1 /* $OpenBSD: if_pcn.c,v 1.43 2017/01/22 10:17:38 dlg Exp $ */ 2 /* $NetBSD: if_pcn.c,v 1.26 2005/05/07 09:15:44 is Exp $ */ 3 4 /* 5 * Copyright (c) 2001 Wasabi Systems, Inc. 6 * All rights reserved. 7 * 8 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed for the NetBSD Project by 21 * Wasabi Systems, Inc. 22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 23 * or promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Device driver for the AMD PCnet-PCI series of Ethernet 41 * chips: 42 * 43 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI 44 * Local Bus 45 * 46 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller 47 * for PCI Local Bus 48 * 49 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps 50 * Ethernet Controller for PCI Local Bus 51 * 52 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller 53 * with OnNow Support 54 * 55 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI 56 * Ethernet Controller with Integrated PHY 57 * 58 * This also supports the virtual PCnet-PCI Ethernet interface found 59 * in VMware. 60 * 61 * TODO: 62 * 63 * * Split this into bus-specific and bus-independent portions. 64 * The core could also be used for the ILACC (Am79900) 32-bit 65 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE). 66 */ 67 68 #include "bpfilter.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/timeout.h> 73 #include <sys/mbuf.h> 74 #include <sys/malloc.h> 75 #include <sys/kernel.h> 76 #include <sys/socket.h> 77 #include <sys/ioctl.h> 78 #include <sys/errno.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 #include <sys/endian.h> 82 83 #include <net/if.h> 84 #include <net/if_dl.h> 85 86 #include <netinet/in.h> 87 #include <netinet/if_ether.h> 88 89 #include <net/if_media.h> 90 91 #if NBPFILTER > 0 92 #include <net/bpf.h> 93 #endif 94 95 #include <machine/bus.h> 96 #include <machine/intr.h> 97 98 #include <dev/mii/miivar.h> 99 100 #include <dev/ic/am79900reg.h> 101 #include <dev/ic/lancereg.h> 102 103 #include <dev/pci/pcireg.h> 104 #include <dev/pci/pcivar.h> 105 #include <dev/pci/pcidevs.h> 106 107 /* 108 * Register definitions for the AMD PCnet-PCI series of Ethernet 109 * chips. 110 * 111 * These are only the registers that we access directly from PCI 112 * space. Everything else (accessed via the RAP + RDP/BDP) is 113 * defined in <dev/ic/lancereg.h>. 114 */ 115 116 /* 117 * PCI configuration space. 118 */ 119 120 #define PCN_PCI_CBIO (PCI_MAPREG_START + 0x00) 121 #define PCN_PCI_CBMEM (PCI_MAPREG_START + 0x04) 122 123 /* 124 * I/O map in Word I/O mode. 125 */ 126 127 #define PCN16_APROM 0x00 128 #define PCN16_RDP 0x10 129 #define PCN16_RAP 0x12 130 #define PCN16_RESET 0x14 131 #define PCN16_BDP 0x16 132 133 /* 134 * I/O map in DWord I/O mode. 135 */ 136 137 #define PCN32_APROM 0x00 138 #define PCN32_RDP 0x10 139 #define PCN32_RAP 0x14 140 #define PCN32_RESET 0x18 141 #define PCN32_BDP 0x1c 142 143 /* 144 * Transmit descriptor list size. This is arbitrary, but allocate 145 * enough descriptors for 128 pending transmissions, and 4 segments 146 * per packet. This MUST work out to a power of 2. 147 * 148 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL! 149 * 150 * So we play a little trick here. We give each packet up to 16 151 * DMA segments, but only allocate the max of 512 descriptors. The 152 * transmit logic can deal with this, we just are hoping to sneak by. 153 */ 154 #define PCN_NTXSEGS 16 155 156 #define PCN_TXQUEUELEN 128 157 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1) 158 #define PCN_NTXDESC 512 159 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1) 160 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK) 161 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK) 162 163 /* Tx interrupt every N + 1 packets. */ 164 #define PCN_TXINTR_MASK 7 165 166 /* 167 * Receive descriptor list size. We have one Rx buffer per incoming 168 * packet, so this logic is a little simpler. 169 */ 170 #define PCN_NRXDESC 128 171 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1) 172 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK) 173 174 /* 175 * Control structures are DMA'd to the PCnet chip. We allocate them in 176 * a single clump that maps to a single DMA segment to make several things 177 * easier. 178 */ 179 struct pcn_control_data { 180 /* The transmit descriptors. */ 181 struct letmd pcd_txdescs[PCN_NTXDESC]; 182 183 /* The receive descriptors. */ 184 struct lermd pcd_rxdescs[PCN_NRXDESC]; 185 186 /* The init block. */ 187 struct leinit pcd_initblock; 188 }; 189 190 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x) 191 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)]) 192 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)]) 193 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock) 194 195 /* 196 * Software state for transmit jobs. 197 */ 198 struct pcn_txsoft { 199 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 200 bus_dmamap_t txs_dmamap; /* our DMA map */ 201 int txs_firstdesc; /* first descriptor in packet */ 202 int txs_lastdesc; /* last descriptor in packet */ 203 }; 204 205 /* 206 * Software state for receive jobs. 207 */ 208 struct pcn_rxsoft { 209 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 210 bus_dmamap_t rxs_dmamap; /* our DMA map */ 211 }; 212 213 /* 214 * Description of Rx FIFO watermarks for various revisions. 215 */ 216 static const char * const pcn_79c970_rcvfw[] = { 217 "16 bytes", 218 "64 bytes", 219 "128 bytes", 220 NULL, 221 }; 222 223 static const char * const pcn_79c971_rcvfw[] = { 224 "16 bytes", 225 "64 bytes", 226 "112 bytes", 227 NULL, 228 }; 229 230 /* 231 * Description of Tx start points for various revisions. 232 */ 233 static const char * const pcn_79c970_xmtsp[] = { 234 "8 bytes", 235 "64 bytes", 236 "128 bytes", 237 "248 bytes", 238 }; 239 240 static const char * const pcn_79c971_xmtsp[] = { 241 "20 bytes", 242 "64 bytes", 243 "128 bytes", 244 "248 bytes", 245 }; 246 247 static const char * const pcn_79c971_xmtsp_sram[] = { 248 "44 bytes", 249 "64 bytes", 250 "128 bytes", 251 "store-and-forward", 252 }; 253 254 /* 255 * Description of Tx FIFO watermarks for various revisions. 256 */ 257 static const char * const pcn_79c970_xmtfw[] = { 258 "16 bytes", 259 "64 bytes", 260 "128 bytes", 261 NULL, 262 }; 263 264 static const char * const pcn_79c971_xmtfw[] = { 265 "16 bytes", 266 "64 bytes", 267 "108 bytes", 268 NULL, 269 }; 270 271 /* 272 * Software state per device. 