xref: /openbsd/sys/dev/usb/if_mtw.c (revision 3bef86f7)
1 /*	$OpenBSD: if_mtw.c,v 1.8 2023/03/08 04:43:08 guenther Exp $	*/
2 /*
3  * Copyright (c) 2008-2010 Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2013-2014 Kevin Lo
5  * Copyright (c) 2021 James Hastings
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * MediaTek MT7601U 802.11b/g/n WLAN.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/timeout.h>
33 #include <sys/conf.h>
34 #include <sys/device.h>
35 #include <sys/endian.h>
36 
37 #include <machine/intr.h>
38 
39 #if NBPFILTER > 0
40 #include <net/bpf.h>
41 #endif
42 #include <net/if.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 
46 #include <netinet/in.h>
47 #include <netinet/if_ether.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_amrr.h>
51 #include <net80211/ieee80211_ra.h>
52 #include <net80211/ieee80211_radiotap.h>
53 
54 #include <dev/usb/usb.h>
55 #include <dev/usb/usbdi.h>
56 #include <dev/usb/usbdi_util.h>
57 #include <dev/usb/usbdevs.h>
58 
59 #include <dev/ic/mtwreg.h>
60 #include <dev/usb/if_mtwvar.h>
61 
62 #ifdef MTW_DEBUG
63 #define DPRINTF(x)	do { if (mtw_debug) printf x; } while (0)
64 #define DPRINTFN(n, x)	do { if (mtw_debug >= (n)) printf x; } while (0)
65 int mtw_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70 
71 #define USB_ID(v, p)	{ USB_VENDOR_##v, USB_PRODUCT_##v##_##p }
72 static const struct usb_devno mtw_devs[] = {
73 	USB_ID(ASUS,		USBN10V2),
74 	USB_ID(AZUREWAVE,	MT7601_1),
75 	USB_ID(AZUREWAVE,	MT7601_2),
76 	USB_ID(DLINK,		DWA127B1),
77 	USB_ID(EDIMAX,		EW7711UANV2),
78 	USB_ID(MEDIATEK,	MT7601_1),
79 	USB_ID(MEDIATEK,	MT7601_2),
80 	USB_ID(RALINK,		MT7601),
81 	USB_ID(RALINK,		MT7601_2),
82 	USB_ID(RALINK,		MT7601_3),
83 	USB_ID(RALINK,		MT7601_4),
84 	USB_ID(RALINK,		MT7601_5),
85 	USB_ID(XIAOMI,		MT7601U),
86 };
87 
88 int		mtw_match(struct device *, void *, void *);
89 void		mtw_attach(struct device *, struct device *, void *);
90 int		mtw_detach(struct device *, int);
91 void		mtw_attachhook(struct device *);
92 int		mtw_alloc_rx_ring(struct mtw_softc *, int);
93 void		mtw_free_rx_ring(struct mtw_softc *, int);
94 int		mtw_alloc_tx_ring(struct mtw_softc *, int);
95 void		mtw_free_tx_ring(struct mtw_softc *, int);
96 int		mtw_alloc_mcu_ring(struct mtw_softc *);
97 void		mtw_free_mcu_ring(struct mtw_softc *);
98 int		mtw_ucode_write(struct mtw_softc *, const uint8_t *,
99 		    uint32_t, uint32_t);
100 void		mtw_ucode_setup(struct mtw_softc *);
101 int		mtw_load_microcode(struct mtw_softc *);
102 int		mtw_reset(struct mtw_softc *);
103 int		mtw_read(struct mtw_softc *, uint16_t, uint32_t *);
104 int		mtw_read_cfg(struct mtw_softc *, uint16_t, uint32_t *);
105 int		mtw_read_region_1(struct mtw_softc *, uint16_t,
106 		    uint8_t *, int);
107 int		mtw_write_2(struct mtw_softc *, uint16_t, uint16_t);
108 int		mtw_write(struct mtw_softc *, uint16_t, uint32_t);
109 int		mtw_write_cfg(struct mtw_softc *, uint16_t, uint32_t);
110 int		mtw_write_ivb(struct mtw_softc *, const uint8_t *, uint16_t);
111 int		mtw_write_region_1(struct mtw_softc *, uint16_t,
112 		    uint8_t *, int);
113 int		mtw_set_region_4(struct mtw_softc *, uint16_t, uint32_t, int);
114 int		mtw_efuse_read_2(struct mtw_softc *, uint16_t, uint16_t *);
115 int		mtw_eeprom_read_2(struct mtw_softc *, uint16_t, uint16_t *);
116 int		mtw_rf_read(struct mtw_softc *, uint8_t, uint8_t, uint8_t *);
117 int		mtw_rf_write(struct mtw_softc *, uint8_t, uint8_t, uint8_t);
118 int		mtw_bbp_read(struct mtw_softc *, uint8_t, uint8_t *);
119 int		mtw_bbp_write(struct mtw_softc *, uint8_t, uint8_t);
120 int		mtw_usb_dma_read(struct mtw_softc *, uint32_t *);
121 int		mtw_usb_dma_write(struct mtw_softc *, uint32_t);
122 int		mtw_mcu_calibrate(struct mtw_softc *, int, uint32_t);
123 int		mtw_mcu_channel(struct mtw_softc *, uint32_t, uint32_t, uint32_t);
124 int		mtw_mcu_radio(struct mtw_softc *, int, uint32_t);
125 int		mtw_mcu_cmd(struct mtw_softc *, int, void *, int);
126 const char *	mtw_get_rf(int);
127 void		mtw_get_txpower(struct mtw_softc *);
128 int		mtw_read_eeprom(struct mtw_softc *);
129 struct		ieee80211_node *mtw_node_alloc(struct ieee80211com *);
130 int		mtw_media_change(struct ifnet *);
131 void		mtw_next_scan(void *);
132 void		mtw_task(void *);
133 void		mtw_do_async(struct mtw_softc *, void (*)(struct mtw_softc *,
134 		    void *), void *, int);
135 int		mtw_newstate(struct ieee80211com *, enum ieee80211_state, int);
136 void		mtw_newstate_cb(struct mtw_softc *, void *);
137 void		mtw_updateedca(struct ieee80211com *);
138 void		mtw_updateedca_cb(struct mtw_softc *, void *);
139 void		mtw_updateslot(struct ieee80211com *);
140 void		mtw_updateslot_cb(struct mtw_softc *, void *);
141 int		mtw_set_key(struct ieee80211com *, struct ieee80211_node *,
142 		    struct ieee80211_key *);
143 void		mtw_set_key_cb(struct mtw_softc *, void *);
144 void		mtw_delete_key(struct ieee80211com *, struct ieee80211_node *,
145 		    struct ieee80211_key *);
146 void		mtw_delete_key_cb(struct mtw_softc *, void *);
147 void		mtw_calibrate_to(void *);
148 void		mtw_calibrate_cb(struct mtw_softc *, void *);
149 void		mtw_newassoc(struct ieee80211com *, struct ieee80211_node *,
150 		    int);
151 void		mtw_rx_frame(struct mtw_softc *, uint8_t *, int,
152 		    struct mbuf_list *);
153 void		mtw_rxeof(struct usbd_xfer *, void *, usbd_status);
154 void		mtw_txeof(struct usbd_xfer *, void *, usbd_status);
155 int		mtw_tx(struct mtw_softc *, struct mbuf *,
156 		    struct ieee80211_node *);
157 void		mtw_start(struct ifnet *);
158 void		mtw_watchdog(struct ifnet *);
159 int		mtw_ioctl(struct ifnet *, u_long, caddr_t);
160 void		mtw_select_chan_group(struct mtw_softc *, int);
161 void		mt7601_set_agc(struct mtw_softc *, uint8_t);
162 void		mt7601_set_chan(struct mtw_softc *, u_int);
163 int		mtw_set_chan(struct mtw_softc *, struct ieee80211_channel *);
164 void		mtw_enable_tsf_sync(struct mtw_softc *);
165 void		mtw_abort_tsf_sync(struct mtw_softc *);
166 void		mtw_enable_mrr(struct mtw_softc *);
167 void		mtw_set_txrts(struct mtw_softc *);
168 void		mtw_set_txpreamble(struct mtw_softc *);
169 void		mtw_set_basicrates(struct mtw_softc *);
170 void		mtw_set_leds(struct mtw_softc *, uint16_t);
171 void		mtw_set_bssid(struct mtw_softc *, const uint8_t *);
172 void		mtw_set_macaddr(struct mtw_softc *, const uint8_t *);
173 #if NBPFILTER > 0
174 int8_t		mtw_rssi2dbm(struct mtw_softc *, uint8_t, uint8_t);
175 #endif
176 int		mt7601_bbp_init(struct mtw_softc *);
177 int		mt7601_rf_init(struct mtw_softc *);
178 int		mt7601_rf_setup(struct mtw_softc *);
179 int		mt7601_rf_temperature(struct mtw_softc *, int8_t *);
180 int		mt7601_r49_read(struct mtw_softc *, uint8_t, int8_t *);
181 int		mt7601_rxdc_cal(struct mtw_softc *);
182 int		mtw_wlan_enable(struct mtw_softc *, int);
183 int		mtw_txrx_enable(struct mtw_softc *);
184 int		mtw_init(struct ifnet *);
185 void		mtw_stop(struct ifnet *, int);
186 
187 struct cfdriver mtw_cd = {
188 	NULL, "mtw", DV_IFNET
189 };
190 
191 const struct cfattach mtw_ca = {
192 	sizeof (struct mtw_softc), mtw_match, mtw_attach, mtw_detach
193 };
194 
195 static const struct {
196 	uint32_t	reg;
197 	uint32_t	val;
198 } mt7601_def_mac[] = {
199 	MT7601_DEF_MAC
200 };
201 
202 static const struct {
203 	uint8_t		reg;
204 	uint8_t		val;
205 } mt7601_def_bbp[] = {
206 	MT7601_DEF_BBP
207 };
208 
209 static const struct {
210 	u_int		chan;
211 	uint8_t		r17, r18, r19, r20;
212 } mt7601_rf_chan[] = {
213 	MT7601_RF_CHAN
214 };
215 
216 static const struct {
217 	uint8_t		reg;
218 	uint8_t		val;
219 } mt7601_rf_bank0[] = {
220 	MT7601_BANK0_RF
221 },mt7601_rf_bank4[] = {
222 	MT7601_BANK4_RF
223 },mt7601_rf_bank5[] = {
224 	MT7601_BANK5_RF
225 };
226 
227 int
228 mtw_match(struct device *parent, void *match, void *aux)
229 {
230 	struct usb_attach_arg *uaa = aux;
231 
232 	if (uaa->iface == NULL || uaa->configno != 1)
233 		return UMATCH_NONE;
234 
235 	return (usb_lookup(mtw_devs, uaa->vendor, uaa->product) != NULL) ?
236 	    UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
237 }
238 
239 void
240 mtw_attach(struct device *parent, struct device *self, void *aux)
241 {
242 	struct mtw_softc *sc = (struct mtw_softc *)self;
243 	struct usb_attach_arg *uaa = aux;
244 	usb_interface_descriptor_t *id;
245 	usb_endpoint_descriptor_t *ed;
246 	int i, error, nrx, ntx, ntries;
247 	uint32_t ver;
248 
249 	sc->sc_udev = uaa->device;
250 	sc->sc_iface = uaa->iface;
251 
252 	/*
253 	 * Find all bulk endpoints.
