xref: /openbsd/sys/dev/sdmmc/sdhc.c (revision 274d7c50)
1 /*	$OpenBSD: sdhc.c,v 1.62 2019/04/02 07:08:40 stsp Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * SD Host Controller driver based on the SD Host Controller Standard
21  * Simplified Specification Version 1.00 (www.sdcard.com).
22  */
23 
24 #include <sys/param.h>
25 #include <sys/device.h>
26 #include <sys/kernel.h>
27 #include <sys/malloc.h>
28 #include <sys/proc.h>
29 #include <sys/systm.h>
30 
31 #include <dev/sdmmc/sdhcreg.h>
32 #include <dev/sdmmc/sdhcvar.h>
33 #include <dev/sdmmc/sdmmcchip.h>
34 #include <dev/sdmmc/sdmmcreg.h>
35 #include <dev/sdmmc/sdmmcvar.h>
36 #include <dev/sdmmc/sdmmc_ioreg.h>
37 
38 #define SDHC_COMMAND_TIMEOUT	hz
39 #define SDHC_BUFFER_TIMEOUT	hz
40 #define SDHC_TRANSFER_TIMEOUT	hz
41 #define SDHC_DMA_TIMEOUT	(hz*3)
42 
43 struct sdhc_host {
44 	struct sdhc_softc *sc;		/* host controller device */
45 	struct device *sdmmc;		/* generic SD/MMC device */
46 	bus_space_tag_t iot;		/* host register set tag */
47 	bus_space_handle_t ioh;		/* host register set handle */
48 	u_int16_t version;		/* specification version */
49 	u_int clkbase;			/* base clock frequency in KHz */
50 	int maxblklen;			/* maximum block length */
51 	int flags;			/* flags for this host */
52 	u_int32_t ocr;			/* OCR value from capabilities */
53 	u_int8_t regs[14];		/* host controller state */
54 	u_int16_t intr_status;		/* soft interrupt status */
55 	u_int16_t intr_error_status;	/* soft error status */
56 
57 	bus_dmamap_t adma_map;
58 	bus_dma_segment_t adma_segs[1];
59 	caddr_t adma2;
60 };
61 
62 /* flag values */
63 #define SHF_USE_DMA		0x0001
64 #define SHF_USE_DMA64		0x0002
65 
66 #define HREAD1(hp, reg)							\
67 	(bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
68 #define HREAD2(hp, reg)							\
69 	(bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
70 #define HREAD4(hp, reg)							\
71 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
72 #define HWRITE1(hp, reg, val)						\
73 	bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
74 #define HWRITE2(hp, reg, val)						\
75 	bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
76 #define HWRITE4(hp, reg, val)						\
77 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
78 #define HCLR1(hp, reg, bits)						\
79 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
80 #define HCLR2(hp, reg, bits)						\
81 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
82 #define HSET1(hp, reg, bits)						\
83 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
84 #define HSET2(hp, reg, bits)						\
85 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
86 
87 int	sdhc_host_reset(sdmmc_chipset_handle_t);
88 u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
89 int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
90 int	sdhc_card_detect(sdmmc_chipset_handle_t);
91 int	sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t);
92 int	sdhc_bus_clock(sdmmc_chipset_handle_t, int, int);
93 int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
94 void	sdhc_card_intr_mask(sdmmc_chipset_handle_t, int);
95 void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
96 int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
97 void	sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
98 int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
99 int	sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
100 int	sdhc_soft_reset(struct sdhc_host *, int);
101 int	sdhc_wait_intr_cold(struct sdhc_host *, int, int);
102 int	sdhc_wait_intr(struct sdhc_host *, int, int);
103 void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
104 void	sdhc_read_data(struct sdhc_host *, u_char *, int);
105 void	sdhc_write_data(struct sdhc_host *, u_char *, int);
106 int	sdhc_hibernate_init(sdmmc_chipset_handle_t, void *);
107 
108 #ifdef SDHC_DEBUG
109 int sdhcdebug = 0;
110 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
111 void	sdhc_dump_regs(struct sdhc_host *);
112 #else
113 #define DPRINTF(n,s)	do {} while(0)
114 #endif
115 
116 struct sdmmc_chip_functions sdhc_functions = {
117 	/* host controller reset */
118 	sdhc_host_reset,
119 	/* host controller capabilities */
120 	sdhc_host_ocr,
121 	sdhc_host_maxblklen,
122 	/* card detection */
123 	sdhc_card_detect,
124 	/* bus power and clock frequency */
125 	sdhc_bus_power,
126 	sdhc_bus_clock,
127 	sdhc_bus_width,
128 	/* command execution */
129 	sdhc_exec_command,
130 	/* card interrupt */
131 	sdhc_card_intr_mask,
132 	sdhc_card_intr_ack,
133 	/* UHS functions */
134 	sdhc_signal_voltage,
135 	/* hibernate */
136 	sdhc_hibernate_init,
137 };
138 
139 struct cfdriver sdhc_cd = {
140 	NULL, "sdhc", DV_DULL
141 };
142 
143 /*
144  * Called by attachment driver.  For each SD card slot there is one SD
145  * host controller standard register set. (1.3)
146  */
147 int
148 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
149     bus_space_handle_t ioh, bus_size_t iosize, int usedma, u_int32_t caps)
150 {
151 	struct sdmmcbus_attach_args saa;
152 	struct sdhc_host *hp;
153 	int error = 1;
154 	int max_clock;
155 #ifdef SDHC_DEBUG
156 	u_int16_t version;
157 
158 	version = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
159 	printf("%s: SD Host Specification/Vendor Version ",
160 	    sc->sc_dev.dv_xname);
161 	switch(SDHC_SPEC_VERSION(version)) {
162 	case 0x00:
163 		printf("1.0/%u\n", SDHC_VENDOR_VERSION(version));
164 		break;
165 	default:
166 		printf(">1.0/%u\n", SDHC_VENDOR_VERSION(version));
167 		break;
168 	}
169 #endif
170 
171 	/* Allocate one more host structure. */
172 	sc->sc_nhosts++;
173 	hp = malloc(sizeof(*hp), M_DEVBUF, M_WAITOK | M_ZERO);
174 	sc->sc_host[sc->sc_nhosts - 1] = hp;
175 
176 	/* Fill in the new host structure. */
177 	hp->sc = sc;
178 	hp->iot = iot;
179 	hp->ioh = ioh;
180 
181 	/* Store specification version. */
182 	hp->version = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
183 
184 	/*
185 	 * Reset the host controller and enable interrupts.
