xref: /openbsd/sys/dev/rnd.c (revision 264ca280)
1 /*	$OpenBSD: rnd.c,v 1.182 2016/07/15 19:02:30 tom Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Theo de Raadt.
5  * Copyright (c) 2008 Damien Miller.
6  * Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff.
7  * Copyright (c) 2013 Markus Friedl.
8  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, and the entire permission notice in its entirety,
16  *    including the disclaimer of warranties.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. The name of the author may not be used to endorse or promote
21  *    products derived from this software without specific prior
22  *    written permission.
23  *
24  * ALTERNATIVELY, this product may be distributed under the terms of
25  * the GNU Public License, in which case the provisions of the GPL are
26  * required INSTEAD OF the above restrictions.  (This clause is
27  * necessary due to a potential bad interaction between the GPL and
28  * the restrictions contained in a BSD-style copyright.)
29  *
30  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
31  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
33  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
34  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
35  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
36  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
40  * OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 
43 /*
44  * Computers are very predictable devices.  Hence it is extremely hard
45  * to produce truly random numbers on a computer --- as opposed to
46  * pseudo-random numbers, which can be easily generated by using an
47  * algorithm.  Unfortunately, it is very easy for attackers to guess
48  * the sequence of pseudo-random number generators, and for some
49  * applications this is not acceptable.  Instead, we must try to
50  * gather "environmental noise" from the computer's environment, which
51  * must be hard for outside attackers to observe and use to
52  * generate random numbers.  In a Unix environment, this is best done
53  * from inside the kernel.
54  *
55  * Sources of randomness from the environment include inter-keyboard
56  * timings, inter-interrupt timings from some interrupts, and other
57  * events which are both (a) non-deterministic and (b) hard for an
58  * outside observer to measure.  Randomness from these sources is
59  * added to the "rnd states" queue; this is used as much of the
60  * source material which is mixed on occasion using a CRC-like function
61  * into the "entropy pool".  This is not cryptographically strong, but
62  * it is adequate assuming the randomness is not chosen maliciously,
63  * and it is very fast because the interrupt-time event is only to add
64  * a small random token to the "rnd states" queue.
65  *
66  * When random bytes are desired, they are obtained by pulling from
67  * the entropy pool and running a SHA512 hash. The SHA512 hash avoids
68  * exposing the internal state of the entropy pool.  Even if it is
69  * possible to analyze SHA512 in some clever way, as long as the amount
70  * of data returned from the generator is less than the inherent
71  * entropy in the pool, the output data is totally unpredictable.  For
72  * this reason, the routine decreases its internal estimate of how many
73  * bits of "true randomness" are contained in the entropy pool as it
74  * outputs random numbers.
75  *
76  * If this estimate goes to zero, the SHA512 hash will continue to generate
77  * output since there is no true risk because the SHA512 output is not
78  * exported outside this subsystem.  It is next used as input to seed a
79  * ChaCha20 stream cipher, which is re-seeded from time to time.  This
80  * design provides very high amounts of output data from a potentially
81  * small entropy base, at high enough speeds to encourage use of random
82  * numbers in nearly any situation.  Before OpenBSD 5.5, the RC4 stream
83  * cipher (also known as ARC4) was used instead of ChaCha20.
84  *
85  * The output of this single ChaCha20 engine is then shared amongst many
86  * consumers in the kernel and userland via a few interfaces:
87  * arc4random_buf(), arc4random(), arc4random_uniform(), randomread()
88  * for the set of /dev/random nodes, the sysctl kern.arandom, and the
89  * system call getentropy(), which provides seeds for process-context
90  * pseudorandom generators.
91  *
92  * Acknowledgements:
93  * =================
94  *
95  * Ideas for constructing this random number generator were derived
96  * from Pretty Good Privacy's random number generator, and from private
97  * discussions with Phil Karn.  Colin Plumb provided a faster random
98  * number generator, which speeds up the mixing function of the entropy
99  * pool, taken from PGPfone.  Dale Worley has also contributed many
100  * useful ideas and suggestions to improve this driver.
101  *
102  * Any flaws in the design are solely my responsibility, and should
103  * not be attributed to the Phil, Colin, or any of the authors of PGP.
