 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4801 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4802 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4803 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4804 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4805 
4806 	if (dtim == 0) {
4807 		dtim = 1;
4808 		skip_dtim = 0;
4809 	} else
4810 		skip_dtim = pmgt->skip_dtim;
4811 	if (skip_dtim != 0) {
4812 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4813 		max = pmgt->intval[4];
4814 		if (max == (uint32_t)-1)
4815 			max = dtim * (skip_dtim + 1);
4816 		else if (max > dtim)
4817 			max = (max / dtim) * dtim;
4818 	} else
4819 		max = dtim;
4820 	for (i = 0; i < 5; i++)
4821 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4822 
4823 	DPRINTF(("setting power saving level to %d\n", level));
4824 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4825 }
4826 
4827 int
4828 iwn_send_btcoex(struct iwn_softc *sc)
4829 {
4830 	struct iwn_bluetooth cmd;
4831 
4832 	memset(&cmd, 0, sizeof cmd);
4833 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4834 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4835 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4836 	DPRINTF(("configuring bluetooth coexistence\n"));
4837 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4838 }
4839 
4840 int
4841 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4842 {
4843 	static const uint32_t btcoex_3wire[12] = {
4844 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4845 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4846 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4847 	};
4848 	struct iwn_btcoex_priotable btprio;
4849 	struct iwn_btcoex_prot btprot;
4850 	int error, i;
4851 
4852 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4853 	    sc->hw_type == IWN_HW_REV_TYPE_135) {
4854 		struct iwn2000_btcoex_config btconfig;
4855 
4856 		memset(&btconfig, 0, sizeof btconfig);
4857 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4858 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4859 		    IWN_BT_SYNC_2_BT_DISABLE;
4860 		btconfig.max_kill = 5;
4861 		btconfig.bt3_t7_timer = 1;
4862 		btconfig.kill_ack = htole32(0xffff0000);
4863 		btconfig.kill_cts = htole32(0xffff0000);
4864 		btconfig.sample_time = 2;
4865 		btconfig.bt3_t2_timer = 0xc;
4866 		for (i = 0; i < 12; i++)
4867 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4868 		btconfig.valid = htole16(0xff);
4869 		btconfig.prio_boost = htole32(0xf0);
4870 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4871 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4872 		    sizeof(btconfig), 1);
4873 		if (error != 0)
4874 			return (error);
4875 	} else {
4876 		struct iwn6000_btcoex_config btconfig;
4877 
4878 		memset(&btconfig, 0, sizeof btconfig);
4879 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4880 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4881 		    IWN_BT_SYNC_2_BT_DISABLE;
4882 		btconfig.max_kill = 5;
4883 		btconfig.bt3_t7_timer = 1;
4884 		btconfig.kill_ack = htole32(0xffff0000);
4885 		btconfig.kill_cts = htole32(0xffff0000);
4886 		btconfig.sample_time = 2;
4887 		btconfig.bt3_t2_timer = 0xc;
4888 		for (i = 0; i < 12; i++)
4889 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4890 		btconfig.valid = htole16(0xff);
4891 		btconfig.prio_boost = 0xf0;
4892 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4893 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4894 		    sizeof(btconfig), 1);
4895 		if (error != 0)
4896 			return (error);
4897 	}
4898 
4899 	memset(&btprio, 0, sizeof btprio);
4900 	btprio.calib_init1 = 0x6;
4901 	btprio.calib_init2 = 0x7;
4902 	btprio.calib_periodic_low1 = 0x2;
4903 	btprio.calib_periodic_low2 = 0x3;
4904 	btprio.calib_periodic_high1 = 0x4;
4905 	btprio.calib_periodic_high2 = 0x5;
4906 	btprio.dtim = 0x6;
4907 	btprio.scan52 = 0x8;
4908 	btprio.scan24 = 0xa;
4909 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4910 	    1);
4911 	if (error != 0)
4912 		return (error);
4913 
4914 	/* Force BT state machine change */
4915 	memset(&btprot, 0, sizeof btprot);
4916 	btprot.open = 1;
4917 	btprot.type = 1;
4918 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4919 	if (error != 0)
4920 		return (error);
4921 
4922 	btprot.open = 0;
4923 	return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1));
4924 }
4925 
4926 int
4927 iwn5000_runtime_calib(struct iwn_softc *sc)
4928 {
4929 	struct iwn5000_calib_config cmd;
4930 
4931 	memset(&cmd, 0, sizeof cmd);
4932 	cmd.ucode.once.enable = 0xffffffff;
4933 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4934 	DPRINTF(("configuring runtime calibration\n"));
4935 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4936 }
4937 
4938 int
4939 iwn_config(struct iwn_softc *sc)
4940 {
4941 	struct iwn_ops *ops = &sc->ops;
4942 	struct ieee80211com *ic = &sc->sc_ic;
4943 	struct ifnet *ifp = &ic->ic_if;
4944 	uint32_t txmask;
4945 	uint16_t rxchain;
4946 	int error, ridx;
4947 
4948 	/* Set radio temperature sensor offset. */
4949 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4950 		error = iwn6000_temp_offset_calib(sc);
4951 		if (error != 0) {
4952 			printf("%s: could not set temperature offset\n",
4953 			    sc->sc_dev.dv_xname);
4954 			return error;
4955 		}
4956 	}
4957 
4958 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4959 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4960 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
4961 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4962 		error = iwn2000_temp_offset_calib(sc);
4963 		if (error != 0) {
4964 			printf("%s: could not set temperature offset\n",
4965 			    sc->sc_dev.dv_xname);
4966 			return error;
4967 		}
4968 	}
4969 
4970 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4971 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4972 		/* Configure runtime DC calibration. */
4973 		error = iwn5000_runtime_calib(sc);
4974 		if (error != 0) {
4975 			printf("%s: could not configure runtime calibration\n",
4976 			    sc->sc_dev.dv_xname);
4977 			return error;
4978 		}
4979 	}
4980 
4981 	/* Configure valid TX chains for >=5000 Series. */
4982 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4983 		txmask = htole32(sc->txchainmask);
4984 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4985 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4986 		    sizeof txmask, 0);
4987 		if (error != 0) {
4988 			printf("%s: could not configure valid TX chains\n",
4989 			    sc->sc_dev.dv_xname);
4990 			return error;
4991 		}
4992 	}
4993 
4994 	/* Configure bluetooth coexistence. */
4995 	if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX)
4996 		error = iwn_send_advanced_btcoex(sc);
4997 	else
4998 		error = iwn_send_btcoex(sc);
4999 	if (error != 0) {
5000 		printf("%s: could not configure bluetooth coexistence\n",
5001 		    sc->sc_dev.dv_xname);
5002 		return error;
5003 	}
5004 
5005 	/* Set mode, channel, RX filter and enable RX. */
5006 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5007 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
5008 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
5009 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
5010 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
5011 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5012 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
5013 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5014 		if (ic->ic_flags & IEEE80211_F_USEPROT)
5015 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5016 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
5017 		    le32toh(sc->rxon.flags)));
5018 	}
5019 	switch (ic->ic_opmode) {
5020 	case IEEE80211_M_STA:
5021 		sc->rxon.mode = IWN_MODE_STA;
5022 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5023 		break;
5024 	case IEEE80211_M_MONITOR:
5025 		sc->rxon.mode = IWN_MODE_MONITOR;
5026 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5027 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5028 		break;
5029 	default:
5030 		/* Should not get there. */
5031 		break;
5032 	}
5033 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5034 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5035 	sc->rxon.ht_single_mask = 0xff;
5036 	sc->rxon.ht_dual_mask = 0xff;
5037 	sc->rxon.ht_triple_mask = 0xff;
5038 	rxchain =
5039 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5040 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
5041 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
5042 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5043 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5044 		rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask);
5045 	    	rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE);
5046 	}
5047 	sc->rxon.rxchain = htole16(rxchain);
5048 	DPRINTF(("setting configuration\n"));
5049 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n",
5050 	    __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5051 	    sc->rxon.ofdm_mask, sc->rxon.rxchain));
5052 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5053 	if (error != 0) {
5054 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5055 		return error;
5056 	}
5057 
5058 	ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ?
5059 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5060 	if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) {
5061 		printf("%s: could not add broadcast node\n",
5062 		    sc->sc_dev.dv_xname);
5063 		return error;
5064 	}
5065 
5066 	/* Configuration has changed, set TX power accordingly. */
5067 	if ((error = ops->set_txpower(sc, 0)) != 0) {
5068 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5069 		return error;
5070 	}
5071 
5072 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5073 		printf("%s: could not set critical temperature\n",
5074 		    sc->sc_dev.dv_xname);
5075 		return error;
5076 	}
5077 
5078 	/* Set power saving level to CAM during initialization. */
5079 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5080 		printf("%s: could not set power saving level\n",
5081 		    sc->sc_dev.dv_xname);
5082 		return error;
5083 	}
5084 	return 0;
5085 }
5086 
5087 uint16_t
5088 iwn_get_active_dwell_time(struct iwn_softc *sc,
5089     uint16_t flags, uint8_t n_probes)
5090 {
5091 	/* No channel? Default to 2GHz settings */
5092 	if (flags & IEEE80211_CHAN_2GHZ) {
5093 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
5094 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
5095 	}
5096 
5097 	/* 5GHz dwell time */
5098 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
5099 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
5100 }
5101 
5102 /*
5103  * Limit the total dwell time to 85% of the beacon interval.
5104  *
5105  * Returns the dwell time in milliseconds.