273 */ 274 struct pcn_softc { 275 struct device sc_dev; /* generic device information */ 276 bus_space_tag_t sc_st; /* bus space tag */ 277 bus_space_handle_t sc_sh; /* bus space handle */ 278 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 279 struct arpcom sc_arpcom; /* Ethernet common data */ 280 281 /* Points to our media routines, etc. */ 282 const struct pcn_variant *sc_variant; 283 284 void *sc_ih; /* interrupt cookie */ 285 286 struct mii_data sc_mii; /* MII/media information */ 287 288 struct timeout sc_tick_timeout; /* tick timeout */ 289 290 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 291 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 292 293 /* Software state for transmit and receive descriptors. */ 294 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN]; 295 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC]; 296 297 /* Control data structures */ 298 struct pcn_control_data *sc_control_data; 299 #define sc_txdescs sc_control_data->pcd_txdescs 300 #define sc_rxdescs sc_control_data->pcd_rxdescs 301 #define sc_initblock sc_control_data->pcd_initblock 302 303 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */ 304 int sc_rcvfw; 305 306 const char * const *sc_xmtsp_desc; /* Tx start point info */ 307 int sc_xmtsp; 308 309 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */ 310 int sc_xmtfw; 311 312 int sc_flags; /* misc. flags; see below */ 313 int sc_swstyle; /* the software style in use */ 314 315 int sc_txfree; /* number of free Tx descriptors */ 316 int sc_txnext; /* next ready Tx descriptor */ 317 318 int sc_txsfree; /* number of free Tx jobs */ 319 int sc_txsnext; /* next free Tx job */ 320 int sc_txsdirty; /* dirty Tx jobs */ 321 322 int sc_rxptr; /* next ready Rx descriptor/job */ 323 324 uint32_t sc_csr5; /* prototype CSR5 register */ 325 uint32_t sc_mode; /* prototype MODE register */ 326 }; 327 328 /* sc_flags */ 329 #define PCN_F_HAS_MII 0x0001 /* has MII */ 330 331 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x))) 332 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x))) 333 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF) 334 335 #define PCN_CDTXSYNC(sc, x, n, ops) \ 336 do { \ 337 int __x, __n; \ 338 \ 339 __x = (x); \ 340 __n = (n); \ 341 \ 342 /* If it will wrap around, sync to the end of the ring. */ \ 343 if ((__x + __n) > PCN_NTXDESC) { \ 344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 345 PCN_CDTXOFF(__x), sizeof(struct letmd) * \ 346 (PCN_NTXDESC - __x), (ops)); \ 347 __n -= (PCN_NTXDESC - __x); \ 348 __x = 0; \ 349 } \ 350 \ 351 /* Now sync whatever is left. */ \ 352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 353 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \ 354 } while (/*CONSTCOND*/0) 355 356 #define PCN_CDRXSYNC(sc, x, ops) \ 357 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 358 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops)) 359 360 #define PCN_CDINITSYNC(sc, ops) \ 361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 362 PCN_CDINITOFF, sizeof(struct leinit), (ops)) 363 364 #define PCN_INIT_RXDESC(sc, x) \ 365 do { \ 366 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 367 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \ 368 struct mbuf *__m = __rxs->rxs_mbuf; \ 369 \ 370 /* \ 371 * Note: We scoot the packet forward 2 bytes in the buffer \ 372 * so that the payload after the Ethernet header is aligned \ 373 * to a 4-byte boundary. \ 374 */ \ 375 __m->m_data = __m->m_ext.ext_buf + 2; \ 376 \ 377 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \ 378 __rmd->rmd2 = \ 379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 380 __rmd->rmd0 = 0; \ 381 } else { \ 382 __rmd->rmd2 = 0; \ 383 __rmd->rmd0 = \ 384 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 385 } \ 386 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \ 387 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \ 388 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\ 389 } while(/*CONSTCOND*/0) 390 391 void pcn_start(struct ifnet *); 392 void pcn_watchdog(struct ifnet *); 393 int pcn_ioctl(struct ifnet *, u_long, caddr_t); 394 int pcn_init(struct ifnet *); 395 void pcn_stop(struct ifnet *, int); 396 397 void pcn_reset(struct pcn_softc *); 398 void pcn_rxdrain(struct pcn_softc *); 399 int pcn_add_rxbuf(struct pcn_softc *, int); 400 void pcn_tick(void *); 401 402 void pcn_spnd(struct pcn_softc *); 403 404 void pcn_set_filter(struct pcn_softc *); 405 406 int pcn_intr(void *); 407 void pcn_txintr(struct pcn_softc *); 408 int pcn_rxintr(struct pcn_softc *); 409 410 int pcn_mii_readreg(struct device *, int, int); 411 void pcn_mii_writereg(struct device *, int, int, int); 412 void pcn_mii_statchg(struct device *); 413 414 void pcn_79c970_mediainit(struct pcn_softc *); 415 int pcn_79c970_mediachange(struct ifnet *); 416 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *); 417 418 void pcn_79c971_mediainit(struct pcn_softc *); 419 int pcn_79c971_mediachange(struct ifnet *); 420 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *); 421 422 /* 423 * Description of a PCnet-PCI variant. Used to select media access 424 * method, mostly, and to print a nice description of the chip. 425 */ 426 static const struct pcn_variant { 427 const char *pcv_desc; 428 void (*pcv_mediainit)(struct pcn_softc *); 429 uint16_t pcv_chipid; 430 } pcn_variants[] = { 431 { "Am79c970", 432 pcn_79c970_mediainit, 433 PARTID_Am79c970 }, 434 435 { "Am79c970A", 436 pcn_79c970_mediainit, 437 PARTID_Am79c970A }, 438 439 { "Am79c971", 440 pcn_79c971_mediainit, 441 PARTID_Am79c971 }, 442 443 { "Am79c972", 444 pcn_79c971_mediainit, 445 PARTID_Am79c972 }, 446 447 { "Am79c973", 448 pcn_79c971_mediainit, 449 PARTID_Am79c973 }, 450 451 { "Am79c975", 452 pcn_79c971_mediainit, 453 PARTID_Am79c975 }, 454 455 { "Am79c976", 456 pcn_79c971_mediainit, 457 PARTID_Am79c976 }, 458 459 { "Am79c978", 460 pcn_79c971_mediainit, 461 PARTID_Am79c978 }, 462 463 { "Unknown", 464 pcn_79c971_mediainit, 465 0 }, 466 }; 467 468 int pcn_copy_small = 0; 469 470 int pcn_match(struct device *, void *, void *); 471 void pcn_attach(struct device *, struct device *, void *); 472 473 struct cfattach pcn_ca = { 474 sizeof(struct pcn_softc), pcn_match, pcn_attach, 475 }; 476 477 const struct pci_matchid pcn_devices[] = { 478 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCNET_PCI }, 479 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCHOME_PCI } 480 }; 481 482 struct cfdriver pcn_cd = { 483 NULL, "pcn", DV_IFNET 484 }; 485 486 /* 487 * Routines to read and write the PCnet-PCI CSR/BCR space. 488 */ 489 490 static __inline uint32_t 491 pcn_csr_read(struct pcn_softc *sc, int reg) 492 { 493 494 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 495 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP)); 496 } 497 498 static __inline void 499 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val) 500 { 501 502 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 503 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val); 504 } 505 506 static __inline uint32_t 507 pcn_bcr_read(struct pcn_softc *sc, int reg) 508 { 509 510 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 511 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP)); 512 } 513 514 static __inline void 515 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val) 516 { 517 518 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 519 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val); 520 } 521 522 static const struct pcn_variant * 523 pcn_lookup_variant(uint16_t chipid) 524 { 525 const struct pcn_variant *pcv; 526 527 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) { 528 if (chipid == pcv->pcv_chipid) 529 return (pcv); 530 } 531 532 /* 533 * This covers unknown chips, which we simply treat like 534 * a generic PCnet-FAST. 