186 	 */
187 	(void)sdhc_host_reset(hp);
188 
189 	/* Determine host capabilities. */
190 	if (caps == 0)
191 		caps = HREAD4(hp, SDHC_CAPABILITIES);
192 
193 	/* Use DMA if the host system and the controller support it. */
194 	if (usedma && ISSET(caps, SDHC_ADMA2_SUPP)) {
195 		SET(hp->flags, SHF_USE_DMA);
196 		if (ISSET(caps, SDHC_64BIT_DMA_SUPP))
197 			SET(hp->flags, SHF_USE_DMA64);
198 	}
199 
200 	/*
201 	 * Determine the base clock frequency. (2.2.24)
202 	 */
203 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
204 		/* SDHC 3.0 supports 10-255 MHz. */
205 		max_clock = 255000;
206 		if (SDHC_BASE_FREQ_KHZ_V3(caps) != 0)
207 			hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps);
208 	} else {
209 		/* SDHC 1.0/2.0 supports only 10-63 MHz. */
210 		max_clock = 63000;
211 		if (SDHC_BASE_FREQ_KHZ(caps) != 0)
212 			hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
213 	}
214 	if (hp->clkbase == 0) {
215 		/* Make sure we can clock down to 400 kHz. */
216 		max_clock = 400 * SDHC_SDCLK_DIV_MAX_V3;
217 		hp->clkbase = sc->sc_clkbase;
218 	}
219 	if (hp->clkbase == 0) {
220 		/* The attachment driver must tell us. */
221 		printf("%s: base clock frequency unknown\n",
222 		    sc->sc_dev.dv_xname);
223 		goto err;
224 	} else if (hp->clkbase < 10000 || hp->clkbase > max_clock) {
225 		printf("%s: base clock frequency out of range: %u MHz\n",
226 		    sc->sc_dev.dv_xname, hp->clkbase / 1000);
227 		goto err;
228 	}
229 
230 	printf("%s: SDHC %d.0, %d MHz base clock\n", DEVNAME(sc),
231 	    SDHC_SPEC_VERSION(hp->version) + 1, hp->clkbase / 1000);
232 
233 	/*
234 	 * XXX Set the data timeout counter value according to
235 	 * capabilities. (2.2.15)
236 	 */
237 
238 	/*
239 	 * Determine SD bus voltage levels supported by the controller.
240 	 */
241 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
242 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
243 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
244 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
245 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
246 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
247 
248 	/*
249 	 * Determine the maximum block length supported by the host
250 	 * controller. (2.2.24)
251 	 */
252 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
253 	case SDHC_MAX_BLK_LEN_512:
254 		hp->maxblklen = 512;
255 		break;
256 	case SDHC_MAX_BLK_LEN_1024:
257 		hp->maxblklen = 1024;
258 		break;
259 	case SDHC_MAX_BLK_LEN_2048:
260 		hp->maxblklen = 2048;
261 		break;
262 	default:
263 		hp->maxblklen = 1;
264 		break;
265 	}
266 
267 	if (ISSET(hp->flags, SHF_USE_DMA)) {
268 		int rseg;
269 
270 		/* Allocate ADMA2 descriptor memory */
271 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
272 		    PAGE_SIZE, hp->adma_segs, 1, &rseg,
273 		    BUS_DMA_WAITOK | BUS_DMA_ZERO);
274 		if (error)
275 			goto adma_done;
276 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
277 		    PAGE_SIZE, &hp->adma2, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
278 		if (error) {
279 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
280 			goto adma_done;
281 		}
282 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
283 		    0, BUS_DMA_WAITOK, &hp->adma_map);
284 		if (error) {
285 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
286 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
287 			goto adma_done;
288 		}
289 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
290 		    hp->adma2, PAGE_SIZE, NULL,
291 		    BUS_DMA_WAITOK | BUS_DMA_WRITE);
292 		if (error) {
293 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
294 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
295 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
296 			goto adma_done;
297 		}
298 
299 	adma_done:
300 		if (error) {
301 			printf("%s: can't allocate DMA descriptor table\n",
302 			    DEVNAME(hp->sc));
303 			CLR(hp->flags, SHF_USE_DMA);
304 		}
305 	}
306 
307 	/*
308 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
309 	 * not invoke any chipset functions before it is attached.)