5106  */
5107 uint16_t
5108 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
5109 {
5110 	struct ieee80211com *ic = &sc->sc_ic;
5111 	struct ieee80211_node *ni = ic->ic_bss;
5112 	int bintval = 0;
5113 
5114 	/* bintval is in TU (1.024mS) */
5115 	if (ni != NULL)
5116 		bintval = ni->ni_intval;
5117 
5118 	/*
5119 	 * If it's non-zero, we should calculate the minimum of
5120 	 * it and the DWELL_BASE.
5121 	 *
5122 	 * XXX Yes, the math should take into account that bintval
5123 	 * is 1.024mS, not 1mS..
5124 	 */
5125 	if (ic->ic_state == IEEE80211_S_RUN && bintval > 0)
5126 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
5127 
5128 	/* No association context? Default */
5129 	return dwell_time;
5130 }
5131 
5132 uint16_t
5133 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
5134 {
5135 	uint16_t passive;
5136 	if (flags & IEEE80211_CHAN_2GHZ) {
5137 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
5138 	} else {
5139 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
5140 	}
5141 
5142 	/* Clamp to the beacon interval if we're associated */
5143 	return (iwn_limit_dwell(sc, passive));
5144 }
5145 
5146 int
5147 iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan)
5148 {
5149 	struct ieee80211com *ic = &sc->sc_ic;
5150 	struct iwn_scan_hdr *hdr;
5151 	struct iwn_cmd_data *tx;
5152 	struct iwn_scan_essid *essid;
5153 	struct iwn_scan_chan *chan;
5154 	struct ieee80211_frame *wh;
5155 	struct ieee80211_rateset *rs;
5156 	struct ieee80211_channel *c;
5157 	uint8_t *buf, *frm;
5158 	uint16_t rxchain, dwell_active, dwell_passive;
5159 	uint8_t txant;
5160 	int buflen, error, is_active;
5161 
5162 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5163 	if (buf == NULL) {
5164 		printf("%s: could not allocate buffer for scan command\n",
5165 		    sc->sc_dev.dv_xname);
5166 		return ENOMEM;
5167 	}
5168 	hdr = (struct iwn_scan_hdr *)buf;
5169 	/*
5170 	 * Move to the next channel if no frames are received within 10ms
5171 	 * after sending the probe request.
5172 	 */
5173 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5174 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5175 
5176 	if (bgscan) {
5177 		int bintval;
5178 
5179 		/* Set maximum off-channel time. */
5180 		hdr->max_out = htole32(200 * 1024);
5181 
5182 		/* Configure scan pauses which service on-channel traffic. */
5183 		bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100;
5184 		hdr->pause_scan = htole32(((100 / bintval) << 22) |
5185 		    ((100 % bintval) * 1024));
5186 	}
5187 
5188 	/* Select antennas for scanning. */
5189 	rxchain =
5190 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5191 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5192 	    IWN_RXCHAIN_DRIVER_FORCE;
5193 	if ((flags & IEEE80211_CHAN_5GHZ) &&
5194 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5195 		/*
5196 		 * On 4965 ant A and C must be avoided in 5GHz because of a
5197 		 * HW bug which causes very weak RSSI values being reported.
5198 		 */
5199 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5200 	} else	/* Use all available RX antennas. */
5201 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5202 	hdr->rxchain = htole16(rxchain);
5203 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5204 
5205 	tx = (struct iwn_cmd_data *)(hdr + 1);
5206 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5207 	tx->id = sc->broadcast_id;
5208 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5209 
5210 	if (flags & IEEE80211_CHAN_5GHZ) {
5211 		/* Send probe requests at 6Mbps. */
5212 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5213 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5214 	} else {
5215 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5216 		if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5217 		    sc->rxon.chan > 14) {
5218 			/*
5219 			 * 4965 firmware can crash when sending probe requests
5220 			 * with CCK rates while associated to a 5GHz AP.
5221 			 * Send probe requests at 6Mbps OFDM as a workaround.
5222 			 */
5223 			tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5224 		} else {
5225 			/* Send probe requests at 1Mbps. */
5226 			tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
5227 			tx->rflags = IWN_RFLAG_CCK;
5228 		}
5229 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5230 	}
5231 	/* Use the first valid TX antenna. */
5232 	txant = IWN_LSB(sc->txchainmask);
5233 	tx->rflags |= IWN_RFLAG_ANT(txant);
5234 
5235 	/*
5236 	 * Only do active scanning if we're announcing a probe request
5237 	 * for a given SSID (or more, if we ever add it to the driver.)
5238 	 */
5239 	is_active = 0;
5240 
5241 	/*
5242 	 * If we're scanning for a specific SSID, add it to the command.
5243 	 */
5244 	essid = (struct iwn_scan_essid *)(tx + 1);
5245 	if (ic->ic_des_esslen != 0) {
5246 		essid[0].id = IEEE80211_ELEMID_SSID;
5247 		essid[0].len = ic->ic_des_esslen;
5248 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
5249 
5250 		is_active = 1;
5251 	}
5252 	/*
5253 	 * Build a probe request frame.  Most of the following code is a
5254 	 * copy & paste of what is done in net80211.
5255 	 */
5256 	wh = (struct ieee80211_frame *)(essid + 20);
5257 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5258 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5259 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5260 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
5261 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
5262 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
5263 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5264 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5265 
5266 	frm = (uint8_t *)(wh + 1);
5267 	frm = ieee80211_add_ssid(frm, NULL, 0);
5268 	frm = ieee80211_add_rates(frm, rs);
5269 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5270 		frm = ieee80211_add_xrates(frm, rs);
5271 	if (ic->ic_flags & IEEE80211_F_HTON)
5272 		frm = ieee80211_add_htcaps(frm, ic);
5273 
5274 	/* Set length of probe request. */
5275 	tx->len = htole16(frm - (uint8_t *)wh);
5276 
5277 	/*
5278 	 * If active scanning is requested but a certain channel is
5279 	 * marked passive, we can do active scanning if we detect
5280 	 * transmissions.
5281 	 *
5282 	 * There is an issue with some firmware versions that triggers
5283 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
5284 	 * on a radar channel even though this means that we should NOT
5285 	 * send probes.
5286 	 *
5287 	 * The "good CRC threshold" is the number of frames that we
5288 	 * need to receive during our dwell time on a channel before
5289 	 * sending out probes -- setting this to a huge value will
5290 	 * mean we never reach it, but at the same time work around
5291 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
5292 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
5293 	 *
5294 	 * This was fixed in later versions along with some other
5295 	 * scan changes, and the threshold behaves as a flag in those
5296 	 * versions.
5297 	 */
5298 
5299 	/*
5300 	 * If we're doing active scanning, set the crc_threshold
5301 	 * to a suitable value.  This is different to active veruss
5302 	 * passive scanning depending upon the channel flags; the
5303 	 * firmware will obey that particular check for us.
5304 	 */
5305 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
5306 		hdr->crc_threshold = is_active ?
5307 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
5308 	else
5309 		hdr->crc_threshold = is_active ?
5310 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
5311 
5312 	chan = (struct iwn_scan_chan *)frm;
5313 	for (c  = &ic->ic_channels[1];
5314 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
5315 		if ((c->ic_flags & flags) != flags)
5316 			continue;
5317 
5318 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5319 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
5320 		chan->flags = 0;
5321 		if (ic->ic_des_esslen != 0)
5322 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5323 
5324 		if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
5325 			chan->flags |= htole32(IWN_CHAN_PASSIVE);
5326 		else
5327 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
5328 
5329 		/*
5330 		 * Calculate the active/passive dwell times.
5331 		 */
5332 
5333 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
5334 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
5335 
5336 		/* Make sure they're valid */
5337 		if (dwell_passive <= dwell_active)
5338 			dwell_passive = dwell_active + 1;
5339 
5340 		chan->active = htole16(dwell_active);
5341 		chan->passive = htole16(dwell_passive);
5342 
5343 		chan->dsp_gain = 0x6e;
5344 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
5345 			chan->rf_gain = 0x3b;
5346 		} else {
5347 			chan->rf_gain = 0x28;
5348 		}
5349 		hdr->nchan++;
5350 		chan++;
5351 	}
5352 
5353 	buflen = (uint8_t *)chan - buf;
5354 	hdr->len = htole16(buflen);
5355 
5356 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5357 	if (error == 0) {
5358 		/*
5359 		 * The current mode might have been fixed during association.
5360 		 * Ensure all channels get scanned.