535 */ 536 return (pcv); 537 } 538 539 int 540 pcn_match(struct device *parent, void *match, void *aux) 541 { 542 struct pci_attach_args *pa = aux; 543 544 /* 545 * IBM makes a PCI variant of this card which shows up as a 546 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25) 547 * this card is truly a pcn card, so we have a special case match for 548 * it. 549 */ 550 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT && 551 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX && 552 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK) 553 return(1); 554 555 return (pci_matchbyid((struct pci_attach_args *)aux, pcn_devices, 556 nitems(pcn_devices))); 557 } 558 559 void 560 pcn_attach(struct device *parent, struct device *self, void *aux) 561 { 562 struct pcn_softc *sc = (struct pcn_softc *) self; 563 struct pci_attach_args *pa = aux; 564 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 565 pci_chipset_tag_t pc = pa->pa_pc; 566 pci_intr_handle_t ih; 567 const char *intrstr = NULL; 568 bus_space_tag_t iot, memt; 569 bus_space_handle_t ioh, memh; 570 bus_dma_segment_t seg; 571 int ioh_valid, memh_valid; 572 int i, rseg, error; 573 uint32_t chipid, reg; 574 uint8_t enaddr[ETHER_ADDR_LEN]; 575 576 timeout_set(&sc->sc_tick_timeout, pcn_tick, sc); 577 578 /* 579 * Map the device. 580 */ 581 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 582 &iot, &ioh, NULL, NULL, 0) == 0); 583 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM, 584 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 585 &memt, &memh, NULL, NULL, 0) == 0); 586 587 if (memh_valid) { 588 sc->sc_st = memt; 589 sc->sc_sh = memh; 590 } else if (ioh_valid) { 591 sc->sc_st = iot; 592 sc->sc_sh = ioh; 593 } else { 594 printf(": unable to map device registers\n"); 595 return; 596 } 597 598 sc->sc_dmat = pa->pa_dmat; 599 600 /* Get it out of power save mode, if needed. */ 601 pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0); 602 603 /* 604 * Reset the chip to a known state. This also puts the 605 * chip into 32-bit mode. 606 */ 607 pcn_reset(sc); 608 609 #if !defined(PCN_NO_PROM) 610 611 /* 612 * Read the Ethernet address from the EEPROM. 613 */ 614 for (i = 0; i < ETHER_ADDR_LEN; i++) 615 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh, 616 PCN32_APROM + i); 617 #else 618 /* 619 * The PROM is not used; instead we assume that the MAC address 620 * has been programmed into the device's physical address 621 * registers by the boot firmware 622 */ 623 624 for (i=0; i < 3; i++) { 625 uint32_t val; 626 val = pcn_csr_read(sc, LE_CSR12 + i); 627 enaddr[2*i] = val & 0x0ff; 628 enaddr[2*i+1] = (val >> 8) & 0x0ff; 629 } 630 #endif 631 632 /* 633 * Now that the device is mapped, attempt to figure out what 634 * kind of chip we have. Note that IDL has all 32 bits of 635 * the chip ID when we're in 32-bit mode. 636 */ 637 chipid = pcn_csr_read(sc, LE_CSR88); 638 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid)); 639 640 /* 641 * Map and establish our interrupt. 642 */ 643 if (pci_intr_map(pa, &ih)) { 644 printf(": unable to map interrupt\n"); 645 return; 646 } 647 intrstr = pci_intr_string(pc, ih); 648 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc, 649 self->dv_xname); 650 if (sc->sc_ih == NULL) { 651 printf(": unable to establish interrupt"); 652 if (intrstr != NULL) 653 printf(" at %s", intrstr); 654 printf("\n"); 655 return; 656 } 657 658 /* 659 * Allocate the control data structures, and create and load the 660 * DMA map for it. 661 */ 662 if ((error = bus_dmamem_alloc(sc->sc_dmat, 663 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 664 0)) != 0) { 665 printf(": unable to allocate control data, error = %d\n", 666 error); 667 return; 668 } 669 670 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 671 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data, 672 BUS_DMA_COHERENT)) != 0) { 673 printf(": unable to map control data, error = %d\n", 674 error); 675 goto fail_1; 676 } 677 678 if ((error = bus_dmamap_create(sc->sc_dmat, 679 sizeof(struct pcn_control_data), 1, 680 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 681 printf(": unable to create control data DMA map, " 682 "error = %d\n", error); 683 goto fail_2; 684 } 685 686 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 687 sc->sc_control_data, sizeof(struct pcn_control_data), NULL, 688 0)) != 0) { 689 printf(": unable to load control data DMA map, error = %d\n", 690 error); 691 goto fail_3; 692 } 693 694 /* Create the transmit buffer DMA maps. */ 695 for (i = 0; i < PCN_TXQUEUELEN; i++) { 696 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 697 PCN_NTXSEGS, MCLBYTES, 0, 0, 698 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 699 printf(": unable to create tx DMA map %d, " 700 "error = %d\n", i, error); 701 goto fail_4; 702 } 703 } 704 705 /* Create the receive buffer DMA maps. */ 706 for (i = 0; i < PCN_NRXDESC; i++) { 707 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 708 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 709 printf(": unable to create rx DMA map %d, " 710 "error = %d\n", i, error); 711 goto fail_5; 712 } 713 sc->sc_rxsoft[i].rxs_mbuf = NULL; 714 } 715 716 printf(", %s, rev %d: %s, address %s\n", sc->sc_variant->pcv_desc, 717 CHIPID_VER(chipid), intrstr, ether_sprintf(enaddr)); 718 719 /* Initialize our media structures. */ 720 (*sc->sc_variant->pcv_mediainit)(sc); 721 722 /* 723 * Initialize FIFO watermark info. 724 */ 725 switch (sc->sc_variant->pcv_chipid) { 726 case PARTID_Am79c970: 727 case PARTID_Am79c970A: 728 sc->sc_rcvfw_desc = pcn_79c970_rcvfw; 729 sc->sc_xmtsp_desc = pcn_79c970_xmtsp; 730 sc->sc_xmtfw_desc = pcn_79c970_xmtfw; 731 break; 732 733 default: 734 sc->sc_rcvfw_desc = pcn_79c971_rcvfw; 735 /* 736 * Read BCR25 to determine how much SRAM is 737 * on the board. If > 0, then we the chip 738 * uses different Start Point thresholds. 739 * 740 * Note BCR25 and BCR26 are loaded from the 741 * EEPROM on RST, and unaffected by S_RESET, 742 * so we don't really have to worry about 743 * them except for this. 744 */ 745 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff; 746 if (reg != 0) 747 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram; 748 else 749 sc->sc_xmtsp_desc = pcn_79c971_xmtsp; 750 sc->sc_xmtfw_desc = pcn_79c971_xmtfw; 751 break; 752 } 753 754 /* 755 * Set up defaults -- see the tables above for what these 756 * values mean. 757 * 758 * XXX How should we tune RCVFW and XMTFW? 759 */ 760 sc->sc_rcvfw = 1; /* minimum for full-duplex */ 761 sc->sc_xmtsp = 1; 762 sc->sc_xmtfw = 0; 763 764 ifp = &sc->sc_arpcom.ac_if; 765 bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); 766 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 767 ifp->if_softc = sc; 768 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 769 ifp->if_ioctl = pcn_ioctl; 770 ifp->if_start = pcn_start; 771 ifp->if_watchdog = pcn_watchdog; 772 IFQ_SET_MAXLEN(&ifp->if_snd, PCN_NTXDESC -1); 773 774 /* Attach the interface. */ 775 if_attach(ifp); 776 ether_ifattach(ifp); 777 return; 778 779 /* 780 * Free any resources we've allocated during the failed attach 781 * attempt. Do this in reverse order and fall through. 