1 /* $OpenBSD: kate.c,v 1.8 2022/03/11 18:00:50 mpi Exp $ */ 2 3 /* 4 * Copyright (c) 2008 Constantine A. Murenin <cnst+openbsd@bugmail.mojo.ru> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/param.h> 20 #include <sys/systm.h> 21 #include <sys/device.h> 22 #include <sys/sensors.h> 23 24 #include <dev/pci/pcireg.h> 25 #include <dev/pci/pcivar.h> 26 #include <dev/pci/pcidevs.h> 27 28 29 /* 30 * AMD NPT Family 0Fh Processors, Function 3 -- Miscellaneous Control 31 */ 32 33 /* Function 3 Registers */ 34 #define K_THERMTRIP_STAT_R 0xe4 35 #define K_NORTHBRIDGE_CAP_R 0xe8 36 #define K_CPUID_FAMILY_MODEL_R 0xfc 37 38 /* Bits within Thermtrip Status Register */ 39 #define K_THERM_SENSE_SEL (1 << 6) 40 #define K_THERM_SENSE_CORE_SEL (1 << 2) 41 42 /* Flip core and sensor selection bits */ 43 #define K_T_SEL_C0(v) (v |= K_THERM_SENSE_CORE_SEL) 44 #define K_T_SEL_C1(v) (v &= ~(K_THERM_SENSE_CORE_SEL)) 45 #define K_T_SEL_S0(v) (v &= ~(K_THERM_SENSE_SEL)) 46 #define K_T_SEL_S1(v) (v |= K_THERM_SENSE_SEL) 47 48 49 /* 50 * Revision Guide for AMD NPT Family 0Fh Processors, 51 * Publication # 33610, Revision 3.30, February 2008 52 */ 53 static const struct { 54 const char rev[5]; 55 const pcireg_t cpuid[5]; 56 } kate_proc[] = { 57 { "BH-F", { 0x00040FB0, 0x00040F80, 0, 0, 0 } }, /* F2 */ 58 { "DH-F", { 0x00040FF0, 0x00050FF0, 0x00040FC0, 0, 0 } }, /* F2, F3 */ 59 { "JH-F", { 0x00040F10, 0x00040F30, 0x000C0F10, 0, 0 } }, /* F2, F3 */ 60 { "BH-G", { 0x00060FB0, 0x00060F80, 0, 0, 0 } }, /* G1, G2 */ 61 { "DH-G", { 0x00070FF0, 0x00060FF0, 62 0x00060FC0, 0x00070FC0, 0 } } /* G1, G2 */ 63 }; 64 65 66 struct kate_softc { 67 struct device sc_dev; 68 69 pci_chipset_tag_t sc_pc; 70 pcitag_t sc_pcitag; 71 72 struct ksensor sc_sensors[4]; 73 struct ksensordev sc_sensordev; 74 75 char sc_rev; 76 int8_t sc_numsensors; 77 }; 78 79 int kate_match(struct device *, void *, void *); 80 void kate_attach(struct device *, struct device *, void *); 81 void kate_refresh(void *); 82 83 const struct cfattach kate_ca = { 84 sizeof(struct kate_softc), kate_match, kate_attach 85 }; 86 87 struct cfdriver kate_cd = { 88 NULL, "kate", DV_DULL 89 }; 90 91 92 int 93 kate_match(struct device *parent, void *match, void *aux) 94 { 95 struct pci_attach_args *pa = aux; 96 #ifndef KATE_STRICT 97 struct kate_softc ks; 98 struct kate_softc *sc = &ks; 99 #endif /* !KATE_STRICT */ 100 pcireg_t c; 101 int i, j; 102 103 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD || 104 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_AMD_0F_MISC) 105 return 0; 106 107 /* 108 * First, let's probe for chips at or after Revision F, which is 109 * when the temperature readings were officially introduced. 110 */ 111 c = pci_conf_read(pa->pa_pc, pa->pa_tag, K_CPUID_FAMILY_MODEL_R); 112 for (i = 0; i < sizeof(kate_proc) / sizeof(kate_proc[0]); i++) 113 for (j = 0; kate_proc[i].cpuid[j] != 0; j++) 114 if ((c & ~0xf) == kate_proc[i].cpuid[j]) 115 return 2; /* supersede pchb(4) */ 116 117 #ifndef KATE_STRICT 118 /* 119 * If the probe above was not successful, let's try to actually 120 * read the sensors from the chip, and see if they make any sense. 