104  *
105  * Further background information on this topic may be obtained from
106  * RFC 1750, "Randomness Recommendations for Security", by Donald
107  * Eastlake, Steve Crocker, and Jeff Schiller.
108  *
109  * Using a RC4 stream cipher as 2nd stage after the MD5 (now SHA512) output
110  * is the result of work by David Mazieres.
111  */
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/disk.h>
116 #include <sys/event.h>
117 #include <sys/limits.h>
118 #include <sys/time.h>
119 #include <sys/ioctl.h>
120 #include <sys/malloc.h>
121 #include <sys/fcntl.h>
122 #include <sys/timeout.h>
123 #include <sys/mutex.h>
124 #include <sys/task.h>
125 #include <sys/msgbuf.h>
126 #include <sys/mount.h>
127 #include <sys/syscallargs.h>
128 
129 #include <crypto/sha2.h>
130 
131 #define KEYSTREAM_ONLY
132 #include <crypto/chacha_private.h>
133 
134 #include <dev/rndvar.h>
135 
136 /*
137  * For the purposes of better mixing, we use the CRC-32 polynomial as
138  * well to make a twisted Generalized Feedback Shift Register
139  *
140  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
141  * Transactions on Modeling and Computer Simulation 2(3):179-194.
142  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
143  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
144  *
145  * Thanks to Colin Plumb for suggesting this.
146  *
147  * We have not analyzed the resultant polynomial to prove it primitive;
148  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
149  * of a random large-degree polynomial over GF(2) are more than large enough
150  * that periodicity is not a concern.
151  *
152  * The input hash is much less sensitive than the output hash.  All
153  * we want from it is to be a good non-cryptographic hash -
154  * i.e. to not produce collisions when fed "random" data of the sort
155  * we expect to see.  As long as the pool state differs for different
156  * inputs, we have preserved the input entropy and done a good job.
157  * The fact that an intelligent attacker can construct inputs that
158  * will produce controlled alterations to the pool's state is not
159  * important because we don't consider such inputs to contribute any
160  * randomness.  The only property we need with respect to them is that
161  * the attacker can't increase his/her knowledge of the pool's state.
162  * Since all additions are reversible (knowing the final state and the
163  * input, you can reconstruct the initial state), if an attacker has
164  * any uncertainty about the initial state, he/she can only shuffle
165  * that uncertainty about, but never cause any collisions (which would
166  * decrease the uncertainty).
167  *
168  * The chosen system lets the state of the pool be (essentially) the input
169  * modulo the generator polynomial.  Now, for random primitive polynomials,
170  * this is a universal class of hash functions, meaning that the chance
171  * of a collision is limited by the attacker's knowledge of the generator
172  * polynomial, so if it is chosen at random, an attacker can never force
173  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
174  * ###--> it is unknown to the processes generating the input entropy. <-###
175  * Because of this important property, this is a good, collision-resistant
176  * hash; hash collisions will occur no more often than chance.
177  */
178 
179 /*
180  * Stirring polynomials over GF(2) for various pool sizes. Used in
181  * add_entropy_words() below.
182  *
183  * The polynomial terms are chosen to be evenly spaced (minimum RMS
184  * distance from evenly spaced; except for the last tap, which is 1 to
185  * get the twisting happening as fast as possible.
186  *
187  * The reultant polynomial is:
188  *   2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1
189  */
190 #define POOLWORDS	2048
191 #define POOLBYTES	(POOLWORDS*4)
192 #define POOLMASK	(POOLWORDS - 1)
193 #define	POOL_TAP1	1638
194 #define	POOL_TAP2	1231
195 #define	POOL_TAP3	819
196 #define	POOL_TAP4	411
197 
198 struct mutex entropylock = MUTEX_INITIALIZER(IPL_HIGH);
199 
200 /*
201  * Raw entropy collection from device drivers; at interrupt context or not.
202  * add_*_randomness() provide data which is put into the entropy queue.
203  * Almost completely under the entropylock.