5361 		 */
5362 		if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
5363 			ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
5364 
5365 		sc->sc_flags |= IWN_FLAG_SCANNING;
5366 		if (bgscan)
5367 			sc->sc_flags |= IWN_FLAG_BGSCAN;
5368 	}
5369 	free(buf, M_DEVBUF, IWN_SCAN_MAXSZ);
5370 	return error;
5371 }
5372 
5373 void
5374 iwn_scan_abort(struct iwn_softc *sc)
5375 {
5376 	iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);
5377 
5378 	/* XXX Cannot wait for status response in interrupt context. */
5379 	DELAY(100);
5380 
5381 	sc->sc_flags &= ~IWN_FLAG_SCANNING;
5382 	sc->sc_flags &= ~IWN_FLAG_BGSCAN;
5383 }
5384 
5385 int
5386 iwn_bgscan(struct ieee80211com *ic)
5387 {
5388 	struct iwn_softc *sc = ic->ic_softc;
5389 	int error;
5390 
5391 	if (sc->sc_flags & IWN_FLAG_SCANNING)
5392 		return 0;
5393 
5394 	error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1);
5395 	if (error)
5396 		printf("%s: could not initiate background scan\n",
5397 		    sc->sc_dev.dv_xname);
5398 	return error;
5399 }
5400 
5401 void
5402 iwn_rxon_configure_ht40(struct ieee80211com *ic, struct ieee80211_node *ni)
5403 {
5404 	struct iwn_softc *sc = ic->ic_softc;
5405 	uint8_t sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
5406 	enum ieee80211_htprot htprot = (ni->ni_htop1 &
5407 	    IEEE80211_HTOP1_PROT_MASK);
5408 
5409 	sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
5410 	    IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
5411 
5412 	if (ieee80211_node_supports_ht_chan40(ni) &&
5413 	    (sco == IEEE80211_HTOP0_SCO_SCA ||
5414 	    sco == IEEE80211_HTOP0_SCO_SCB)) {
5415 		if (sco == IEEE80211_HTOP0_SCO_SCB)
5416 			sc->rxon.flags |= htole32(IWN_RXON_HT_HT40MINUS);
5417 		if (htprot == IEEE80211_HTPROT_20MHZ)
5418 			sc->rxon.flags |= htole32(IWN_RXON_HT_CHANMODE_PURE40);
5419 		else
5420 			sc->rxon.flags |= htole32(
5421 			    IWN_RXON_HT_CHANMODE_MIXED2040);
5422 	}
5423 }
5424 
5425 int
5426 iwn_rxon_ht40_enabled(struct iwn_softc *sc)
5427 {
5428 	return ((le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_MIXED2040) ||
5429 	    (le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_PURE40)) ? 1 : 0;
5430 }
5431 
5432 int
5433 iwn_auth(struct iwn_softc *sc, int arg)
5434 {
5435 	struct iwn_ops *ops = &sc->ops;
5436 	struct ieee80211com *ic = &sc->sc_ic;
5437 	struct ieee80211_node *ni = ic->ic_bss;
5438 	int error, ridx;
5439 	int bss_switch =
5440 	    (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) &&
5441 	    !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr));
5442 
5443 	/* Update adapter configuration. */
5444 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5445 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5446 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5447 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
5448 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5449 		if (ic->ic_flags & IEEE80211_F_USEPROT)
5450 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5451 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
5452 		    le32toh(sc->rxon.flags)));
5453 	}
5454 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5455 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5456 	else
5457 		sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
5458 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5459 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5460 	else
5461 		sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5462 	switch (ic->ic_curmode) {
5463 	case IEEE80211_MODE_11A:
5464 		sc->rxon.cck_mask  = 0;
5465 		sc->rxon.ofdm_mask = 0x15;
5466 		break;
5467 	case IEEE80211_MODE_11B:
5468 		sc->rxon.cck_mask  = 0x03;
5469 		sc->rxon.ofdm_mask = 0;
5470 		break;
5471 	default:	/* Assume 802.11b/g/n. */
5472 		sc->rxon.cck_mask  = 0x0f;
5473 		sc->rxon.ofdm_mask = 0x15;
5474 	}
5475 	/* Configure 40MHz early to avoid problems on 6205 devices. */
5476 	iwn_rxon_configure_ht40(ic, ni);
5477 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5478 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5479 	    sc->rxon.ofdm_mask));
5480 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5481 	if (error != 0) {
5482 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5483 		return error;
5484 	}
5485 
5486 	/* Configuration has changed, set TX power accordingly. */
5487 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5488 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5489 		return error;
5490 	}
5491 	/*
5492 	 * Reconfiguring RXON clears the firmware nodes table so we must
5493 	 * add the broadcast node again.
5494 	 */
5495 	ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
5496 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5497 	if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) {
5498 		printf("%s: could not add broadcast node\n",
5499 		    sc->sc_dev.dv_xname);
5500 		return error;
5501 	}
5502 
5503 	/*
5504 	 * Make sure the firmware gets to see a beacon before we send
5505 	 * the auth request. Otherwise the Tx attempt can fail due to
5506 	 * the firmware's built-in regulatory domain enforcement.
5507 	 * Delaying here for every incoming deauth frame can result in a DoS.
5508 	 * Don't delay if we're here because of an incoming frame (arg != -1)
5509 	 * or if we're already waiting for a response (ic_mgt_timer != 0).
5510 	 * If we are switching APs after a background scan then net80211 has
5511 	 * just faked the reception of a deauth frame from our old AP, so it
5512 	 * is safe to delay in that case.
5513 	 */
5514 	if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0)
5515 		DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU);
5516 
5517 	/* We can now clear the cached address of our previous AP. */
5518 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
5519 
5520 	return 0;
5521 }
5522 
5523 int
5524 iwn_run(struct iwn_softc *sc)
5525 {
5526 	struct iwn_ops *ops = &sc->ops;
5527 	struct ieee80211com *ic = &sc->sc_ic;
5528 	struct ieee80211_node *ni = ic->ic_bss;
5529 	struct iwn_node *wn = (void *)ni;
5530 	struct iwn_node_info node;
5531 	int error;
5532 
5533 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5534 		/* Link LED blinks while monitoring. */
5535 		iwn_set_led(sc, IWN_LED_LINK, 50, 50);
5536 		return 0;
5537 	}
5538 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5539 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
5540 		return error;
5541 	}
5542 
5543 	/* Update adapter configuration. */
5544 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5545 	/* Short preamble and slot time are negotiated when associating. */
5546 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
5547 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5548 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5549 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5550 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5551 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5552 
5553 	/* HT is negotiated when associating. */
5554 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5555 		enum ieee80211_htprot htprot =
5556 		    (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
5557 		DPRINTF(("%s: htprot = %d\n", __func__, htprot));
5558 		sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5559 	} else
5560 		sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5561 
5562 	iwn_rxon_configure_ht40(ic, ni);
5563 
5564 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) {
5565 		/* 11a or 11n 5GHz */
5566 		sc->rxon.cck_mask  = 0;
5567 		sc->rxon.ofdm_mask = 0x15;
5568 	} else if (ni->ni_flags & IEEE80211_NODE_HT) {
5569 		/* 11n 2GHz */
5570 		sc->rxon.cck_mask  = 0x0f;
5571 		sc->rxon.ofdm_mask = 0x15;
5572 	} else {
5573 		if (ni->ni_rates.rs_nrates == 4) {
5574 			/* 11b */
5575 			sc->rxon.cck_mask  = 0x03;
5576 			sc->rxon.ofdm_mask = 0;
5577 		} else {
5578 			/* assume 11g */
5579 			sc->rxon.cck_mask  = 0x0f;
5580 			sc->rxon.ofdm_mask = 0x15;
5581 		}
5582 	}
5583 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5584 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5585 	    sc->rxon.ofdm_mask));
5586 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5587 	if (error != 0) {
5588 		printf("%s: could not update configuration\n",
5589 		    sc->sc_dev.dv_xname);
5590 		return error;
5591 	}
5592 
5593 	/* Configuration has changed, set TX power accordingly. */
5594 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5595 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5596 		return error;
5597 	}
5598 
5599 	/* Fake a join to initialize the TX rate. */
5600 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5601 	iwn_newassoc(ic, ni, 1);
5602 
5603 	/* Add BSS node. */
5604 	memset(&node, 0, sizeof node);
5605 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5606 	node.id = IWN_ID_BSS;
5607 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5608 		node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK |
5609 		    IWN_AMDPU_DENSITY_MASK);
5610 		node.htflags = htole32(
5611 		    IWN_AMDPU_SIZE_FACTOR(
5612 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |
5613 		    IWN_AMDPU_DENSITY(
5614 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2));
5615 		if (iwn_rxon_ht40_enabled(sc))
5616 			node.htflags |= htole32(IWN_40MHZ_ENABLE);
5617 	}
5618 	DPRINTF(("adding BSS node\n"));
5619 	error = ops->add_node(sc, &node, 1);
5620 	if (error != 0) {
5621 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
5622 		return error;
5623 	}
5624 
5625 	/* Cache address of AP in case it changes after a background scan. */
5626 	IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr);
5627 
5628 	DPRINTF(("setting link quality for node %d\n", node.id));
5629 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5630 		printf("%s: could not setup link quality for node %d\n",
5631 		    sc->sc_dev.dv_xname, node.id);
5632 		return error;
5633 	}
5634 
5635 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5636 		printf("%s: could not set sensitivity\n",
5637 		    sc->sc_dev.dv_xname);
5638 		return error;
5639 	}
5640 	/* Start periodic calibration timer. */
5641 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5642 	sc->calib_cnt = 0;
5643 	timeout_add_msec(&sc->calib_to, 500);
5644 
5645 	ieee80211_ra_node_init(&wn->rn);
5646 
5647 	/* Link LED always on while associated. */
5648 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5649 	return 0;
5650 }
5651 
5652 /*
5653  * We support CCMP hardware encryption/decryption of unicast frames only.
5654  * HW support for TKIP really sucks.  We should let TKIP die anyway.