310 	 */
311 	bzero(&saa, sizeof(saa));
312 	saa.saa_busname = "sdmmc";
313 	saa.sct = &sdhc_functions;
314 	saa.sch = hp;
315 	saa.caps = SMC_CAPS_4BIT_MODE;
316 	saa.dmat = sc->sc_dmat;
317 	if (ISSET(hp->flags, SHF_USE_DMA))
318 		saa.caps |= SMC_CAPS_DMA;
319 
320 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
321 		saa.caps |= SMC_CAPS_SD_HIGHSPEED;
322 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
323 		saa.caps |= SMC_CAPS_MMC_HIGHSPEED;
324 
325 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
326 		uint32_t caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
327 
328 		if (ISSET(caps, SDHC_8BIT_MODE_SUPP))
329 			saa.caps |= SMC_CAPS_8BIT_MODE;
330 
331 		if (ISSET(caps2, SDHC_DDR50_SUPP))
332 			saa.caps |= SMC_CAPS_MMC_DDR52;
333 	}
334 
335 	if (ISSET(sc->sc_flags, SDHC_F_NODDR50))
336 		saa.caps &= ~SMC_CAPS_MMC_DDR52;
337 
338 	if (ISSET(sc->sc_flags, SDHC_F_NONREMOVABLE))
339 		saa.caps |= SMC_CAPS_NONREMOVABLE;
340 
341 	hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
342 	if (hp->sdmmc == NULL) {
343 		error = 0;
344 		goto err;
345 	}
346 
347 	return 0;
348 
349 err:
350 	free(hp, M_DEVBUF, sizeof *hp);
351 	sc->sc_host[sc->sc_nhosts - 1] = NULL;
352 	sc->sc_nhosts--;
353 	return (error);
354 }
355 
356 int
357 sdhc_activate(struct device *self, int act)
358 {
359 	struct sdhc_softc *sc = (struct sdhc_softc *)self;
360 	struct sdhc_host *hp;
361 	int n, i, rv = 0;
362 
363 	switch (act) {
364 	case DVACT_SUSPEND:
365 		rv = config_activate_children(self, act);
366 
367 		/* Save the host controller state. */
368 		for (n = 0; n < sc->sc_nhosts; n++) {
369 			hp = sc->sc_host[n];
370 			for (i = 0; i < sizeof hp->regs; i++)
371 				hp->regs[i] = HREAD1(hp, i);
372 		}
373 		break;
374 	case DVACT_RESUME:
375 		/* Restore the host controller state. */
376 		for (n = 0; n < sc->sc_nhosts; n++) {
377 			hp = sc->sc_host[n];
378 			(void)sdhc_host_reset(hp);
379 			for (i = 0; i < sizeof hp->regs; i++)
380 				HWRITE1(hp, i, hp->regs[i]);
381 		}
382 		rv = config_activate_children(self, act);
383 		break;
384 	case DVACT_POWERDOWN:
385 		rv = config_activate_children(self, act);
386 		sdhc_shutdown(self);
387 		break;
388 	default:
389 		rv = config_activate_children(self, act);
390 		break;
391 	}
392 	return (rv);
393 }
394 
395 /*
396  * Shutdown hook established by or called from attachment driver.
397  */
398 void
399 sdhc_shutdown(void *arg)
400 {
401 	struct sdhc_softc *sc = arg;
402 	struct sdhc_host *hp;
403 	int i;
404 
405 	/* XXX chip locks up if we don't disable it before reboot. */
406 	for (i = 0; i < sc->sc_nhosts; i++) {
407 		hp = sc->sc_host[i];
408 		(void)sdhc_host_reset(hp);
409 	}
410 }
411 
412 /*
413  * Reset the host controller.  Called during initialization, when
414  * cards are removed, upon resume, and during error recovery.
415  */
416 int
417 sdhc_host_reset(sdmmc_chipset_handle_t sch)
418 {
419 	struct sdhc_host *hp = sch;
420 	u_int16_t imask;
421 	int error;
422 	int s;
423 
424 	s = splsdmmc();
425 
426 	/* Disable all interrupts. */
427 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
428 
429 	/*
430 	 * Reset the entire host controller and wait up to 100ms for
431 	 * the controller to clear the reset bit.
432 	 */
433 	if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
434 		splx(s);
435 		return (error);
436 	}
437 
438 	/* Set data timeout counter value to max for now. */
439 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
440 
441 	/* Enable interrupts. */
442 	imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
443 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
444 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
445 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
446 
447 	HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
448 	HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
449 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
450 	HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
451 
452 	splx(s);
453 	return 0;
454 }
455 
456 u_int32_t
457 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
458 {
459 	struct sdhc_host *hp = sch;
460 	return hp->ocr;
461 }
462 
463 int
464 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
465 {
466 	struct sdhc_host *hp = sch;
467 	return hp->maxblklen;
468 }
469 
470 /*
471  * Return non-zero if the card is currently inserted.