782 */ 783 fail_5: 784 for (i = 0; i < PCN_NRXDESC; i++) { 785 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 786 bus_dmamap_destroy(sc->sc_dmat, 787 sc->sc_rxsoft[i].rxs_dmamap); 788 } 789 fail_4: 790 for (i = 0; i < PCN_TXQUEUELEN; i++) { 791 if (sc->sc_txsoft[i].txs_dmamap != NULL) 792 bus_dmamap_destroy(sc->sc_dmat, 793 sc->sc_txsoft[i].txs_dmamap); 794 } 795 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 796 fail_3: 797 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 798 fail_2: 799 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 800 sizeof(struct pcn_control_data)); 801 fail_1: 802 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 803 } 804 805 /* 806 * pcn_start: [ifnet interface function] 807 * 808 * Start packet transmission on the interface. 809 */ 810 void 811 pcn_start(struct ifnet *ifp) 812 { 813 struct pcn_softc *sc = ifp->if_softc; 814 struct mbuf *m0, *m; 815 struct pcn_txsoft *txs; 816 bus_dmamap_t dmamap; 817 int error, nexttx, lasttx = -1, ofree, seg; 818 819 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 820 return; 821 822 /* 823 * Remember the previous number of free descriptors and 824 * the first descriptor we'll use. 825 */ 826 ofree = sc->sc_txfree; 827 828 /* 829 * Loop through the send queue, setting up transmit descriptors 830 * until we drain the queue, or use up all available transmit 831 * descriptors. 832 */ 833 for (;;) { 834 /* Grab a packet off the queue. */ 835 m0 = ifq_deq_begin(&ifp->if_snd); 836 if (m0 == NULL) 837 break; 838 m = NULL; 839 840 /* Get a work queue entry. */ 841 if (sc->sc_txsfree == 0) { 842 ifq_deq_rollback(&ifp->if_snd, m0); 843 break; 844 } 845 846 txs = &sc->sc_txsoft[sc->sc_txsnext]; 847 dmamap = txs->txs_dmamap; 848 849 /* 850 * Load the DMA map. If this fails, the packet either 851 * didn't fit in the alloted number of segments, or we 852 * were short on resources. In this case, we'll copy 853 * and try again. 854 */ 855 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 856 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 857 MGETHDR(m, M_DONTWAIT, MT_DATA); 858 if (m == NULL) { 859 ifq_deq_rollback(&ifp->if_snd, m0); 860 break; 861 } 862 if (m0->m_pkthdr.len > MHLEN) { 863 MCLGET(m, M_DONTWAIT); 864 if ((m->m_flags & M_EXT) == 0) { 865 ifq_deq_rollback(&ifp->if_snd, m0); 866 m_freem(m); 867 break; 868 } 869 } 870 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 871 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 872 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 873 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 874 if (error) { 875 ifq_deq_rollback(&ifp->if_snd, m0); 876 break; 877 } 878 } 879 880 /* 881 * Ensure we have enough descriptors free to describe 882 * the packet. Note, we always reserve one descriptor 883 * at the end of the ring as a termination point, to 884 * prevent wrap-around. 885 */ 886 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 887 /* 888 * Not enough free descriptors to transmit this 889 * packet. We haven't committed anything yet, 890 * so just unload the DMA map, put the packet 891 * back on the queue, and punt. Notify the upper 892 * layer that there are not more slots left. 893 * 894 * XXX We could allocate an mbuf and copy, but 895 * XXX is it worth it? 896 */ 897 ifq_set_oactive(&ifp->if_snd); 898 bus_dmamap_unload(sc->sc_dmat, dmamap); 899 m_freem(m); 900 ifq_deq_rollback(&ifp->if_snd, m0); 901 break; 902 } 903 904 ifq_deq_commit(&ifp->if_snd, m0); 905 if (m != NULL) { 906 m_freem(m0); 907 m0 = m; 908 } 909 910 /* 911 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 912 */ 913 914 /* Sync the DMA map. */ 915 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 916 BUS_DMASYNC_PREWRITE); 917 918 /* 919 * Initialize the transmit descriptors. 920 */ 921 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { 922 for (nexttx = sc->sc_txnext, seg = 0; 923 seg < dmamap->dm_nsegs; 924 seg++, nexttx = PCN_NEXTTX(nexttx)) { 925 /* 926 * If this is the first descriptor we're 927 * enqueueing, don't set the OWN bit just 928 * yet. That could cause a race condition. 929 * We'll do it below. 930 */ 931 sc->sc_txdescs[nexttx].tmd0 = 0; 932 sc->sc_txdescs[nexttx].tmd2 = 933 htole32(dmamap->dm_segs[seg].ds_addr); 934 sc->sc_txdescs[nexttx].tmd1 = 935 htole32(LE_T1_ONES | 936 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 937 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 938 LE_T1_BCNT_MASK)); 939 lasttx = nexttx; 940 } 941 } else { 942 for (nexttx = sc->sc_txnext, seg = 0; 943 seg < dmamap->dm_nsegs; 944 seg++, nexttx = PCN_NEXTTX(nexttx)) { 945 /* 946 * If this is the first descriptor we're 947 * enqueueing, don't set the OWN bit just 948 * yet. That could cause a race condition. 949 * We'll do it below. 950 */ 951 sc->sc_txdescs[nexttx].tmd0 = 952 htole32(dmamap->dm_segs[seg].ds_addr); 953 sc->sc_txdescs[nexttx].tmd2 = 0; 954 sc->sc_txdescs[nexttx].tmd1 = 955 htole32(LE_T1_ONES | 956 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 957 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 958 LE_T1_BCNT_MASK)); 959 lasttx = nexttx; 960 } 961 } 962 963 KASSERT(lasttx != -1); 964 /* Interrupt on the packet, if appropriate. */ 965 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0) 966 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT); 967 968 /* Set `start of packet' and `end of packet' appropriately. */ 969 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP); 970 sc->sc_txdescs[sc->sc_txnext].tmd1 |= 971 htole32(LE_T1_OWN|LE_T1_STP); 972 973 /* Sync the descriptors we're using. */ 974 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 975 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 976 977 /* Kick the transmitter. */ 978 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD); 979 980 /* 981 * Store a pointer to the packet so we can free it later, 982 * and remember what txdirty will be once the packet is 983 * done. 984 */ 985 txs->txs_mbuf = m0; 986 txs->txs_firstdesc = sc->sc_txnext; 987 txs->txs_lastdesc = lasttx; 988 989 /* Advance the tx pointer. */ 990 sc->sc_txfree -= dmamap->dm_nsegs; 991 sc->sc_txnext = nexttx; 992 993 sc->sc_txsfree--; 994 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext); 995 996 #if NBPFILTER > 0 997 /* Pass the packet to any BPF listeners. */ 998 if (ifp->if_bpf) 999 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1000 #endif /* NBPFILTER > 0 */ 1001 } 1002 1003 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) { 1004 /* No more slots left; notify upper layer. */ 1005 ifq_set_oactive(&ifp->if_snd); 1006 } 1007 1008 if (sc->sc_txfree != ofree) { 1009 /* Set a watchdog timer in case the chip flakes out. */ 1010 ifp->if_timer = 5; 1011 } 1012 } 1013 1014 /* 1015 * pcn_watchdog: [ifnet interface function] 1016 * 1017 * Watchdog timer handler. 1018 */ 1019 void 1020 pcn_watchdog(struct ifnet *ifp) 1021 { 1022 struct pcn_softc *sc = ifp->if_softc; 1023 1024 /* 1025 * Since we're not interrupting every packet, sweep 1026 * up before we report an error. 