5655  */
5656 int
5657 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5658     struct ieee80211_key *k)
5659 {
5660 	struct iwn_softc *sc = ic->ic_softc;
5661 	struct iwn_ops *ops = &sc->ops;
5662 	struct iwn_node *wn = (void *)ni;
5663 	struct iwn_node_info node;
5664 	uint16_t kflags;
5665 
5666 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5667 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5668 		return ieee80211_set_key(ic, ni, k);
5669 
5670 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5671 	if (k->k_flags & IEEE80211_KEY_GROUP)
5672 		kflags |= IWN_KFLAG_GROUP;
5673 
5674 	memset(&node, 0, sizeof node);
5675 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5676 	    sc->broadcast_id : wn->id;
5677 	node.control = IWN_NODE_UPDATE;
5678 	node.flags = IWN_FLAG_SET_KEY;
5679 	node.kflags = htole16(kflags);
5680 	node.kid = k->k_id;
5681 	memcpy(node.key, k->k_key, k->k_len);
5682 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5683 	return ops->add_node(sc, &node, 1);
5684 }
5685 
5686 void
5687 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5688     struct ieee80211_key *k)
5689 {
5690 	struct iwn_softc *sc = ic->ic_softc;
5691 	struct iwn_ops *ops = &sc->ops;
5692 	struct iwn_node *wn = (void *)ni;
5693 	struct iwn_node_info node;
5694 
5695 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5696 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5697 		/* See comment about other ciphers above. */
5698 		ieee80211_delete_key(ic, ni, k);
5699 		return;
5700 	}
5701 	if (ic->ic_state != IEEE80211_S_RUN)
5702 		return;	/* Nothing to do. */
5703 	memset(&node, 0, sizeof node);
5704 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5705 	    sc->broadcast_id : wn->id;
5706 	node.control = IWN_NODE_UPDATE;
5707 	node.flags = IWN_FLAG_SET_KEY;
5708 	node.kflags = htole16(IWN_KFLAG_INVALID);
5709 	node.kid = 0xff;
5710 	DPRINTF(("delete keys for node %d\n", node.id));
5711 	(void)ops->add_node(sc, &node, 1);
5712 }
5713 
5714 void
5715 iwn_updatechan(struct ieee80211com *ic)
5716 {
5717 	struct iwn_softc *sc = ic->ic_softc;
5718 
5719 	if (ic->ic_state != IEEE80211_S_RUN)
5720 		return;
5721 
5722 	iwn_rxon_configure_ht40(ic, ic->ic_bss);
5723 	sc->ops.update_rxon(sc);
5724 	iwn_set_link_quality(sc, ic->ic_bss);
5725 }
5726 
5727 void
5728 iwn_updateprot(struct ieee80211com *ic)
5729 {
5730 	struct iwn_softc *sc = ic->ic_softc;
5731 	enum ieee80211_htprot htprot;
5732 
5733 	if (ic->ic_state != IEEE80211_S_RUN)
5734 		return;
5735 
5736 	/* Update ERP protection setting. */
5737 	if (ic->ic_flags & IEEE80211_F_USEPROT)
5738 		sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5739 	else
5740 		sc->rxon.flags &= ~htole32(IWN_RXON_TGG_PROT);
5741 
5742 	/* Update HT protection mode setting. */
5743 	htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >>
5744 	    IEEE80211_HTOP1_PROT_SHIFT;
5745 	sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5746 	sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5747 
5748 	sc->ops.update_rxon(sc);
5749 }
5750 
5751 void
5752 iwn_updateslot(struct ieee80211com *ic)
5753 {
5754 	struct iwn_softc *sc = ic->ic_softc;
5755 
5756 	if (ic->ic_state != IEEE80211_S_RUN)
5757 		return;
5758 
5759 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5760 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5761 	else
5762 		sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
5763 
5764 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5765 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5766 	else
5767 		sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5768 
5769 	sc->ops.update_rxon(sc);
5770 }
5771 
5772 void
5773 iwn_update_rxon_restore_power(struct iwn_softc *sc)
5774 {
5775 	struct ieee80211com *ic = &sc->sc_ic;
5776 	struct iwn_ops *ops = &sc->ops;
5777 	int error;
5778 
5779 	DELAY(100);
5780 
5781 	/* All RXONs wipe the firmware's txpower table. Restore it. */
5782 	error = ops->set_txpower(sc, 1);
5783 	if (error != 0)
5784 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5785 
5786 	DELAY(100);
5787 
5788 	/* Restore power saving level */
5789 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5790 		error = iwn_set_pslevel(sc, 0, 3, 1);
5791 	else
5792 		error = iwn_set_pslevel(sc, 0, 0, 1);
5793 	if (error != 0)
5794 		printf("%s: could not set PS level\n", sc->sc_dev.dv_xname);
5795 }
5796 
5797 void
5798 iwn5000_update_rxon(struct iwn_softc *sc)
5799 {
5800 	struct iwn_rxon_assoc rxon_assoc;
5801 	int s, error;
5802 
5803 	/* Update RXON config. */
5804 	memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5805 	rxon_assoc.flags = sc->rxon.flags;
5806 	rxon_assoc.filter = sc->rxon.filter;
5807 	rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5808 	rxon_assoc.cck_mask = sc->rxon.cck_mask;
5809 	rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5810 	rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5811 	rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask;
5812 	rxon_assoc.rxchain = sc->rxon.rxchain;
5813 	rxon_assoc.acquisition = sc->rxon.acquisition;
5814 
5815 	s = splnet();
5816 
5817 	error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5818 	    sizeof(rxon_assoc), 1);
5819 	if (error != 0)
5820 		printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5821 
5822 	iwn_update_rxon_restore_power(sc);
5823 
5824 	splx(s);
5825 }
5826 
5827 void
5828 iwn4965_update_rxon(struct iwn_softc *sc)
5829 {
5830 	struct iwn4965_rxon_assoc rxon_assoc;
5831 	int s, error;
5832 
5833 	/* Update RXON config. */
5834 	memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5835 	rxon_assoc.flags = sc->rxon.flags;
5836 	rxon_assoc.filter = sc->rxon.filter;
5837 	rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5838 	rxon_assoc.cck_mask = sc->rxon.cck_mask;
5839 	rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5840 	rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5841 	rxon_assoc.rxchain = sc->rxon.rxchain;
5842 
5843 	s = splnet();
5844 
5845 	error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5846 	    sizeof(rxon_assoc), 1);
5847 	if (error != 0)
5848 		printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5849 
5850 	iwn_update_rxon_restore_power(sc);
5851 
5852 	splx(s);
5853 }
5854 
5855 /*
5856  * This function is called by upper layer when an ADDBA request is received
5857  * from another STA and before the ADDBA response is sent.
5858  */
5859 int
5860 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5861     uint8_t tid)
5862 {
5863 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5864 	struct iwn_softc *sc = ic->ic_softc;
5865 	struct iwn_ops *ops = &sc->ops;
5866 	struct iwn_node *wn = (void *)ni;
5867 	struct iwn_node_info node;
5868 
5869 	memset(&node, 0, sizeof node);
5870 	node.id = wn->id;
5871 	node.control = IWN_NODE_UPDATE;
5872 	node.flags = IWN_FLAG_SET_ADDBA;
5873 	node.addba_tid = tid;
5874 	node.addba_ssn = htole16(ba->ba_winstart);
5875 	DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5876 	    ba->ba_winstart));
5877 	/* XXX async command, so firmware may still fail to add BA agreement */
5878 	return ops->add_node(sc, &node, 1);
5879 }
5880 
5881 /*
5882  * This function is called by upper layer on teardown of an HT-immediate
5883  * Block Ack agreement (e.g., upon receipt of a DELBA frame).
5884  */
5885 void
5886 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5887     uint8_t tid)
5888 {
5889 	struct iwn_softc *sc = ic->ic_softc;
5890 	struct iwn_ops *ops = &sc->ops;
5891 	struct iwn_node *wn = (void *)ni;
5892 	struct iwn_node_info node;
5893 
5894 	memset(&node, 0, sizeof node);
5895 	node.id = wn->id;
5896 	node.control = IWN_NODE_UPDATE;
5897 	node.flags = IWN_FLAG_SET_DELBA;
5898 	node.delba_tid = tid;
5899 	DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid));
5900 	(void)ops->add_node(sc, &node, 1);
5901 }
5902 
5903 /*
5904  * This function is called by upper layer when an ADDBA response is received
5905  * from another STA.
