xref: /openbsd/sys/dev/pci/if_se.c (revision 09467b48)
1 /*	$OpenBSD: if_se.c,v 1.21 2020/07/10 13:26:38 patrick Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009, 2010 Christopher Zimmermann <madroach@zakweb.de>
5  * Copyright (c) 2008, 2009, 2010 Nikolay Denev <ndenev@gmail.com>
6  * Copyright (c) 2007, 2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
7  * Copyright (c) 1997, 1998, 1999
8  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by Bill Paul.
21  * 4. Neither the name of the author nor the names of any co-contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
26  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
28  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
29  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
36  * OF THE POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Ported to OpenBSD by Christopher Zimmermann 2009/10
49  *
50  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51  * Linux and Solaris drivers.
52  */
53 
54 #include "bpfilter.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/device.h>
59 #include <sys/ioctl.h>
60 #include <sys/kernel.h>
61 #include <sys/mbuf.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/timeout.h>
65 
66 #include <net/if.h>
67 #include <net/if_media.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/if_ether.h>
71 
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcidevs.h>
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 
82 #include <dev/pci/if_sereg.h>
83 
84 #define SE_RX_RING_CNT		256 /* [8, 1024] */
85 #define SE_TX_RING_CNT		256 /* [8, 8192] */
86 #define	SE_RX_BUF_ALIGN		sizeof(uint64_t)
87 
88 #define SE_RX_RING_SZ		(SE_RX_RING_CNT * sizeof(struct se_desc))
89 #define SE_TX_RING_SZ		(SE_TX_RING_CNT * sizeof(struct se_desc))
90 
91 struct se_list_data {
92 	struct se_desc		*se_rx_ring;
93 	struct se_desc		*se_tx_ring;
94 	bus_dmamap_t		se_rx_dmamap;
95 	bus_dmamap_t		se_tx_dmamap;
96 };
97 
98 struct se_chain_data {
99 	struct mbuf		*se_rx_mbuf[SE_RX_RING_CNT];
100 	struct mbuf		*se_tx_mbuf[SE_TX_RING_CNT];
101 	bus_dmamap_t		se_rx_map[SE_RX_RING_CNT];
102 	bus_dmamap_t		se_tx_map[SE_TX_RING_CNT];
103 	uint			se_rx_prod;
104 	uint			se_tx_prod;
105 	uint			se_tx_cons;
106 	uint			se_tx_cnt;
107 };
108 
109 struct se_softc {
110     	struct device		 sc_dev;
111 	void			*sc_ih;
112 	bus_space_tag_t		 sc_iot;
113 	bus_space_handle_t	 sc_ioh;
114 	bus_dma_tag_t		 sc_dmat;
115 
116 	struct mii_data		 sc_mii;
117 	struct arpcom		 sc_ac;
118 
119 	struct se_list_data	 se_ldata;
120 	struct se_chain_data	 se_cdata;
121 
122 	struct timeout		 sc_tick_tmo;
123 
124 	int			 sc_flags;
125 #define	SE_FLAG_FASTETHER	0x0001
126 #define	SE_FLAG_RGMII		0x0010
127 #define	SE_FLAG_LINK		0x8000
128 };
129 
130 /*
131  * Various supported device vendors/types and their names.
132  */
133 const struct pci_matchid se_devices[] = {
134 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_190 },
135 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_191 }
136 };
137 
138 int	se_match(struct device *, void *, void *);
139 void	se_attach(struct device *, struct device *, void *);
140 int	se_activate(struct device *, int);
141 
142 const struct cfattach se_ca = {
143 	sizeof(struct se_softc),
144 	se_match, se_attach, NULL, se_activate
145 };
146 
147 struct cfdriver se_cd = {
148 	0, "se", DV_IFNET
149 };
150 
151 uint32_t
152 	se_miibus_cmd(struct se_softc *, uint32_t);
153 int	se_miibus_readreg(struct device *, int, int);
154 void	se_miibus_writereg(struct device *, int, int, int);
155 void	se_miibus_statchg(struct device *);
156 
157 int	se_newbuf(struct se_softc *, uint);
158 void	se_discard_rxbuf(struct se_softc *, uint);
159 int	se_encap(struct se_softc *, struct mbuf *, uint *);
160 void	se_rxeof(struct se_softc *);
161 void	se_txeof(struct se_softc *);
162 int	se_intr(void *);
163 void	se_tick(void *);
164 void	se_start(struct ifnet *);
165 int	se_ioctl(struct ifnet *, u_long, caddr_t);
166 int	se_init(struct ifnet *);
167 void	se_stop(struct se_softc *);
168 void	se_watchdog(struct ifnet *);
169 int	se_ifmedia_upd(struct ifnet *);
170 void	se_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171 
172 int	se_pcib_match(struct pci_attach_args *);
173 int	se_get_mac_addr_apc(struct se_softc *, uint8_t *);
174 int	se_get_mac_addr_eeprom(struct se_softc *, uint8_t *);
175 uint16_t
176 	se_read_eeprom(struct se_softc *, int);
177 
178 void	se_iff(struct se_softc *);
179 void	se_reset(struct se_softc *);
180 int	se_list_rx_init(struct se_softc *);
181 int	se_list_rx_free(struct se_softc *);
182 int	se_list_tx_init(struct se_softc *);
183 int	se_list_tx_free(struct se_softc *);
184 
185 /*
186  * Register space access macros.
187  */
188 
189 #define	CSR_WRITE_4(sc, reg, val) \
190 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, val)
191 #define	CSR_WRITE_2(sc, reg, val) \
192 	bus_space_write_2((sc)->sc_iot, (sc)->sc_ioh, reg, val)
193 #define	CSR_WRITE_1(sc, reg, val) \
194 	bus_space_write_1((sc)->sc_iot, (sc)->sc_ioh, reg, val)
195 
196 #define	CSR_READ_4(sc, reg) \
197 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
198 #define	CSR_READ_2(sc, reg) \
199 	bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, reg)
200 #define	CSR_READ_1(sc, reg) \
201 	bus_space_read_1((sc)->sc_iot, (sc)->sc_ioh, reg)
202 
203 /*
204  * Read a sequence of words from the EEPROM.