204  */
205 struct timer_rand_state {	/* There is one of these per entropy source */
206 	u_int	last_time;
207 	u_int	last_delta;
208 	u_int	last_delta2;
209 	u_int	dont_count_entropy : 1;
210 	u_int	max_entropy : 1;
211 } rnd_states[RND_SRC_NUM];
212 
213 #define QEVLEN (1024 / sizeof(struct rand_event))
214 #define QEVSLOW (QEVLEN * 3 / 4) /* yet another 0.75 for 60-minutes hour /-; */
215 #define QEVSBITS 10
216 
217 #define KEYSZ	32
218 #define IVSZ	8
219 #define BLOCKSZ	64
220 #define RSBUFSZ	(16*BLOCKSZ)
221 #define EBUFSIZE KEYSZ + IVSZ
222 
223 struct rand_event {
224 	struct timer_rand_state *re_state;
225 	u_int re_time;
226 	u_int re_val;
227 } rnd_event_space[QEVLEN];
228 /* index of next free slot */
229 u_int rnd_event_idx;
230 
231 struct timeout rnd_timeout;
232 
233 u_int32_t entropy_pool[POOLWORDS] __attribute__((section(".openbsd.randomdata")));
234 u_int	entropy_add_ptr;
235 u_char	entropy_input_rotate;
236 
237 void	dequeue_randomness(void *);
238 void	add_entropy_words(const u_int32_t *, u_int);
239 void	extract_entropy(u_int8_t *)
240     __attribute__((__bounded__(__minbytes__,1,EBUFSIZE)));
241 
242 int	filt_randomread(struct knote *, long);
243 void	filt_randomdetach(struct knote *);
244 int	filt_randomwrite(struct knote *, long);
245 
246 static void _rs_seed(u_char *, size_t);
247 
248 struct filterops randomread_filtops =
249 	{ 1, NULL, filt_randomdetach, filt_randomread };
250 struct filterops randomwrite_filtops =
251 	{ 1, NULL, filt_randomdetach, filt_randomwrite };
252 
253 static __inline struct rand_event *
254 rnd_get(void)
255 {
256 	if (rnd_event_idx == 0)
257 		return NULL;
258 	/* if it wrapped around, start dequeuing at the end */
259 	if (rnd_event_idx > QEVLEN)
260 		rnd_event_idx = QEVLEN;
261 
262 	return &rnd_event_space[--rnd_event_idx];
263 }
264 
265 static __inline struct rand_event *
266 rnd_put(void)
267 {
268 	u_int idx = rnd_event_idx++;
269 
270 	/* allow wrapping. caller will use xor. */
271 	idx = idx % QEVLEN;
272 
273 	return &rnd_event_space[idx];
274 }
275 
276 static __inline u_int
277 rnd_qlen(void)
278 {
279 	return rnd_event_idx;
280 }
281 
282 /*
283  * This function adds entropy to the entropy pool by using timing
284  * delays.  It uses the timer_rand_state structure to make an estimate
285  * of how many bits of entropy this call has added to the pool.
286  *
287  * The number "val" is also added to the pool - it should somehow describe
288  * the type of event which just happened.  Currently the values of 0-255
289  * are for keyboard scan codes, 256 and upwards - for interrupts.
290  */
291 void
292 enqueue_randomness(u_int state, u_int val)
293 {
294 	int	delta, delta2, delta3;
295 	struct timer_rand_state *p;
296 	struct rand_event *rep;
297 	struct timespec	ts;
298 	u_int	time, nbits;
299 
300 #ifdef DIAGNOSTIC
301 	if (state >= RND_SRC_NUM)
302 		return;
303 #endif
304 
305 	if (timeout_initialized(&rnd_timeout))
306 		nanotime(&ts);
307 
308 	p = &rnd_states[state];
309 	val += state << 13;
310 
311 	time = (ts.tv_nsec >> 10) + (ts.tv_sec << 20);
312 	nbits = 0;
313 
314 	/*
315 	 * Calculate the number of bits of randomness that we probably
316 	 * added.  We take into account the first and second order
317 	 * deltas in order to make our estimate.