254 	 */
255 	nrx = ntx = 0;
256 	id = usbd_get_interface_descriptor(sc->sc_iface);
257 	for (i = 0; i < id->bNumEndpoints; i++) {
258 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
259 		if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK)
260 			continue;
261 
262 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
263 			sc->rxq[nrx].pipe_no = ed->bEndpointAddress;
264 			nrx++;
265 		} else if (ntx < 6) {
266 			if (ntx == 0)
267 				sc->txq[MTW_TXQ_MCU].pipe_no =
268 				    ed->bEndpointAddress;
269 			else
270 				sc->txq[ntx - 1].pipe_no =
271 				    ed->bEndpointAddress;
272 			ntx++;
273 		}
274 	}
275 	/* make sure we've got them all */
276 	if (nrx < 2 || ntx < 6) {
277 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
278 		return;
279 	}
280 
281 	/* wait for the chip to settle */
282 	for (ntries = 0; ntries < 100; ntries++) {
283 		if ((error = mtw_read(sc, MTW_ASIC_VER, &ver)) != 0)
284 			return;
285 		if (ver != 0 && ver != 0xffffffff)
286 			break;
287 		DPRINTF(("%08x ", ver));
288 		DELAY(10);
289 	}
290 	if (ntries == 100) {
291 		printf("%s: timeout waiting for NIC to initialize\n",
292 		    sc->sc_dev.dv_xname);
293 		return;
294 	}
295 
296 	sc->asic_ver = ver >> 16;
297 	sc->asic_rev = ver & 0xffff;
298 
299 	usb_init_task(&sc->sc_task, mtw_task, sc, USB_TASK_TYPE_GENERIC);
300 	timeout_set(&sc->scan_to, mtw_next_scan, sc);
301 	timeout_set(&sc->calib_to, mtw_calibrate_to, sc);
302 
303 	sc->amrr.amrr_min_success_threshold =  1;
304 	sc->amrr.amrr_max_success_threshold = 10;
305 
306 	config_mountroot(self, mtw_attachhook);
307 }
308 
309 int
310 mtw_detach(struct device *self, int flags)
311 {
312 	struct mtw_softc *sc = (struct mtw_softc *)self;
313 	struct ifnet *ifp = &sc->sc_ic.ic_if;
314 	int qid, s;
315 
316 	s = splusb();
317 
318 	if (timeout_initialized(&sc->scan_to))
319 		timeout_del(&sc->scan_to);
320 	if (timeout_initialized(&sc->calib_to))
321 		timeout_del(&sc->calib_to);
322 
323 	/* wait for all queued asynchronous commands to complete */
324 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
325 
326 	usbd_ref_wait(sc->sc_udev);
327 
328 	if (ifp->if_softc != NULL) {
329 		ifp->if_flags &= ~IFF_RUNNING;
330 		ifq_clr_oactive(&ifp->if_snd);
331 		ieee80211_ifdetach(ifp);
332 		if_detach(ifp);
333 	}
334 
335 	/* free rings and close pipes */
336 	mtw_free_mcu_ring(sc);
337 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++)
338 		mtw_free_tx_ring(sc, qid);
339 	mtw_free_rx_ring(sc, 0);
340 	mtw_free_rx_ring(sc, 1);
341 
342 	splx(s);
343 	return 0;
344 }
345 
346 void
347 mtw_attachhook(struct device *self)
348 {
349 	struct mtw_softc *sc = (struct mtw_softc *)self;
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &ic->ic_if;
352 	uint32_t tmp;
353 	int ntries, error, i;
354 
355 	if (usbd_is_dying(sc->sc_udev))
356 		return;
357 
358 	/* enable WLAN core */
359 	if ((error = mtw_wlan_enable(sc, 1)) != 0) {
360 		printf("%s: could not enable WLAN core\n",
361 		    sc->sc_dev.dv_xname);
362 		return;
363 	}
364 
365 	/* load firmware */
366 	if ((error = mtw_load_microcode(sc)) != 0) {
367 		printf("%s: could not load microcode\n",
368 		    sc->sc_dev.dv_xname);
369 		goto fail;
370 	}
371 
372 	mtw_usb_dma_read(sc, &tmp);
373 	mtw_usb_dma_write(sc, tmp | (MTW_USB_RX_EN | MTW_USB_TX_EN));
374 
375 	/* read MAC version */
376 	for (ntries = 0; ntries < 100; ntries++) {
377 		if ((error = mtw_read(sc, MTW_MAC_VER_ID, &tmp)) != 0)
378 			goto fail;
379 		if (tmp != 0 && tmp != 0xffffffff)
380 			break;
381 		DELAY(10);
382 	}
383 	if (ntries == 100) {
384 		printf("%s: failed reading MAC\n", sc->sc_dev.dv_xname);
385 		goto fail;
386 	}
387 
388 	sc->mac_ver = tmp >> 16;
389 	sc->mac_rev = tmp & 0xffff;
390 
391 	/* retrieve RF rev. no and various other things from EEPROM */
392 	mtw_read_eeprom(sc);
393 
394 	printf("%s: MAC/BBP MT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), "
395 	    "address %s\n", sc->sc_dev.dv_xname, sc->mac_ver,
396 	    sc->mac_rev, mtw_get_rf(sc->rf_rev), sc->ntxchains,
397 	    sc->nrxchains, ether_sprintf(ic->ic_myaddr));
398 
399 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
400 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
401 	ic->ic_state = IEEE80211_S_INIT;
402 
403 	/* set device capabilities */
404 	ic->ic_caps =
405 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
406 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
407 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
408 	    IEEE80211_C_WEP |		/* WEP */
409 	    IEEE80211_C_RSN;		/* WPA/RSN */
410 
411 	/* set supported .11b and .11g rates */
412 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
413 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
414 
415 	/* set supported .11b and .11g channels (1 through 14) */
416 	for (i = 1; i <= 14; i++) {
417 		ic->ic_channels[i].ic_freq =
418 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
419 		ic->ic_channels[i].ic_flags =
420 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
421 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
422 	}
423 
424 	ifp->if_softc = sc;
425 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
426 	ifp->if_ioctl = mtw_ioctl;
427 	ifp->if_start = mtw_start;
428 	ifp->if_watchdog = mtw_watchdog;
429 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
430 
431 	if_attach(ifp);
432 	ieee80211_ifattach(ifp);
433 	ic->ic_node_alloc = mtw_node_alloc;
434 	ic->ic_newassoc = mtw_newassoc;
435 	ic->ic_updateslot = mtw_updateslot;
436 	ic->ic_updateedca = mtw_updateedca;
437 	ic->ic_set_key = mtw_set_key;
438 	ic->ic_delete_key = mtw_delete_key;
439 
440 	/* override 802.11 state transition machine */
441 	sc->sc_newstate = ic->ic_newstate;
442 	ic->ic_newstate = mtw_newstate;
443 	ieee80211_media_init(ifp, mtw_media_change, ieee80211_media_status);
444 
445 #if NBPFILTER > 0
446 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
447 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
448 
449 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
450 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
451 	sc->sc_rxtap.wr_ihdr.it_present = htole32(MTW_RX_RADIOTAP_PRESENT);
452 
453 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
454 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
455 	sc->sc_txtap.wt_ihdr.it_present = htole32(MTW_TX_RADIOTAP_PRESENT);
456 #endif
457 fail:
458 	return;
459 }
460 
461 int
462 mtw_alloc_rx_ring(struct mtw_softc *sc, int qid)
463 {
464 	struct mtw_rx_ring *rxq = &sc->rxq[qid];
465 	int i, error;
466 
467 	if ((error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0,
468 	    &rxq->pipeh)) != 0)
469 		goto fail;
470 
471 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
472 		struct mtw_rx_data *data = &rxq->data[i];
473 
474 		data->sc = sc;	/* backpointer for callbacks */
475 
476 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
477 		if (data->xfer == NULL) {
478 			error = ENOMEM;
479 			goto fail;
480 		}
481 		data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_RXSZ);
482 		if (data->buf == NULL) {
483 			error = ENOMEM;
484 			goto fail;
485 		}
486 	}
487 	if (error != 0)
488 fail:		mtw_free_rx_ring(sc, 0);
489 	return error;
490 }
491 
492 void
493 mtw_free_rx_ring(struct mtw_softc *sc, int qid)
494 {
495 	struct mtw_rx_ring *rxq = &sc->rxq[qid];
496 	int i;
497 
498 	if (rxq->pipeh != NULL) {
499 		usbd_close_pipe(rxq->pipeh);
500 		rxq->pipeh = NULL;
501 	}
502 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
503 		if (rxq->data[i].xfer != NULL)
504 			usbd_free_xfer(rxq->data[i].xfer);
505 		rxq->data[i].xfer = NULL;
506 	}
507 }
508 
509 int
510 mtw_alloc_tx_ring(struct mtw_softc *sc, int qid)
511 {
512 	struct mtw_tx_ring *txq = &sc->txq[qid];
513 	int i, error;
514 	uint16_t txwisize;
515 
516 	txwisize = sizeof(struct mtw_txwi);
517 
518 	txq->cur = txq->queued = 0;
519 
520 	if ((error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0,
521 	    &txq->pipeh)) != 0)
522 		goto fail;
523 
524 	for (i = 0; i < MTW_TX_RING_COUNT; i++) {
525 		struct mtw_tx_data *data = &txq->data[i];
526 
527 		data->sc = sc;	/* backpointer for callbacks */
528 		data->qid = qid;
529 
530 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
531 		if (data->xfer == NULL) {
532 			error = ENOMEM;
533 			goto fail;
534 		}
535 
536 		data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ);
537 		if (data->buf == NULL) {
538 			error = ENOMEM;
539 			goto fail;
540 		}
541 
542 		/* zeroize the TXD + TXWI part */
543 		memset(data->buf, 0, MTW_MAX_TXSZ);
544 	}
545 	if (error != 0)
546 fail:		mtw_free_tx_ring(sc, qid);
547 	return error;
548 }
549 
550 void
551 mtw_free_tx_ring(struct mtw_softc *sc, int qid)
552 {
553 	struct mtw_tx_ring *txq = &sc->txq[qid];
554 	int i;
555 
556 	if (txq->pipeh != NULL) {
557 		usbd_close_pipe(txq->pipeh);
558 		txq->pipeh = NULL;
559 	}
560 	for (i = 0; i < MTW_TX_RING_COUNT; i++) {
561 		if (txq->data[i].xfer != NULL)
562 			usbd_free_xfer(txq->data[i].xfer);
563 		txq->data[i].xfer = NULL;
564 	}
565 }
566 
567 int
568 mtw_alloc_mcu_ring(struct mtw_softc *sc)
569 {
570 	struct mtw_tx_ring *ring = &sc->sc_mcu;
571 	struct mtw_tx_data *data = &ring->data[0];
572 	int error = 0;
573 
574 	ring->cur = ring->queued = 0;
575 
576 	data->sc = sc;	/* backpointer for callbacks */
577 	data->qid = 5;
578 
579 	data->xfer = usbd_alloc_xfer(sc->sc_udev);
580 	if (data->xfer == NULL) {
581 		error = ENOMEM;
582 		goto fail;
583 	}
584 
585 	data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ);
586 	if (data->buf == NULL) {
587 		error = ENOMEM;
588 		goto fail;
589 	}
590 	/* zeroize the TXD */
591 	memset(data->buf, 0, 4);
592 
593 	if (error != 0)
594 fail:		mtw_free_mcu_ring(sc);
595 	return error;
596 
597 
598 }
599 void
600 mtw_free_mcu_ring(struct mtw_softc *sc)
601 {
602 	struct mtw_tx_ring *txq = &sc->sc_mcu;
603 
604 	if (txq->data[0].xfer != NULL)
605 		usbd_free_xfer(txq->data[0].xfer);
606 	txq->data[0].xfer = NULL;
607 }
608 
609 int
610 mtw_ucode_write(struct mtw_softc *sc, const uint8_t *fw, uint32_t len,
611     uint32_t offset)
612 {
613 	struct mtw_tx_ring *ring = &sc->txq[MTW_TXQ_MCU];
614 	struct usbd_xfer *xfer;
615 	struct mtw_txd *txd;
616 	uint8_t *buf;
617 	uint32_t blksz, sent, tmp, xferlen;
618 	int error;
619 
620 	blksz = 0x2000;
621 	if (sc->asic_ver == 0x7612 && offset >= 0x90000)
622 		blksz = 0x800; /* MT7612 ROM Patch */
623 
624 	xfer = usbd_alloc_xfer(sc->sc_udev);
625 	if (xfer == NULL) {
626 		error = ENOMEM;
627 		goto fail;
628 	}
629 	buf = usbd_alloc_buffer(xfer, blksz + 12);
630 	if (buf == NULL) {
631 		error = ENOMEM;
632 		goto fail;
633 	}
634 
635 	sent = 0;
636 	for (;;) {
637 		xferlen = min(len - sent, blksz);
638 		if (xferlen == 0)
639 			break;
640 
641 		txd = (struct mtw_txd *)buf;
642 		txd->len = htole16(xferlen);
643 		txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_MCU);
644 
645 		memcpy(buf + sizeof(struct mtw_txd), fw + sent, xferlen);
646 		memset(buf + sizeof(struct mtw_txd) + xferlen, 0, MTW_DMA_PAD);
647 		mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, offset + sent);