205  */
206 uint16_t
207 se_read_eeprom(struct se_softc *sc, int offset)
208 {
209 	uint32_t val;
210 	int i;
211 
212 	KASSERT(offset <= EI_OFFSET);
213 
214 	CSR_WRITE_4(sc, ROMInterface,
215 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
216 	DELAY(500);
217 	for (i = 0; i < SE_TIMEOUT; i++) {
218 		val = CSR_READ_4(sc, ROMInterface);
219 		if ((val & EI_REQ) == 0)
220 			break;
221 		DELAY(100);
222 	}
223 	if (i == SE_TIMEOUT) {
224 		printf("%s: EEPROM read timeout: 0x%08x\n",
225 		    sc->sc_dev.dv_xname, val);
226 		return 0xffff;
227 	}
228 
229 	return (val & EI_DATA) >> EI_DATA_SHIFT;
230 }
231 
232 int
233 se_get_mac_addr_eeprom(struct se_softc *sc, uint8_t *dest)
234 {
235 	uint16_t val;
236 	int i;
237 
238 	val = se_read_eeprom(sc, EEPROMSignature);
239 	if (val == 0xffff || val == 0x0000) {
240 		printf("%s: invalid EEPROM signature : 0x%04x\n",
241 		    sc->sc_dev.dv_xname, val);
242 		return (EINVAL);
243 	}
244 
245 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
246 		val = se_read_eeprom(sc, EEPROMMACAddr + i / 2);
247 		dest[i + 0] = (uint8_t)val;
248 		dest[i + 1] = (uint8_t)(val >> 8);
249 	}
250 
251 	if ((se_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
252 		sc->sc_flags |= SE_FLAG_RGMII;
253 	return (0);
254 }
255 
256 /*
257  * For SiS96x, APC CMOS RAM is used to store Ethernet address.
258  * APC CMOS RAM is accessed through ISA bridge.
259  */
260 #if defined(__amd64__) || defined(__i386__)
261 int
262 se_pcib_match(struct pci_attach_args *pa)
263 {
264 	const struct pci_matchid apc_devices[] = {
265 		{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_965 },
266 		{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_966 },
267 		{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_968 }
268 	};
269 
270 	return pci_matchbyid(pa, apc_devices, nitems(apc_devices));
271 }
272 #endif
273 
274 int
275 se_get_mac_addr_apc(struct se_softc *sc, uint8_t *dest)
276 {
277 #if defined(__amd64__) || defined(__i386__)
278 	struct pci_attach_args pa;
279 	pcireg_t reg;
280 	bus_space_handle_t ioh;
281 	int rc, i;
282 
283 	if (pci_find_device(&pa, se_pcib_match) == 0) {
284 		printf("\n%s: couldn't find PCI-ISA bridge\n",
285 		    sc->sc_dev.dv_xname);
286 		return EINVAL;
287 	}
288 
289 	/* Enable port 0x78 and 0x79 to access APC registers. */
290 	reg = pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48);
291 	pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg & ~0x02);
292 	DELAY(50);
293 	(void)pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48);
294 
295 	/* XXX this abuses bus_space implementation knowledge */
296 	rc = _bus_space_map(pa.pa_iot, 0x78, 2, 0, &ioh);
297 	if (rc == 0) {
298 		/* Read stored Ethernet address. */
299 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
300 			bus_space_write_1(pa.pa_iot, ioh, 0, 0x09 + i);
301 			dest[i] = bus_space_read_1(pa.pa_iot, ioh, 1);
302 		}
303 		bus_space_write_1(pa.pa_iot, ioh, 0, 0x12);
304 		if ((bus_space_read_1(pa.pa_iot, ioh, 1) & 0x80) != 0)
305 			sc->sc_flags |= SE_FLAG_RGMII;
306 		_bus_space_unmap(pa.pa_iot, ioh, 2, NULL);
307 	} else
308 		rc = EINVAL;
309 
310 	/* Restore access to APC registers. */
311 	pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg);
312 
313 	return rc;
314 #endif
315 	return EINVAL;
316 }
317 
318 uint32_t
319 se_miibus_cmd(struct se_softc *sc, uint32_t ctrl)
320 {
321 	int i;
322 	uint32_t val;
323 
324 	CSR_WRITE_4(sc, GMIIControl, ctrl);
325 	DELAY(10);
326 	for (i = 0; i < SE_TIMEOUT; i++) {
327 		val = CSR_READ_4(sc, GMIIControl);
328 		if ((val & GMI_REQ) == 0)
329 			return val;
330 		DELAY(10);
331 	}
332 
333 	return GMI_REQ;
334 }
335 
336 int
337 se_miibus_readreg(struct device *self, int phy, int reg)
338 {
339 	struct se_softc *sc = (struct se_softc *)self;
340 	uint32_t ctrl, val;
341 
342 	ctrl = (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) |
343 	    GMI_OP_RD | GMI_REQ;
344 	val = se_miibus_cmd(sc, ctrl);
345 	if ((val & GMI_REQ) != 0) {
346 		printf("%s: PHY read timeout : %d\n",
347 		    sc->sc_dev.dv_xname, reg);
348 		return 0;
349 	}
350 	return (val & GMI_DATA) >> GMI_DATA_SHIFT;
351 }
352 
353 void
354 se_miibus_writereg(struct device *self, int phy, int reg, int data)
355 {
356 	struct se_softc *sc = (struct se_softc *)self;
357 	uint32_t ctrl, val;
358 
359 	ctrl = (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) |
360 	    GMI_OP_WR | (data << GMI_DATA_SHIFT) | GMI_REQ;
361 	val = se_miibus_cmd(sc, ctrl);
362 	if ((val & GMI_REQ) != 0) {
363 		printf("%s: PHY write timeout : %d\n",
364 		    sc->sc_dev.dv_xname, reg);
365 	}
366 }
367 
368 void
369 se_miibus_statchg(struct device *self)
370 {
371 	struct se_softc *sc = (struct se_softc *)self;
372 #ifdef SE_DEBUG
373 	struct ifnet *ifp = &sc->sc_ac.ac_if;
374 #endif
375 	struct mii_data *mii = &sc->sc_mii;