121 */ 122 sc->sc_numsensors = 4; 123 sc->sc_pc = pa->pa_pc; 124 sc->sc_pcitag = pa->pa_tag; 125 kate_refresh(sc); 126 for (i = 0; i < sc->sc_numsensors; i++) 127 if (!(sc->sc_sensors[i].flags & SENSOR_FINVALID)) 128 return 2; /* supersede pchb(4) */ 129 #endif /* !KATE_STRICT */ 130 131 return 0; 132 } 133 134 void 135 kate_attach(struct device *parent, struct device *self, void *aux) 136 { 137 struct kate_softc *sc = (struct kate_softc *)self; 138 struct pci_attach_args *pa = aux; 139 pcireg_t c, d; 140 int i, j, cmpcap; 141 142 c = pci_conf_read(pa->pa_pc, pa->pa_tag, K_CPUID_FAMILY_MODEL_R); 143 for (i = 0; i < sizeof(kate_proc) / sizeof(kate_proc[0]) && 144 sc->sc_rev == '\0'; i++) 145 for (j = 0; kate_proc[i].cpuid[j] != 0; j++) 146 if ((c & ~0xf) == kate_proc[i].cpuid[j]) { 147 sc->sc_rev = kate_proc[i].rev[3]; 148 printf(": core rev %.4s%.1x", 149 kate_proc[i].rev, c & 0xf); 150 } 151 152 if (c != 0x0 && sc->sc_rev == '\0') { 153 /* CPUID Family Model Register was introduced in Revision F */ 154 sc->sc_rev = 'G'; /* newer than E, assume G */ 155 printf(": cpuid 0x%x", c); 156 } 157 158 d = pci_conf_read(pa->pa_pc, pa->pa_tag, K_NORTHBRIDGE_CAP_R); 159 cmpcap = (d >> 12) & 0x3; 160 161 sc->sc_pc = pa->pa_pc; 162 sc->sc_pcitag = pa->pa_tag; 163 164 #ifndef KATE_STRICT 165 sc->sc_numsensors = 4; 166 kate_refresh(sc); 167 if (cmpcap == 0 && 168 (sc->sc_sensors[2].flags & SENSOR_FINVALID) && 169 (sc->sc_sensors[3].flags & SENSOR_FINVALID)) 170 sc->sc_numsensors = 2; 171 #else 172 sc->sc_numsensors = cmpcap ? 4 : 2; 173 #endif /* !KATE_STRICT */ 174 175 strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname, 176 sizeof(sc->sc_sensordev.xname)); 177 178 for (i = 0; i < sc->sc_numsensors; i++) { 179 sc->sc_sensors[i].type = SENSOR_TEMP; 180 sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]); 181 } 182 183 if (sensor_task_register(sc, kate_refresh, 5) == NULL) { 184 printf(": unable to register update task\n"); 185 return; 186 } 187 188 sensordev_install(&sc->sc_sensordev); 189 190 printf("\n"); 191 } 192 193 void 194 kate_refresh(void *arg) 195 { 196 struct kate_softc *sc = arg; 197 struct ksensor *s = sc->sc_sensors; 198 int8_t n = sc->sc_numsensors; 199 pcireg_t t, m; 200 int i, v; 201 202 t = pci_conf_read(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R); 203 204 for (i = 0; i < n; i++) { 205 switch(i) { 206 case 0: 207 K_T_SEL_C0(t); 208 K_T_SEL_S0(t); 209 break; 210 case 1: 211 K_T_SEL_C0(t); 212 K_T_SEL_S1(t); 213 break; 214 case 2: 215 K_T_SEL_C1(t); 216 K_T_SEL_S0(t); 217 break; 218 case 3: 219 K_T_SEL_C1(t); 220 K_T_SEL_S1(t); 221 break; 222 } 223 m = t & (K_THERM_SENSE_CORE_SEL | K_THERM_SENSE_SEL); 224 pci_conf_write(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R, t); 225 t = pci_conf_read(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R); 226 v = 0x3ff & (t >> 14); 227 #ifdef KATE_STRICT 228 if (sc->sc_rev != 'G') 229 v &= ~0x3; 230 #endif /* KATE_STRICT */ 231 if ((t & (K_THERM_SENSE_CORE_SEL | K_THERM_SENSE_SEL)) == m && 232 (v & ~0x3) != 0) 233 s[i].flags &= ~SENSOR_FINVALID; 234 else 235 s[i].flags |= SENSOR_FINVALID; 236 s[i].value = (v * 250000 - 49000000) + 273150000; 237 } 238 } 239