1027 */ 1028 pcn_txintr(sc); 1029 1030 if (sc->sc_txfree != PCN_NTXDESC) { 1031 printf("%s: device timeout (txfree %d txsfree %d)\n", 1032 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree); 1033 ifp->if_oerrors++; 1034 1035 /* Reset the interface. */ 1036 (void) pcn_init(ifp); 1037 } 1038 1039 /* Try to get more packets going. */ 1040 pcn_start(ifp); 1041 } 1042 1043 /* 1044 * pcn_ioctl: [ifnet interface function] 1045 * 1046 * Handle control requests from the operator. 1047 */ 1048 int 1049 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1050 { 1051 struct pcn_softc *sc = ifp->if_softc; 1052 struct ifreq *ifr = (struct ifreq *) data; 1053 int s, error = 0; 1054 1055 s = splnet(); 1056 1057 switch (cmd) { 1058 case SIOCSIFADDR: 1059 ifp->if_flags |= IFF_UP; 1060 if (!(ifp->if_flags & IFF_RUNNING)) 1061 pcn_init(ifp); 1062 break; 1063 1064 case SIOCSIFFLAGS: 1065 if (ifp->if_flags & IFF_UP) { 1066 if (ifp->if_flags & IFF_RUNNING) 1067 error = ENETRESET; 1068 else 1069 pcn_init(ifp); 1070 } else { 1071 if (ifp->if_flags & IFF_RUNNING) 1072 pcn_stop(ifp, 1); 1073 } 1074 break; 1075 1076 case SIOCSIFMEDIA: 1077 case SIOCGIFMEDIA: 1078 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1079 break; 1080 1081 default: 1082 error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); 1083 } 1084 1085 if (error == ENETRESET) { 1086 if (ifp->if_flags & IFF_RUNNING) 1087 error = pcn_init(ifp); 1088 else 1089 error = 0; 1090 } 1091 1092 splx(s); 1093 return (error); 1094 } 1095 1096 /* 1097 * pcn_intr: 1098 * 1099 * Interrupt service routine. 1100 */ 1101 int 1102 pcn_intr(void *arg) 1103 { 1104 struct pcn_softc *sc = arg; 1105 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1106 uint32_t csr0; 1107 int wantinit, handled = 0; 1108 1109 for (wantinit = 0; wantinit == 0;) { 1110 csr0 = pcn_csr_read(sc, LE_CSR0); 1111 if ((csr0 & LE_C0_INTR) == 0) 1112 break; 1113 1114 /* ACK the bits and re-enable interrupts. */ 1115 pcn_csr_write(sc, LE_CSR0, csr0 & 1116 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT| 1117 LE_C0_TINT|LE_C0_IDON)); 1118 1119 handled = 1; 1120 1121 if (csr0 & LE_C0_RINT) 1122 wantinit = pcn_rxintr(sc); 1123 1124 if (csr0 & LE_C0_TINT) 1125 pcn_txintr(sc); 1126 1127 if (csr0 & LE_C0_ERR) { 1128 if (csr0 & LE_C0_BABL) 1129 ifp->if_oerrors++; 1130 if (csr0 & LE_C0_MISS) 1131 ifp->if_ierrors++; 1132 if (csr0 & LE_C0_MERR) { 1133 printf("%s: memory error\n", 1134 sc->sc_dev.dv_xname); 1135 wantinit = 1; 1136 break; 1137 } 1138 } 1139 1140 if ((csr0 & LE_C0_RXON) == 0) { 1141 printf("%s: receiver disabled\n", 1142 sc->sc_dev.dv_xname); 1143 ifp->if_ierrors++; 1144 wantinit = 1; 1145 } 1146 1147 if ((csr0 & LE_C0_TXON) == 0) { 1148 printf("%s: transmitter disabled\n", 1149 sc->sc_dev.dv_xname); 1150 ifp->if_oerrors++; 1151 wantinit = 1; 1152 } 1153 } 1154 1155 if (handled) { 1156 if (wantinit) 1157 pcn_init(ifp); 1158 1159 /* Try to get more packets going. */ 1160 pcn_start(ifp); 1161 } 1162 1163 return (handled); 1164 } 1165 1166 /* 1167 * pcn_spnd: 1168 * 1169 * Suspend the chip. 1170 */ 1171 void 1172 pcn_spnd(struct pcn_softc *sc) 1173 { 1174 int i; 1175 1176 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND); 1177 1178 for (i = 0; i < 10000; i++) { 1179 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND) 1180 return; 1181 delay(5); 1182 } 1183 1184 printf("%s: WARNING: chip failed to enter suspended state\n", 1185 sc->sc_dev.dv_xname); 1186 } 1187 1188 /* 1189 * pcn_txintr: 1190 * 1191 * Helper; handle transmit interrupts. 1192 */ 1193 void 1194 pcn_txintr(struct pcn_softc *sc) 1195 { 1196 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1197 struct pcn_txsoft *txs; 1198 uint32_t tmd1, tmd2, tmd; 1199 int i, j; 1200 1201 ifq_clr_oactive(&ifp->if_snd); 1202 1203 /* 1204 * Go through our Tx list and free mbufs for those 1205 * frames which have been transmitted. 1206 */ 1207 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN; 1208 i = PCN_NEXTTXS(i), sc->sc_txsfree++) { 1209 txs = &sc->sc_txsoft[i]; 1210 1211 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1212 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1213 1214 tmd1 = letoh32(sc->sc_txdescs[txs->txs_lastdesc].tmd1); 1215 if (tmd1 & LE_T1_OWN) 1216 break; 1217 1218 /* 1219 * Slightly annoying -- we have to loop through the 1220 * descriptors we've used looking for ERR, since it 1221 * can appear on any descriptor in the chain. 1222 */ 1223 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) { 1224 tmd = letoh32(sc->sc_txdescs[j].tmd1); 1225 if (tmd & LE_T1_ERR) { 1226 ifp->if_oerrors++; 1227 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1228 tmd2 = letoh32(sc->sc_txdescs[j].tmd0); 1229 else 1230 tmd2 = letoh32(sc->sc_txdescs[j].tmd2); 1231 if (tmd2 & LE_T2_UFLO) { 1232 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) { 1233 sc->sc_xmtsp++; 1234 printf("%s: transmit " 1235 "underrun; new threshold: " 1236 "%s\n", 1237 sc->sc_dev.dv_xname, 1238 sc->sc_xmtsp_desc[ 1239 sc->sc_xmtsp]); 1240 pcn_spnd(sc); 1241 pcn_csr_write(sc, LE_CSR80, 1242 LE_C80_RCVFW(sc->sc_rcvfw) | 1243 LE_C80_XMTSP(sc->sc_xmtsp) | 1244 LE_C80_XMTFW(sc->sc_xmtfw)); 1245 pcn_csr_write(sc, LE_CSR5, 1246 sc->sc_csr5); 1247 } else { 1248 printf("%s: transmit " 1249 "underrun\n", 1250 sc->sc_dev.dv_xname); 1251 } 1252 } else if (tmd2 & LE_T2_BUFF) { 1253 printf("%s: transmit buffer error\n", 1254 sc->sc_dev.dv_xname); 1255 } 1256 if (tmd2 & LE_T2_LCOL) 1257 ifp->if_collisions++; 1258 if (tmd2 & LE_T2_RTRY) 1259 ifp->if_collisions += 16; 1260 goto next_packet; 1261 } 1262 if (j == txs->txs_lastdesc) 1263 break; 1264 } 1265 if (tmd1 & LE_T1_ONE) 1266 ifp->if_collisions++; 1267 else if (tmd & LE_T1_MORE) { 1268 /* Real number is unknown. */ 1269 ifp->if_collisions += 2; 1270 } 1271 next_packet: 1272 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1273 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1274 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1275 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1276 m_freem(txs->txs_mbuf); 1277 txs->txs_mbuf = NULL; 1278 } 1279 1280 /* Update the dirty transmit buffer pointer. */ 1281 sc->sc_txsdirty = i; 1282 1283 /* 1284 * If there are no more pending transmissions, cancel the watchdog 1285 * timer. 1286 */ 1287 if (sc->sc_txsfree == PCN_TXQUEUELEN) 1288 ifp->if_timer = 0; 1289 } 1290 1291 /* 1292 * pcn_rxintr: 1293 * 1294 * Helper; handle receive interrupts. 1295 */ 1296 int 1297 pcn_rxintr(struct pcn_softc *sc) 1298 { 1299 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1300 struct pcn_rxsoft *rxs; 1301 struct mbuf *m; 1302 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 1303 uint32_t rmd1; 1304 int i, len; 1305 int rv = 0; 1306 1307 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) { 1308 rxs = &sc->sc_rxsoft[i]; 1309 1310 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1311 1312 rmd1 = letoh32(sc->sc_rxdescs[i].rmd1); 1313 1314 if (rmd1 & LE_R1_OWN) 1315 break; 1316 1317 /* 1318 * Check for errors and make sure the packet fit into 1319 * a single buffer. We have structured this block of 1320 * code the way it is in order to compress it into 1321 * one test in the common case (no error). 