318 	 */
319 	if (!p->dont_count_entropy) {
320 		delta  = time   - p->last_time;
321 		delta2 = delta  - p->last_delta;
322 		delta3 = delta2 - p->last_delta2;
323 
324 		if (delta < 0) delta = -delta;
325 		if (delta2 < 0) delta2 = -delta2;
326 		if (delta3 < 0) delta3 = -delta3;
327 		if (delta > delta2) delta = delta2;
328 		if (delta > delta3) delta = delta3;
329 		delta3 = delta >>= 1;
330 		/*
331 		 * delta &= 0xfff;
332 		 * we don't do it since our time sheet is different from linux
333 		 */
334 
335 		if (delta & 0xffff0000) {
336 			nbits = 16;
337 			delta >>= 16;
338 		}
339 		if (delta & 0xff00) {
340 			nbits += 8;
341 			delta >>= 8;
342 		}
343 		if (delta & 0xf0) {
344 			nbits += 4;
345 			delta >>= 4;
346 		}
347 		if (delta & 0xc) {
348 			nbits += 2;
349 			delta >>= 2;
350 		}
351 		if (delta & 2) {
352 			nbits += 1;
353 			delta >>= 1;
354 		}
355 		if (delta & 1)
356 			nbits++;
357 	} else if (p->max_entropy)
358 		nbits = 8 * sizeof(val) - 1;
359 
360 	/* given the multi-order delta logic above, this should never happen */
361 	if (nbits >= 32)
362 		return;
363 
364 	mtx_enter(&entropylock);
365 	if (!p->dont_count_entropy) {
366 		p->last_time = time;
367 		p->last_delta  = delta3;
368 		p->last_delta2 = delta2;
369 	}
370 
371 	rep = rnd_put();
372 
373 	rep->re_state = p;
374 	rep->re_time += ts.tv_nsec ^ (ts.tv_sec << 20);
375 	rep->re_val += val;
376 
377 	if (rnd_qlen() > QEVSLOW/2 && timeout_initialized(&rnd_timeout) &&
378 	    !timeout_pending(&rnd_timeout))
379 		timeout_add(&rnd_timeout, 1);
380 
381 	mtx_leave(&entropylock);
382 }
383 
384 /*
385  * This function adds a byte into the entropy pool.  It does not
386  * update the entropy estimate.  The caller must do this if appropriate.
387  *
388  * The pool is stirred with a polynomial of degree POOLWORDS over GF(2);
389  * see POOL_TAP[1-4] above
390  *
391  * Rotate the input word by a changing number of bits, to help assure
392  * that all bits in the entropy get toggled.  Otherwise, if the pool
393  * is consistently fed small numbers (such as keyboard scan codes)
394  * then the upper bits of the entropy pool will frequently remain
395  * untouched.
396  */
397 void
398 add_entropy_words(const u_int32_t *buf, u_int n)
399 {
400 	/* derived from IEEE 802.3 CRC-32 */
401 	static const u_int32_t twist_table[8] = {
402 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
403 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278
404 	};
405 
406 	for (; n--; buf++) {
407 		u_int32_t w = (*buf << entropy_input_rotate) |
408 		    (*buf >> ((32 - entropy_input_rotate) & 31));
409 		u_int i = entropy_add_ptr =
410 		    (entropy_add_ptr - 1) & POOLMASK;
411 		/*
412 		 * Normally, we add 7 bits of rotation to the pool.
413 		 * At the beginning of the pool, add an extra 7 bits
414 		 * rotation, so that successive passes spread the
415 		 * input bits across the pool evenly.
416 		 */
417 		entropy_input_rotate =
418 		    (entropy_input_rotate + (i ? 7 : 14)) & 31;
419 
420 		/* XOR pool contents corresponding to polynomial terms */
421 		w ^= entropy_pool[(i + POOL_TAP1) & POOLMASK] ^
422 		     entropy_pool[(i + POOL_TAP2) & POOLMASK] ^
423 		     entropy_pool[(i + POOL_TAP3) & POOLMASK] ^
424 		     entropy_pool[(i + POOL_TAP4) & POOLMASK] ^
425 		     entropy_pool[(i + 1) & POOLMASK] ^
426 		     entropy_pool[i]; /* + 2^POOLWORDS */
427 
428 		entropy_pool[i] = (w >> 3) ^ twist_table[w & 7];
429 	}
430 }
431 
432 /*
433  * Pulls entropy out of the queue and throws merges it into the pool
434  * with the CRC.