648 		mtw_write_cfg(sc, MTW_MCU_DMA_LEN, (xferlen << 16));
649 
650 		usbd_setup_xfer(xfer, ring->pipeh, NULL, buf,
651 		    xferlen + sizeof(struct mtw_txd) + MTW_DMA_PAD,
652 		    USBD_SHORT_XFER_OK | USBD_SYNCHRONOUS | USBD_NO_COPY,
653 		    MTW_TX_TIMEOUT, NULL);
654 		if ((error = usbd_transfer(xfer)) != 0)
655 			break;
656 
657 		mtw_read(sc, MTW_MCU_FW_IDX, &tmp);
658 		mtw_write(sc, MTW_MCU_FW_IDX, tmp++);
659 
660 		sent += xferlen;
661 	}
662 fail:
663 	if (xfer != NULL) {
664 		usbd_free_xfer(xfer);
665 		xfer = NULL;
666 	}
667 	return error;
668 }
669 
670 void
671 mtw_ucode_setup(struct mtw_softc *sc)
672 {
673 	mtw_usb_dma_write(sc, (MTW_USB_TX_EN | MTW_USB_RX_EN));
674 	mtw_write(sc, MTW_FCE_PSE_CTRL, 1);
675 	mtw_write(sc, MTW_TX_CPU_FCE_BASE, 0x400230);
676 	mtw_write(sc, MTW_TX_CPU_FCE_MAX_COUNT, 1);
677 	mtw_write(sc, MTW_MCU_FW_IDX, 1);
678 	mtw_write(sc, MTW_FCE_PDMA, 0x44);
679 	mtw_write(sc, MTW_FCE_SKIP_FS, 3);
680 }
681 
682 int
683 mtw_load_microcode(struct mtw_softc *sc)
684 {
685 	const struct mtw_ucode_hdr *hdr;
686 	const struct mtw_ucode *fw;
687 	const char *fwname;
688 	u_char *ucode;
689 	size_t size;
690 	uint32_t tmp, iofs, dofs;
691 	int ntries, error;
692 	int dlen, ilen;
693 
694 	/* is firmware already running? */
695 	mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp);
696 	if (tmp == MTW_MCU_READY)
697 		return 0;
698 
699 	/* open MCU pipe */
700 	if ((error = usbd_open_pipe(sc->sc_iface, sc->txq[MTW_TXQ_MCU].pipe_no,
701 	    0, &sc->txq[MTW_TXQ_MCU].pipeh)) != 0)
702 		return error;
703 
704 	if (sc->asic_ver == 0x7612) {
705 		fwname = "mtw-mt7662u_rom_patch";
706 
707 		if ((error = loadfirmware(fwname, &ucode, &size)) != 0) {
708 			printf("%s: failed loadfirmware of file %s (error %d)\n",
709 			    sc->sc_dev.dv_xname, fwname, error);
710 			return error;
711 		}
712 		fw = (const struct mtw_ucode *) ucode + 0x1e;
713 		ilen = size - 0x1e;
714 
715 		mtw_ucode_setup(sc);
716 
717 		if ((error = mtw_ucode_write(sc, fw->data, ilen, 0x90000)) != 0)
718 			goto fail;
719 
720 		mtw_usb_dma_write(sc, 0x00e41814);
721 		free(ucode, M_DEVBUF, size);
722 	}
723 
724 	fwname = "mtw-mt7601u";
725 	iofs = 0x40;
726 	dofs = 0;
727 	if (sc->asic_ver == 0x7612) {
728 		fwname = "mtw-mt7662u";
729 		iofs = 0x80040;
730 		dofs = 0x110800;
731 	} else if (sc->asic_ver == 0x7610) {
732 		fwname = "mtw-mt7610u";
733 		dofs = 0x80000;
734 	}
735 
736 	if ((error = loadfirmware(fwname, &ucode, &size)) != 0) {
737 		printf("%s: failed loadfirmware of file %s (error %d)\n",
738 		    sc->sc_dev.dv_xname, fwname, error);
739 		return error;
740 	}
741 
742 	if (size < sizeof(struct mtw_ucode_hdr)) {
743 		printf("%s: firmware header too short\n",
744 		    sc->sc_dev.dv_xname);
745 		goto fail;
746 	}
747 
748 	fw = (const struct mtw_ucode *) ucode;
749 	hdr = (const struct mtw_ucode_hdr *) &fw->hdr;
750 
751 	if (size < sizeof(struct mtw_ucode_hdr) + letoh32(hdr->ilm_len) +
752 	    letoh32(hdr->dlm_len)) {
753 		printf("%s: firmware payload too short\n",
754 		    sc->sc_dev.dv_xname);
755 		goto fail;
756 	}
757 
758 	ilen = le32toh(hdr->ilm_len) - MTW_MCU_IVB_LEN;
759 	dlen = le32toh(hdr->dlm_len);
760 
761 	if (ilen > size || dlen > size) {
762 		printf("%s: firmware payload too large\n",
763 		    sc->sc_dev.dv_xname);
764 		goto fail;
765 	}
766 
767 	mtw_write(sc, MTW_FCE_PDMA, 0);
768 	mtw_write(sc, MTW_FCE_PSE_CTRL, 0);
769 	mtw_ucode_setup(sc);
770 
771 	if ((error = mtw_ucode_write(sc, fw->data, ilen, iofs)) != 0)
772 		goto fail;
773 	if (dlen > 0 && dofs > 0) {
774 		if ((error = mtw_ucode_write(sc, fw->data + ilen,
775 		    dlen, dofs)) != 0)
776 			goto fail;
777 	}
778 
779 	/* write interrupt vectors */
780 	if (sc->asic_ver == 0x7612) {
781 		/* MT7612 */
782 		if ((error = mtw_ucode_write(sc, fw->ivb,
783 		    MTW_MCU_IVB_LEN, 0x80000)) != 0)
784 			goto fail;
785 		mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, 0x00095000);
786 		mtw_write_ivb(sc, NULL, 0);
787 	} else {
788 		/* MT7601/MT7610 */
789 		if ((error = mtw_write_ivb(sc, fw->ivb,
790 		    MTW_MCU_IVB_LEN)) != 0)
791 			goto fail;
792 	}
793 
794 	/* wait until microcontroller is ready */
795 	usbd_delay_ms(sc->sc_udev, 10);
796 
797 	for (ntries = 0; ntries < 100; ntries++) {
798 		if ((error = mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp)) != 0)
799 			return error;
800 		if (tmp & MTW_MCU_READY)
801 			break;
802 		usbd_delay_ms(sc->sc_udev, 100);
803 	}
804 
805 	if (ntries == 100) {
806 		printf("%s: timeout waiting for MCU to initialize\n",
807 		    sc->sc_dev.dv_xname);
808 		error = ETIMEDOUT;
809 	}
810 
811 	DPRINTF(("%s: loaded firmware ver %d.%d\n", sc->sc_dev.dv_xname,
812 	    le16toh(hdr->build_ver), le16toh(hdr->fw_ver)));
813 fail:
814 	free(ucode, M_DEVBUF, size);
815 	usbd_close_pipe(sc->txq[MTW_TXQ_MCU].pipeh);
816 	sc->txq[MTW_TXQ_MCU].pipeh = NULL;
817 	return error;
818 }
819 
820 int
821 mtw_reset(struct mtw_softc *sc)
822 {
823 	usb_device_request_t req;
824 
825 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
826 	req.bRequest = MTW_RESET;
827 	USETW(req.wValue, 1);
828 	USETW(req.wIndex, 0);
829 	USETW(req.wLength, 0);
830 	return usbd_do_request(sc->sc_udev, &req, NULL);
831 }
832 
833 int
834 mtw_read(struct mtw_softc *sc, uint16_t reg, uint32_t *val)
835 {
836 	uint32_t tmp;
837 	int error;
838 
839 	error = mtw_read_region_1(sc, reg,
840 	    (uint8_t *)&tmp, sizeof tmp);
841 	if (error == 0)
842 		*val = letoh32(tmp);
843 	else
844 		*val = 0xffffffff;
845 	return error;
846 }
847 
848 int
849 mtw_read_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t *val)
850 {
851 	usb_device_request_t req;
852 	uint32_t tmp;
853 	int error;
854 
855 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
856 	req.bRequest = MTW_READ_CFG;
857 	USETW(req.wValue, 0);
858 	USETW(req.wIndex, reg);
859 	USETW(req.wLength, 4);
860 	error = usbd_do_request(sc->sc_udev, &req, &tmp);
861 
862 	if (error == 0)
863 		*val = letoh32(tmp);
864 	else
865 		*val = 0xffffffff;
866 	return error;
867 }
868 
869 int
870 mtw_read_region_1(struct mtw_softc *sc, uint16_t reg,
871     uint8_t *buf, int len)
872 {
873 	usb_device_request_t req;
874 
875 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
876 	req.bRequest = MTW_READ_REGION_1;
877 	USETW(req.wValue, 0);
878 	USETW(req.wIndex, reg);
879 	USETW(req.wLength, len);
880 	return usbd_do_request(sc->sc_udev, &req, buf);
881 }
882 
883 int
884 mtw_write_2(struct mtw_softc *sc, uint16_t reg, uint16_t val)
885 {
886 	usb_device_request_t req;
887 
888 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
889 	req.bRequest = MTW_WRITE_2;
890 	USETW(req.wValue, val);
891 	USETW(req.wIndex, reg);
892 	USETW(req.wLength, 0);
893 	return usbd_do_request(sc->sc_udev, &req, NULL);
894 }
895 
896 int
897 mtw_write(struct mtw_softc *sc, uint16_t reg, uint32_t val)
898 {
899 	int error;
900 
901 	if ((error = mtw_write_2(sc, reg, val & 0xffff)) == 0)
902 		error = mtw_write_2(sc, reg + 2, val >> 16);
903 	return error;
904 }
905 
906 int
907 mtw_write_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t val)
908 {
909 	usb_device_request_t req;
910 	int error;
911 
912 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
913 	req.bRequest = MTW_WRITE_CFG;
914 	USETW(req.wValue, 0);
915 	USETW(req.wIndex, reg);
916 	USETW(req.wLength, 4);
917 	val = htole32(val);
918 	error = usbd_do_request(sc->sc_udev, &req, &val);
919 	return error;
920 }
921 
922 int
923 mtw_write_ivb(struct mtw_softc *sc, const uint8_t *buf, uint16_t len)
924 {
925 	usb_device_request_t req;
926 
927 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
928 	req.bRequest = MTW_RESET;
929 	USETW(req.wValue, 0x12);
930 	USETW(req.wIndex, 0);
931 	USETW(req.wLength, len);
932 	return usbd_do_request(sc->sc_udev, &req, (void *)buf);
933 }
934 
935 int
936 mtw_write_region_1(struct mtw_softc *sc, uint16_t reg,
937     uint8_t *buf, int len)
938 {
939 	usb_device_request_t req;
940 
941 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
942 	req.bRequest = MTW_WRITE_REGION_1;
943 	USETW(req.wValue, 0);
944 	USETW(req.wIndex, reg);
945 	USETW(req.wLength, len);
946 	return usbd_do_request(sc->sc_udev, &req, buf);
947 }
948 
949 int
950 mtw_set_region_4(struct mtw_softc *sc, uint16_t reg, uint32_t val, int count)
951 {
952 	int error = 0;
953 
954 	for (; count > 0 && error == 0; count--, reg += 4)
955 		error = mtw_write(sc, reg, val);
956 	return error;
957 }
958 
959 /* Read 16-bit from eFUSE ROM. */
960 int
961 mtw_efuse_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
962 {
963 	uint32_t tmp;
964 	uint16_t reg;
965 	int error, ntries;
966 
967 	if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0)
968 		return error;
969 
970 	addr *= 2;
971 	/*
972 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
973 	 * DATA0: 3 2 1 0
974 	 * DATA1: 7 6 5 4
975 	 * DATA2: B A 9 8
976 	 * DATA3: F E D C
977 	 */
978 	tmp &= ~(MTW_EFSROM_MODE_MASK | MTW_EFSROM_AIN_MASK);
979 	tmp |= (addr & ~0xf) << MTW_EFSROM_AIN_SHIFT | MTW_EFSROM_KICK;
980 	mtw_write(sc, MTW_EFUSE_CTRL, tmp);
981 	for (ntries = 0; ntries < 100; ntries++) {
982 		if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0)
983 			return error;
984 		if (!(tmp & MTW_EFSROM_KICK))
985 			break;
986 		DELAY(2);
987 	}
988 	if (ntries == 100)
989 		return ETIMEDOUT;
990 
991 	if ((tmp & MTW_EFUSE_AOUT_MASK) == MTW_EFUSE_AOUT_MASK) {
992 		*val = 0xffff;	/* address not found */
993 		return 0;
994 	}
995 	/* determine to which 32-bit register our 16-bit word belongs */
996 	reg = MTW_EFUSE_DATA0 + (addr & 0xc);
997 	if ((error = mtw_read(sc, reg, &tmp)) != 0)
998 		return error;
999 
1000 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1001 	return 0;
1002 }
1003 
1004 int
1005 mtw_eeprom_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
1006 {
1007 	usb_device_request_t req;
1008 	uint16_t tmp;
1009 	int error;
1010 
1011 	addr *= 2;
1012 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1013 	req.bRequest = MTW_EEPROM_READ;
1014 	USETW(req.wValue, 0);
1015 	USETW(req.wIndex, addr);
1016 	USETW(req.wLength, sizeof tmp);
1017 	error = usbd_do_request(sc->sc_udev, &req, &tmp);
1018 	if (error == 0)
1019 		*val = letoh16(tmp);
1020 	else
1021 		*val = 0xffff;
1022 	return error;
1023 }
1024 
1025 static __inline int
1026 mtw_srom_read(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
1027 {
1028 	/* either eFUSE ROM or EEPROM */
1029 	return sc->sc_srom_read(sc, addr, val);
1030 }
1031 
1032 int
1033 mtw_rf_read(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t *val)
1034 {
1035 	uint32_t tmp;
1036 	int error, ntries, shift;
1037 
1038 	for (ntries = 0; ntries < 100; ntries++) {
1039 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1040 			return error;
1041 		if (!(tmp & MTW_RF_CSR_KICK))
1042 			break;
1043 	}
1044 	if (ntries == 100)
1045 		return ETIMEDOUT;
1046 
1047 	if (sc->mac_ver == 0x7601)
1048 		shift = MT7601_BANK_SHIFT;
1049 	else
1050 		shift = MT7610_BANK_SHIFT;
1051 
1052 	tmp = MTW_RF_CSR_KICK | (bank & 0xf) << shift | reg << 8;