1322 */ 1323 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) != 1324 (LE_R1_STP|LE_R1_ENP))) { 1325 /* Make sure the packet is in a single buffer. */ 1326 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) != 1327 (LE_R1_STP|LE_R1_ENP)) { 1328 printf("%s: packet spilled into next buffer\n", 1329 sc->sc_dev.dv_xname); 1330 rv = 1; /* pcn_intr() will re-init */ 1331 goto done; 1332 } 1333 1334 /* 1335 * If the packet had an error, simple recycle the 1336 * buffer. 1337 */ 1338 if (rmd1 & LE_R1_ERR) { 1339 ifp->if_ierrors++; 1340 /* 1341 * If we got an overflow error, chances 1342 * are there will be a CRC error. In 1343 * this case, just print the overflow 1344 * error, and skip the others. 1345 */ 1346 if (rmd1 & LE_R1_OFLO) 1347 printf("%s: overflow error\n", 1348 sc->sc_dev.dv_xname); 1349 else { 1350 #define PRINTIT(x, str) \ 1351 if (rmd1 & (x)) \ 1352 printf("%s: %s\n", \ 1353 sc->sc_dev.dv_xname, str); 1354 PRINTIT(LE_R1_FRAM, "framing error"); 1355 PRINTIT(LE_R1_CRC, "CRC error"); 1356 PRINTIT(LE_R1_BUFF, "buffer error"); 1357 } 1358 #undef PRINTIT 1359 PCN_INIT_RXDESC(sc, i); 1360 continue; 1361 } 1362 } 1363 1364 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1365 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1366 1367 /* 1368 * No errors; receive the packet. 1369 */ 1370 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1371 len = letoh32(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK; 1372 else 1373 len = letoh32(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK; 1374 1375 /* 1376 * The LANCE family includes the CRC with every packet; 1377 * trim it off here. 1378 */ 1379 len -= ETHER_CRC_LEN; 1380 1381 /* 1382 * If the packet is small enough to fit in a 1383 * single header mbuf, allocate one and copy 1384 * the data into it. This greatly reduces 1385 * memory consumption when we receive lots 1386 * of small packets. 1387 * 1388 * Otherwise, we add a new buffer to the receive 1389 * chain. If this fails, we drop the packet and 1390 * recycle the old buffer. 1391 */ 1392 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) { 1393 MGETHDR(m, M_DONTWAIT, MT_DATA); 1394 if (m == NULL) 1395 goto dropit; 1396 m->m_data += 2; 1397 memcpy(mtod(m, caddr_t), 1398 mtod(rxs->rxs_mbuf, caddr_t), len); 1399 PCN_INIT_RXDESC(sc, i); 1400 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1401 rxs->rxs_dmamap->dm_mapsize, 1402 BUS_DMASYNC_PREREAD); 1403 } else { 1404 m = rxs->rxs_mbuf; 1405 if (pcn_add_rxbuf(sc, i) != 0) { 1406 dropit: 1407 ifp->if_ierrors++; 1408 PCN_INIT_RXDESC(sc, i); 1409 bus_dmamap_sync(sc->sc_dmat, 1410 rxs->rxs_dmamap, 0, 1411 rxs->rxs_dmamap->dm_mapsize, 1412 BUS_DMASYNC_PREREAD); 1413 continue; 1414 } 1415 } 1416 1417 m->m_pkthdr.len = m->m_len = len; 1418 1419 ml_enqueue(&ml, m); 1420 } 1421 1422 /* Update the receive pointer. */ 1423 sc->sc_rxptr = i; 1424 done: 1425 if_input(ifp, &ml); 1426 return (rv); 1427 } 1428 1429 /* 1430 * pcn_tick: 1431 * 1432 * One second timer, used to tick the MII. 1433 */ 1434 void 1435 pcn_tick(void *arg) 1436 { 1437 struct pcn_softc *sc = arg; 1438 int s; 1439 1440 s = splnet(); 1441 mii_tick(&sc->sc_mii); 1442 splx(s); 1443 1444 timeout_add_sec(&sc->sc_tick_timeout, 1); 1445 } 1446 1447 /* 1448 * pcn_reset: 1449 * 1450 * Perform a soft reset on the PCnet-PCI. 1451 */ 1452 void 1453 pcn_reset(struct pcn_softc *sc) 1454 { 1455 1456 /* 1457 * The PCnet-PCI chip is reset by reading from the 1458 * RESET register. Note that while the NE2100 LANCE 1459 * boards require a write after the read, the PCnet-PCI 1460 * chips do not require this. 1461 * 1462 * Since we don't know if we're in 16-bit or 32-bit 1463 * mode right now, issue both (it's safe) in the 1464 * hopes that one will succeed. 1465 */ 1466 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET); 1467 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET); 1468 1469 /* Wait 1ms for it to finish. */ 1470 delay(1000); 1471 1472 /* 1473 * Select 32-bit I/O mode by issuing a 32-bit write to the 1474 * RDP. Since the RAP is 0 after a reset, writing a 0 1475 * to RDP is safe (since it simply clears CSR0). 1476 */ 1477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0); 1478 } 1479 1480 /* 1481 * pcn_init: [ifnet interface function] 1482 * 1483 * Initialize the interface. Must be called at splnet(). 1484 */ 1485 int 1486 pcn_init(struct ifnet *ifp) 1487 { 1488 struct pcn_softc *sc = ifp->if_softc; 1489 struct pcn_rxsoft *rxs; 1490 uint8_t *enaddr = LLADDR(ifp->if_sadl); 1491 int i, error = 0; 1492 uint32_t reg; 1493 1494 /* Cancel any pending I/O. */ 1495 pcn_stop(ifp, 0); 1496 1497 /* Reset the chip to a known state. */ 1498 pcn_reset(sc); 1499 1500 /* 1501 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything 1502 * else. 1503 * 1504 * XXX It'd be really nice to use SSTYLE 2 on all the chips, 1505 * because the structure layout is compatible with ILACC, 1506 * but the burst mode is only available in SSTYLE 3, and 1507 * burst mode should provide some performance enhancement. 1508 */ 1509 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970) 1510 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2; 1511 else 1512 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3; 1513 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle); 1514 1515 /* Initialize the transmit descriptor ring. */ 1516 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1517 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC, 1518 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1519 sc->sc_txfree = PCN_NTXDESC; 1520 sc->sc_txnext = 0; 1521 1522 /* Initialize the transmit job descriptors. */ 1523 for (i = 0; i < PCN_TXQUEUELEN; i++) 1524 sc->sc_txsoft[i].txs_mbuf = NULL; 1525 sc->sc_txsfree = PCN_TXQUEUELEN; 1526 sc->sc_txsnext = 0; 1527 sc->sc_txsdirty = 0; 1528 1529 /* 1530 * Initialize the receive descriptor and receive job 1531 * descriptor rings. 1532 */ 1533 for (i = 0; i < PCN_NRXDESC; i++) { 1534 rxs = &sc->sc_rxsoft[i]; 1535 if (rxs->rxs_mbuf == NULL) { 1536 if ((error = pcn_add_rxbuf(sc, i)) != 0) { 1537 printf("%s: unable to allocate or map rx " 1538 "buffer %d, error = %d\n", 1539 sc->sc_dev.dv_xname, i, error); 1540 /* 1541 * XXX Should attempt to run with fewer receive 1542 * XXX buffers instead of just failing. 1543 */ 1544 pcn_rxdrain(sc); 1545 goto out; 1546 } 1547 } else 1548 PCN_INIT_RXDESC(sc, i); 1549 } 1550 sc->sc_rxptr = 0; 1551 1552 /* Initialize MODE for the initialization block. */ 1553 sc->sc_mode = 0; 1554 1555 /* 1556 * If we have MII, simply select MII in the MODE register, 1557 * and clear ASEL. Otherwise, let ASEL stand (for now), 1558 * and leave PORTSEL alone (it is ignored with ASEL is set). 1559 */ 1560 if (sc->sc_flags & PCN_F_HAS_MII) { 1561 pcn_bcr_write(sc, LE_BCR2, 1562 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL); 1563 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII); 1564 1565 /* 1566 * Disable MII auto-negotiation. We handle that in 1567 * our own MII layer. 