376 	uint32_t ctl, speed;
377 
378 	speed = 0;
379 	sc->sc_flags &= ~SE_FLAG_LINK;
380 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
381 	    (IFM_ACTIVE | IFM_AVALID)) {
382 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
383 		case IFM_10_T:
384 #ifdef SE_DEBUG
385 			if (ifp->if_flags & IFF_DEBUG)
386 				printf("%s: 10baseT link\n", ifp->if_xname);
387 #endif
388 			sc->sc_flags |= SE_FLAG_LINK;
389 			speed = SC_SPEED_10;
390 			break;
391 		case IFM_100_TX:
392 #ifdef SE_DEBUG
393 			if (ifp->if_flags & IFF_DEBUG)
394 				printf("%s: 100baseTX link\n", ifp->if_xname);
395 #endif
396 			sc->sc_flags |= SE_FLAG_LINK;
397 			speed = SC_SPEED_100;
398 			break;
399 		case IFM_1000_T:
400 #ifdef SE_DEBUG
401 			if (ifp->if_flags & IFF_DEBUG)
402 				printf("%s: 1000baseT link\n", ifp->if_xname);
403 #endif
404 			if ((sc->sc_flags & SE_FLAG_FASTETHER) == 0) {
405 				sc->sc_flags |= SE_FLAG_LINK;
406 				speed = SC_SPEED_1000;
407 			}
408 			break;
409 		default:
410 			break;
411 		}
412 	}
413 	if ((sc->sc_flags & SE_FLAG_LINK) == 0) {
414 #ifdef SE_DEBUG
415 		if (ifp->if_flags & IFF_DEBUG)
416 			printf("%s: no link\n", ifp->if_xname);
417 #endif
418 		return;
419 	}
420 	/* Reprogram MAC to resolved speed/duplex/flow-control paramters. */
421 	ctl = CSR_READ_4(sc, StationControl);
422 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
423 	if (speed == SC_SPEED_1000)
424 		ctl |= 0x07000000;
425 	else
426 		ctl |= 0x04000000;
427 #ifdef notyet
428 	if ((sc->sc_flags & SE_FLAG_GMII) != 0)
429 		ctl |= 0x03000000;
430 #endif
431 	ctl |= speed;
432 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
433 		ctl |= SC_FDX;
434 	CSR_WRITE_4(sc, StationControl, ctl);
435 	if ((sc->sc_flags & SE_FLAG_RGMII) != 0) {
436 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
437 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
438 	}
439 }
440 
441 void
442 se_iff(struct se_softc *sc)
443 {
444 	struct arpcom *ac = &sc->sc_ac;
445 	struct ifnet *ifp = &ac->ac_if;
446 	struct ether_multi *enm;
447 	struct ether_multistep step;
448 	uint32_t crc, hashes[2];
449 	uint16_t rxfilt;
450 
451 	rxfilt = CSR_READ_2(sc, RxMacControl);
452 	rxfilt &= ~(AcceptAllPhys | AcceptBroadcast | AcceptMulticast);
453 	ifp->if_flags &= ~IFF_ALLMULTI;
454 
455 	/*
456 	 * Always accept broadcast frames.
457 	 * Always accept frames destined to our station address.
458 	 */
459 	rxfilt |= AcceptBroadcast | AcceptMyPhys;
460 
461 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
462 		ifp->if_flags |= IFF_ALLMULTI;
463 		if (ifp->if_flags & IFF_PROMISC)
464 			rxfilt |= AcceptAllPhys;
465 		rxfilt |= AcceptMulticast;
466 		hashes[0] = hashes[1] = 0xffffffff;
467 	} else {
468 		rxfilt |= AcceptMulticast;
469 		hashes[0] = hashes[1] = 0;
470 
471 		ETHER_FIRST_MULTI(step, ac, enm);
472 		while (enm != NULL) {
473 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
474 
475 			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
476 
477 			ETHER_NEXT_MULTI(step, enm);
478 		}
479 	}
480 
481 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
482 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
483 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
484 }
485 
486 void
487 se_reset(struct se_softc *sc)
488 {
489 	CSR_WRITE_4(sc, IntrMask, 0);
490 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
491 
492 	/* Soft reset. */
493 	CSR_WRITE_4(sc, IntrControl, 0x8000);
494 	CSR_READ_4(sc, IntrControl);
495 	DELAY(100);
496 	CSR_WRITE_4(sc, IntrControl, 0);
497 	/* Stop MAC. */
498 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
499 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
500 
501 	CSR_WRITE_4(sc, IntrMask, 0);
502 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
503 
504 	CSR_WRITE_4(sc, GMIIControl, 0);
505 }
506 
507 /*
508  * Probe for an SiS chip. Check the PCI vendor and device
509  * IDs against our list and return a device name if we find a match.
510  */
511 int
512 se_match(struct device *parent, void *match, void *aux)
513 {
514 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
515 
516 	return pci_matchbyid(pa, se_devices, nitems(se_devices));
517 }
518 
519 /*
520  * Attach the interface. Do ifmedia setup and ethernet/BPF attach.
521  */
522 void
523 se_attach(struct device *parent, struct device *self, void *aux)
524 {
525 	struct se_softc *sc = (struct se_softc *)self;
526 	struct arpcom *ac = &sc->sc_ac;
527 	struct ifnet *ifp = &ac->ac_if;
528 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
529 	uint8_t eaddr[ETHER_ADDR_LEN];
530 	const char *intrstr;
531 	pci_intr_handle_t ih;
532 	bus_size_t iosize;
533 	bus_dma_segment_t seg;
534 	struct se_list_data *ld;
535 	struct se_chain_data *cd;
536 	int nseg;
537 	uint i;
538 	int rc;
539 
540 	printf(": ");
541 
542 	/*
543 	 * Map control/status registers.