1053 	if ((error = mtw_write(sc, MTW_RF_CSR, tmp)) != 0)
1054 		return error;
1055 
1056 	for (ntries = 0; ntries < 100; ntries++) {
1057 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1058 			return error;
1059 		if (!(tmp & MTW_RF_CSR_KICK))
1060 			break;
1061 	}
1062 	if (ntries == 100)
1063 		return ETIMEDOUT;
1064 
1065 	*val = tmp & 0xff;
1066 	return 0;
1067 }
1068 
1069 int
1070 mtw_rf_write(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t val)
1071 {
1072 	uint32_t tmp;
1073 	int error, ntries, shift;
1074 
1075 	for (ntries = 0; ntries < 10; ntries++) {
1076 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1077 			return error;
1078 		if (!(tmp & MTW_RF_CSR_KICK))
1079 			break;
1080 	}
1081 	if (ntries == 10)
1082 		return ETIMEDOUT;
1083 
1084 	if (sc->mac_ver == 0x7601)
1085 		shift = MT7601_BANK_SHIFT;
1086 	else
1087 		shift = MT7610_BANK_SHIFT;
1088 
1089 	tmp = MTW_RF_CSR_WRITE | MTW_RF_CSR_KICK | (bank & 0xf) << shift |
1090 	    reg << 8 | val;
1091 	return mtw_write(sc, MTW_RF_CSR, tmp);
1092 }
1093 
1094 int
1095 mtw_bbp_read(struct mtw_softc *sc, uint8_t reg, uint8_t *val)
1096 {
1097 	uint32_t tmp;
1098 	int ntries, error;
1099 
1100 	for (ntries = 0; ntries < 10; ntries++) {
1101 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1102 			return error;
1103 		if (!(tmp & MTW_BBP_CSR_KICK))
1104 			break;
1105 	}
1106 	if (ntries == 10)
1107 		return ETIMEDOUT;
1108 
1109 	tmp = MTW_BBP_CSR_READ | MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT;
1110 	if ((error = mtw_write(sc, MTW_BBP_CSR, tmp)) != 0)
1111 		return error;
1112 
1113 	for (ntries = 0; ntries < 10; ntries++) {
1114 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1115 			return error;
1116 		if (!(tmp & MTW_BBP_CSR_KICK))
1117 			break;
1118 	}
1119 	if (ntries == 10)
1120 		return ETIMEDOUT;
1121 
1122 	*val = tmp & 0xff;
1123 	return 0;
1124 }
1125 
1126 int
1127 mtw_bbp_write(struct mtw_softc *sc, uint8_t reg, uint8_t val)
1128 {
1129 	uint32_t tmp;
1130 	int ntries, error;
1131 
1132 	for (ntries = 0; ntries < 10; ntries++) {
1133 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1134 			return error;
1135 		if (!(tmp & MTW_BBP_CSR_KICK))
1136 			break;
1137 	}
1138 	if (ntries == 10)
1139 		return ETIMEDOUT;
1140 
1141 	tmp = MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT | val;
1142 	return mtw_write(sc, MTW_BBP_CSR, tmp);
1143 }
1144 
1145 int
1146 mtw_usb_dma_read(struct mtw_softc *sc, uint32_t *val)
1147 {
1148 	if (sc->asic_ver == 0x7612)
1149 		return mtw_read_cfg(sc, MTW_USB_U3DMA_CFG, val);
1150 	else
1151 		return mtw_read(sc, MTW_USB_DMA_CFG, val);
1152 }
1153 
1154 int
1155 mtw_usb_dma_write(struct mtw_softc *sc, uint32_t val)
1156 {
1157 	if (sc->asic_ver == 0x7612)
1158 		return mtw_write_cfg(sc, MTW_USB_U3DMA_CFG, val);
1159 	else
1160 		return mtw_write(sc, MTW_USB_DMA_CFG, val);
1161 }
1162 
1163 int
1164 mtw_mcu_calibrate(struct mtw_softc *sc, int func, uint32_t val)
1165 {
1166 	struct mtw_mcu_cmd_8 cmd;
1167 
1168 	cmd.func = htole32(func);
1169 	cmd.val = htole32(val);
1170 	return mtw_mcu_cmd(sc, 31, &cmd, sizeof(struct mtw_mcu_cmd_8));
1171 }
1172 
1173 int
1174 mtw_mcu_channel(struct mtw_softc *sc, uint32_t r1, uint32_t r2, uint32_t r4)
1175 {
1176 	struct mtw_mcu_cmd_16 cmd;
1177 
1178 	cmd.r1 = htole32(r1);
1179 	cmd.r2 = htole32(r2);
1180 	cmd.r3 = 0;
1181 	cmd.r4 = htole32(r4);
1182 	return mtw_mcu_cmd(sc, 30, &cmd, sizeof(struct mtw_mcu_cmd_16));
1183 }
1184 
1185 int
1186 mtw_mcu_radio(struct mtw_softc *sc, int func, uint32_t val)
1187 {
1188 	struct mtw_mcu_cmd_16 cmd;
1189 
1190 	cmd.r1 = htole32(func);
1191 	cmd.r2 = htole32(val);
1192 	cmd.r3 = 0;
1193 	cmd.r4 = 0;
1194 	return mtw_mcu_cmd(sc, 20, &cmd, sizeof(struct mtw_mcu_cmd_16));
1195 }
1196 
1197 int
1198 mtw_mcu_cmd(struct mtw_softc *sc, int cmd, void *buf, int len)
1199 {
1200 	struct mtw_tx_ring *ring = &sc->sc_mcu;
1201 	struct mtw_tx_data *data = &ring->data[0];
1202 	struct mtw_txd *txd;
1203 	int xferlen;
1204 
1205 	txd = (struct mtw_txd *)(data->buf);
1206 	txd->len = htole16(len);
1207 	txd->flags = htole16(MTW_TXD_CMD | MTW_TXD_MCU |
1208 	    (cmd & 0x1f) << MTW_TXD_CMD_SHIFT | (sc->cmd_seq & 0xf));
1209 
1210 	memcpy(&txd[1], buf, len);
1211 	memset(&txd[1] + len, 0, MTW_DMA_PAD);
1212 	xferlen = len + sizeof(struct mtw_txd) + MTW_DMA_PAD;
1213 
1214 	usbd_setup_xfer(data->xfer, sc->txq[MTW_TXQ_MCU].pipeh,
1215 	    NULL, data->buf, xferlen,
1216 	    USBD_SHORT_XFER_OK | USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS,
1217 	    MTW_TX_TIMEOUT, NULL);
1218 	return usbd_transfer(data->xfer);
1219 }
1220 
1221 /*
1222  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1223  * Used to adjust per-rate Tx power registers.
1224  */
1225 static __inline uint32_t
1226 b4inc(uint32_t b32, int8_t delta)
1227 {
1228 	int8_t i, b4;
1229 
1230 	for (i = 0; i < 8; i++) {
1231 		b4 = b32 & 0xf;
1232 		b4 += delta;
1233 		if (b4 < 0)
1234 			b4 = 0;
1235 		else if (b4 > 0xf)
1236 			b4 = 0xf;
1237 		b32 = b32 >> 4 | b4 << 28;
1238 	}
1239 	return b32;
1240 }
1241 
1242 const char *
1243 mtw_get_rf(int rev)
1244 {
1245 	switch (rev) {
1246 	case MT7601_RF_7601:	return "MT7601";
1247 	case MT7610_RF_7610:	return "MT7610";
1248 	case MT7612_RF_7612:	return "MT7612";
1249 	}
1250 	return "unknown";
1251 }
1252 
1253 void
1254 mtw_get_txpower(struct mtw_softc *sc)
1255 {
1256 	uint16_t val;
1257 	int i;
1258 
1259 	/* Read power settings for 2GHz channels. */
1260 	for (i = 0; i < 14; i += 2) {
1261 		mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1262 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1263 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1264 		mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1265 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1266 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1267 	}
1268 	/* Fix broken Tx power entries. */
1269 	for (i = 0; i < 14; i++) {
1270 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 27)
1271 			sc->txpow1[i] = 5;
1272 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 27)
1273 			sc->txpow2[i] = 5;
1274 		DPRINTF(("chan %d: power1=%d, power2=%d\n",
1275 		    mt7601_rf_chan[i].chan, sc->txpow1[i], sc->txpow2[i]));
1276 	}
1277 #if 0
1278 	/* Read power settings for 5GHz channels. */
1279 	for (i = 0; i < 40; i += 2) {
1280 		mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1281 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1282 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1283 
1284 		mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1285 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1286 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1287 	}
1288 	/* Fix broken Tx power entries. */
1289 	for (i = 0; i < 40; i++ ) {
1290 		if (sc->mac_ver != 0x5592) {
1291 			if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1292 				sc->txpow1[14 + i] = 5;
1293 			if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1294 				sc->txpow2[14 + i] = 5;
1295 		}
1296 		DPRINTF(("chan %d: power1=%d, power2=%d\n",
1297 		    mt7601_rf_chan[14 + i].chan, sc->txpow1[14 + i],
1298 		    sc->txpow2[14 + i]));
1299 	}
1300 #endif
1301 }
1302 
1303 int
1304 mtw_read_eeprom(struct mtw_softc *sc)
1305 {
1306 	struct ieee80211com *ic = &sc->sc_ic;
1307 	int8_t delta_2ghz, delta_5ghz;
1308 	uint16_t val;
1309 	int ridx, ant;
1310 
1311 	sc->sc_srom_read = mtw_efuse_read_2;
1312 
1313 	/* read RF information */
1314 	mtw_srom_read(sc, MTW_EEPROM_CHIPID, &val);
1315 	sc->rf_rev = val;
1316 	mtw_srom_read(sc, MTW_EEPROM_ANTENNA, &val);
1317 	sc->ntxchains = (val >> 4) & 0xf;
1318 	sc->nrxchains = val & 0xf;
1319 	DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1320 	    sc->rf_rev, sc->ntxchains, sc->nrxchains));
1321 
1322 	/* read ROM version */
1323 	mtw_srom_read(sc, MTW_EEPROM_VERSION, &val);
1324 	DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
1325 
1326 	/* read MAC address */
1327 	mtw_srom_read(sc, MTW_EEPROM_MAC01, &val);
1328 	ic->ic_myaddr[0] = val & 0xff;
1329 	ic->ic_myaddr[1] = val >> 8;
1330 	mtw_srom_read(sc, MTW_EEPROM_MAC23, &val);
1331 	ic->ic_myaddr[2] = val & 0xff;
1332 	ic->ic_myaddr[3] = val >> 8;
1333 	mtw_srom_read(sc, MTW_EEPROM_MAC45, &val);
1334 	ic->ic_myaddr[4] = val & 0xff;
1335 	ic->ic_myaddr[5] = val >> 8;
1336 #if 0
1337 	printf("eFUSE ROM\n00: ");
1338 	for (int i = 0; i < 256; i++) {
1339 		if (((i % 8) == 0) && i > 0)
1340 			printf("\n%02x: ", i);
1341 		mtw_srom_read(sc, i, &val);
1342 		printf(" %04x", val);
1343 	}
1344 	printf("\n");
1345 #endif
1346 	/* check if RF supports automatic Tx access gain control */
1347 	mtw_srom_read(sc, MTW_EEPROM_CONFIG, &val);
1348 	DPRINTF(("EEPROM CFG 0x%04x\n", val));
1349 	if ((val & 0xff) != 0xff) {
1350 		sc->ext_5ghz_lna = (val >> 3) & 1;
1351 		sc->ext_2ghz_lna = (val >> 2) & 1;
1352 		/* check if RF supports automatic Tx access gain control */
1353 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1354 		/* check if we have a hardware radio switch */
1355 		sc->rfswitch = val & 1;
1356 	}
1357 
1358 	/* read RF frequency offset from EEPROM */
1359 	mtw_srom_read(sc, MTW_EEPROM_FREQ_OFFSET, &val);
1360 	if ((val & 0xff) != 0xff)
1361 		sc->rf_freq_offset = val;
1362 	else
1363 		sc->rf_freq_offset = 0;
1364 	DPRINTF(("frequency offset 0x%x\n", sc->rf_freq_offset));
1365 
1366 	/* Read Tx power settings. */
1367 	mtw_get_txpower(sc);
1368 
1369 	/* read Tx power compensation for each Tx rate */
1370 	mtw_srom_read(sc, MTW_EEPROM_DELTAPWR, &val);
1371 	delta_2ghz = delta_5ghz = 0;
1372 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1373 		delta_2ghz = val & 0xf;
1374 		if (!(val & 0x40))	/* negative number */
1375 			delta_2ghz = -delta_2ghz;
1376 	}
1377 	val >>= 8;
1378 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1379 		delta_5ghz = val & 0xf;
1380 		if (!(val & 0x40))	/* negative number */
1381 			delta_5ghz = -delta_5ghz;
1382 	}
1383 	DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
1384 	    delta_2ghz, delta_5ghz));
1385 
1386 	for (ridx = 0; ridx < 5; ridx++) {
1387 		uint32_t reg;
1388 
1389 		mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2, &val);
1390 		reg = val;
1391 		mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2 + 1, &val);
1392 		reg |= (uint32_t)val << 16;
1393 
1394 		sc->txpow20mhz[ridx] = reg;
1395 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1396 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1397 
1398 		DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1399 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1400 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
1401 	}
1402 
1403 	/* read RSSI offsets and LNA gains from EEPROM */
1404 	val = 0;
1405 	mtw_srom_read(sc, MTW_EEPROM_RSSI1_2GHZ, &val);
1406 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1407 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1408 	mtw_srom_read(sc, MTW_EEPROM_RSSI2_2GHZ, &val);
1409 	/*
1410 	 * On RT3070 chips (limited to 2 Rx chains), this ROM
1411 	 * field contains the Tx mixer gain for the 2GHz band.