1568 */ 1569 pcn_bcr_write(sc, LE_BCR32, 1570 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS); 1571 } 1572 1573 /* Set the multicast filter in the init block. */ 1574 pcn_set_filter(sc); 1575 1576 /* 1577 * Set the Tx and Rx descriptor ring addresses in the init 1578 * block, the TLEN and RLEN other fields of the init block 1579 * MODE register. 1580 */ 1581 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0)); 1582 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0)); 1583 sc->sc_initblock.init_mode = htole32(sc->sc_mode | 1584 ((ffs(PCN_NTXDESC) - 1) << 28) | 1585 ((ffs(PCN_NRXDESC) - 1) << 20)); 1586 1587 /* Set the station address in the init block. */ 1588 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] | 1589 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24)); 1590 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] | 1591 (enaddr[5] << 8)); 1592 1593 /* Initialize CSR3. */ 1594 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO); 1595 1596 /* Initialize CSR4. */ 1597 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT| 1598 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM); 1599 1600 /* Initialize CSR5. */ 1601 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE; 1602 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5); 1603 1604 /* 1605 * If we have an Am79c971 or greater, initialize CSR7. 1606 * 1607 * XXX Might be nice to use the MII auto-poll interrupt someday. 1608 */ 1609 switch (sc->sc_variant->pcv_chipid) { 1610 case PARTID_Am79c970: 1611 case PARTID_Am79c970A: 1612 /* Not available on these chips. */ 1613 break; 1614 1615 default: 1616 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE); 1617 break; 1618 } 1619 1620 /* 1621 * On the Am79c970A and greater, initialize BCR18 to 1622 * enable burst mode. 1623 * 1624 * Also enable the "no underflow" option on the Am79c971 and 1625 * higher, which prevents the chip from generating transmit 1626 * underflows, yet sill provides decent performance. Note if 1627 * chip is not connected to external SRAM, then we still have 1628 * to handle underflow errors (the NOUFLO bit is ignored in 1629 * that case). 1630 */ 1631 reg = pcn_bcr_read(sc, LE_BCR18); 1632 switch (sc->sc_variant->pcv_chipid) { 1633 case PARTID_Am79c970: 1634 break; 1635 1636 case PARTID_Am79c970A: 1637 reg |= LE_B18_BREADE|LE_B18_BWRITE; 1638 break; 1639 1640 default: 1641 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO; 1642 break; 1643 } 1644 pcn_bcr_write(sc, LE_BCR18, reg); 1645 1646 /* 1647 * Initialize CSR80 (FIFO thresholds for Tx and Rx). 1648 */ 1649 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) | 1650 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw)); 1651 1652 /* 1653 * Send the init block to the chip, and wait for it 1654 * to be processed. 1655 */ 1656 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE); 1657 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff); 1658 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff); 1659 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT); 1660 delay(100); 1661 for (i = 0; i < 10000; i++) { 1662 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON) 1663 break; 1664 delay(10); 1665 } 1666 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE); 1667 if (i == 10000) { 1668 printf("%s: timeout processing init block\n", 1669 sc->sc_dev.dv_xname); 1670 error = EIO; 1671 goto out; 1672 } 1673 1674 /* Set the media. */ 1675 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp); 1676 1677 /* Enable interrupts and external activity (and ACK IDON). */ 1678 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON); 1679 1680 if (sc->sc_flags & PCN_F_HAS_MII) { 1681 /* Start the one second MII clock. */ 1682 timeout_add_sec(&sc->sc_tick_timeout, 1); 1683 } 1684 1685 /* ...all done! */ 1686 ifp->if_flags |= IFF_RUNNING; 1687 ifq_clr_oactive(&ifp->if_snd); 1688 1689 out: 1690 if (error) 1691 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 1692 return (error); 1693 } 1694 1695 /* 1696 * pcn_rxdrain: 1697 * 1698 * Drain the receive queue. 1699 */ 1700 void 1701 pcn_rxdrain(struct pcn_softc *sc) 1702 { 1703 struct pcn_rxsoft *rxs; 1704 int i; 1705 1706 for (i = 0; i < PCN_NRXDESC; i++) { 1707 rxs = &sc->sc_rxsoft[i]; 1708 if (rxs->rxs_mbuf != NULL) { 1709 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1710 m_freem(rxs->rxs_mbuf); 1711 rxs->rxs_mbuf = NULL; 1712 } 1713 } 1714 } 1715 1716 /* 1717 * pcn_stop: [ifnet interface function] 1718 * 1719 * Stop transmission on the interface. 1720 */ 1721 void 1722 pcn_stop(struct ifnet *ifp, int disable) 1723 { 1724 struct pcn_softc *sc = ifp->if_softc; 1725 struct pcn_txsoft *txs; 1726 int i; 1727 1728 if (sc->sc_flags & PCN_F_HAS_MII) { 1729 /* Stop the one second clock. */ 1730 timeout_del(&sc->sc_tick_timeout); 1731 1732 /* Down the MII. */ 1733 mii_down(&sc->sc_mii); 1734 } 1735 1736 /* Mark the interface as down and cancel the watchdog timer. */ 1737 ifp->if_flags &= ~IFF_RUNNING; 1738 ifq_clr_oactive(&ifp->if_snd); 1739 ifp->if_timer = 0; 1740 1741 /* Stop the chip. */ 1742 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP); 1743 1744 /* Release any queued transmit buffers. */ 1745 for (i = 0; i < PCN_TXQUEUELEN; i++) { 1746 txs = &sc->sc_txsoft[i]; 1747 if (txs->txs_mbuf != NULL) { 1748 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1749 m_freem(txs->txs_mbuf); 1750 txs->txs_mbuf = NULL; 1751 } 1752 } 1753 1754 if (disable) 1755 pcn_rxdrain(sc); 1756 } 1757 1758 /* 1759 * pcn_add_rxbuf: 1760 * 1761 * Add a receive buffer to the indicated descriptor. 1762 */ 1763 int 1764 pcn_add_rxbuf(struct pcn_softc *sc, int idx) 1765 { 1766 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1767 struct mbuf *m; 1768 int error; 1769 1770 MGETHDR(m, M_DONTWAIT, MT_DATA); 1771 if (m == NULL) 1772 return (ENOBUFS); 1773 1774 MCLGET(m, M_DONTWAIT); 1775 if ((m->m_flags & M_EXT) == 0) { 1776 m_freem(m); 1777 return (ENOBUFS); 1778 } 1779 1780 if (rxs->rxs_mbuf != NULL) 1781 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1782 1783 rxs->rxs_mbuf = m; 1784 1785 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1786 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1787 BUS_DMA_READ|BUS_DMA_NOWAIT); 1788 if (error) { 1789 printf("%s: can't load rx DMA map %d, error = %d\n", 1790 sc->sc_dev.dv_xname, idx, error); 1791 panic("pcn_add_rxbuf"); 1792 } 1793 1794 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1795 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1796 1797 PCN_INIT_RXDESC(sc, idx); 1798 1799 return (0); 1800 } 1801 1802 /* 1803 * pcn_set_filter: 1804 * 1805 * Set up the receive filter. 