435  */
436 /* ARGSUSED */
437 void
438 dequeue_randomness(void *v)
439 {
440 	struct rand_event *rep;
441 	u_int32_t buf[2];
442 
443 	mtx_enter(&entropylock);
444 
445 	if (timeout_initialized(&rnd_timeout))
446 		timeout_del(&rnd_timeout);
447 
448 	while ((rep = rnd_get())) {
449 		buf[0] = rep->re_time;
450 		buf[1] = rep->re_val;
451 		mtx_leave(&entropylock);
452 
453 		add_entropy_words(buf, 2);
454 
455 		mtx_enter(&entropylock);
456 	}
457 	mtx_leave(&entropylock);
458 }
459 
460 /*
461  * Grabs a chunk from the entropy_pool[] and slams it through SHA512 when
462  * requested.
463  */
464 void
465 extract_entropy(u_int8_t *buf)
466 {
467 	static u_int32_t extract_pool[POOLWORDS];
468 	u_char digest[SHA512_DIGEST_LENGTH];
469 	SHA2_CTX shactx;
470 
471 #if SHA512_DIGEST_LENGTH < EBUFSIZE
472 #error "need more bigger hash output"
473 #endif
474 
475 	/*
476 	 * INTENTIONALLY not protected by entropylock.  Races during
477 	 * memcpy() result in acceptable input data; races during
478 	 * SHA512Update() would create nasty data dependencies.  We
479 	 * do not rely on this as a benefit, but if it happens, cool.
480 	 */
481 	memcpy(extract_pool, entropy_pool, sizeof(extract_pool));
482 
483 	/* Hash the pool to get the output */
484 	SHA512Init(&shactx);
485 	SHA512Update(&shactx, (u_int8_t *)extract_pool, sizeof(extract_pool));
486 	SHA512Final(digest, &shactx);
487 
488 	/* Copy data to destination buffer */
489 	memcpy(buf, digest, EBUFSIZE);
490 
491 	/* Modify pool so next hash will produce different results */
492 	add_timer_randomness(EBUFSIZE);
493 	dequeue_randomness(NULL);
494 
495 	/* Wipe data from memory */
496 	explicit_bzero(extract_pool, sizeof(extract_pool));
497 	explicit_bzero(digest, sizeof(digest));
498 }
499 
500 /* random keystream by ChaCha */
501 
502 void arc4_reinit(void *v);		/* timeout to start reinit */
503 void arc4_init(void *);			/* actually do the reinit */
504 
505 struct mutex rndlock = MUTEX_INITIALIZER(IPL_HIGH);
506 struct timeout arc4_timeout;
507 struct task arc4_task = TASK_INITIALIZER(arc4_init, NULL);
508 
509 static int rs_initialized;
510 static chacha_ctx rs;		/* chacha context for random keystream */
511 /* keystream blocks (also chacha seed from boot) */
512 static u_char rs_buf[RSBUFSZ] __attribute__((section(".openbsd.randomdata")));
513 static size_t rs_have;		/* valid bytes at end of rs_buf */
514 static size_t rs_count;		/* bytes till reseed */
515 
516 void
517 suspend_randomness(void)
518 {
519 	struct timespec ts;
520 
521 	getnanotime(&ts);
522 	add_true_randomness(ts.tv_sec);
523 	add_true_randomness(ts.tv_nsec);
524 
525 	dequeue_randomness(NULL);
526 	rs_count = 0;
527 	arc4random_buf(entropy_pool, sizeof(entropy_pool));
528 }
529 
530 void
531 resume_randomness(char *buf, size_t buflen)
532 {
533 	struct timespec ts;
534 
535 	if (buf && buflen)
536 		_rs_seed(buf, buflen);
537 	getnanotime(&ts);
538 	add_true_randomness(ts.tv_sec);
539 	add_true_randomness(ts.tv_nsec);
540 
541 	dequeue_randomness(NULL);
542 	rs_count = 0;
543 }
544 
545 static inline void _rs_rekey(u_char *dat, size_t datlen);
546 
547 static inline void
548 _rs_init(u_char *buf, size_t n)
549 {
550 	KASSERT(n >= KEYSZ + IVSZ);
551 	chacha_keysetup(&rs, buf, KEYSZ * 8);
552 	chacha_ivsetup(&rs, buf + KEYSZ, NULL);
553 }
554 
555 static void
556 _rs_seed(u_char *buf, size_t n)
557 {
558 	_rs_rekey(buf, n);
559 
560 	/* invalidate rs_buf */
561 	rs_have = 0;
562 	memset(rs_buf, 0, RSBUFSZ);
563 
564 	rs_count = 1600000;
565 }
566 
567 static void
568 _rs_stir(int do_lock)
569 {
570 	struct timespec ts;
571 	u_int8_t buf[EBUFSIZE], *p;
572 	int i;
573 
574 	/*
575 	 * Use SHA512 PRNG data and a system timespec; early in the boot
576 	 * process this is the best we can do -- some architectures do
577 	 * not collect entropy very well during this time, but may have
578 	 * clock information which is better than nothing.