1412 	 */
1413 	if ((val & 0xff) != 0xff)
1414 		sc->txmixgain_2ghz = val & 0x7;
1415 	DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz));
1416 	sc->lna[2] = val >> 8;		/* channel group 2 */
1417 	mtw_srom_read(sc, MTW_EEPROM_RSSI1_5GHZ, &val);
1418 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1419 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1420 	mtw_srom_read(sc, MTW_EEPROM_RSSI2_5GHZ, &val);
1421 	sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1422 
1423 	sc->lna[3] = val >> 8;		/* channel group 3 */
1424 
1425 	mtw_srom_read(sc, MTW_EEPROM_LNA, &val);
1426 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1427 	sc->lna[1] = val >> 8;		/* channel group 1 */
1428 	DPRINTF(("LNA0 0x%x\n", sc->lna[0]));
1429 
1430 	/* fix broken 5GHz LNA entries */
1431 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1432 		DPRINTF(("invalid LNA for channel group %d\n", 2));
1433 		sc->lna[2] = sc->lna[1];
1434 	}
1435 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1436 		DPRINTF(("invalid LNA for channel group %d\n", 3));
1437 		sc->lna[3] = sc->lna[1];
1438 	}
1439 
1440 	/* fix broken RSSI offset entries */
1441 	for (ant = 0; ant < 3; ant++) {
1442 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1443 			DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
1444 			    ant + 1, sc->rssi_2ghz[ant]));
1445 			sc->rssi_2ghz[ant] = 0;
1446 		}
1447 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1448 			DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
1449 			    ant + 1, sc->rssi_5ghz[ant]));
1450 			sc->rssi_5ghz[ant] = 0;
1451 		}
1452 	}
1453 	return 0;
1454 }
1455 
1456 struct ieee80211_node *
1457 mtw_node_alloc(struct ieee80211com *ic)
1458 {
1459 	struct mtw_node *mn;
1460 
1461 	mn = malloc(sizeof (struct mtw_node), M_USBDEV, M_NOWAIT | M_ZERO);
1462 	return (struct ieee80211_node *)mn;
1463 }
1464 
1465 int
1466 mtw_media_change(struct ifnet *ifp)
1467 {
1468 	struct mtw_softc *sc = ifp->if_softc;
1469 	struct ieee80211com *ic = &sc->sc_ic;
1470 	uint8_t rate, ridx;
1471 	int error;
1472 
1473 	error = ieee80211_media_change(ifp);
1474 	if (error != ENETRESET)
1475 		return error;
1476 
1477 	if (ic->ic_fixed_rate != -1) {
1478 		rate = ic->ic_sup_rates[ic->ic_curmode].
1479 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1480 		for (ridx = 0; ridx <= MTW_RIDX_MAX; ridx++)
1481 			if (rt2860_rates[ridx].rate == rate)
1482 				break;
1483 		sc->fixed_ridx = ridx;
1484 	}
1485 
1486 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1487 	    (IFF_UP | IFF_RUNNING)) {
1488 		mtw_stop(ifp, 0);
1489 		error = mtw_init(ifp);
1490 	}
1491 	return error;
1492 }
1493 
1494 void
1495 mtw_next_scan(void *arg)
1496 {
1497 	struct mtw_softc *sc = arg;
1498 	int s;
1499 
1500 	if (usbd_is_dying(sc->sc_udev))
1501 		return;
1502 
1503 	usbd_ref_incr(sc->sc_udev);
1504 
1505 	s = splnet();
1506 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1507 		ieee80211_next_scan(&sc->sc_ic.ic_if);
1508 	splx(s);
1509 
1510 	usbd_ref_decr(sc->sc_udev);
1511 }
1512 
1513 void
1514 mtw_task(void *arg)
1515 {
1516 	struct mtw_softc *sc = arg;
1517 	struct mtw_host_cmd_ring *ring = &sc->cmdq;
1518 	struct mtw_host_cmd *cmd;
1519 	int s;
1520 
1521 	if (usbd_is_dying(sc->sc_udev))
1522 		return;
1523 
1524 	/* process host commands */
1525 	s = splusb();
1526 	while (ring->next != ring->cur) {
1527 		cmd = &ring->cmd[ring->next];
1528 		splx(s);
1529 		/* callback */
1530 		cmd->cb(sc, cmd->data);
1531 		s = splusb();
1532 		ring->queued--;
1533 		ring->next = (ring->next + 1) % MTW_HOST_CMD_RING_COUNT;
1534 	}
1535 	splx(s);
1536 }
1537 
1538 void
1539 mtw_do_async(struct mtw_softc *sc, void (*cb)(struct mtw_softc *, void *),
1540     void *arg, int len)
1541 {
1542 	struct mtw_host_cmd_ring *ring = &sc->cmdq;
1543 	struct mtw_host_cmd *cmd;
1544 	int s;
1545 
1546 	if (usbd_is_dying(sc->sc_udev))
1547 		return;
1548 
1549 	s = splusb();
1550 	cmd = &ring->cmd[ring->cur];
1551 	cmd->cb = cb;
1552 	KASSERT(len <= sizeof (cmd->data));
1553 	memcpy(cmd->data, arg, len);
1554 	ring->cur = (ring->cur + 1) % MTW_HOST_CMD_RING_COUNT;
1555 
1556 	/* if there is no pending command already, schedule a task */
1557 	if (++ring->queued == 1)
1558 		usb_add_task(sc->sc_udev, &sc->sc_task);
1559 	splx(s);
1560 }
1561 
1562 int
1563 mtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1564 {
1565 	struct mtw_softc *sc = ic->ic_softc;
1566 	struct mtw_cmd_newstate cmd;
1567 
1568 	/* do it in a process context */
1569 	cmd.state = nstate;
1570 	cmd.arg = arg;
1571 	mtw_do_async(sc, mtw_newstate_cb, &cmd, sizeof cmd);
1572 	return 0;
1573 }
1574 
1575 void
1576 mtw_newstate_cb(struct mtw_softc *sc, void *arg)
1577 {
1578 	struct mtw_cmd_newstate *cmd = arg;
1579 	struct ieee80211com *ic = &sc->sc_ic;
1580 	enum ieee80211_state ostate;
1581 	struct ieee80211_node *ni;
1582 	uint32_t sta[3];
1583 	uint8_t wcid;
1584 	int s;
1585 
1586 	s = splnet();
1587 	ostate = ic->ic_state;
1588 
1589 	if (ostate == IEEE80211_S_RUN) {
1590 		/* turn link LED on */
1591 		mtw_set_leds(sc, MTW_LED_MODE_ON);
1592 	}
1593 
1594 	switch (cmd->state) {
1595 	case IEEE80211_S_INIT:
1596 		if (ostate == IEEE80211_S_RUN) {
1597 			/* abort TSF synchronization */
1598 			mtw_abort_tsf_sync(sc);
1599 		}
1600 		break;
1601 
1602 	case IEEE80211_S_SCAN:
1603 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1604 		if (!usbd_is_dying(sc->sc_udev))
1605 			timeout_add_msec(&sc->scan_to, 200);
1606 		break;
1607 
1608 	case IEEE80211_S_AUTH:
1609 	case IEEE80211_S_ASSOC:
1610 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1611 		break;
1612 
1613 	case IEEE80211_S_RUN:
1614 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1615 
1616 		ni = ic->ic_bss;
1617 
1618 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1619 			mtw_updateslot(ic);
1620 			mtw_enable_mrr(sc);
1621 			mtw_set_txpreamble(sc);
1622 			mtw_set_basicrates(sc);
1623 			mtw_set_bssid(sc, ni->ni_bssid);
1624 		}
1625 		if (ic->ic_opmode == IEEE80211_M_STA) {
1626 			/* add BSS entry to the WCID table */
1627 			wcid = MTW_AID2WCID(ni->ni_associd);
1628 			mtw_write_region_1(sc, MTW_WCID_ENTRY(wcid),
1629 			    ni->ni_macaddr, IEEE80211_ADDR_LEN);
1630 
1631 			/* fake a join to init the tx rate */
1632 			mtw_newassoc(ic, ni, 1);
1633 		}
1634 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1635 			mtw_enable_tsf_sync(sc);
1636 
1637 			/* clear statistic registers used by AMRR */
1638 			mtw_read_region_1(sc, MTW_TX_STA_CNT0,
1639 			    (uint8_t *)sta, sizeof sta);
1640 			/* start calibration timer */
1641 			if (!usbd_is_dying(sc->sc_udev))
1642 				timeout_add_sec(&sc->calib_to, 1);
1643 		}
1644 
1645 		/* turn link LED on */
1646 		mtw_set_leds(sc, MTW_LED_MODE_BLINK_TX);
1647 		break;
1648 	}
1649 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
1650 	splx(s);
1651 }
1652 
1653 void
1654 mtw_updateedca(struct ieee80211com *ic)
1655 {
1656 	/* do it in a process context */
1657 	mtw_do_async(ic->ic_softc, mtw_updateedca_cb, NULL, 0);
1658 }
1659 
1660 void
1661 mtw_updateedca_cb(struct mtw_softc *sc, void *arg)
1662 {
1663 	struct ieee80211com *ic = &sc->sc_ic;
1664 	int s, aci;
1665 
1666 	s = splnet();
1667 	/* update MAC TX configuration registers */
1668 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
1669 		mtw_write(sc, MTW_EDCA_AC_CFG(aci),
1670 		    ic->ic_edca_ac[aci].ac_ecwmax << 16 |
1671 		    ic->ic_edca_ac[aci].ac_ecwmin << 12 |
1672 		    ic->ic_edca_ac[aci].ac_aifsn  <<  8 |
1673 		    ic->ic_edca_ac[aci].ac_txoplimit);
1674 	}
1675 
1676 	/* update SCH/DMA registers too */
1677 	mtw_write(sc, MTW_WMM_AIFSN_CFG,
1678 	    ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn  << 12 |
1679 	    ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn  <<  8 |
1680 	    ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn  <<  4 |
1681 	    ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn);
1682 	mtw_write(sc, MTW_WMM_CWMIN_CFG,
1683 	    ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 |
1684 	    ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin <<  8 |
1685 	    ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin <<  4 |
1686 	    ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin);
1687 	mtw_write(sc, MTW_WMM_CWMAX_CFG,
1688 	    ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 |
1689 	    ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax <<  8 |
1690 	    ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax <<  4 |
1691 	    ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax);
1692 	mtw_write(sc, MTW_WMM_TXOP0_CFG,
1693 	    ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 |
1694 	    ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit);
1695 	mtw_write(sc, MTW_WMM_TXOP1_CFG,
1696 	    ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 |
1697 	    ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit);
1698 	splx(s);
1699 }
1700 
1701 void
1702 mtw_updateslot(struct ieee80211com *ic)
1703 {
1704 	/* do it in a process context */
1705 	mtw_do_async(ic->ic_softc, mtw_updateslot_cb, NULL, 0);
1706 }
1707 
1708 void
1709 mtw_updateslot_cb(struct mtw_softc *sc, void *arg)
1710 {
1711 	uint32_t tmp;
1712 
1713 	mtw_read(sc, MTW_BKOFF_SLOT_CFG, &tmp);
1714 	tmp &= ~0xff;
1715 	tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ?