472  */
473 int
474 sdhc_card_detect(sdmmc_chipset_handle_t sch)
475 {
476 	struct sdhc_host *hp = sch;
477 
478 	if (hp->sc->sc_card_detect)
479 		return hp->sc->sc_card_detect(hp->sc);
480 
481 	return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
482 	    1 : 0;
483 }
484 
485 /*
486  * Set or change SD bus voltage and enable or disable SD bus power.
487  * Return zero on success.
488  */
489 int
490 sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
491 {
492 	struct sdhc_host *hp = sch;
493 	u_int8_t vdd;
494 	int s;
495 
496 	s = splsdmmc();
497 
498 	/*
499 	 * Disable bus power before voltage change.
500 	 */
501 	if (!(hp->sc->sc_flags & SDHC_F_NOPWR0))
502 		HWRITE1(hp, SDHC_POWER_CTL, 0);
503 
504 	/* If power is disabled, reset the host and return now. */
505 	if (ocr == 0) {
506 		splx(s);
507 		(void)sdhc_host_reset(hp);
508 		return 0;
509 	}
510 
511 	/*
512 	 * Select the maximum voltage according to capabilities.
513 	 */
514 	ocr &= hp->ocr;
515 	if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
516 		vdd = SDHC_VOLTAGE_3_3V;
517 	else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
518 		vdd = SDHC_VOLTAGE_3_0V;
519 	else if (ISSET(ocr, MMC_OCR_1_65V_1_95V))
520 		vdd = SDHC_VOLTAGE_1_8V;
521 	else {
522 		/* Unsupported voltage level requested. */
523 		splx(s);
524 		return EINVAL;
525 	}
526 
527 	/*
528 	 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
529 	 * voltage ramp until power rises.
530 	 */
531 	HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
532 	    SDHC_BUS_POWER);
533 	sdmmc_delay(10000);
534 
535 	/*
536 	 * The host system may not power the bus due to battery low,
537 	 * etc.  In that case, the host controller should clear the
538 	 * bus power bit.
539 	 */
540 	if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
541 		splx(s);
542 		return ENXIO;
543 	}
544 
545 	splx(s);
546 	return 0;
547 }
548 
549 /*
550  * Return the smallest possible base clock frequency divisor value
551  * for the CLOCK_CTL register to produce `freq' (KHz).
552  */
553 static int
554 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
555 {
556 	int max_div = SDHC_SDCLK_DIV_MAX;;
557 	int div;
558 
559 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
560 		max_div = SDHC_SDCLK_DIV_MAX_V3;;
561 
562 	for (div = 1; div <= max_div; div *= 2)
563 		if ((hp->clkbase / div) <= freq)
564 			return (div / 2);
565 	/* No divisor found. */
566 	return -1;
567 }
568 
569 /*
570  * Set or change SDCLK frequency or disable the SD clock.
571  * Return zero on success.
572  */
573 int
574 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
575 {
576 	struct sdhc_host *hp = sch;
577 	int s;
578 	int div;
579 	int sdclk;
580 	int timo;
581 	int error = 0;
582 
583 	s = splsdmmc();
584 
585 #ifdef DIAGNOSTIC
586 	/* Must not stop the clock if commands are in progress. */
587 	if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
588 	    sdhc_card_detect(hp))
589 		printf("sdhc_sdclk_frequency_select: command in progress\n");
590 #endif
591 
592 	/*
593 	 * Stop SD clock before changing the frequency.
594 	 */
595 	HWRITE2(hp, SDHC_CLOCK_CTL, 0);
596 	if (freq == SDMMC_SDCLK_OFF)
597 		goto ret;
598 
599 	if (timing == SDMMC_TIMING_LEGACY)
600 		HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
601 	else
602 		HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
603 
604 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
605 		switch (timing) {
606 		case SDMMC_TIMING_MMC_DDR52:
607 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
608 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_DDR50);
609 			break;
610 		}
611 	}
612 
613 	/*
614 	 * Set the minimum base clock frequency divisor.
615 	 */
616 	if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
617 		/* Invalid base clock frequency or `freq' value. */
618 		error = EINVAL;
619 		goto ret;
620 	}
621 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
622 		sdclk = SDHC_SDCLK_DIV_V3(div);
623 	else
624 		sdclk = SDHC_SDCLK_DIV(div);
625 	HWRITE2(hp, SDHC_CLOCK_CTL, sdclk);
626 
627 	/*
628 	 * Start internal clock.  Wait 10ms for stabilization.
629 	 */
630 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
631 	for (timo = 1000; timo > 0; timo--) {
632 		if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
633 			break;
634 		sdmmc_delay(10);
635 	}
636 	if (timo == 0) {
637 		error = ETIMEDOUT;
638 		goto ret;
639 	}
640 
641 	/*
642 	 * Enable SD clock.