544 	 */
545 
546 	rc = pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_MEM, 0,
547 	    &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0);
548 	if (rc != 0) {
549 		printf("can't map i/o space\n");
550 		return;
551 	}
552 
553 	if (pci_intr_map(pa, &ih)) {
554 		printf("can't map interrupt\n");
555 		goto fail1;
556 	}
557 	intrstr = pci_intr_string(pa->pa_pc, ih);
558 	sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET, se_intr, sc,
559 	    self->dv_xname);
560 	if (sc->sc_ih == NULL) {
561 		printf("can't establish interrupt");
562 		if (intrstr != NULL)
563 			printf(" at %s", intrstr);
564 		printf("\n");
565 		goto fail1;
566 	}
567 
568 	printf("%s", intrstr);
569 
570 	if (pa->pa_id == PCI_ID_CODE(PCI_VENDOR_SIS, PCI_PRODUCT_SIS_190))
571 		sc->sc_flags |= SE_FLAG_FASTETHER;
572 
573 	/* Reset the adapter. */
574 	se_reset(sc);
575 
576 	/* Get MAC address from the EEPROM. */
577 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, 0x70) & (0x01 << 24)) != 0)
578 		se_get_mac_addr_apc(sc, eaddr);
579 	else
580 		se_get_mac_addr_eeprom(sc, eaddr);
581 	printf(", address %s\n", ether_sprintf(eaddr));
582 	bcopy(eaddr, ac->ac_enaddr, ETHER_ADDR_LEN);
583 
584 	/*
585 	 * Now do all the DMA mapping stuff
586 	 */
587 
588 	sc->sc_dmat = pa->pa_dmat;
589 	ld = &sc->se_ldata;
590 	cd = &sc->se_cdata;
591 
592 	/* First create TX/RX busdma maps. */
593 	for (i = 0; i < SE_RX_RING_CNT; i++) {
594 		rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
595 		    0, BUS_DMA_NOWAIT, &cd->se_rx_map[i]);
596 		if (rc != 0) {
597 			printf("%s: cannot init the RX map array\n",
598 			    self->dv_xname);
599 			goto fail2;
600 		}
601 	}
602 
603 	for (i = 0; i < SE_TX_RING_CNT; i++) {
604 		rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
605 		    0, BUS_DMA_NOWAIT, &cd->se_tx_map[i]);
606 		if (rc != 0) {
607 			printf("%s: cannot init the TX map array\n",
608 			    self->dv_xname);
609 			goto fail2;
610 		}
611 	}
612 
613 	/*
614 	 * Now allocate a chunk of DMA-able memory for RX and TX ring
615 	 * descriptors, as a contiguous block of memory.
616 	 * XXX fix deallocation upon error
617 	 */
618 
619 	/* RX */
620 	rc = bus_dmamem_alloc(sc->sc_dmat, SE_RX_RING_SZ, PAGE_SIZE, 0,
621 	    &seg, 1, &nseg, BUS_DMA_NOWAIT);
622 	if (rc != 0) {
623 		printf("%s: no memory for RX descriptors\n", self->dv_xname);
624 		goto fail2;
625 	}
626 
627 	rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_RX_RING_SZ,
628 	    (caddr_t *)&ld->se_rx_ring, BUS_DMA_NOWAIT);
629 	if (rc != 0) {
630 		printf("%s: can't map RX descriptors\n", self->dv_xname);
631 		goto fail2;
632 	}
633 
634 	rc = bus_dmamap_create(sc->sc_dmat, SE_RX_RING_SZ, 1,
635 	    SE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_rx_dmamap);
636 	if (rc != 0) {
637 		printf("%s: can't alloc RX DMA map\n", self->dv_xname);
638 		goto fail2;
639 	}
640 
641 	rc = bus_dmamap_load(sc->sc_dmat, ld->se_rx_dmamap,
642 	    (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
643 	if (rc != 0) {
644 		printf("%s: can't load RX DMA map\n", self->dv_xname);
645 		bus_dmamem_unmap(sc->sc_dmat,
646 		    (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ);
647 		bus_dmamap_destroy(sc->sc_dmat, ld->se_rx_dmamap);
648 		bus_dmamem_free(sc->sc_dmat, &seg, nseg);
649 		goto fail2;
650 	}
651 
652 	/* TX */
653 	rc = bus_dmamem_alloc(sc->sc_dmat, SE_TX_RING_SZ, PAGE_SIZE, 0,
654 	    &seg, 1, &nseg, BUS_DMA_NOWAIT);
655 	if (rc != 0) {
656 		printf("%s: no memory for TX descriptors\n", self->dv_xname);
657 		goto fail2;
658 	}
659 
660 	rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_TX_RING_SZ,
661 	    (caddr_t *)&ld->se_tx_ring, BUS_DMA_NOWAIT);
662 	if (rc != 0) {
663 		printf("%s: can't map TX descriptors\n", self->dv_xname);
664 		goto fail2;
665 	}
666 
667 	rc = bus_dmamap_create(sc->sc_dmat, SE_TX_RING_SZ, 1,
668 	    SE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_tx_dmamap);
669 	if (rc != 0) {
670 		printf("%s: can't alloc TX DMA map\n", self->dv_xname);
671 		goto fail2;
672 	}
673 
674 	rc = bus_dmamap_load(sc->sc_dmat, ld->se_tx_dmamap,
675 	    (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
676 	if (rc != 0) {
677 		printf("%s: can't load TX DMA map\n", self->dv_xname);
678 		bus_dmamem_unmap(sc->sc_dmat,
679 		    (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ);
680 		bus_dmamap_destroy(sc->sc_dmat, ld->se_tx_dmamap);
681 		bus_dmamem_free(sc->sc_dmat, &seg, nseg);
682 		goto fail2;
683 	}
684 
685 	timeout_set(&sc->sc_tick_tmo, se_tick, sc);
686 
687 	ifp = &sc->sc_ac.ac_if;
688 	ifp->if_softc = sc;
689 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
690 	ifp->if_ioctl = se_ioctl;
691 	ifp->if_start = se_start;
692 	ifp->if_watchdog = se_watchdog;
693 	ifq_set_maxlen(&ifp->if_snd, SE_TX_RING_CNT - 1);
694 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
695 
696 	ifp->if_capabilities = IFCAP_VLAN_MTU;
697 
698 	/*
699 	 * Do MII setup.
700 	 */
701 
702 	sc->sc_mii.mii_ifp = ifp;
703 	sc->sc_mii.mii_readreg = se_miibus_readreg;
704 	sc->sc_mii.mii_writereg = se_miibus_writereg;
705 	sc->sc_mii.mii_statchg = se_miibus_statchg;
706 	ifmedia_init(&sc->sc_mii.mii_media, 0, se_ifmedia_upd,
707 	    se_ifmedia_sts);
708 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
709 	    MII_OFFSET_ANY, 0);
710 
711 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
712 		/* No PHY attached */
713 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
714 		    0, NULL);
715 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
716 	} else
717 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
718 
719 	/*
720 	 * Call MI attach routine.