1806 */ 1807 void 1808 pcn_set_filter(struct pcn_softc *sc) 1809 { 1810 struct arpcom *ac = &sc->sc_arpcom; 1811 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1812 struct ether_multi *enm; 1813 struct ether_multistep step; 1814 uint32_t crc; 1815 1816 ifp->if_flags &= ~IFF_ALLMULTI; 1817 1818 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { 1819 ifp->if_flags |= IFF_ALLMULTI; 1820 if (ifp->if_flags & IFF_PROMISC) 1821 sc->sc_mode |= LE_C15_PROM; 1822 sc->sc_initblock.init_ladrf[0] = 1823 sc->sc_initblock.init_ladrf[1] = 1824 sc->sc_initblock.init_ladrf[2] = 1825 sc->sc_initblock.init_ladrf[3] = 0xffff; 1826 } else { 1827 sc->sc_initblock.init_ladrf[0] = 1828 sc->sc_initblock.init_ladrf[1] = 1829 sc->sc_initblock.init_ladrf[2] = 1830 sc->sc_initblock.init_ladrf[3] = 0; 1831 1832 /* 1833 * Set up the multicast address filter by passing all multicast 1834 * addresses through a CRC generator, and then using the high 1835 * order 6 bits as an index into the 64-bit logical address 1836 * filter. The high order bits select the word, while the rest 1837 * of the bits select the bit within the word. 1838 */ 1839 ETHER_FIRST_MULTI(step, ac, enm); 1840 while (enm != NULL) { 1841 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1842 1843 /* Just want the 6 most significant bits. */ 1844 crc >>= 26; 1845 1846 /* Set the corresponding bit in the filter. */ 1847 sc->sc_initblock.init_ladrf[crc >> 4] |= 1848 htole16(1 << (crc & 0xf)); 1849 1850 ETHER_NEXT_MULTI(step, enm); 1851 } 1852 } 1853 } 1854 1855 /* 1856 * pcn_79c970_mediainit: 1857 * 1858 * Initialize media for the Am79c970. 1859 */ 1860 void 1861 pcn_79c970_mediainit(struct pcn_softc *sc) 1862 { 1863 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange, 1864 pcn_79c970_mediastatus); 1865 1866 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5, 1867 PORTSEL_AUI, NULL); 1868 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 1869 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5|IFM_FDX, 1870 PORTSEL_AUI, NULL); 1871 1872 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T, 1873 PORTSEL_10T, NULL); 1874 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 1875 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T|IFM_FDX, 1876 PORTSEL_10T, NULL); 1877 1878 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 1879 0, NULL); 1880 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 1881 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO|IFM_FDX, 1882 0, NULL); 1883 1884 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1885 } 1886 1887 /* 1888 * pcn_79c970_mediastatus: [ifmedia interface function] 1889 * 1890 * Get the current interface media status (Am79c970 version). 1891 */ 1892 void 1893 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 1894 { 1895 struct pcn_softc *sc = ifp->if_softc; 1896 1897 /* 1898 * The currently selected media is always the active media. 1899 * Note: We have no way to determine what media the AUTO 1900 * process picked. 1901 */ 1902 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media; 1903 } 1904 1905 /* 1906 * pcn_79c970_mediachange: [ifmedia interface function] 1907 * 1908 * Set hardware to newly-selected media (Am79c970 version). 1909 */ 1910 int 1911 pcn_79c970_mediachange(struct ifnet *ifp) 1912 { 1913 struct pcn_softc *sc = ifp->if_softc; 1914 uint32_t reg; 1915 1916 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) { 1917 /* 1918 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL. 1919 */ 1920 reg = pcn_bcr_read(sc, LE_BCR2); 1921 reg |= LE_B2_ASEL; 1922 pcn_bcr_write(sc, LE_BCR2, reg); 1923 } else { 1924 /* 1925 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value. 1926 */ 1927 reg = pcn_bcr_read(sc, LE_BCR2); 1928 reg &= ~LE_B2_ASEL; 1929 pcn_bcr_write(sc, LE_BCR2, reg); 1930 1931 reg = pcn_csr_read(sc, LE_CSR15); 1932 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) | 1933 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data); 1934 pcn_csr_write(sc, LE_CSR15, reg); 1935 } 1936 1937 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) { 1938 reg = LE_B9_FDEN; 1939 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5) 1940 reg |= LE_B9_AUIFD; 1941 pcn_bcr_write(sc, LE_BCR9, reg); 1942 } else 1943 pcn_bcr_write(sc, LE_BCR9, 0); 1944 1945 return (0); 1946 } 1947 1948 /* 1949 * pcn_79c971_mediainit: 1950 * 1951 * Initialize media for the Am79c971. 1952 */ 1953 void 1954 pcn_79c971_mediainit(struct pcn_softc *sc) 1955 { 1956 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1957 1958 /* We have MII. */ 1959 sc->sc_flags |= PCN_F_HAS_MII; 1960 1961 /* 1962 * The built-in 10BASE-T interface is mapped to the MII 1963 * on the PCNet-FAST. Unfortunately, there's no EEPROM 1964 * word that tells us which PHY to use. 1965 * This driver used to ignore all but the first PHY to 1966 * answer, but this code was removed to support multiple 1967 * external PHYs. As the default instance will be the first 1968 * one to answer, no harm is done by letting the possibly 1969 * non-connected internal PHY show up. 1970 */ 1971 1972 /* Initialize our media structures and probe the MII. */ 1973 sc->sc_mii.mii_ifp = ifp; 1974 sc->sc_mii.mii_readreg = pcn_mii_readreg; 1975 sc->sc_mii.mii_writereg = pcn_mii_writereg; 1976 sc->sc_mii.mii_statchg = pcn_mii_statchg; 1977 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange, 1978 pcn_79c971_mediastatus); 1979 1980 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1981 MII_OFFSET_ANY, 0); 1982 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1983 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1984 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1985 } else 1986 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1987 } 1988 1989 /* 1990 * pcn_79c971_mediastatus: [ifmedia interface function] 1991 * 1992 * Get the current interface media status (Am79c971 version). 1993 */ 1994 void 1995 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 1996 { 1997 struct pcn_softc *sc = ifp->if_softc; 1998 1999 mii_pollstat(&sc->sc_mii); 2000 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2001 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2002 } 2003 2004 /* 2005 * pcn_79c971_mediachange: [ifmedia interface function] 2006 * 2007 * Set hardware to newly-selected media (Am79c971 version). 2008 */ 2009 int 2010 pcn_79c971_mediachange(struct ifnet *ifp) 2011 { 2012 struct pcn_softc *sc = ifp->if_softc; 2013 2014 if (ifp->if_flags & IFF_UP) 2015 mii_mediachg(&sc->sc_mii); 2016 return (0); 2017 } 2018 2019 /* 2020 * pcn_mii_readreg: [mii interface function] 2021 * 2022 * Read a PHY register on the MII. 2023 */ 2024 int 2025 pcn_mii_readreg(struct device *self, int phy, int reg) 2026 { 2027 struct pcn_softc *sc = (void *) self; 2028 uint32_t rv; 2029 2030 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2031 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD; 2032 if (rv == 0xffff) 2033 return (0); 2034 2035 return (rv); 2036 } 2037 2038 /* 2039 * pcn_mii_writereg: [mii interface function] 2040 * 2041 * Write a PHY register on the MII. 2042 */ 2043 void 2044 pcn_mii_writereg(struct device *self, int phy, int reg, int val) 2045 { 2046 struct pcn_softc *sc = (void *) self; 2047 2048 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2049 pcn_bcr_write(sc, LE_BCR34, val); 2050 } 2051 2052 /* 2053 * pcn_mii_statchg: [mii interface function] 2054 * 2055 * Callback from MII layer when media changes. 2056 */ 2057 void 2058 pcn_mii_statchg(struct device *self) 2059 { 2060 struct pcn_softc *sc = (void *) self; 2061 2062 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2063 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN); 2064 else 2065 pcn_bcr_write(sc, LE_BCR9, 0); 2066 } 2067