579 	 */
580 	extract_entropy(buf);
581 
582 	nanotime(&ts);
583 	for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++)
584 		buf[i] ^= p[i];
585 
586 	if (do_lock)
587 		mtx_enter(&rndlock);
588 	_rs_seed(buf, sizeof(buf));
589 	if (do_lock)
590 		mtx_leave(&rndlock);
591 
592 	explicit_bzero(buf, sizeof(buf));
593 }
594 
595 static inline void
596 _rs_stir_if_needed(size_t len)
597 {
598 	if (!rs_initialized) {
599 		_rs_init(rs_buf, KEYSZ + IVSZ);
600 		rs_count = 1024 * 1024 * 1024;	/* until main() runs */
601 		rs_initialized = 1;
602 	} else if (rs_count <= len)
603 		_rs_stir(0);
604 	else
605 		rs_count -= len;
606 }
607 
608 static inline void
609 _rs_rekey(u_char *dat, size_t datlen)
610 {
611 #ifndef KEYSTREAM_ONLY
612 	memset(rs_buf, 0, RSBUFSZ);
613 #endif
614 	/* fill rs_buf with the keystream */
615 	chacha_encrypt_bytes(&rs, rs_buf, rs_buf, RSBUFSZ);
616 	/* mix in optional user provided data */
617 	if (dat) {
618 		size_t i, m;
619 
620 		m = MIN(datlen, KEYSZ + IVSZ);
621 		for (i = 0; i < m; i++)
622 			rs_buf[i] ^= dat[i];
623 	}
624 	/* immediately reinit for backtracking resistance */
625 	_rs_init(rs_buf, KEYSZ + IVSZ);
626 	memset(rs_buf, 0, KEYSZ + IVSZ);
627 	rs_have = RSBUFSZ - KEYSZ - IVSZ;
628 }
629 
630 static inline void
631 _rs_random_buf(void *_buf, size_t n)
632 {
633 	u_char *buf = (u_char *)_buf;
634 	size_t m;
635 
636 	_rs_stir_if_needed(n);
637 	while (n > 0) {
638 		if (rs_have > 0) {
639 			m = MIN(n, rs_have);
640 			memcpy(buf, rs_buf + RSBUFSZ - rs_have, m);
641 			memset(rs_buf + RSBUFSZ - rs_have, 0, m);
642 			buf += m;
643 			n -= m;
644 			rs_have -= m;
645 		}
646 		if (rs_have == 0)
647 			_rs_rekey(NULL, 0);
648 	}
649 }
650 
651 static inline void
652 _rs_random_u32(u_int32_t *val)
653 {
654 	_rs_stir_if_needed(sizeof(*val));
655 	if (rs_have < sizeof(*val))
656 		_rs_rekey(NULL, 0);
657 	memcpy(val, rs_buf + RSBUFSZ - rs_have, sizeof(*val));
658 	memset(rs_buf + RSBUFSZ - rs_have, 0, sizeof(*val));
659 	rs_have -= sizeof(*val);
660 	return;
661 }
662 
663 /* Return one word of randomness from a ChaCha20 generator */
664 u_int32_t
665 arc4random(void)
666 {
667 	u_int32_t ret;
668 
669 	mtx_enter(&rndlock);
670 	_rs_random_u32(&ret);
671 	mtx_leave(&rndlock);
672 	return ret;
673 }
674 
675 /*
676  * Fill a buffer of arbitrary length with ChaCha20-derived randomness.
677  */
678 void
679 arc4random_buf(void *buf, size_t n)
680 {
681 	mtx_enter(&rndlock);
682 	_rs_random_buf(buf, n);
683 	mtx_leave(&rndlock);
684 }
685 
686 /*
687  * Calculate a uniformly distributed random number less than upper_bound
688  * avoiding "modulo bias".