721 	 */
722 	if_attach(ifp);
723 	ether_ifattach(ifp);
724 
725 	return;
726 
727 fail2:
728 	pci_intr_disestablish(pa->pa_pc, sc->sc_ih);
729 fail1:
730 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, iosize);
731 }
732 
733 int
734 se_activate(struct device *self, int act)
735 {
736 	struct se_softc *sc = (struct se_softc *)self;
737 	struct ifnet *ifp = &sc->sc_ac.ac_if;
738 	int rv = 0;
739 
740 	switch (act) {
741 	case DVACT_SUSPEND:
742 		if (ifp->if_flags & IFF_RUNNING)
743 			se_stop(sc);
744 		rv = config_activate_children(self, act);
745 		break;
746 	case DVACT_RESUME:
747 		if (ifp->if_flags & IFF_UP)
748 			(void)se_init(ifp);
749 		break;
750 	default:
751 		rv = config_activate_children(self, act);
752 		break;
753 	}
754 
755 	return (rv);
756 }
757 
758 /*
759  * Initialize the TX descriptors.
760  */
761 int
762 se_list_tx_init(struct se_softc *sc)
763 {
764 	struct se_list_data *ld = &sc->se_ldata;
765 	struct se_chain_data *cd = &sc->se_cdata;
766 
767 	bzero(ld->se_tx_ring, SE_TX_RING_SZ);
768 	ld->se_tx_ring[SE_TX_RING_CNT - 1].se_flags = htole32(RING_END);
769 	bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,
770 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
771 	cd->se_tx_prod = 0;
772 	cd->se_tx_cons = 0;
773 	cd->se_tx_cnt = 0;
774 
775 	return 0;
776 }
777 
778 int
779 se_list_tx_free(struct se_softc *sc)
780 {
781 	struct se_chain_data *cd = &sc->se_cdata;
782 	uint i;
783 
784 	for (i = 0; i < SE_TX_RING_CNT; i++) {
785 		if (cd->se_tx_mbuf[i] != NULL) {
786 			bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i]);
787 			m_free(cd->se_tx_mbuf[i]);
788 			cd->se_tx_mbuf[i] = NULL;
789 		}
790 	}
791 
792 	return 0;
793 }
794 
795 /*
796  * Initialize the RX descriptors and allocate mbufs for them.
797  */
798 int
799 se_list_rx_init(struct se_softc *sc)
800 {
801 	struct se_list_data *ld = &sc->se_ldata;
802 	struct se_chain_data *cd = &sc->se_cdata;
803 	uint i;
804 
805 	bzero(ld->se_rx_ring, SE_RX_RING_SZ);
806 	bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,
807 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
808 	for (i = 0; i < SE_RX_RING_CNT; i++) {
809 		if (se_newbuf(sc, i) != 0)
810 			return ENOBUFS;
811 	}
812 
813 	cd->se_rx_prod = 0;
814 
815 	return 0;
816 }
817 
818 int
819 se_list_rx_free(struct se_softc *sc)
820 {
821 	struct se_chain_data *cd = &sc->se_cdata;
822 	uint i;
823 
824 	for (i = 0; i < SE_RX_RING_CNT; i++) {
825 		if (cd->se_rx_mbuf[i] != NULL) {
826 			bus_dmamap_unload(sc->sc_dmat, cd->se_rx_map[i]);
827 			m_free(cd->se_rx_mbuf[i]);
828 			cd->se_rx_mbuf[i] = NULL;
829 		}
830 	}
831 
832 	return 0;
833 }
834 
835 /*
836  * Initialize an RX descriptor and attach an MBUF cluster.
837  */
838 int
839 se_newbuf(struct se_softc *sc, uint i)
840 {
841 #ifdef SE_DEBUG
842 	struct ifnet *ifp = &sc->sc_ac.ac_if;
843 #endif
844 	struct se_list_data *ld = &sc->se_ldata;
845 	struct se_chain_data *cd = &sc->se_cdata;
846 	struct se_desc *desc;
847 	struct mbuf *m;
848 	int rc;
849 
850 	m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
851 	if (m == NULL) {
852 #ifdef SE_DEBUG
853 		if (ifp->if_flags & IFF_DEBUG)
854 			printf("%s: MCLGETI failed\n", ifp->if_xname);
855 #endif
856 		return ENOBUFS;
857 	}
858 	m->m_len = m->m_pkthdr.len = MCLBYTES;
859 	m_adj(m, SE_RX_BUF_ALIGN);
860 
861 	rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_rx_map[i],
862 	    m, BUS_DMA_NOWAIT);
863 	KASSERT(cd->se_rx_map[i]->dm_nsegs == 1);
864 	if (rc != 0) {
865 		m_freem(m);
866 		return ENOBUFS;
867 	}
868 	bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,
869 	    cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
870 
871 	cd->se_rx_mbuf[i] = m;
872 	desc = &ld->se_rx_ring[i];
873 	desc->se_sts_size = 0;
874 	desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR);
875 	desc->se_ptr = htole32((uint32_t)cd->se_rx_map[i]->dm_segs[0].ds_addr);
876 	desc->se_flags = htole32(cd->se_rx_map[i]->dm_segs[0].ds_len);
877 	if (i == SE_RX_RING_CNT - 1)
878 		desc->se_flags |= htole32(RING_END);
879 	bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),
880 	    sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881 
882 	return 0;
883 }
884 
885 void
886 se_discard_rxbuf(struct se_softc *sc, uint i)
887 {
888 	struct se_list_data *ld = &sc->se_ldata;
889 	struct se_desc *desc;
890 
891 	desc = &ld->se_rx_ring[i];
892 	desc->se_sts_size = 0;
893 	desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR);
894 	desc->se_flags = htole32(MCLBYTES - SE_RX_BUF_ALIGN);
895 	if (i == SE_RX_RING_CNT - 1)
896 		desc->se_flags |= htole32(RING_END);
897 	bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),
898 	    sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
899 }
900 
901 /*
902  * A frame has been uploaded: pass the resulting mbuf chain up to
903  * the higher level protocols.