1716 	    IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1717 	mtw_write(sc, MTW_BKOFF_SLOT_CFG, tmp);
1718 }
1719 
1720 int
1721 mtw_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1722     struct ieee80211_key *k)
1723 {
1724 	struct mtw_softc *sc = ic->ic_softc;
1725 	struct mtw_cmd_key cmd;
1726 
1727 	/* defer setting of WEP keys until interface is brought up */
1728 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1729 	    (IFF_UP | IFF_RUNNING))
1730 		return 0;
1731 
1732 	/* do it in a process context */
1733 	cmd.key = *k;
1734 	cmd.ni = ni;
1735 	mtw_do_async(sc, mtw_set_key_cb, &cmd, sizeof cmd);
1736 	sc->sc_key_tasks++;
1737 	return EBUSY;
1738 }
1739 
1740 void
1741 mtw_set_key_cb(struct mtw_softc *sc, void *arg)
1742 {
1743 	struct ieee80211com *ic = &sc->sc_ic;
1744 	struct mtw_cmd_key *cmd = arg;
1745 	struct ieee80211_key *k = &cmd->key;
1746 	uint32_t attr;
1747 	uint16_t base;
1748 	uint8_t mode, wcid, iv[8];
1749 
1750 	sc->sc_key_tasks--;
1751 
1752 	/* map net80211 cipher to RT2860 security mode */
1753 	switch (k->k_cipher) {
1754 	case IEEE80211_CIPHER_WEP40:
1755 		mode = MTW_MODE_WEP40;
1756 		break;
1757 	case IEEE80211_CIPHER_WEP104:
1758 		mode = MTW_MODE_WEP104;
1759 		break;
1760 	case IEEE80211_CIPHER_TKIP:
1761 		mode = MTW_MODE_TKIP;
1762 		break;
1763 	case IEEE80211_CIPHER_CCMP:
1764 		mode = MTW_MODE_AES_CCMP;
1765 		break;
1766 	default:
1767 		if (cmd->ni != NULL) {
1768 			IEEE80211_SEND_MGMT(ic, cmd->ni,
1769 			    IEEE80211_FC0_SUBTYPE_DEAUTH,
1770 			    IEEE80211_REASON_AUTH_LEAVE);
1771 		}
1772 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1773 		return;
1774 	}
1775 
1776 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1777 		wcid = 0;	/* NB: update WCID0 for group keys */
1778 		base = MTW_SKEY(0, k->k_id);
1779 	} else {
1780 		wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0;
1781 		base = MTW_PKEY(wcid);
1782 	}
1783 
1784 	if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
1785 		mtw_write_region_1(sc, base, k->k_key, 16);
1786 		mtw_write_region_1(sc, base + 16, &k->k_key[24], 8);
1787 		mtw_write_region_1(sc, base + 24, &k->k_key[16], 8);
1788 	} else {
1789 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
1790 		mtw_write_region_1(sc, base, k->k_key, (k->k_len + 1) & ~1);
1791 	}
1792 
1793 	if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
1794 	    (k->k_flags & IEEE80211_KEY_TX)) {
1795 		/* set initial packet number in IV+EIV */
1796 		if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
1797 		    k->k_cipher == IEEE80211_CIPHER_WEP104) {
1798 			memset(iv, 0, sizeof iv);
1799 			iv[3] = sc->sc_ic.ic_def_txkey << 6;
1800 		} else {
1801 			if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
1802 				iv[0] = k->k_tsc >> 8;
1803 				iv[1] = (iv[0] | 0x20) & 0x7f;
1804 				iv[2] = k->k_tsc;
1805 			} else /* CCMP */ {
1806 				iv[0] = k->k_tsc;
1807 				iv[1] = k->k_tsc >> 8;
1808 				iv[2] = 0;
1809 			}
1810 			iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1811 			iv[4] = k->k_tsc >> 16;
1812 			iv[5] = k->k_tsc >> 24;
1813 			iv[6] = k->k_tsc >> 32;
1814 			iv[7] = k->k_tsc >> 40;
1815 		}
1816 		mtw_write_region_1(sc, MTW_IVEIV(wcid), iv, 8);
1817 	}
1818 
1819 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1820 		/* install group key */
1821 		mtw_read(sc, MTW_SKEY_MODE_0_7, &attr);
1822 		attr &= ~(0xf << (k->k_id * 4));
1823 		attr |= mode << (k->k_id * 4);
1824 		mtw_write(sc, MTW_SKEY_MODE_0_7, attr);
1825 
1826 		if (k->k_cipher & (IEEE80211_CIPHER_WEP104 |
1827 		    IEEE80211_CIPHER_WEP40)) {
1828 			mtw_read(sc, MTW_WCID_ATTR(wcid + 1), &attr);
1829 			attr = (attr & ~0xf) | (mode << 1);
1830 			mtw_write(sc, MTW_WCID_ATTR(wcid + 1), attr);
1831 
1832 			mtw_set_region_4(sc, MTW_IVEIV(0), 0, 4);
1833 
1834 			mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1835 			attr = (attr & ~0xf) | (mode << 1);
1836 			mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1837 		}
1838 	} else {
1839 		/* install pairwise key */
1840 		mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1841 		attr = (attr & ~0xf) | (mode << 1) | MTW_RX_PKEY_EN;
1842 		mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1843 	}
1844 
1845 	if (sc->sc_key_tasks == 0) {
1846 		if (cmd->ni != NULL)
1847 			cmd->ni->ni_port_valid = 1;
1848 		ieee80211_set_link_state(ic, LINK_STATE_UP);
1849 	}
1850 }
1851 
1852 void
1853 mtw_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1854     struct ieee80211_key *k)
1855 {
1856 	struct mtw_softc *sc = ic->ic_softc;
1857 	struct mtw_cmd_key cmd;
1858 
1859 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
1860 	    ic->ic_state != IEEE80211_S_RUN)
1861 		return;	/* nothing to do */
1862 
1863 	/* do it in a process context */
1864 	cmd.key = *k;
1865 	cmd.ni = ni;
1866 	mtw_do_async(sc, mtw_delete_key_cb, &cmd, sizeof cmd);
1867 }
1868 
1869 void
1870 mtw_delete_key_cb(struct mtw_softc *sc, void *arg)
1871 {
1872 	struct mtw_cmd_key *cmd = arg;
1873 	struct ieee80211_key *k = &cmd->key;
1874 	uint32_t attr;
1875 	uint8_t wcid;
1876 
1877 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1878 		/* remove group key */
1879 		mtw_read(sc, MTW_SKEY_MODE_0_7, &attr);
1880 		attr &= ~(0xf << (k->k_id * 4));
1881 		mtw_write(sc, MTW_SKEY_MODE_0_7, attr);
1882 
1883 	} else {
1884 		/* remove pairwise key */
1885 		wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0;
1886 		mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1887 		attr &= ~0xf;
1888 		mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1889 	}
1890 }
1891 
1892 void
1893 mtw_calibrate_to(void *arg)
1894 {
1895 	/* do it in a process context */
1896 	mtw_do_async(arg, mtw_calibrate_cb, NULL, 0);
1897 	/* next timeout will be rescheduled in the calibration task */
1898 }
1899 
1900 void
1901 mtw_calibrate_cb(struct mtw_softc *sc, void *arg)
1902 {
1903 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1904 	uint32_t sta[3];
1905 	int s, error;
1906 
1907 	/* read statistic counters (clear on read) and update AMRR state */
1908 	error = mtw_read_region_1(sc, MTW_TX_STA_CNT0, (uint8_t *)sta,
1909 	    sizeof sta);
1910 	if (error != 0)
1911 		goto skip;
1912 
1913 	DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n",
1914 	    letoh32(sta[1]) >> 16, letoh32(sta[1]) & 0xffff,
1915 	    letoh32(sta[0]) & 0xffff));
1916 
1917 	s = splnet();
1918 	/* count failed TX as errors */
1919 	ifp->if_oerrors += letoh32(sta[0]) & 0xffff;
1920 
1921 	sc->amn.amn_retrycnt =
1922 	    (letoh32(sta[0]) & 0xffff) +	/* failed TX count */
1923 	    (letoh32(sta[1]) >> 16);		/* TX retransmission count */
1924 
1925 	sc->amn.amn_txcnt =
1926 	    sc->amn.amn_retrycnt +
1927 	    (letoh32(sta[1]) & 0xffff);		/* successful TX count */
1928 
1929 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
1930 
1931 	splx(s);
1932 skip:
1933 	if (!usbd_is_dying(sc->sc_udev))
1934 		timeout_add_sec(&sc->calib_to, 1);
1935 }
1936 
1937 void
1938 mtw_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1939 {
1940 	struct mtw_softc *sc = ic->ic_softc;
1941 	struct mtw_node *mn = (void *)ni;
1942 	struct ieee80211_rateset *rs = &ni->ni_rates;
1943 	uint8_t rate;
1944 	int ridx, i, j;
1945 
1946 	DPRINTF(("new assoc isnew=%d addr=%s\n",
1947 	    isnew, ether_sprintf(ni->ni_macaddr)));
1948 
1949 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
1950 
1951 	/* start at lowest available bit-rate, AMRR will raise */
1952 	ni->ni_txrate = 0;
1953 
1954 	for (i = 0; i < rs->rs_nrates; i++) {
1955 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
1956 		/* convert 802.11 rate to hardware rate index */
1957 		for (ridx = 0; ridx < MTW_RIDX_MAX; ridx++)
1958 			if (rt2860_rates[ridx].rate == rate)
1959 				break;
1960 		mn->ridx[i] = ridx;
1961 		/* determine rate of control response frames */
1962 		for (j = i; j >= 0; j--) {
1963 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
1964 			    rt2860_rates[mn->ridx[i]].phy ==
1965 			    rt2860_rates[mn->ridx[j]].phy)
1966 				break;
1967 		}
1968 		if (j >= 0) {
1969 			mn->ctl_ridx[i] = mn->ridx[j];
1970 		} else {
1971 			/* no basic rate found, use mandatory one */
1972 			mn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
1973 		}
1974 		DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n",
1975 		    rs->rs_rates[i], mn->ridx[i], mn->ctl_ridx[i]));
1976 	}
1977 }
1978 
1979 /*
1980  * Return the Rx chain with the highest RSSI for a given frame.