5906  */
5907 int
5908 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5909     uint8_t tid)
5910 {
5911 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5912 	struct iwn_softc *sc = ic->ic_softc;
5913 	struct iwn_ops *ops = &sc->ops;
5914 	struct iwn_node *wn = (void *)ni;
5915 	struct iwn_node_info node;
5916 	int qid = sc->first_agg_txq + tid;
5917 	int error;
5918 
5919 	/* Ensure we can map this TID to an aggregation queue. */
5920 	if (tid >= IWN_NUM_AMPDU_TID || ba->ba_winsize > IWN_SCHED_WINSZ ||
5921 	    qid > sc->ntxqs || (sc->agg_queue_mask & (1 << qid)))
5922 		return ENOSPC;
5923 
5924 	/* Enable TX for the specified RA/TID. */
5925 	wn->disable_tid &= ~(1 << tid);
5926 	memset(&node, 0, sizeof node);
5927 	node.id = wn->id;
5928 	node.control = IWN_NODE_UPDATE;
5929 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5930 	node.disable_tid = htole16(wn->disable_tid);
5931 	error = ops->add_node(sc, &node, 1);
5932 	if (error != 0)
5933 		return error;
5934 
5935 	if ((error = iwn_nic_lock(sc)) != 0)
5936 		return error;
5937 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5938 	iwn_nic_unlock(sc);
5939 
5940 	sc->agg_queue_mask |= (1 << qid);
5941 	sc->sc_tx_ba[tid].wn = wn;
5942 	ba->ba_bitmap = 0;
5943 
5944 	return 0;
5945 }
5946 
5947 void
5948 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5949     uint8_t tid)
5950 {
5951 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5952 	struct iwn_softc *sc = ic->ic_softc;
5953 	struct iwn_ops *ops = &sc->ops;
5954 	int qid = sc->first_agg_txq + tid;
5955 	struct iwn_node *wn = (void *)ni;
5956 	struct iwn_node_info node;
5957 
5958 	/* Discard all frames in the current window. */
5959 	iwn_ampdu_txq_advance(sc, &sc->txq[qid], qid,
5960 	    IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winend));
5961 
5962 	if (iwn_nic_lock(sc) != 0)
5963 		return;
5964 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5965 	iwn_nic_unlock(sc);
5966 
5967 	sc->agg_queue_mask &= ~(1 << qid);
5968 	sc->sc_tx_ba[tid].wn = NULL;
5969 	ba->ba_bitmap = 0;
5970 
5971 	/* Disable TX for the specified RA/TID. */
5972 	wn->disable_tid |= (1 << tid);
5973 	memset(&node, 0, sizeof node);
5974 	node.id = wn->id;
5975 	node.control = IWN_NODE_UPDATE;
5976 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5977 	node.disable_tid = htole16(wn->disable_tid);
5978 	ops->add_node(sc, &node, 1);
5979 }
5980 
5981 void
5982 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5983     uint8_t tid, uint16_t ssn)
5984 {
5985 	struct iwn_node *wn = (void *)ni;
5986 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
5987 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5988 
5989 	/* Stop TX scheduler while we're changing its configuration. */
5990 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5991 	    IWN4965_TXQ_STATUS_CHGACT);
5992 
5993 	/* Assign RA/TID translation to the queue. */
5994 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5995 	    wn->id << 4 | tid);
5996 
5997 	/* Enable chain-building mode for the queue. */
5998 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5999 
6000 	/* Set starting sequence number from the ADDBA request. */
6001 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6002 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6003 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6004 
6005 	/* Set scheduler window size. */
6006 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6007 	    IWN_SCHED_WINSZ);
6008 	/* Set scheduler frame limit. */
6009 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6010 	    IWN_SCHED_LIMIT << 16);
6011 
6012 	/* Enable interrupts for the queue. */
6013 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6014 
6015 	/* Mark the queue as active. */
6016 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6017 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6018 	    iwn_tid2fifo[tid] << 1);
6019 }
6020 
6021 void
6022 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6023 {
6024 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
6025 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6026 
6027 	/* Stop TX scheduler while we're changing its configuration. */
6028 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6029 	    IWN4965_TXQ_STATUS_CHGACT);
6030 
6031 	/* Set starting sequence number from the ADDBA request. */
6032 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6033 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6034 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6035 
6036 	/* Disable interrupts for the queue. */
6037 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6038 
6039 	/* Mark the queue as inactive. */
6040 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6041 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6042 }
6043 
6044 void
6045 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6046     uint8_t tid, uint16_t ssn)
6047 {
6048 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
6049 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6050 	struct iwn_node *wn = (void *)ni;
6051 
6052 	/* Stop TX scheduler while we're changing its configuration. */
6053 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6054 	    IWN5000_TXQ_STATUS_CHGACT);
6055 
6056 	/* Assign RA/TID translation to the queue. */
6057 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
6058 	    wn->id << 4 | tid);
6059 
6060 	/* Enable chain-building mode for the queue. */
6061 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
6062 
6063 	/* Enable aggregation for the queue. */
6064 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6065 
6066 	/* Set starting sequence number from the ADDBA request. */
6067 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6068 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6069 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6070 
6071 	/* Set scheduler window size and frame limit. */
6072 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6073 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6074 
6075 	/* Enable interrupts for the queue. */
6076 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6077 
6078 	/* Mark the queue as active. */
6079 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6080 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
6081 }
6082 
6083 void
6084 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6085 {
6086 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
6087 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6088 
6089 	/* Stop TX scheduler while we're changing its configuration. */
6090 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6091 	    IWN5000_TXQ_STATUS_CHGACT);
6092 
6093 	/* Disable aggregation for the queue. */
6094 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6095 
6096 	/* Set starting sequence number from the ADDBA request. */
6097 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6098 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6099 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6100 
6101 	/* Disable interrupts for the queue. */
6102 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6103 
6104 	/* Mark the queue as inactive. */
6105 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6106 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
6107 }
6108 
6109 /*
6110  * Query calibration tables from the initialization firmware.  We do this
6111  * only once at first boot.  Called from a process context.
6112  */
6113 int
6114 iwn5000_query_calibration(struct iwn_softc *sc)
6115 {
6116 	struct iwn5000_calib_config cmd;
6117 	int error;
6118 
6119 	memset(&cmd, 0, sizeof cmd);
6120 	cmd.ucode.once.enable = 0xffffffff;
6121 	cmd.ucode.once.start  = 0xffffffff;
6122 	cmd.ucode.once.send   = 0xffffffff;
6123 	cmd.ucode.flags       = 0xffffffff;
6124 	DPRINTF(("sending calibration query\n"));
6125 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
6126 	if (error != 0)
6127 		return error;
6128 
6129 	/* Wait at most two seconds for calibration to complete. */
6130 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
6131 		error = tsleep_nsec(sc, PCATCH, "iwncal", SEC_TO_NSEC(2));
6132 	return error;
6133 }
6134 
6135 /*
6136  * Send calibration results to the runtime firmware.  These results were
6137  * obtained on first boot from the initialization firmware.
6138  */
6139 int
6140 iwn5000_send_calibration(struct iwn_softc *sc)
6141 {
6142 	int idx, error;
6143 
6144 	for (idx = 0; idx < 5; idx++) {
6145 		if (sc->calibcmd[idx].buf == NULL)
6146 			continue;	/* No results available. */
6147 		DPRINTF(("send calibration result idx=%d len=%d\n",
6148 		    idx, sc->calibcmd[idx].len));
6149 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
6150 		    sc->calibcmd[idx].len, 0);
6151 		if (error != 0) {
6152 			printf("%s: could not send calibration result\n",
6153 			    sc->sc_dev.dv_xname);
6154 			return error;
6155 		}
6156 	}
6157 	return 0;
6158 }
6159 
6160 int
6161 iwn5000_send_wimax_coex(struct iwn_softc *sc)
6162 {
6163 	struct iwn5000_wimax_coex wimax;
6164 
6165 #ifdef notyet
6166 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6167 		/* Enable WiMAX coexistence for combo adapters. */
6168 		wimax.flags =
6169 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
6170 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
6171 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
6172 		    IWN_WIMAX_COEX_ENABLE;
6173 		memcpy(wimax.events, iwn6050_wimax_events,
6174 		    sizeof iwn6050_wimax_events);
6175 	} else
6176 #endif
6177 	{
6178 		/* Disable WiMAX coexistence. */
6179 		wimax.flags = 0;
6180 		memset(wimax.events, 0, sizeof wimax.events);
6181 	}
6182 	DPRINTF(("Configuring WiMAX coexistence\n"));
6183 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6184 }
6185 
6186 int
6187 iwn5000_crystal_calib(struct iwn_softc *sc)
6188 {
6189 	struct iwn5000_phy_calib_crystal cmd;
6190 
6191 	memset(&cmd, 0, sizeof cmd);
6192 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6193 	cmd.ngroups = 1;
6194 	cmd.isvalid = 1;
6195 	cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
6196 	cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
6197 	DPRINTF(("sending crystal calibration %d, %d\n",
6198 	    cmd.cap_pin[0], cmd.cap_pin[1]));
6199 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6200 }
6201 
6202 int
6203 iwn6000_temp_offset_calib(struct iwn_softc *sc)
6204 {
6205 	struct iwn6000_phy_calib_temp_offset cmd;
6206 
6207 	memset(&cmd, 0, sizeof cmd);
6208 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
6209 	cmd.ngroups = 1;
6210 	cmd.isvalid = 1;
6211 	if (sc->eeprom_temp != 0)
6212 		cmd.offset = htole16(sc->eeprom_temp);
6213 	else
6214 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6215 	DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
6216 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6217 }
6218 
6219 int
6220 iwn2000_temp_offset_calib(struct iwn_softc *sc)
6221 {
6222 	struct iwn2000_phy_calib_temp_offset cmd;
6223 
6224 	memset(&cmd, 0, sizeof cmd);
6225 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
6226 	cmd.ngroups = 1;
6227 	cmd.isvalid = 1;
6228 	if (sc->eeprom_rawtemp != 0) {
6229 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
6230 		cmd.offset_high = htole16(sc->eeprom_temp);
6231 	} else {
6232 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
6233 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
6234 	}
6235 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
6236 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
6237 	    letoh16(cmd.offset_low), letoh16(cmd.offset_high),
6238 	    letoh16(cmd.burnt_voltage_ref)));
6239 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6240 }
6241 
6242 /*
6243  * This function is called after the runtime firmware notifies us of its
6244  * readiness (called in a process context).
6245  */
6246 int
6247 iwn4965_post_alive(struct iwn_softc *sc)
6248 {
6249 	int error, qid;
6250 
6251 	if ((error = iwn_nic_lock(sc)) != 0)
6252 		return error;
6253 
6254 	/* Clear TX scheduler state in SRAM. */
6255 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6256 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6257 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6258 
6259 	/* Set physical address of TX scheduler rings (1KB aligned). */
6260 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6261 
6262 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6263 
6264 	/* Disable chain mode for all our 16 queues. */
6265 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6266 
6267 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6268 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6269 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6270 
6271 		/* Set scheduler window size. */
6272 		iwn_mem_write(sc, sc->sched_base +
6273 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6274 		/* Set scheduler frame limit. */
6275 		iwn_mem_write(sc, sc->sched_base +
6276 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6277 		    IWN_SCHED_LIMIT << 16);
6278 	}
6279 
6280 	/* Enable interrupts for all our 16 queues. */
6281 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6282 	/* Identify TX FIFO rings (0-7). */
6283 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6284 
6285 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6286 	for (qid = 0; qid < 7; qid++) {
6287 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6288 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6289 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6290 	}
6291 	iwn_nic_unlock(sc);
6292 	return 0;
6293 }
6294 
6295 /*
6296  * This function is called after the initialization or runtime firmware
6297  * notifies us of its readiness (called in a process context).