904  */
905 void
906 se_rxeof(struct se_softc *sc)
907 {
908 	struct mbuf *m;
909 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
910 	struct ifnet *ifp = &sc->sc_ac.ac_if;
911 	struct se_list_data *ld = &sc->se_ldata;
912 	struct se_chain_data *cd = &sc->se_cdata;
913 	struct se_desc *cur_rx;
914 	uint32_t rxinfo, rxstat;
915 	uint i;
916 
917 	bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,
918 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
919 	for (i = cd->se_rx_prod; ; SE_INC(i, SE_RX_RING_CNT)) {
920 		cur_rx = &ld->se_rx_ring[i];
921 		rxinfo = letoh32(cur_rx->se_cmdsts);
922 		if ((rxinfo & RDC_OWN) != 0)
923 			break;
924 		rxstat = letoh32(cur_rx->se_sts_size);
925 
926 		/*
927 		 * If an error occurs, update stats, clear the
928 		 * status word and leave the mbuf cluster in place:
929 		 * it should simply get re-used next time this descriptor
930 		 * comes up in the ring.
931 		 */
932 		if ((rxstat & RDS_CRCOK) == 0 || SE_RX_ERROR(rxstat) != 0 ||
933 		    SE_RX_NSEGS(rxstat) != 1) {
934 			/* XXX We don't support multi-segment frames yet. */
935 			if (ifp->if_flags & IFF_DEBUG)
936 				printf("%s: rx error %b\n",
937 				    ifp->if_xname, rxstat, RX_ERR_BITS);
938 			se_discard_rxbuf(sc, i);
939 			ifp->if_ierrors++;
940 			continue;
941 		}
942 
943 		/* No errors; receive the packet. */
944 		bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,
945 		    cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
946 		m = cd->se_rx_mbuf[i];
947 		if (se_newbuf(sc, i) != 0) {
948 			se_discard_rxbuf(sc, i);
949 			ifp->if_iqdrops++;
950 			continue;
951 		}
952 		/*
953 		 * Account for 10 bytes auto padding which is used
954 		 * to align IP header on a 32bit boundary.  Also note,
955 		 * CRC bytes are automatically removed by the hardware.
956 		 */
957 		m->m_data += SE_RX_PAD_BYTES;
958 		m->m_pkthdr.len = m->m_len =
959 		    SE_RX_BYTES(rxstat) - SE_RX_PAD_BYTES;
960 
961 		ml_enqueue(&ml, m);
962 	}
963 
964 	if_input(ifp, &ml);
965 
966 	cd->se_rx_prod = i;
967 }
968 
969 /*
970  * A frame was downloaded to the chip. It's safe for us to clean up
971  * the list buffers.
972  */
973 
974 void
975 se_txeof(struct se_softc *sc)
976 {
977 	struct ifnet *ifp = &sc->sc_ac.ac_if;
978 	struct se_list_data *ld = &sc->se_ldata;
979 	struct se_chain_data *cd = &sc->se_cdata;
980 	struct se_desc *cur_tx;
981 	uint32_t txstat;
982 	uint i;
983 
984 	/*
985 	 * Go through our tx list and free mbufs for those
986 	 * frames that have been transmitted.
987 	 */
988 	bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,
989 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
990 	for (i = cd->se_tx_cons; cd->se_tx_cnt > 0;
991 	    cd->se_tx_cnt--, SE_INC(i, SE_TX_RING_CNT)) {
992 		cur_tx = &ld->se_tx_ring[i];
993 		txstat = letoh32(cur_tx->se_cmdsts);
994 		if ((txstat & TDC_OWN) != 0)
995 			break;
996 
997 		ifq_clr_oactive(&ifp->if_snd);
998 
999 		if (SE_TX_ERROR(txstat) != 0) {
1000 			if (ifp->if_flags & IFF_DEBUG)
1001 				printf("%s: tx error %b\n",
1002 				    ifp->if_xname, txstat, TX_ERR_BITS);
1003 			ifp->if_oerrors++;
1004 			/* TODO: better error differentiation */
1005 		}
1006 
1007 		if (cd->se_tx_mbuf[i] != NULL) {
1008 			bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,
1009 			    cd->se_tx_map[i]->dm_mapsize,
1010 			    BUS_DMASYNC_POSTWRITE);
1011 			bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i]);
1012 			m_free(cd->se_tx_mbuf[i]);
1013 			cd->se_tx_mbuf[i] = NULL;
1014 		}
1015 
1016 		cur_tx->se_sts_size = 0;
1017 		cur_tx->se_cmdsts = 0;
1018 		cur_tx->se_ptr = 0;
1019 		cur_tx->se_flags &= htole32(RING_END);
1020 		bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,
1021 		    i * sizeof(*cur_tx), sizeof(*cur_tx),
1022 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1023 	}
1024 
1025 	cd->se_tx_cons = i;
1026 	if (cd->se_tx_cnt == 0)
1027 		ifp->if_timer = 0;
1028 }
1029 
1030 void
1031 se_tick(void *xsc)
1032 {
1033 	struct se_softc *sc = xsc;
1034 	struct mii_data *mii;
1035 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1036 	int s;
1037 
1038 	s = splnet();
1039 	mii = &sc->sc_mii;
1040 	mii_tick(mii);
1041 	if ((sc->sc_flags & SE_FLAG_LINK) == 0) {
1042 		se_miibus_statchg(&sc->sc_dev);
1043 		if ((sc->sc_flags & SE_FLAG_LINK) != 0 &&
1044 		    !ifq_empty(&ifp->if_snd))
1045 			se_start(ifp);
1046 	}
1047 	splx(s);
1048 
1049 	timeout_add_sec(&sc->sc_tick_tmo, 1);
1050 }
1051 
1052 int
1053 se_intr(void *arg)
1054 {
1055 	struct se_softc *sc = arg;
1056 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1057 	uint32_t status;
1058 
1059 	status = CSR_READ_4(sc, IntrStatus);
1060 	if (status == 0xffffffff || (status & SE_INTRS) == 0) {
1061 		/* Not ours. */
1062 		return 0;
1063 	}
1064 	/* Ack interrupts/ */
1065 	CSR_WRITE_4(sc, IntrStatus, status);
1066 	/* Disable further interrupts. */
1067 	CSR_WRITE_4(sc, IntrMask, 0);
1068 
1069 	for (;;) {
1070 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1071 			break;
1072 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1073 			se_rxeof(sc);
1074 			/* Wakeup Rx MAC. */
1075 			if ((status & INTR_RX_IDLE) != 0)
1076 				CSR_WRITE_4(sc, RX_CTL,
1077 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1078 		}
1079 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1080 			se_txeof(sc);
1081 		status = CSR_READ_4(sc, IntrStatus);
1082 		if ((status & SE_INTRS) == 0)
1083 			break;
1084 		/* Ack interrupts. */
1085 		CSR_WRITE_4(sc, IntrStatus, status);
1086 	}
1087 
1088 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
1089 		/* Re-enable interrupts */
1090 		CSR_WRITE_4(sc, IntrMask, SE_INTRS);
1091 		if (!ifq_empty(&ifp->if_snd))
1092 			se_start(ifp);
1093 	}
1094 
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1100  * pointers to the fragment pointers.