643 	 */
644 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
645 
646 ret:
647 	splx(s);
648 	return error;
649 }
650 
651 int
652 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
653 {
654 	struct sdhc_host *hp = (struct sdhc_host *)sch;
655 	int reg;
656 	int s;
657 
658 	if (width != 1 && width != 4 && width != 8)
659 		return EINVAL;
660 
661 	s = splsdmmc();
662 
663 	reg = HREAD1(hp, SDHC_HOST_CTL);
664 	reg &= ~SDHC_4BIT_MODE;
665 	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
666 		reg &= ~SDHC_8BIT_MODE;
667 	}
668 	if (width == 4) {
669 		reg |= SDHC_4BIT_MODE;
670 	} else if (width == 8) {
671 		KASSERT(SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3);
672 		reg |= SDHC_8BIT_MODE;
673 	}
674 	HWRITE1(hp, SDHC_HOST_CTL, reg);
675 
676 	splx(s);
677 
678 	return 0;
679 }
680 
681 void
682 sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable)
683 {
684 	struct sdhc_host *hp = sch;
685 
686 	if (enable) {
687 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
688 		HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
689 	} else {
690 		HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
691 		HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
692 	}
693 }
694 
695 void
696 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
697 {
698 	struct sdhc_host *hp = sch;
699 
700 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
701 }
702 
703 int
704 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
705 {
706 	struct sdhc_host *hp = sch;
707 
708 	if (hp->sc->sc_signal_voltage)
709 		return hp->sc->sc_signal_voltage(hp->sc, signal_voltage);
710 
711 	if (SDHC_SPEC_VERSION(hp->version) < SDHC_SPEC_V3)
712 		return EINVAL;
713 
714 	switch (signal_voltage) {
715 	case SDMMC_SIGNAL_VOLTAGE_180:
716 		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
717 		break;
718 	case SDMMC_SIGNAL_VOLTAGE_330:
719 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
720 		break;
721 	default:
722 		return EINVAL;
723 	}
724 
725 	/* Regulator output shall be stable within 5 ms. */
726 	sdmmc_delay(5000);
727 
728 	/* Host controller clears this bit if 1.8V signalling fails. */
729 	if (signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 &&
730 	    !ISSET(HREAD4(hp, SDHC_HOST_CTL2), SDHC_1_8V_SIGNAL_EN))
731 		return EIO;
732 
733 	return 0;
734 }
735 
736 int
737 sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
738 {
739 	u_int32_t state;
740 	int timeout;
741 
742 	for (timeout = 10; timeout > 0; timeout--) {
743 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
744 		    == value)
745 			return 0;
746 		sdmmc_delay(10000);
747 	}
748 	DPRINTF(0,("%s: timeout waiting for %x (state=%b)\n", DEVNAME(hp->sc),
749 	    value, state, SDHC_PRESENT_STATE_BITS));
750 	return ETIMEDOUT;
751 }
752 
753 void
754 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
755 {
756 	struct sdhc_host *hp = sch;
757 	int error;
758 
759 	/*
760 	 * Start the MMC command, or mark `cmd' as failed and return.
761 	 */
762 	error = sdhc_start_command(hp, cmd);
763 	if (error != 0) {
764 		cmd->c_error = error;
765 		SET(cmd->c_flags, SCF_ITSDONE);
766 		return;
767 	}
768 
769 	/*
770 	 * Wait until the command phase is done, or until the command
771 	 * is marked done for any other reason.
772 	 */
773 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE,
774 	    SDHC_COMMAND_TIMEOUT)) {
775 		cmd->c_error = ETIMEDOUT;
776 		SET(cmd->c_flags, SCF_ITSDONE);
777 		return;
778 	}
779 
780 	/*
781 	 * The host controller removes bits [0:7] from the response
782 	 * data (CRC) and we pass the data up unchanged to the bus
783 	 * driver (without padding).
784 	 */
785 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
786 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
787 			u_char *p = (u_char *)cmd->c_resp;
788 			int i;
789 
790 			for (i = 0; i < 15; i++)
791 				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
792 		} else
793 			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
794 	}
795 
796 	/*
797 	 * If the command has data to transfer in any direction,
798 	 * execute the transfer now.
799 	 */
800 	if (cmd->c_error == 0 && cmd->c_data != NULL)
801 		sdhc_transfer_data(hp, cmd);
802 
803 	/* Turn off the LED. */
804 	HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
805 
806 	DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",
807 	    DEVNAME(hp->sc), cmd->c_opcode, cmd->c_flags, cmd->c_error));
808 	SET(cmd->c_flags, SCF_ITSDONE);
809 }
810 
811 int
812 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
813 {
814 	struct sdhc_adma2_descriptor32 *desc32 = (void *)hp->adma2;
815 	struct sdhc_adma2_descriptor64 *desc64 = (void *)hp->adma2;
816 	struct sdhc_softc *sc = hp->sc;
817 	u_int16_t blksize = 0;
818 	u_int16_t blkcount = 0;
819 	u_int16_t mode;
820 	u_int16_t command;
821 	int error;
822 	int seg;
823 	int s;
824 
825 	DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x "
826 	    "proc=\"%s\"\n", DEVNAME(hp->sc), cmd->c_opcode, cmd->c_arg,
827 	    cmd->c_data, cmd->c_datalen, cmd->c_flags, curproc ?