6298  */
6299 int
6300 iwn5000_post_alive(struct iwn_softc *sc)
6301 {
6302 	int error, qid;
6303 
6304 	/* Switch to using ICT interrupt mode. */
6305 	iwn5000_ict_reset(sc);
6306 
6307 	if ((error = iwn_nic_lock(sc)) != 0)
6308 		return error;
6309 
6310 	/* Clear TX scheduler state in SRAM. */
6311 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6312 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6313 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6314 
6315 	/* Set physical address of TX scheduler rings (1KB aligned). */
6316 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6317 
6318 	/* Disable scheduler chain extension (enabled by default in HW). */
6319 	iwn_prph_write(sc, IWN5000_SCHED_CHAINEXT_EN, 0);
6320 
6321 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6322 
6323 	/* Enable chain mode for all queues, except command queue. */
6324 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6325 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6326 
6327 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6328 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6329 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6330 
6331 		iwn_mem_write(sc, sc->sched_base +
6332 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6333 		/* Set scheduler window size and frame limit. */
6334 		iwn_mem_write(sc, sc->sched_base +
6335 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6336 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6337 	}
6338 
6339 	/* Enable interrupts for all our 20 queues. */
6340 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6341 	/* Identify TX FIFO rings (0-7). */
6342 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6343 
6344 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6345 	for (qid = 0; qid < 7; qid++) {
6346 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6347 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6348 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6349 	}
6350 	iwn_nic_unlock(sc);
6351 
6352 	/* Configure WiMAX coexistence for combo adapters. */
6353 	error = iwn5000_send_wimax_coex(sc);
6354 	if (error != 0) {
6355 		printf("%s: could not configure WiMAX coexistence\n",
6356 		    sc->sc_dev.dv_xname);
6357 		return error;
6358 	}
6359 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6360 		/* Perform crystal calibration. */
6361 		error = iwn5000_crystal_calib(sc);
6362 		if (error != 0) {
6363 			printf("%s: crystal calibration failed\n",
6364 			    sc->sc_dev.dv_xname);
6365 			return error;
6366 		}
6367 	}
6368 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6369 		/* Query calibration from the initialization firmware. */
6370 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6371 			printf("%s: could not query calibration\n",
6372 			    sc->sc_dev.dv_xname);
6373 			return error;
6374 		}
6375 		/*
6376 		 * We have the calibration results now, reboot with the
6377 		 * runtime firmware (call ourselves recursively!)
6378 		 */
6379 		iwn_hw_stop(sc);
6380 		error = iwn_hw_init(sc);
6381 	} else {
6382 		/* Send calibration results to runtime firmware. */
6383 		error = iwn5000_send_calibration(sc);
6384 	}
6385 	return error;
6386 }
6387 
6388 /*
6389  * The firmware boot code is small and is intended to be copied directly into
6390  * the NIC internal memory (no DMA transfer).
6391  */
6392 int
6393 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6394 {
6395 	int error, ntries;
6396 
6397 	size /= sizeof (uint32_t);
6398 
6399 	if ((error = iwn_nic_lock(sc)) != 0)
6400 		return error;
6401 
6402 	/* Copy microcode image into NIC memory. */
6403 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6404 	    (const uint32_t *)ucode, size);
6405 
6406 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6407 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6408 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6409 
6410 	/* Start boot load now. */
6411 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6412 
6413 	/* Wait for transfer to complete. */
6414 	for (ntries = 0; ntries < 1000; ntries++) {
6415 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6416 		    IWN_BSM_WR_CTRL_START))
6417 			break;
6418 		DELAY(10);
6419 	}
6420 	if (ntries == 1000) {
6421 		printf("%s: could not load boot firmware\n",
6422 		    sc->sc_dev.dv_xname);
6423 		iwn_nic_unlock(sc);
6424 		return ETIMEDOUT;
6425 	}
6426 
6427 	/* Enable boot after power up. */
6428 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6429 
6430 	iwn_nic_unlock(sc);
6431 	return 0;
6432 }
6433 
6434 int
6435 iwn4965_load_firmware(struct iwn_softc *sc)
6436 {
6437 	struct iwn_fw_info *fw = &sc->fw;
6438 	struct iwn_dma_info *dma = &sc->fw_dma;
6439 	int error;
6440 
6441 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6442 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6443 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
6444 	    BUS_DMASYNC_PREWRITE);
6445 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6446 	    fw->init.text, fw->init.textsz);
6447 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6448 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
6449 
6450 	/* Tell adapter where to find initialization sections. */
6451 	if ((error = iwn_nic_lock(sc)) != 0)
6452 		return error;
6453 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6454 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6455 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6456 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6457 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6458 	iwn_nic_unlock(sc);
6459 
6460 	/* Load firmware boot code. */
6461 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6462 	if (error != 0) {
6463 		printf("%s: could not load boot firmware\n",
6464 		    sc->sc_dev.dv_xname);
6465 		return error;
6466 	}
6467 	/* Now press "execute". */
6468 	IWN_WRITE(sc, IWN_RESET, 0);
6469 
6470 	/* Wait at most one second for first alive notification. */
6471 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
6472 		printf("%s: timeout waiting for adapter to initialize\n",
6473 		    sc->sc_dev.dv_xname);
6474 		return error;
6475 	}
6476 
6477 	/* Retrieve current temperature for initial TX power calibration. */
6478 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6479 	sc->temp = iwn4965_get_temperature(sc);
6480 
6481 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6482 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6483 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
6484 	    BUS_DMASYNC_PREWRITE);
6485 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6486 	    fw->main.text, fw->main.textsz);
6487 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6488 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
6489 
6490 	/* Tell adapter where to find runtime sections. */
6491 	if ((error = iwn_nic_lock(sc)) != 0)
6492 		return error;
6493 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6494 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6495 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6496 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6497 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6498 	    IWN_FW_UPDATED | fw->main.textsz);
6499 	iwn_nic_unlock(sc);
6500 
6501 	return 0;
6502 }
6503 
6504 int
6505 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6506     const uint8_t *section, int size)
6507 {
6508 	struct iwn_dma_info *dma = &sc->fw_dma;
6509 	int error;
6510 
6511 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6512 	memcpy(dma->vaddr, section, size);
6513 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
6514 
6515 	if ((error = iwn_nic_lock(sc)) != 0)
6516 		return error;
6517 
6518 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6519 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6520 
6521 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6522 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6523 	    IWN_LOADDR(dma->paddr));
6524 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6525 	    IWN_HIADDR(dma->paddr) << 28 | size);
6526 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6527 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6528 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6529 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6530 
6531 	/* Kick Flow Handler to start DMA transfer. */
6532 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6533 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6534 
6535 	iwn_nic_unlock(sc);
6536 
6537 	/* Wait at most five seconds for FH DMA transfer to complete. */
6538 	return tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(5));
6539 }
6540 
6541 int
6542 iwn5000_load_firmware(struct iwn_softc *sc)
6543 {
6544 	struct iwn_fw_part *fw;
6545 	int error;
6546 
6547 	/* Load the initialization firmware on first boot only. */
6548 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6549 	    &sc->fw.main : &sc->fw.init;
6550 
6551 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6552 	    fw->text, fw->textsz);
6553 	if (error != 0) {
6554 		printf("%s: could not load firmware %s section\n",
6555 		    sc->sc_dev.dv_xname, ".text");
6556 		return error;
6557 	}
6558 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6559 	    fw->data, fw->datasz);
6560 	if (error != 0) {
6561 		printf("%s: could not load firmware %s section\n",
6562 		    sc->sc_dev.dv_xname, ".data");
6563 		return error;
6564 	}
6565 
6566 	/* Now press "execute". */
6567 	IWN_WRITE(sc, IWN_RESET, 0);
6568 	return 0;
6569 }
6570 
6571 /*
6572  * Extract text and data sections from a legacy firmware image.
6573  */
6574 int
6575 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6576 {
6577 	const uint32_t *ptr;
6578 	size_t hdrlen = 24;
6579 	uint32_t rev;
6580 
6581 	ptr = (const uint32_t *)fw->data;
6582 	rev = letoh32(*ptr++);
6583 
6584 	/* Check firmware API version. */
6585 	if (IWN_FW_API(rev) <= 1) {
6586 		printf("%s: bad firmware, need API version >=2\n",
6587 		    sc->sc_dev.dv_xname);
6588 		return EINVAL;
6589 	}
6590 	if (IWN_FW_API(rev) >= 3) {
6591 		/* Skip build number (version 2 header). */
6592 		hdrlen += 4;
6593 		ptr++;
6594 	}
6595 	if (fw->size < hdrlen) {
6596 		printf("%s: firmware too short: %zu bytes\n",
6597 		    sc->sc_dev.dv_xname, fw->size);
6598 		return EINVAL;
6599 	}
6600 	fw->main.textsz = letoh32(*ptr++);
6601 	fw->main.datasz = letoh32(*ptr++);
6602 	fw->init.textsz = letoh32(*ptr++);
6603 	fw->init.datasz = letoh32(*ptr++);
6604 	fw->boot.textsz = letoh32(*ptr++);
6605 
6606 	/* Check that all firmware sections fit. */
6607 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6608 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6609 		printf("%s: firmware too short: %zu bytes\n",
6610 		    sc->sc_dev.dv_xname, fw->size);
6611 		return EINVAL;
6612 	}
6613 
6614 	/* Get pointers to firmware sections. */
6615 	fw->main.text = (const uint8_t *)ptr;
6616 	fw->main.data = fw->main.text + fw->main.textsz;
6617 	fw->init.text = fw->main.data + fw->main.datasz;
6618 	fw->init.data = fw->init.text + fw->init.textsz;
6619 	fw->boot.text = fw->init.data + fw->init.datasz;
6620 	return 0;
6621 }
6622 
6623 /*
6624  * Extract text and data sections from a TLV firmware image.