1101  */
1102 int
1103 se_encap(struct se_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1104 {
1105 #ifdef SE_DEBUG
1106 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1107 #endif
1108 	struct mbuf *m;
1109 	struct se_list_data *ld = &sc->se_ldata;
1110 	struct se_chain_data *cd = &sc->se_cdata;
1111 	struct se_desc *desc;
1112 	uint i, cnt = 0;
1113 	int rc;
1114 
1115 	/*
1116 	 * If there's no way we can send any packets, return now.
1117 	 */
1118 	if (SE_TX_RING_CNT - cd->se_tx_cnt < 2) {
1119 #ifdef SE_DEBUG
1120 		if (ifp->if_flags & IFF_DEBUG)
1121 			printf("%s: encap failed, not enough TX desc\n",
1122 			    ifp->if_xname);
1123 #endif
1124 		return ENOBUFS;
1125 	}
1126 
1127 	if (m_defrag(m_head, M_DONTWAIT) != 0) {
1128 #ifdef SE_DEBUG
1129 		if (ifp->if_flags & IFF_DEBUG)
1130 			printf("%s: m_defrag failed\n", ifp->if_xname);
1131 #endif
1132 		return ENOBUFS;	/* XXX should not be fatal */
1133 	}
1134 
1135 	/*
1136 	 * Start packing the mbufs in this chain into
1137 	 * the fragment pointers. Stop when we run out
1138 	 * of fragments or hit the end of the mbuf chain.
1139 	 */
1140 	i = *txidx;
1141 
1142 	for (m = m_head; m != NULL; m = m->m_next) {
1143 		if (m->m_len == 0)
1144 			continue;
1145 		if ((SE_TX_RING_CNT - (cd->se_tx_cnt + cnt)) < 2) {
1146 #ifdef SE_DEBUG
1147 			if (ifp->if_flags & IFF_DEBUG)
1148 				printf("%s: encap failed, not enough TX desc\n",
1149 				    ifp->if_xname);
1150 #endif
1151 			return ENOBUFS;
1152 		}
1153 		cd->se_tx_mbuf[i] = m;
1154 		rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_tx_map[i],
1155 		    m, BUS_DMA_NOWAIT);
1156 		if (rc != 0)
1157 			return ENOBUFS;
1158 		KASSERT(cd->se_tx_map[i]->dm_nsegs == 1);
1159 		bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,
1160 		    cd->se_tx_map[i]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1161 
1162 		desc = &ld->se_tx_ring[i];
1163 		desc->se_sts_size = htole32(cd->se_tx_map[i]->dm_segs->ds_len);
1164 		desc->se_ptr =
1165 		    htole32((uint32_t)cd->se_tx_map[i]->dm_segs->ds_addr);
1166 		desc->se_flags = htole32(cd->se_tx_map[i]->dm_segs->ds_len);
1167 		if (i == SE_TX_RING_CNT - 1)
1168 			desc->se_flags |= htole32(RING_END);
1169 		desc->se_cmdsts = htole32(TDC_OWN | TDC_INTR | TDC_DEF |
1170 		    TDC_CRC | TDC_PAD | TDC_BST);
1171 		bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,
1172 		    i * sizeof(*desc), sizeof(*desc),
1173 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1174 
1175 		SE_INC(i, SE_TX_RING_CNT);
1176 		cnt++;
1177 	}
1178 
1179 	/* can't happen */
1180 	if (m != NULL)
1181 		return ENOBUFS;
1182 
1183 	cd->se_tx_cnt += cnt;
1184 	*txidx = i;
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1191  * to the mbuf data regions directly in the transmit lists. We also save a
1192  * copy of the pointers since the transmit list fragment pointers are
1193  * physical addresses.
1194  */
1195 void
1196 se_start(struct ifnet *ifp)
1197 {
1198 	struct se_softc *sc = ifp->if_softc;
1199 	struct mbuf *m_head = NULL;
1200 	struct se_chain_data *cd = &sc->se_cdata;
1201 	uint i, queued = 0;
1202 
1203 	if ((sc->sc_flags & SE_FLAG_LINK) == 0 ||
1204 	    !(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) {
1205 #ifdef SE_DEBUG
1206 		if (ifp->if_flags & IFF_DEBUG)
1207 			printf("%s: can't tx, flags 0x%x 0x%04x\n",
1208 			    ifp->if_xname, sc->sc_flags, (uint)ifp->if_flags);
1209 #endif
1210 		return;
1211 	}
1212 
1213 	i = cd->se_tx_prod;
1214 
1215 	while (cd->se_tx_mbuf[i] == NULL) {
1216 		m_head = ifq_deq_begin(&ifp->if_snd);
1217 		if (m_head == NULL)
1218 			break;
1219 
1220 		if (se_encap(sc, m_head, &i) != 0) {
1221 			ifq_deq_rollback(&ifp->if_snd, m_head);
1222 			ifq_set_oactive(&ifp->if_snd);
1223 			break;
1224 		}
1225 
1226 		/* now we are committed to transmit the packet */
1227 		ifq_deq_commit(&ifp->if_snd, m_head);
1228 		queued++;
1229 
1230 		/*
1231 		 * If there's a BPF listener, bounce a copy of this frame
1232 		 * to him.