828 	    curproc->p_p->ps_comm : ""));
829 
830 	/*
831 	 * The maximum block length for commands should be the minimum
832 	 * of the host buffer size and the card buffer size. (1.7.2)
833 	 */
834 
835 	/* Fragment the data into proper blocks. */
836 	if (cmd->c_datalen > 0) {
837 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
838 		blkcount = cmd->c_datalen / blksize;
839 		if (cmd->c_datalen % blksize > 0) {
840 			/* XXX: Split this command. (1.7.4) */
841 			printf("%s: data not a multiple of %d bytes\n",
842 			    DEVNAME(hp->sc), blksize);
843 			return EINVAL;
844 		}
845 	}
846 
847 	/* Check limit imposed by 9-bit block count. (1.7.2) */
848 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
849 		printf("%s: too much data\n", DEVNAME(hp->sc));
850 		return EINVAL;
851 	}
852 
853 	/* Prepare transfer mode register value. (2.2.5) */
854 	mode = 0;
855 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
856 		mode |= SDHC_READ_MODE;
857 	if (blkcount > 0) {
858 		mode |= SDHC_BLOCK_COUNT_ENABLE;
859 		if (blkcount > 1) {
860 			mode |= SDHC_MULTI_BLOCK_MODE;
861 			if (cmd->c_opcode != SD_IO_RW_EXTENDED)
862 				mode |= SDHC_AUTO_CMD12_ENABLE;
863 		}
864 	}
865 	if (cmd->c_dmamap && cmd->c_datalen > 0 &&
866 	    ISSET(hp->flags, SHF_USE_DMA))
867 		mode |= SDHC_DMA_ENABLE;
868 
869 	/*
870 	 * Prepare command register value. (2.2.6)
871 	 */
872 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
873 	    SDHC_COMMAND_INDEX_SHIFT;
874 
875 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
876 		command |= SDHC_CRC_CHECK_ENABLE;
877 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
878 		command |= SDHC_INDEX_CHECK_ENABLE;
879 	if (cmd->c_data != NULL)
880 		command |= SDHC_DATA_PRESENT_SELECT;
881 
882 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
883 		command |= SDHC_NO_RESPONSE;
884 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
885 		command |= SDHC_RESP_LEN_136;
886 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
887 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
888 	else
889 		command |= SDHC_RESP_LEN_48;
890 
891 	/* Wait until command and data inhibit bits are clear. (1.5) */
892 	if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
893 		return error;
894 
895 	s = splsdmmc();
896 
897 	/* Alert the user not to remove the card. */
898 	HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
899 
900 	/* Set DMA start address if SHF_USE_DMA is set. */
901 	if (cmd->c_dmamap && ISSET(hp->flags, SHF_USE_DMA)) {
902 		for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
903 			bus_addr_t paddr =
904 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
905 			uint16_t len =
906 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
907 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
908 			uint16_t attr;
909 
910 			attr = SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
911 			if (seg == cmd->c_dmamap->dm_nsegs - 1)
912 				attr |= SDHC_ADMA2_END;
913 
914 			if (ISSET(hp->flags, SHF_USE_DMA64)) {
915 				desc64[seg].attribute = htole16(attr);
916 				desc64[seg].length = htole16(len);
917 				desc64[seg].address_lo =
918 				    htole32((uint64_t)paddr & 0xffffffff);
919 				desc64[seg].address_hi =
920 				    htole32((uint64_t)paddr >> 32);
921 			} else {
922 				desc32[seg].attribute = htole16(attr);
923 				desc32[seg].length = htole16(len);
924 				desc32[seg].address = htole32(paddr);
925 			}
926 		}
927 
928 		if (ISSET(hp->flags, SHF_USE_DMA64))
929 			desc64[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
930 		else
931 			desc32[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
932 
933 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
934 		    BUS_DMASYNC_PREWRITE);
935 
936 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
937 		if (ISSET(hp->flags, SHF_USE_DMA64))
938 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA64);
939 		else
940 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA32);
941 
942 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR,
943 		    hp->adma_map->dm_segs[0].ds_addr);
944 	} else
945 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
946 
947 	DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
948 	    DEVNAME(hp->sc), command, mode, blksize, blkcount));
949 
950 	/*
951 	 * Start a CPU data transfer.  Writing to the high order byte
952 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
953 	 */
954 	HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
955 	HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
956 	HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
957 	HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
958 	HWRITE2(hp, SDHC_COMMAND, command);
959 
960 	splx(s);
961 	return 0;
962 }
963 
964 void
965 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
966 {
967 	struct sdhc_softc *sc = hp->sc;
968 	u_char *datap = cmd->c_data;
969 	int i, datalen;
970 	int mask;
971 	int error;
972 
973 	if (cmd->c_dmamap) {
974 		int status;
975 
976 		error = 0;
977 		for (;;) {
978 			status = sdhc_wait_intr(hp,
979 			    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
980 			    SDHC_DMA_TIMEOUT);
981 			if (status & SDHC_TRANSFER_COMPLETE)
982 				break;
983 			if (!status) {
984 				error = ETIMEDOUT;
985 				break;
986 			}
987 		}
988 
989 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
990 		    BUS_DMASYNC_POSTWRITE);
991 		goto done;
992 	}
993 
994 	mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
995 	    SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