689  *
690  * Uniformity is achieved by generating new random numbers until the one
691  * returned is outside the range [0, 2**32 % upper_bound).  This
692  * guarantees the selected random number will be inside
693  * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
694  * after reduction modulo upper_bound.
695  */
696 u_int32_t
697 arc4random_uniform(u_int32_t upper_bound)
698 {
699 	u_int32_t r, min;
700 
701 	if (upper_bound < 2)
702 		return 0;
703 
704 	/* 2**32 % x == (2**32 - x) % x */
705 	min = -upper_bound % upper_bound;
706 
707 	/*
708 	 * This could theoretically loop forever but each retry has
709 	 * p > 0.5 (worst case, usually far better) of selecting a
710 	 * number inside the range we need, so it should rarely need
711 	 * to re-roll.
712 	 */
713 	for (;;) {
714 		r = arc4random();
715 		if (r >= min)
716 			break;
717 	}
718 
719 	return r % upper_bound;
720 }
721 
722 /* ARGSUSED */
723 void
724 arc4_init(void *null)
725 {
726 	_rs_stir(1);
727 }
728 
729 /*
730  * Called by timeout to mark arc4 for stirring,
731  */
732 void
733 arc4_reinit(void *v)
734 {
735 	task_add(systq, &arc4_task);
736 	/* 10 minutes, per dm@'s suggestion */
737 	timeout_add_sec(&arc4_timeout, 10 * 60);
738 }
739 
740 /*
741  * Start periodic services inside the random subsystem, which pull
742  * entropy forward, hash it, and re-seed the random stream as needed.
743  */
744 void
745 random_start(void)
746 {
747 #if !defined(NO_PROPOLICE)
748 	extern long __guard_local;
749 
750 	if (__guard_local == 0)
751 		printf("warning: no entropy supplied by boot loader\n");
752 #endif
753 
754 	rnd_states[RND_SRC_TIMER].dont_count_entropy = 1;
755 	rnd_states[RND_SRC_TRUE].dont_count_entropy = 1;
756 	rnd_states[RND_SRC_TRUE].max_entropy = 1;
757 
758 	/* Provide some data from this kernel */
759 	add_entropy_words((u_int32_t *)version,
760 	    strlen(version) / sizeof(u_int32_t));
761 
762 	/* Provide some data from this kernel */
763 	add_entropy_words((u_int32_t *)cfdata,
764 	    8192 / sizeof(u_int32_t));
765 
766 	/* Message buffer may contain data from previous boot */
767 	if (msgbufp->msg_magic == MSG_MAGIC)
768 		add_entropy_words((u_int32_t *)msgbufp->msg_bufc,
769 		    msgbufp->msg_bufs / sizeof(u_int32_t));
770 
771 	rs_initialized = 1;
772 	dequeue_randomness(NULL);
773 	arc4_init(NULL);
774 	timeout_set(&arc4_timeout, arc4_reinit, NULL);
775 	arc4_reinit(NULL);
776 	timeout_set(&rnd_timeout, dequeue_randomness, NULL);
777 }
778 
779 int
780 randomopen(dev_t dev, int flag, int mode, struct proc *p)
781 {
782 	return 0;
783 }
784 
785 int
786 randomclose(dev_t dev, int flag, int mode, struct proc *p)
787 {
788 	return 0;
789 }
790 
791 /*
792  * Maximum number of bytes to serve directly from the main ChaCha
793  * pool. Larger requests are served from a discrete ChaCha instance keyed
794  * from the main pool.