1233 		 */
1234 #if NBPFILTER > 0
1235 		if (ifp->if_bpf)
1236 			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1237 #endif
1238 	}
1239 
1240 	if (queued > 0) {
1241 		/* Transmit */
1242 		cd->se_tx_prod = i;
1243 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1244 		ifp->if_timer = 5;
1245 	}
1246 }
1247 
1248 int
1249 se_init(struct ifnet *ifp)
1250 {
1251 	struct se_softc *sc = ifp->if_softc;
1252 	uint16_t rxfilt;
1253 	int i;
1254 
1255 	splassert(IPL_NET);
1256 
1257 	/*
1258 	 * Cancel pending I/O and free all RX/TX buffers.
1259 	 */
1260 	se_stop(sc);
1261 	se_reset(sc);
1262 
1263 	/* Init circular RX list. */
1264 	if (se_list_rx_init(sc) == ENOBUFS) {
1265 		se_stop(sc);	/* XXX necessary? */
1266 		return ENOBUFS;
1267 	}
1268 
1269 	/* Init TX descriptors. */
1270 	se_list_tx_init(sc);
1271 
1272 	/*
1273 	 * Load the address of the RX and TX lists.
1274 	 */
1275 	CSR_WRITE_4(sc, TX_DESC,
1276 	    (uint32_t)sc->se_ldata.se_tx_dmamap->dm_segs[0].ds_addr);
1277 	CSR_WRITE_4(sc, RX_DESC,
1278 	    (uint32_t)sc->se_ldata.se_rx_dmamap->dm_segs[0].ds_addr);
1279 
1280 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1281 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1282 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1283 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1284 	    SE_RX_PAD_BYTES);
1285 
1286 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1287 		CSR_WRITE_1(sc, RxMacAddr + i, sc->sc_ac.ac_enaddr[i]);
1288 	/* Configure RX MAC. */
1289 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1290 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1291 
1292 	/* Program promiscuous mode and multicast filters. */
1293 	se_iff(sc);
1294 
1295 	/*
1296 	 * Clear and enable interrupts.
1297 	 */
1298 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1299 	CSR_WRITE_4(sc, IntrMask, SE_INTRS);
1300 
1301 	/* Enable receiver and transmitter. */
1302 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1303 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1304 
1305 	ifp->if_flags |= IFF_RUNNING;
1306 	ifq_clr_oactive(&ifp->if_snd);
1307 
1308 	sc->sc_flags &= ~SE_FLAG_LINK;
1309 	mii_mediachg(&sc->sc_mii);
1310 	timeout_add_sec(&sc->sc_tick_tmo, 1);
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Set media options.
1317  */
1318 int
1319 se_ifmedia_upd(struct ifnet *ifp)
1320 {
1321 	struct se_softc *sc = ifp->if_softc;
1322 	struct mii_data *mii;
1323 
1324 	mii = &sc->sc_mii;
1325 	sc->sc_flags &= ~SE_FLAG_LINK;
1326 	if (mii->mii_instance) {
1327 		struct mii_softc *miisc;
1328 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1329 			mii_phy_reset(miisc);
1330 	}
1331 	return mii_mediachg(mii);
1332 }
1333 
1334 /*
1335  * Report current media status.
1336  */
1337 void
1338 se_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1339 {
1340 	struct se_softc *sc = ifp->if_softc;
1341 	struct mii_data *mii;
1342 
1343 	mii = &sc->sc_mii;
1344 	mii_pollstat(mii);
1345 	ifmr->ifm_active = mii->mii_media_active;
1346 	ifmr->ifm_status = mii->mii_media_status;
1347 }
1348 
1349 int
1350 se_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1351 {
1352 	struct se_softc *sc = ifp->if_softc;
1353 	struct ifreq *ifr = (struct ifreq *) data;
1354 	int s, rc = 0;
1355 
1356 	s = splnet();
1357 
1358 	switch (command) {
1359 	case SIOCSIFADDR:
1360 		ifp->if_flags |= IFF_UP;
1361 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1362 			rc = se_init(ifp);
1363 		break;
1364 	case SIOCSIFFLAGS:
1365 		if (ifp->if_flags & IFF_UP) {
1366 			if (ifp->if_flags & IFF_RUNNING)
1367 				rc = ENETRESET;
1368 			else
1369 				rc = se_init(ifp);
1370 		} else {
1371 			if (ifp->if_flags & IFF_RUNNING)
1372 				se_stop(sc);
1373 		}
1374 		break;
1375 	case SIOCGIFMEDIA:
1376 	case SIOCSIFMEDIA:
1377 		rc = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1378 		break;
1379 	default:
1380 		rc = ether_ioctl(ifp, &sc->sc_ac, command, data);
1381 		break;
1382 	}
1383 
1384 	if (rc == ENETRESET) {
1385 		if (ifp->if_flags & IFF_RUNNING)
1386 			se_iff(sc);
1387 		rc = 0;
1388 	}
1389 
1390 	splx(s);
1391 	return rc;
1392 }
1393 
1394 void
1395 se_watchdog(struct ifnet *ifp)
1396 {
1397 	struct se_softc *sc = ifp->if_softc;
1398 	int s;
1399 
1400 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1401 	ifp->if_oerrors++;
1402 
1403 	s = splnet();
1404 	se_init(ifp);
1405 	if (!ifq_empty(&ifp->if_snd))
1406 		se_start(ifp);
1407 	splx(s);
1408 }
1409 
1410 /*
1411  * Stop the adapter and free any mbufs allocated to the
1412  * RX and TX lists.
1413  */
1414 void
1415 se_stop(struct se_softc *sc)
1416 {
1417 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1418 
1419 	ifp->if_timer = 0;
1420 	ifp->if_flags &= ~IFF_RUNNING;
1421 	ifq_clr_oactive(&ifp->if_snd);
1422 	timeout_del(&sc->sc_tick_tmo);
1423 	mii_down(&sc->sc_mii);
1424 
1425 	CSR_WRITE_4(sc, IntrMask, 0);
1426 	CSR_READ_4(sc, IntrMask);
1427 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1428 	/* Stop TX/RX MAC. */
1429 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1430 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1431 	/* XXX Can we assume active DMA cycles gone? */
1432 	DELAY(2000);
1433 	CSR_WRITE_4(sc, IntrMask, 0);
1434 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1435 
1436 	sc->sc_flags &= ~SE_FLAG_LINK;
1437 	se_list_rx_free(sc);
1438 	se_list_tx_free(sc);
1439 }
1440