996 	error = 0;
997 	datalen = cmd->c_datalen;
998 
999 	DPRINTF(1,("%s: resp=%#x datalen=%d\n", DEVNAME(hp->sc),
1000 	    MMC_R1(cmd->c_resp), datalen));
1001 
1002 #ifdef SDHC_DEBUG
1003 	/* XXX I forgot why I wanted to know when this happens :-( */
1004 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1005 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00))
1006 		printf("%s: CMD52/53 error response flags %#x\n",
1007 		    DEVNAME(hp->sc), MMC_R1(cmd->c_resp) & 0xff00);
1008 #endif
1009 
1010 	while (datalen > 0) {
1011 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY|
1012 		    SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) {
1013 			error = ETIMEDOUT;
1014 			break;
1015 		}
1016 
1017 		if ((error = sdhc_wait_state(hp, mask, mask)) != 0)
1018 			break;
1019 
1020 		i = MIN(datalen, cmd->c_blklen);
1021 		if (ISSET(cmd->c_flags, SCF_CMD_READ))
1022 			sdhc_read_data(hp, datap, i);
1023 		else
1024 			sdhc_write_data(hp, datap, i);
1025 
1026 		datap += i;
1027 		datalen -= i;
1028 	}
1029 
1030 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1031 	    SDHC_TRANSFER_TIMEOUT))
1032 		error = ETIMEDOUT;
1033 
1034 done:
1035 	if (error != 0)
1036 		cmd->c_error = error;
1037 	SET(cmd->c_flags, SCF_ITSDONE);
1038 
1039 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
1040 	    DEVNAME(hp->sc), cmd->c_error));
1041 }
1042 
1043 void
1044 sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen)
1045 {
1046 	while (datalen > 3) {
1047 		*(u_int32_t *)datap = HREAD4(hp, SDHC_DATA);
1048 		datap += 4;
1049 		datalen -= 4;
1050 	}
1051 	if (datalen > 0) {
1052 		u_int32_t rv = HREAD4(hp, SDHC_DATA);
1053 		do {
1054 			*datap++ = rv & 0xff;
1055 			rv = rv >> 8;
1056 		} while (--datalen > 0);
1057 	}
1058 }
1059 
1060 void
1061 sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen)
1062 {
1063 	while (datalen > 3) {
1064 		DPRINTF(3,("%08x\n", *(u_int32_t *)datap));
1065 		HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap));
1066 		datap += 4;
1067 		datalen -= 4;
1068 	}
1069 	if (datalen > 0) {
1070 		u_int32_t rv = *datap++;
1071 		if (datalen > 1)
1072 			rv |= *datap++ << 8;
1073 		if (datalen > 2)
1074 			rv |= *datap++ << 16;
1075 		DPRINTF(3,("rv %08x\n", rv));
1076 		HWRITE4(hp, SDHC_DATA, rv);
1077 	}
1078 }
1079 
1080 /* Prepare for another command. */
1081 int
1082 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1083 {
1084 	int timo;
1085 
1086 	DPRINTF(1,("%s: software reset reg=%#x\n", DEVNAME(hp->sc), mask));
1087 
1088 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1089 	for (timo = 10; timo > 0; timo--) {
1090 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1091 			break;
1092 		sdmmc_delay(10000);
1093 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1094 	}
1095 	if (timo == 0) {
1096 		DPRINTF(1,("%s: timeout reg=%#x\n", DEVNAME(hp->sc),
1097 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
1098 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1099 		return (ETIMEDOUT);
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 int
1106 sdhc_wait_intr_cold(struct sdhc_host *hp, int mask, int timo)
1107 {
1108 	int status;
1109 
1110 	mask |= SDHC_ERROR_INTERRUPT;
1111 	timo = timo * tick;
1112 	status = hp->intr_status;
1113 	while ((status & mask) == 0) {
1114 
1115 		status = HREAD2(hp, SDHC_NINTR_STATUS);
1116 		if (ISSET(status, SDHC_NINTR_STATUS_MASK)) {
1117 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
1118 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1119 				uint16_t error;
1120 				error = HREAD2(hp, SDHC_EINTR_STATUS);
1121 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
1122 				hp->intr_status |= status;
1123 
1124 				if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1125 				    SDHC_DATA_TIMEOUT_ERROR))
1126 					break;
1127 			}
1128 
1129 			if (ISSET(status, SDHC_BUFFER_READ_READY |
1130 			    SDHC_BUFFER_WRITE_READY | SDHC_COMMAND_COMPLETE |
1131 			    SDHC_TRANSFER_COMPLETE)) {
1132 				hp->intr_status |= status;
1133 				break;
1134 			}
1135 
1136 			if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1137 				HSET2(hp, SDHC_NINTR_STATUS_EN,
1138 				    SDHC_CARD_INTERRUPT);
1139 			}
1140 
1141 			continue;
1142 		}
1143 
1144 		delay(1);
1145 		if (timo-- == 0) {
1146 			status |= SDHC_ERROR_INTERRUPT;
1147 			break;
1148 		}
1149 	}
1150 
1151 	hp->intr_status &= ~(status & mask);
1152 	return (status & mask);
1153 }
1154 
1155 int
1156 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1157 {
1158 	int status;
1159 	int s;
1160 
1161 	if (cold)
1162 		return (sdhc_wait_intr_cold(hp, mask, timo));
1163 
1164 	mask |= SDHC_ERROR_INTERRUPT;
1165 
1166 	s = splsdmmc();
1167 	status = hp->intr_status & mask;
1168 	while (status == 0) {
1169 		if (tsleep(&hp->intr_status, PWAIT, "hcintr", timo)
1170 		    == EWOULDBLOCK) {
1171 			status |= SDHC_ERROR_INTERRUPT;
1172 			break;
1173 		}
1174 		status = hp->intr_status & mask;
1175 	}
1176 	hp->intr_status &= ~status;
1177 
1178 	DPRINTF(2,("%s: intr status %#x error %#x\n", DEVNAME(hp->sc), status,
1179 	    hp->intr_error_status));
1180 
1181 	/* Command timeout has higher priority than command complete. */
1182 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1183 		hp->intr_error_status = 0;
1184 		(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1185 		status = 0;
1186 	}
1187 
1188 	splx(s);
1189 	return status;
1190 }
1191 
1192 /*
1193  * Established by attachment driver at interrupt priority IPL_SDMMC.