6625  */
6626 int
6627 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6628     uint16_t alt)
6629 {
6630 	const struct iwn_fw_tlv_hdr *hdr;
6631 	const struct iwn_fw_tlv *tlv;
6632 	const uint8_t *ptr, *end;
6633 	uint64_t altmask;
6634 	uint32_t len;
6635 
6636 	if (fw->size < sizeof (*hdr)) {
6637 		printf("%s: firmware too short: %zu bytes\n",
6638 		    sc->sc_dev.dv_xname, fw->size);
6639 		return EINVAL;
6640 	}
6641 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6642 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6643 		printf("%s: bad firmware signature 0x%08x\n",
6644 		    sc->sc_dev.dv_xname, letoh32(hdr->signature));
6645 		return EINVAL;
6646 	}
6647 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
6648 	    letoh32(hdr->build)));
6649 
6650 	/*
6651 	 * Select the closest supported alternative that is less than
6652 	 * or equal to the specified one.
6653 	 */
6654 	altmask = letoh64(hdr->altmask);
6655 	while (alt > 0 && !(altmask & (1ULL << alt)))
6656 		alt--;	/* Downgrade. */
6657 	DPRINTF(("using alternative %d\n", alt));
6658 
6659 	ptr = (const uint8_t *)(hdr + 1);
6660 	end = (const uint8_t *)(fw->data + fw->size);
6661 
6662 	/* Parse type-length-value fields. */
6663 	while (ptr + sizeof (*tlv) <= end) {
6664 		tlv = (const struct iwn_fw_tlv *)ptr;
6665 		len = letoh32(tlv->len);
6666 
6667 		ptr += sizeof (*tlv);
6668 		if (ptr + len > end) {
6669 			printf("%s: firmware too short: %zu bytes\n",
6670 			    sc->sc_dev.dv_xname, fw->size);
6671 			return EINVAL;
6672 		}
6673 		/* Skip other alternatives. */
6674 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6675 			goto next;
6676 
6677 		switch (letoh16(tlv->type)) {
6678 		case IWN_FW_TLV_MAIN_TEXT:
6679 			fw->main.text = ptr;
6680 			fw->main.textsz = len;
6681 			break;
6682 		case IWN_FW_TLV_MAIN_DATA:
6683 			fw->main.data = ptr;
6684 			fw->main.datasz = len;
6685 			break;
6686 		case IWN_FW_TLV_INIT_TEXT:
6687 			fw->init.text = ptr;
6688 			fw->init.textsz = len;
6689 			break;
6690 		case IWN_FW_TLV_INIT_DATA:
6691 			fw->init.data = ptr;
6692 			fw->init.datasz = len;
6693 			break;
6694 		case IWN_FW_TLV_BOOT_TEXT:
6695 			fw->boot.text = ptr;
6696 			fw->boot.textsz = len;
6697 			break;
6698 		case IWN_FW_TLV_ENH_SENS:
6699 			if (len !=  0) {
6700 				printf("%s: TLV type %d has invalid size %u\n",
6701 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6702 				    len);
6703 				goto next;
6704 			}
6705 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
6706 			break;
6707 		case IWN_FW_TLV_PHY_CALIB:
6708 			if (len != sizeof(uint32_t)) {
6709 				printf("%s: TLV type %d has invalid size %u\n",
6710 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6711 				    len);
6712 				goto next;
6713 			}
6714 			if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) {
6715 				sc->reset_noise_gain = letoh32(*ptr);
6716 				sc->noise_gain = letoh32(*ptr) + 1;
6717 			}
6718 			break;
6719 		case IWN_FW_TLV_FLAGS:
6720 			if (len < sizeof(uint32_t))
6721 				break;
6722 			if (len % sizeof(uint32_t))
6723 				break;
6724 			sc->tlv_feature_flags = letoh32(*ptr);
6725 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
6726 			break;
6727 		default:
6728 			DPRINTF(("TLV type %d not handled\n",
6729 			    letoh16(tlv->type)));
6730 			break;
6731 		}
6732  next:		/* TLV fields are 32-bit aligned. */
6733 		ptr += (len + 3) & ~3;
6734 	}
6735 	return 0;
6736 }
6737 
6738 int
6739 iwn_read_firmware(struct iwn_softc *sc)
6740 {
6741 	struct iwn_fw_info *fw = &sc->fw;
6742 	int error;
6743 
6744 	/*
6745 	 * Some PHY calibration commands are firmware-dependent; these
6746 	 * are the default values that will be overridden if
6747 	 * necessary.
6748 	 */
6749 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
6750 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
6751 
6752 	memset(fw, 0, sizeof (*fw));
6753 
6754 	/* Read firmware image from filesystem. */
6755 	if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
6756 		printf("%s: could not read firmware %s (error %d)\n",
6757 		    sc->sc_dev.dv_xname, sc->fwname, error);
6758 		return error;
6759 	}
6760 	if (fw->size < sizeof (uint32_t)) {
6761 		printf("%s: firmware too short: %zu bytes\n",
6762 		    sc->sc_dev.dv_xname, fw->size);
6763 		free(fw->data, M_DEVBUF, fw->size);
6764 		return EINVAL;
6765 	}
6766 
6767 	/* Retrieve text and data sections. */
6768 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6769 		error = iwn_read_firmware_leg(sc, fw);
6770 	else
6771 		error = iwn_read_firmware_tlv(sc, fw, 1);
6772 	if (error != 0) {
6773 		printf("%s: could not read firmware sections\n",
6774 		    sc->sc_dev.dv_xname);
6775 		free(fw->data, M_DEVBUF, fw->size);
6776 		return error;
6777 	}
6778 
6779 	/* Make sure text and data sections fit in hardware memory. */
6780 	if (fw->main.textsz > sc->fw_text_maxsz ||
6781 	    fw->main.datasz > sc->fw_data_maxsz ||
6782 	    fw->init.textsz > sc->fw_text_maxsz ||
6783 	    fw->init.datasz > sc->fw_data_maxsz ||
6784 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6785 	    (fw->boot.textsz & 3) != 0) {
6786 		printf("%s: firmware sections too large\n",
6787 		    sc->sc_dev.dv_xname);
6788 		free(fw->data, M_DEVBUF, fw->size);
6789 		return EINVAL;
6790 	}
6791 
6792 	/* We can proceed with loading the firmware. */
6793 	return 0;
6794 }
6795 
6796 int
6797 iwn_clock_wait(struct iwn_softc *sc)
6798 {
6799 	int ntries;
6800 
6801 	/* Set "initialization complete" bit. */
6802 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6803 
6804 	/* Wait for clock stabilization. */
6805 	for (ntries = 0; ntries < 2500; ntries++) {
6806 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6807 			return 0;
6808 		DELAY(10);
6809 	}
6810 	printf("%s: timeout waiting for clock stabilization\n",
6811 	    sc->sc_dev.dv_xname);
6812 	return ETIMEDOUT;
6813 }
6814 
6815 int
6816 iwn_apm_init(struct iwn_softc *sc)
6817 {
6818 	pcireg_t reg;
6819 	int error;
6820 
6821 	/* Disable L0s exit timer (NMI bug workaround). */
6822 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6823 	/* Don't wait for ICH L0s (ICH bug workaround). */
6824 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6825 
6826 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6827 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6828 
6829 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6830 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6831 
6832 	/* Retrieve PCIe Active State Power Management (ASPM). */
6833 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6834 	    sc->sc_cap_off + PCI_PCIE_LCSR);
6835 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6836 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6837 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6838 	else
6839 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6840 
6841 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6842 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6843 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6844 
6845 	/* Wait for clock stabilization before accessing prph. */
6846 	if ((error = iwn_clock_wait(sc)) != 0)
6847 		return error;
6848 
6849 	if ((error = iwn_nic_lock(sc)) != 0)
6850 		return error;
6851 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6852 		/* Enable DMA and BSM (Bootstrap State Machine). */
6853 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6854 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6855 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6856 	} else {
6857 		/* Enable DMA. */
6858 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6859 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6860 	}
6861 	DELAY(20);
6862 	/* Disable L1-Active. */
6863 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6864 	iwn_nic_unlock(sc);
6865 
6866 	return 0;
6867 }
6868 
6869 void
6870 iwn_apm_stop_master(struct iwn_softc *sc)
6871 {
6872 	int ntries;
6873 
6874 	/* Stop busmaster DMA activity. */
6875 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6876 	for (ntries = 0; ntries < 100; ntries++) {
6877 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6878 			return;
6879 		DELAY(10);
6880 	}
6881 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
6882 }
6883 
6884 void
6885 iwn_apm_stop(struct iwn_softc *sc)
6886 {
6887 	iwn_apm_stop_master(sc);
6888 
6889 	/* Reset the entire device. */
6890 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6891 	DELAY(10);
6892 	/* Clear "initialization complete" bit. */
6893 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6894 }
6895 
6896 int
6897 iwn4965_nic_config(struct iwn_softc *sc)
6898 {
6899 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6900 		/*
6901 		 * I don't believe this to be correct but this is what the
6902 		 * vendor driver is doing. Probably the bits should not be
6903 		 * shifted in IWN_RFCFG_*.