1981  */
1982 static __inline uint8_t
1983 mtw_maxrssi_chain(struct mtw_softc *sc, const struct mtw_rxwi *rxwi)
1984 {
1985 	uint8_t rxchain = 0;
1986 
1987 	if (sc->nrxchains > 1) {
1988 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
1989 			rxchain = 1;
1990 	}
1991 	return rxchain;
1992 }
1993 
1994 void
1995 mtw_rx_frame(struct mtw_softc *sc, uint8_t *buf, int dmalen,
1996     struct mbuf_list *ml)
1997 {
1998 	struct ieee80211com *ic = &sc->sc_ic;
1999 	struct ifnet *ifp = &ic->ic_if;
2000 	struct ieee80211_frame *wh;
2001 	struct ieee80211_rxinfo rxi;
2002 	struct ieee80211_node *ni;
2003 	struct mtw_rxwi *rxwi;
2004 	struct mbuf *m;
2005 	uint32_t flags;
2006 	uint16_t len;
2007 #if NBPFILTER > 0
2008 	uint16_t phy;
2009 #endif
2010 	uint16_t rxwisize;
2011 	uint8_t ant, rssi;
2012 	int s;
2013 
2014 	/* Rx Wireless Information */
2015 	rxwi = (struct mtw_rxwi *)(buf);
2016 	rxwisize = sizeof(struct mtw_rxwi);
2017 	len = letoh16(rxwi->len) & 0xfff;
2018 
2019 	if (__predict_false(len > dmalen)) {
2020 		DPRINTF(("bad RXWI length %u > %u\n", len, dmalen));
2021 		return;
2022 	}
2023 	if (len > MCLBYTES) {
2024 		DPRINTF(("frame too large (length=%d)\n", len));
2025 		ifp->if_ierrors++;
2026 		return;
2027 	}
2028 
2029 	flags = letoh32(rxwi->flags);
2030 	if (__predict_false(flags & (MTW_RX_CRCERR | MTW_RX_ICVERR))) {
2031 		ifp->if_ierrors++;
2032 		return;
2033 	}
2034 	if (__predict_false((flags & MTW_RX_MICERR))) {
2035 		/* report MIC failures to net80211 for TKIP */
2036 		ic->ic_stats.is_rx_locmicfail++;
2037 		ieee80211_michael_mic_failure(ic, 0/* XXX */);
2038 		ifp->if_ierrors++;
2039 		return;
2040 	}
2041 
2042 	wh = (struct ieee80211_frame *)(buf + rxwisize);
2043 	memset(&rxi, 0, sizeof(rxi));
2044 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2045 		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2046 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2047 	}
2048 
2049 	if (flags & MTW_RX_L2PAD) {
2050 		u_int hdrlen = ieee80211_get_hdrlen(wh);
2051 		memmove((caddr_t)wh + 2, wh, hdrlen);
2052 		wh = (struct ieee80211_frame *)((caddr_t)wh + 2);
2053 	}
2054 
2055 	/* could use m_devget but net80211 wants contig mgmt frames */
2056 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2057 	if (__predict_false(m == NULL)) {
2058 		ifp->if_ierrors++;
2059 		return;
2060 	}
2061 	if (len > MHLEN) {
2062 		MCLGET(m, M_DONTWAIT);
2063 		if (__predict_false(!(m->m_flags & M_EXT))) {
2064 			ifp->if_ierrors++;
2065 			m_freem(m);
2066 			return;
2067 		}
2068 	}
2069 	/* finalize mbuf */
2070 	memcpy(mtod(m, caddr_t), wh, len);
2071 	m->m_pkthdr.len = m->m_len = len;
2072 
2073 	ant = mtw_maxrssi_chain(sc, rxwi);
2074 	rssi = rxwi->rssi[ant];
2075 
2076 #if NBPFILTER > 0
2077 	if (__predict_false(sc->sc_drvbpf != NULL)) {
2078 		struct mtw_rx_radiotap_header *tap = &sc->sc_rxtap;
2079 		struct mbuf mb;
2080 
2081 		tap->wr_flags = 0;
2082 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2083 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2084 		tap->wr_antsignal = rssi;
2085 		tap->wr_antenna = ant;
2086 		tap->wr_dbm_antsignal = mtw_rssi2dbm(sc, rssi, ant);
2087 		tap->wr_rate = 2;	/* in case it can't be found below */
2088 		phy = letoh16(rxwi->phy);
2089 		switch (phy >> MT7601_PHY_SHIFT) {
2090 		case MTW_PHY_CCK:
2091 			switch ((phy & MTW_PHY_MCS) & ~MTW_PHY_SHPRE) {
2092 			case 0:	tap->wr_rate =   2; break;
2093 			case 1:	tap->wr_rate =   4; break;
2094 			case 2:	tap->wr_rate =  11; break;
2095 			case 3:	tap->wr_rate =  22; break;
2096 			}
2097 			if (phy & MTW_PHY_SHPRE)
2098 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2099 			break;
2100 		case MTW_PHY_OFDM:
2101 			switch (phy & MTW_PHY_MCS) {
2102 			case 0:	tap->wr_rate =  12; break;
2103 			case 1:	tap->wr_rate =  18; break;
2104 			case 2:	tap->wr_rate =  24; break;
2105 			case 3:	tap->wr_rate =  36; break;
2106 			case 4:	tap->wr_rate =  48; break;
2107 			case 5:	tap->wr_rate =  72; break;
2108 			case 6:	tap->wr_rate =  96; break;
2109 			case 7:	tap->wr_rate = 108; break;
2110 			}
2111 			break;
2112 		}
2113 		mb.m_data = (caddr_t)tap;
2114 		mb.m_len = sc->sc_rxtap_len;
2115 		mb.m_next = m;
2116 		mb.m_nextpkt = NULL;
2117 		mb.m_type = 0;
2118 		mb.m_flags = 0;
2119 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
2120 	}
2121 #endif
2122 
2123 	s = splnet();
2124 	ni = ieee80211_find_rxnode(ic, wh);
2125 	rxi.rxi_rssi = rssi;
2126 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
2127 
2128 	/* node is no longer needed */
2129 	ieee80211_release_node(ic, ni);
2130 	splx(s);
2131 }
2132 
2133 void
2134 mtw_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
2135 {
2136 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2137 	struct mtw_rx_data *data = priv;
2138 	struct mtw_softc *sc = data->sc;
2139 	uint8_t *buf;
2140 	uint32_t dmalen;
2141 	int xferlen;
2142 
2143 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2144 		DPRINTF(("RX status=%d\n", status));
2145 		if (status == USBD_STALLED)
2146 			usbd_clear_endpoint_stall_async(sc->rxq[0].pipeh);
2147 		if (status != USBD_CANCELLED)
2148 			goto skip;
2149 		return;
2150 	}
2151 
2152 	usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL);
2153 
2154 	if (__predict_false(xferlen < sizeof(uint32_t) +
2155 	    sizeof (struct mtw_rxwi) + sizeof(struct mtw_rxd))) {
2156 		DPRINTF(("RX xfer too short %d\n", xferlen));
2157 		goto skip;
2158 	}
2159 
2160 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2161 	buf = data->buf;
2162 	while (xferlen > 8) {
2163 		dmalen = letoh32(*(uint32_t *)buf) & MTW_RXD_LEN;
2164 		if (__predict_false(dmalen == 0 || (dmalen & 3) != 0)) {
2165 			DPRINTF(("bad DMA length %u\n", dmalen));
2166 			break;
2167 		}
2168 		if (__predict_false(dmalen + 8 > xferlen)) {
2169 			DPRINTF(("bad DMA length %u > %d\n",
2170 			    dmalen + 8, xferlen));
2171 			break;
2172 		}
2173 		mtw_rx_frame(sc, buf + sizeof(struct mtw_rxd), dmalen, &ml);
2174 		buf += dmalen + 8;
2175 		xferlen -= dmalen + 8;
2176 	}
2177 	if_input(&sc->sc_ic.ic_if, &ml);
2178 
2179 skip:	/* setup a new transfer */
2180 	usbd_setup_xfer(xfer, sc->rxq[0].pipeh, data, data->buf, MTW_MAX_RXSZ,
2181 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, mtw_rxeof);
2182 	(void)usbd_transfer(data->xfer);
2183 }
2184 
2185 void
2186 mtw_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
2187 {
2188 	struct mtw_tx_data *data = priv;
2189 	struct mtw_softc *sc = data->sc;
2190 	struct mtw_tx_ring *txq = &sc->txq[data->qid];
2191 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2192 	int s;
2193 
2194 	if (usbd_is_dying(sc->sc_udev))
2195 		return;
2196 
2197 	s = splnet();
2198 	txq->queued--;
2199 	sc->qfullmsk &= ~(1 << data->qid);
2200 
2201 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2202 		DPRINTF(("TX status=%d\n", status));
2203 		if (status == USBD_STALLED)
2204 			usbd_clear_endpoint_stall_async(txq->pipeh);
2205 		ifp->if_oerrors++;
2206 		splx(s);
2207 		return;
2208 	}
2209 
2210 	sc->sc_tx_timer = 0;
2211 
2212 	if (ifq_is_oactive(&ifp->if_snd)) {
2213 		ifq_clr_oactive(&ifp->if_snd);
2214 		mtw_start(ifp);
2215 	}
2216 
2217 	splx(s);
2218 }
2219 
2220 int
2221 mtw_tx(struct mtw_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2222 {
2223 	struct ieee80211com *ic = &sc->sc_ic;
2224 	struct mtw_node *mn = (void *)ni;
2225 	struct ieee80211_frame *wh;
2226 	struct mtw_tx_ring *ring;
2227 	struct mtw_tx_data *data;
2228 	struct mtw_txd *txd;
2229 	struct mtw_txwi *txwi;
2230 	uint16_t qos, dur;
2231 	uint16_t txwisize;
2232 	uint8_t type, mcs, tid, qid;
2233 	int error, hasqos, ridx, ctl_ridx, xferlen;
2234 
2235 	wh = mtod(m, struct ieee80211_frame *);
2236 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2237 
2238 	/* select queue */
2239 	if ((hasqos = ieee80211_has_qos(wh))) {
2240 		qos = ieee80211_get_qos(wh);
2241 		tid = qos & IEEE80211_QOS_TID;
2242 		qid = ieee80211_up_to_ac(ic, tid);
2243 	} else {
2244 		qos = 0;
2245 		tid = 0;
2246 		qid = EDCA_AC_BE;
2247 	}
2248 
2249 	/* management frames go to MCU queue */
2250 	if (type == IEEE80211_FC0_TYPE_MGT)
2251 		qid = MTW_TXQ_MCU;
2252 
2253 	ring = &sc->txq[qid];
2254 	data = &ring->data[ring->cur];
2255 
2256 	/* pickup a rate index */
2257 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2258 	    type != IEEE80211_FC0_TYPE_DATA) {
2259 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2260 		    MTW_RIDX_OFDM6 : MTW_RIDX_CCK1;
2261 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
2262 	} else if (ic->ic_fixed_rate != -1) {
2263 		ridx = sc->fixed_ridx;
2264 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
2265 	} else {
2266 		ridx = mn->ridx[ni->ni_txrate];
2267 		ctl_ridx = mn->ctl_ridx[ni->ni_txrate];
2268 	}
2269 
2270 	txwisize = sizeof(struct mtw_txwi);
2271 	xferlen = txwisize + m->m_pkthdr.len;
2272 
2273 	/* roundup to 32-bit alignment */
2274 	xferlen = (xferlen + 3) & ~3;
2275 
2276 	/* setup TX descriptor */
2277 	txd = (struct mtw_txd *)data->buf;
2278 	txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_80211 |
2279 	    MTW_TXD_WLAN | MTW_TXD_QSEL_EDCA);
2280 
2281 	if (type != IEEE80211_FC0_TYPE_DATA)
2282 		txd->flags |= htole16(MTW_TXD_WIV);
2283 	txd->len = htole16(xferlen);
2284 	xferlen += sizeof(struct mtw_txd);
2285 
2286 	/* get MCS code from rate index */
2287 	mcs = rt2860_rates[ridx].mcs;
2288 
2289 	/* setup TX Wireless Information */
2290 	txwi = (struct mtw_txwi *)(txd + 1);
2291 	txwi->flags = 0;
2292 	txwi->xflags = hasqos ? 0 : MTW_TX_NSEQ;
2293 	txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ?