795  */
796 #define ARC4_MAIN_MAX_BYTES	2048
797 
798 int
799 randomread(dev_t dev, struct uio *uio, int ioflag)
800 {
801 	u_char		lbuf[KEYSZ+IVSZ];
802 	chacha_ctx	lctx;
803 	size_t		total = uio->uio_resid;
804 	u_char		*buf;
805 	int		myctx = 0, ret = 0;
806 
807 	if (uio->uio_resid == 0)
808 		return 0;
809 
810 	buf = malloc(POOLBYTES, M_TEMP, M_WAITOK);
811 	if (total > ARC4_MAIN_MAX_BYTES) {
812 		arc4random_buf(lbuf, sizeof(lbuf));
813 		chacha_keysetup(&lctx, lbuf, KEYSZ * 8);
814 		chacha_ivsetup(&lctx, lbuf + KEYSZ, NULL);
815 		explicit_bzero(lbuf, sizeof(lbuf));
816 		myctx = 1;
817 	}
818 
819 	while (ret == 0 && uio->uio_resid > 0) {
820 		size_t	n = ulmin(POOLBYTES, uio->uio_resid);
821 
822 		if (myctx) {
823 #ifndef KEYSTREAM_ONLY
824 			memset(buf, 0, n);
825 #endif
826 			chacha_encrypt_bytes(&lctx, buf, buf, n);
827 		} else
828 			arc4random_buf(buf, n);
829 		ret = uiomove(buf, n, uio);
830 		if (ret == 0 && uio->uio_resid > 0)
831 			yield();
832 	}
833 	if (myctx)
834 		explicit_bzero(&lctx, sizeof(lctx));
835 	explicit_bzero(buf, POOLBYTES);
836 	free(buf, M_TEMP, POOLBYTES);
837 	return ret;
838 }
839 
840 int
841 randomwrite(dev_t dev, struct uio *uio, int flags)
842 {
843 	int		ret = 0, newdata = 0;
844 	u_int32_t	*buf;
845 
846 	if (uio->uio_resid == 0)
847 		return 0;
848 
849 	buf = malloc(POOLBYTES, M_TEMP, M_WAITOK);
850 
851 	while (ret == 0 && uio->uio_resid > 0) {
852 		size_t	n = ulmin(POOLBYTES, uio->uio_resid);
853 
854 		ret = uiomove(buf, n, uio);
855 		if (ret != 0)
856 			break;
857 		while (n % sizeof(u_int32_t))
858 			((u_int8_t *)buf)[n++] = 0;
859 		add_entropy_words(buf, n / 4);
860 		if (uio->uio_resid > 0)
861 			yield();
862 		newdata = 1;
863 	}
864 
865 	if (newdata)
866 		arc4_init(NULL);
867 
868 	explicit_bzero(buf, POOLBYTES);
869 	free(buf, M_TEMP, POOLBYTES);
870 	return ret;
871 }
872 
873 int
874 randomkqfilter(dev_t dev, struct knote *kn)
875 {
876 	switch (kn->kn_filter) {
877 	case EVFILT_READ:
878 		kn->kn_fop = &randomread_filtops;
879 		break;
880 	case EVFILT_WRITE:
881 		kn->kn_fop = &randomwrite_filtops;
882 		break;
883 	default:
884 		return (EINVAL);
885 	}
886 
887 	return (0);
888 }
889 
890 void
891 filt_randomdetach(struct knote *kn)
892 {
893 }
894 
895 int
896 filt_randomread(struct knote *kn, long hint)
897 {
898 	kn->kn_data = ARC4_MAIN_MAX_BYTES;
899 	return (1);
900 }
901 
902 int
903 filt_randomwrite(struct knote *kn, long hint)
904 {
905 	kn->kn_data = POOLBYTES;
906 	return (1);
907 }
908 
909 int
910 randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
911 {
912 	switch (cmd) {
913 	case FIOASYNC:
914 		/* No async flag in softc so this is a no-op. */
915 		break;
916 	case FIONBIO:
917 		/* Handled in the upper FS layer. */
918 		break;
919 	default:
920 		return ENOTTY;
921 	}
922 	return 0;
923 }
924 
925 int
926 sys_getentropy(struct proc *p, void *v, register_t *retval)
927 {
928 	struct sys_getentropy_args /* {
929 		syscallarg(void *) buf;
930 		syscallarg(size_t) nbyte;
931 	} */ *uap = v;
932 	char buf[256];
933 	int error;
934 
935 	if (SCARG(uap, nbyte) > sizeof(buf))
936 		return (EIO);
937 	arc4random_buf(buf, SCARG(uap, nbyte));
938 	if ((error = copyout(buf, SCARG(uap, buf), SCARG(uap, nbyte))) != 0)
939 		return (error);
940 	explicit_bzero(buf, sizeof(buf));
941 	retval[0] = 0;
942 	return (0);
943 }
944