6904 		 */
6905 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6906 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6907 		    IWN_RFCFG_STEP(sc->rfcfg) |
6908 		    IWN_RFCFG_DASH(sc->rfcfg));
6909 	}
6910 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6911 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6912 	return 0;
6913 }
6914 
6915 int
6916 iwn5000_nic_config(struct iwn_softc *sc)
6917 {
6918 	uint32_t tmp;
6919 	int error;
6920 
6921 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6922 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6923 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6924 		    IWN_RFCFG_STEP(sc->rfcfg) |
6925 		    IWN_RFCFG_DASH(sc->rfcfg));
6926 	}
6927 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6928 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6929 
6930 	if ((error = iwn_nic_lock(sc)) != 0)
6931 		return error;
6932 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6933 
6934 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6935 		/*
6936 		 * Select first Switching Voltage Regulator (1.32V) to
6937 		 * solve a stability issue related to noisy DC2DC line
6938 		 * in the silicon of 1000 Series.
6939 		 */
6940 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6941 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6942 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6943 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6944 	}
6945 	iwn_nic_unlock(sc);
6946 
6947 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6948 		/* Use internal power amplifier only. */
6949 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6950 	}
6951 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6952 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6953 		/* Indicate that ROM calibration version is >=6. */
6954 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6955 	}
6956 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6957 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6958 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6959 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6960 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
6961 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6962 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6963 	return 0;
6964 }
6965 
6966 /*
6967  * Take NIC ownership over Intel Active Management Technology (AMT).
6968  */
6969 int
6970 iwn_hw_prepare(struct iwn_softc *sc)
6971 {
6972 	int ntries;
6973 
6974 	/* Check if hardware is ready. */
6975 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6976 	for (ntries = 0; ntries < 5; ntries++) {
6977 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6978 		    IWN_HW_IF_CONFIG_NIC_READY)
6979 			return 0;
6980 		DELAY(10);
6981 	}
6982 
6983 	/* Hardware not ready, force into ready state. */
6984 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6985 	for (ntries = 0; ntries < 15000; ntries++) {
6986 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6987 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6988 			break;
6989 		DELAY(10);
6990 	}
6991 	if (ntries == 15000)
6992 		return ETIMEDOUT;
6993 
6994 	/* Hardware should be ready now. */
6995 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6996 	for (ntries = 0; ntries < 5; ntries++) {
6997 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6998 		    IWN_HW_IF_CONFIG_NIC_READY)
6999 			return 0;
7000 		DELAY(10);
7001 	}
7002 	return ETIMEDOUT;
7003 }
7004 
7005 int
7006 iwn_hw_init(struct iwn_softc *sc)
7007 {
7008 	struct iwn_ops *ops = &sc->ops;
7009 	int error, chnl, qid;
7010 
7011 	/* Clear pending interrupts. */
7012 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7013 
7014 	if ((error = iwn_apm_init(sc)) != 0) {
7015 		printf("%s: could not power on adapter\n",
7016 		    sc->sc_dev.dv_xname);
7017 		return error;
7018 	}
7019 
7020 	/* Select VMAIN power source. */
7021 	if ((error = iwn_nic_lock(sc)) != 0)
7022 		return error;
7023 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
7024 	iwn_nic_unlock(sc);
7025 
7026 	/* Perform adapter-specific initialization. */
7027 	if ((error = ops->nic_config(sc)) != 0)
7028 		return error;
7029 
7030 	/* Initialize RX ring. */
7031 	if ((error = iwn_nic_lock(sc)) != 0)
7032 		return error;
7033 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
7034 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
7035 	/* Set physical address of RX ring (256-byte aligned). */
7036 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
7037 	/* Set physical address of RX status (16-byte aligned). */
7038 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
7039 	/* Enable RX. */
7040 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
7041 	    IWN_FH_RX_CONFIG_ENA           |
7042 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
7043 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
7044 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
7045 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */
7046 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
7047 	iwn_nic_unlock(sc);
7048 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
7049 
7050 	if ((error = iwn_nic_lock(sc)) != 0)
7051 		return error;
7052 
7053 	/* Initialize TX scheduler. */
7054 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7055 
7056 	/* Set physical address of "keep warm" page (16-byte aligned). */
7057 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
7058 
7059 	/* Initialize TX rings. */
7060 	for (qid = 0; qid < sc->ntxqs; qid++) {
7061 		struct iwn_tx_ring *txq = &sc->txq[qid];
7062 
7063 		/* Set physical address of TX ring (256-byte aligned). */
7064 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
7065 		    txq->desc_dma.paddr >> 8);
7066 	}
7067 	iwn_nic_unlock(sc);
7068 
7069 	/* Enable DMA channels. */
7070 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7071 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
7072 		    IWN_FH_TX_CONFIG_DMA_ENA |
7073 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
7074 	}
7075 
7076 	/* Clear "radio off" and "commands blocked" bits. */
7077 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7078 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
7079 
7080 	/* Clear pending interrupts. */
7081 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7082 	/* Enable interrupt coalescing. */
7083 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
7084 	/* Enable interrupts. */
7085 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7086 
7087 	/* _Really_ make sure "radio off" bit is cleared! */
7088 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7089 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7090 
7091 	/* Enable shadow registers. */
7092 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
7093 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
7094 
7095 	if ((error = ops->load_firmware(sc)) != 0) {
7096 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
7097 		return error;
7098 	}
7099 	/* Wait at most one second for firmware alive notification. */
7100 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
7101 		printf("%s: timeout waiting for adapter to initialize\n",
7102 		    sc->sc_dev.dv_xname);
7103 		return error;
7104 	}
7105 	/* Do post-firmware initialization. */
7106 	return ops->post_alive(sc);
7107 }
7108 
7109 void
7110 iwn_hw_stop(struct iwn_softc *sc)
7111 {
7112 	int chnl, qid, ntries;
7113 
7114 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
7115 
7116 	/* Disable interrupts. */
7117 	IWN_WRITE(sc, IWN_INT_MASK, 0);
7118 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7119 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
7120 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7121 
7122 	/* Make sure we no longer hold the NIC lock. */
7123 	iwn_nic_unlock(sc);
7124 
7125 	/* Stop TX scheduler. */
7126 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7127 
7128 	/* Stop all DMA channels. */
7129 	if (iwn_nic_lock(sc) == 0) {
7130 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7131 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
7132 			for (ntries = 0; ntries < 200; ntries++) {
7133 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
7134 				    IWN_FH_TX_STATUS_IDLE(chnl))
7135 					break;
7136 				DELAY(10);
7137 			}
7138 		}
7139 		iwn_nic_unlock(sc);
7140 	}
7141 
7142 	/* Stop RX ring. */
7143 	iwn_reset_rx_ring(sc, &sc->rxq);
7144 
7145 	/* Reset all TX rings. */
7146 	for (qid = 0; qid < sc->ntxqs; qid++)
7147 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
7148 
7149 	if (iwn_nic_lock(sc) == 0) {
7150 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
7151 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7152 		iwn_nic_unlock(sc);
7153 	}
7154 	DELAY(5);
7155 	/* Power OFF adapter. */
7156 	iwn_apm_stop(sc);
7157 }
7158 
7159 int
7160 iwn_init(struct ifnet *ifp)
7161 {
7162 	struct iwn_softc *sc = ifp->if_softc;
7163 	struct ieee80211com *ic = &sc->sc_ic;
7164 	int error;
7165 
7166 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
7167 	sc->agg_queue_mask = 0;
7168 	memset(sc->sc_tx_ba, 0, sizeof(sc->sc_tx_ba));
7169 
7170 	if ((error = iwn_hw_prepare(sc)) != 0) {
7171 		printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
7172 		goto fail;
7173 	}
7174 
7175 	/* Initialize interrupt mask to default value. */
7176 	sc->int_mask = IWN_INT_MASK_DEF;
7177 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7178 
7179 	/* Check that the radio is not disabled by hardware switch. */
7180 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7181 		printf("%s: radio is disabled by hardware switch\n",
7182 		    sc->sc_dev.dv_xname);
7183 		error = EPERM;	/* :-) */
7184 		/* Re-enable interrupts. */
7185 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
7186 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7187 		return error;
7188 	}
7189 
7190 	/* Read firmware images from the filesystem. */
7191 	if ((error = iwn_read_firmware(sc)) != 0) {
7192 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
7193 		goto fail;
7194 	}
7195 
7196 	/* Initialize hardware and upload firmware. */
7197 	error = iwn_hw_init(sc);
7198 	free(sc->fw.data, M_DEVBUF, sc->fw.size);
7199 	if (error != 0) {
7200 		printf("%s: could not initialize hardware\n",
7201 		    sc->sc_dev.dv_xname);
7202 		goto fail;
7203 	}
7204 
7205 	/* Configure adapter now that it is ready. */
7206 	if ((error = iwn_config(sc)) != 0) {
7207 		printf("%s: could not configure device\n",
7208 		    sc->sc_dev.dv_xname);
7209 		goto fail;
7210 	}
7211 
7212 	ifq_clr_oactive(&ifp->if_snd);
7213 	ifp->if_flags |= IFF_RUNNING;
7214 
7215 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
7216 		ieee80211_begin_scan(ifp);
7217 	else
7218 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
7219 
7220 	return 0;
7221 
7222 fail:	iwn_stop(ifp);
7223 	return error;
7224 }
7225 
7226 void
7227 iwn_stop(struct ifnet *ifp)
7228 {
7229 	struct iwn_softc *sc = ifp->if_softc;
7230 	struct ieee80211com *ic = &sc->sc_ic;
7231 
7232 	timeout_del(&sc->calib_to);
7233 	ifp->if_timer = sc->sc_tx_timer = 0;
7234 	ifp->if_flags &= ~IFF_RUNNING;
7235 	ifq_clr_oactive(&ifp->if_snd);
7236 
7237 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
7238 
7239 	/* Power OFF hardware. */
7240 	iwn_hw_stop(sc);
7241 }
7242