1194  */
1195 int
1196 sdhc_intr(void *arg)
1197 {
1198 	struct sdhc_softc *sc = arg;
1199 	int host;
1200 	int done = 0;
1201 
1202 	/* We got an interrupt, but we don't know from which slot. */
1203 	for (host = 0; host < sc->sc_nhosts; host++) {
1204 		struct sdhc_host *hp = sc->sc_host[host];
1205 		u_int16_t status;
1206 
1207 		if (hp == NULL)
1208 			continue;
1209 
1210 		/* Find out which interrupts are pending. */
1211 		status = HREAD2(hp, SDHC_NINTR_STATUS);
1212 		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1213 			continue; /* no interrupt for us */
1214 
1215 		/* Acknowledge the interrupts we are about to handle. */
1216 		HWRITE2(hp, SDHC_NINTR_STATUS, status);
1217 		DPRINTF(2,("%s: interrupt status=%b\n", DEVNAME(hp->sc),
1218 		    status, SDHC_NINTR_STATUS_BITS));
1219 
1220 		/* Claim this interrupt. */
1221 		done = 1;
1222 
1223 		/*
1224 		 * Service error interrupts.
1225 		 */
1226 		if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1227 			u_int16_t error;
1228 
1229 			/* Acknowledge error interrupts. */
1230 			error = HREAD2(hp, SDHC_EINTR_STATUS);
1231 			HWRITE2(hp, SDHC_EINTR_STATUS, error);
1232 			DPRINTF(2,("%s: error interrupt, status=%b\n",
1233 			    DEVNAME(hp->sc), error, SDHC_EINTR_STATUS_BITS));
1234 
1235 			if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1236 			    SDHC_DATA_TIMEOUT_ERROR)) {
1237 				hp->intr_error_status |= error;
1238 				hp->intr_status |= status;
1239 				wakeup(&hp->intr_status);
1240 			}
1241 		}
1242 
1243 		/*
1244 		 * Wake up the sdmmc event thread to scan for cards.
1245 		 */
1246 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1247 			sdmmc_needs_discover(hp->sdmmc);
1248 
1249 		/*
1250 		 * Wake up the blocking process to service command
1251 		 * related interrupt(s).
1252 		 */
1253 		if (ISSET(status, SDHC_BUFFER_READ_READY|
1254 		    SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1255 		    SDHC_TRANSFER_COMPLETE)) {
1256 			hp->intr_status |= status;
1257 			wakeup(&hp->intr_status);
1258 		}
1259 
1260 		/*
1261 		 * Service SD card interrupts.
1262 		 */
1263 		if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1264 			DPRINTF(0,("%s: card interrupt\n", DEVNAME(hp->sc)));
1265 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1266 			sdmmc_card_intr(hp->sdmmc);
1267 		}
1268 	}
1269 	return done;
1270 }
1271 
1272 void
1273 sdhc_needs_discover(struct sdhc_softc *sc)
1274 {
1275 	int host;
1276 
1277 	for (host = 0; host < sc->sc_nhosts; host++)
1278 		sdmmc_needs_discover(sc->sc_host[host]->sdmmc);
1279 }
1280 
1281 #ifdef SDHC_DEBUG
1282 void
1283 sdhc_dump_regs(struct sdhc_host *hp)
1284 {
1285 	printf("0x%02x PRESENT_STATE:    %b\n", SDHC_PRESENT_STATE,
1286 	    HREAD4(hp, SDHC_PRESENT_STATE), SDHC_PRESENT_STATE_BITS);
1287 	printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
1288 	    HREAD1(hp, SDHC_POWER_CTL));
1289 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
1290 	    HREAD2(hp, SDHC_NINTR_STATUS));
1291 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
1292 	    HREAD2(hp, SDHC_EINTR_STATUS));
1293 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
1294 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
1295 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
1296 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
1297 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
1298 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1299 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
1300 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1301 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
1302 	    HREAD4(hp, SDHC_CAPABILITIES));
1303 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1304 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
1305 }
1306 #endif
1307 
1308 int
1309 sdhc_hibernate_init(sdmmc_chipset_handle_t sch, void *fake_softc)
1310 {
1311 	struct sdhc_host *hp, *fhp;
1312 	fhp = fake_softc;
1313 	hp = sch;
1314 	*fhp = *hp;
1315 
1316 	return (0);
1317 }
1318