2294 	    MTW_AID2WCID(ni->ni_associd) : 0xff;
2295 	txwi->len = htole16(m->m_pkthdr.len);
2296 	txwi->txop = MTW_TX_TXOP_BACKOFF;
2297 
2298 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2299 		txwi->phy = htole16(MTW_PHY_CCK << MT7601_PHY_SHIFT);
2300 		if (ridx != MTW_RIDX_CCK1 &&
2301 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2302 			mcs |= MTW_PHY_SHPRE;
2303 	} else if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
2304 		txwi->phy = htole16(MTW_PHY_OFDM << MT7601_PHY_SHIFT);
2305 	txwi->phy |= htole16(mcs);
2306 
2307 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2308 	    (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
2309 	     IEEE80211_QOS_ACK_POLICY_NOACK)) {
2310 		txwi->xflags |= MTW_TX_ACK;
2311 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2312 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
2313 		else
2314 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
2315 		*(uint16_t *)wh->i_dur = htole16(dur);
2316 	}
2317 
2318 #if NBPFILTER > 0
2319 	if (__predict_false(sc->sc_drvbpf != NULL)) {
2320 		struct mtw_tx_radiotap_header *tap = &sc->sc_txtap;
2321 		struct mbuf mb;
2322 
2323 		tap->wt_flags = 0;
2324 		tap->wt_rate = rt2860_rates[ridx].rate;
2325 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2326 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2327 		if (mcs & MTW_PHY_SHPRE)
2328 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2329 
2330 		mb.m_data = (caddr_t)tap;
2331 		mb.m_len = sc->sc_txtap_len;
2332 		mb.m_next = m;
2333 		mb.m_nextpkt = NULL;
2334 		mb.m_type = 0;
2335 		mb.m_flags = 0;
2336 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2337 	}
2338 #endif
2339 	/* copy payload */
2340 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)txwi + txwisize);
2341 	m_freem(m);
2342 
2343 	/* 4-byte pad */
2344 	memset(data->buf + xferlen, 0, MTW_DMA_PAD);
2345 	xferlen += MTW_DMA_PAD;
2346 
2347 	usbd_setup_xfer(data->xfer, ring->pipeh, data, data->buf,
2348 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2349 	    MTW_TX_TIMEOUT, mtw_txeof);
2350 	error = usbd_transfer(data->xfer);
2351 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
2352 		return error;
2353 
2354 	ieee80211_release_node(ic, ni);
2355 
2356 	ring->cur = (ring->cur + 1) % MTW_TX_RING_COUNT;
2357 	if (++ring->queued >= MTW_TX_RING_COUNT)
2358 		sc->qfullmsk |= 1 << qid;
2359 	return 0;
2360 }
2361 
2362 void
2363 mtw_start(struct ifnet *ifp)
2364 {
2365 	struct mtw_softc *sc = ifp->if_softc;
2366 	struct ieee80211com *ic = &sc->sc_ic;
2367 	struct ieee80211_node *ni;
2368 	struct mbuf *m;
2369 
2370 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
2371 		return;
2372 
2373 	for (;;) {
2374 		if (sc->qfullmsk != 0) {
2375 			ifq_set_oactive(&ifp->if_snd);
2376 			break;
2377 		}
2378 
2379 		/* send pending management frames first */
2380 		m = mq_dequeue(&ic->ic_mgtq);
2381 		if (m != NULL) {
2382 			ni = m->m_pkthdr.ph_cookie;
2383 			goto sendit;
2384 		}
2385 		if (ic->ic_state != IEEE80211_S_RUN)
2386 			break;
2387 
2388 		/* encapsulate and send data frames */
2389 		m = ifq_dequeue(&ifp->if_snd);
2390 		if (m == NULL)
2391 			break;
2392 #if NBPFILTER > 0
2393 		if (ifp->if_bpf != NULL)
2394 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
2395 #endif
2396 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
2397 			continue;
2398 sendit:
2399 #if NBPFILTER > 0
2400 		if (ic->ic_rawbpf != NULL)
2401 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
2402 #endif
2403 		if (mtw_tx(sc, m, ni) != 0) {
2404 			ieee80211_release_node(ic, ni);
2405 			ifp->if_oerrors++;
2406 			continue;
2407 		}
2408 
2409 		sc->sc_tx_timer = 5;
2410 		ifp->if_timer = 1;
2411 	}
2412 }
2413 
2414 void
2415 mtw_watchdog(struct ifnet *ifp)
2416 {
2417 	struct mtw_softc *sc = ifp->if_softc;
2418 
2419 	ifp->if_timer = 0;
2420 
2421 	if (sc->sc_tx_timer > 0) {
2422 		if (--sc->sc_tx_timer == 0) {
2423 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2424 			/* mtw_init(ifp); XXX needs a process context! */
2425 			ifp->if_oerrors++;
2426 			return;
2427 		}
2428 		ifp->if_timer = 1;
2429 	}
2430 
2431 	ieee80211_watchdog(ifp);
2432 }
2433 
2434 int
2435 mtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2436 {
2437 	struct mtw_softc *sc = ifp->if_softc;
2438 	struct ieee80211com *ic = &sc->sc_ic;
2439 	int s, error = 0;
2440 
2441 	if (usbd_is_dying(sc->sc_udev))
2442 		return ENXIO;
2443 
2444 	usbd_ref_incr(sc->sc_udev);
2445 
2446 	s = splnet();
2447 
2448 	switch (cmd) {
2449 	case SIOCSIFADDR:
2450 		ifp->if_flags |= IFF_UP;
2451 		/* FALLTHROUGH */
2452 	case SIOCSIFFLAGS:
2453 		if (ifp->if_flags & IFF_UP) {
2454 			if (!(ifp->if_flags & IFF_RUNNING))
2455 				mtw_init(ifp);
2456 		} else {
2457 			if (ifp->if_flags & IFF_RUNNING)
2458 				mtw_stop(ifp, 1);
2459 		}
2460 		break;
2461 
2462 	case SIOCS80211CHANNEL:
2463 		/*
2464 		 * This allows for fast channel switching in monitor mode
2465 		 * (used by kismet).
2466 		 */
2467 		error = ieee80211_ioctl(ifp, cmd, data);
2468 		if (error == ENETRESET &&
2469 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2470 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2471 			    (IFF_UP | IFF_RUNNING))
2472 				mtw_set_chan(sc, ic->ic_ibss_chan);
2473 			error = 0;
2474 		}
2475 		break;
2476 
2477 	default:
2478 		error = ieee80211_ioctl(ifp, cmd, data);
2479 	}
2480 
2481 	if (error == ENETRESET) {
2482 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2483 		    (IFF_UP | IFF_RUNNING)) {
2484 			mtw_stop(ifp, 0);
2485 			error = mtw_init(ifp);
2486 		} else
2487 			error = 0;
2488 	}
2489 	splx(s);
2490 
2491 	usbd_ref_decr(sc->sc_udev);
2492 
2493 	return error;
2494 }
2495 
2496 void
2497 mtw_select_chan_group(struct mtw_softc *sc, int group)
2498 {
2499 	uint32_t tmp;
2500 	uint8_t bbp;
2501 
2502 	/* Tx band 20MHz 2G */
2503 	mtw_read(sc, MTW_TX_BAND_CFG, &tmp);
2504 	tmp &= ~(MTW_TX_BAND_SEL_2G | MTW_TX_BAND_SEL_5G |
2505 	    MTW_TX_BAND_UPPER_40M);
2506 	tmp |= (group == 0) ? MTW_TX_BAND_SEL_2G : MTW_TX_BAND_SEL_5G;
2507 	mtw_write(sc, MTW_TX_BAND_CFG, tmp);
2508 
2509 	/* select 20 MHz bandwidth */
2510 	mtw_bbp_read(sc, 4, &bbp);
2511 	bbp &= ~0x18;
2512 	bbp |= 0x40;
2513 	mtw_bbp_write(sc, 4, bbp);
2514 
2515 	/* calibrate BBP */
2516 	mtw_bbp_write(sc, 69, 0x12);
2517 	mtw_bbp_write(sc, 91, 0x07);
2518 	mtw_bbp_write(sc, 195, 0x23);
2519 	mtw_bbp_write(sc, 196, 0x17);
2520 	mtw_bbp_write(sc, 195, 0x24);
2521 	mtw_bbp_write(sc, 196, 0x06);
2522 	mtw_bbp_write(sc, 195, 0x81);
2523 	mtw_bbp_write(sc, 196, 0x12);
2524 	mtw_bbp_write(sc, 195, 0x83);
2525 	mtw_bbp_write(sc, 196, 0x17);
2526 	mtw_rf_write(sc, 5, 8, 0x00);
2527 	mtw_mcu_calibrate(sc, 0x6, 0x10001);
2528 
2529 	/* set initial AGC value */
2530 	mt7601_set_agc(sc, 0x14);
2531 }
2532 
2533 void
2534 mt7601_set_agc(struct mtw_softc *sc, uint8_t agc)
2535 {
2536 	uint8_t bbp;
2537 
2538 	mtw_bbp_write(sc, 66, agc);
2539 	mtw_bbp_write(sc, 195, 0x87);
2540 	bbp = (agc & 0xf0) | 0x08;
2541 	mtw_bbp_write(sc, 196, bbp);
2542 }
2543 
2544 void
2545 mt7601_set_chan(struct mtw_softc *sc, u_int chan)
2546 {
2547 	uint32_t tmp;
2548 	uint8_t bbp, rf, txpow1;
2549 	int i;
2550 
2551 	/* find the settings for this channel */
2552 	for (i = 0; mt7601_rf_chan[i].chan != chan; i++)
2553 
2554 	mtw_rf_write(sc, 0, 17, mt7601_rf_chan[i].r17);
2555 	mtw_rf_write(sc, 0, 18, mt7601_rf_chan[i].r18);
2556 	mtw_rf_write(sc, 0, 19, mt7601_rf_chan[i].r19);
2557 	mtw_rf_write(sc, 0, 20, mt7601_rf_chan[i].r20);
2558 
2559 	/* use Tx power values from EEPROM */
2560 	txpow1 = sc->txpow1[i];
2561 
2562 	/* Tx automatic level control */
2563 	mtw_read(sc, MTW_TX_ALC_CFG0, &tmp);
2564 	tmp &= ~0x3f3f;
2565 	tmp |= (txpow1 & 0x3f);
2566 	mtw_write(sc, MTW_TX_ALC_CFG0, tmp);
2567 
2568 	/* LNA */
2569 	mtw_bbp_write(sc, 62, 0x37 - sc->lna[0]);
2570 	mtw_bbp_write(sc, 63, 0x37 - sc->lna[0]);
2571 	mtw_bbp_write(sc, 64, 0x37 - sc->lna[0]);
2572 
2573 	/* VCO calibration */
2574 	mtw_rf_write(sc, 0, 4, 0x0a);
2575 	mtw_rf_write(sc, 0, 5, 0x20);
2576 	mtw_rf_read(sc, 0, 4, &rf);
2577 	mtw_rf_write(sc, 0, 4, rf | 0x80);
2578 
2579 	/* select 20 MHz bandwidth */
2580 	mtw_bbp_read(sc, 4, &bbp);
2581 	bbp &= ~0x18;
2582 	bbp |= 0x40;
2583 	mtw_bbp_write(sc, 4, bbp);
2584 	mtw_bbp_write(sc, 178, 0xff);
2585 }
2586 
2587 int
2588 mtw_set_chan(struct mtw_softc *sc, struct ieee80211_channel *c)
2589 {
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 	u_int chan, group;
2592 
2593 	chan = ieee80211_chan2ieee(ic, c);
2594 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2595 		return EINVAL;
2596 
2597 	/* determine channel group */
2598 	if (chan <= 14)
2599 		group = 0;
2600 	else if (chan <= 64)
2601 		group = 1;
2602 	else if (chan <= 128)
2603 		group = 2;
2604 	else
2605 		group = 3;
2606 
2607 	if (group != sc->sc_chan_group || !sc->sc_bw_calibrated)
2608 		mtw_select_chan_group(sc, group);
2609 
2610 	sc->sc_chan_group = group;
2611 
2612 	/* chipset specific */
2613 	if (sc->mac_ver == 0x7601)
2614 		mt7601_set_chan(sc, chan);
2615 
2616 	DELAY(1000);
2617 	return 0;
2618 }
2619 
2620 void
2621 mtw_enable_tsf_sync(struct mtw_softc *sc)
2622 {
2623 	struct ieee80211com *ic = &sc->sc_ic;
2624 	uint32_t tmp;
2625 
2626 	mtw_read(sc, MTW_BCN_TIME_CFG, &tmp);
2627 	tmp &= ~0x1fffff;
2628 	tmp |= ic->ic_bss->ni_intval * 16;
2629 	tmp |= MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN;
2630 
2631 	/* local TSF is always updated with remote TSF on beacon reception */
2632 	tmp |= 1 << MTW_TSF_SYNC_MODE_SHIFT;
2633 	mtw_write(sc, MTW_BCN_TIME_CFG, tmp);
2634 }
2635 
2636 void
2637 mtw_abort_tsf_sync(struct mtw_softc *sc)
2638 {
2639 	uint32_t tmp;
2640 
2641 	mtw_read(sc, MTW_BCN_TIME_CFG, &tmp);
2642 	tmp &= ~(MTW_BCN_TX_EN | MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN);
2643 	mtw_write(sc, MTW_BCN_TIME_CFG, tmp);
2644 }
2645 
2646 void
2647 mtw_enable_mrr(struct mtw_softc *sc)
2648 {
2649 #define CCK(mcs)	(mcs)
2650 #define OFDM(mcs)	(1 << 3 | (mcs))
2651 	mtw_write(sc, MTW_LG_FBK_CFG0,
2652 	    OFDM(6) << 28 |	/* 54->48 */
2653 	    OFDM(5) << 24 |	/* 48->36 */
2654 	    OFDM(4) << 20 |	/* 36->24 */
2655 	    OFDM(3) << 16 |	/* 24->18 */
2656 	    OFDM(2) << 12 |	/* 18->12 */
2657 	    OFDM(1) <<  8 |	/* 12-> 9 */
2658 	    OFDM(0) <<  4 |	/*  9-> 6 */
2659 	    OFDM(0));		/*  6-> 6 */
2660 
2661 	mtw_write(sc, MTW_LG_FBK_CFG1,
2662 	    CCK(2) << 12 |	/* 11->5.5 */
2663 	    CCK(1) <<  8 |	/* 5.5-> 2 */
2664 	    CCK(0) <<  4 |	/*   2-> 1 */
2665 	    CCK(0));		/*   1-> 1 */
2666 #undef OFDM
2667 #undef CCK
2668 }
2669 
2670 void
2671 mtw_set_txrts(struct mtw_softc *sc)
2672 {
2673 	uint32_t tmp;
2674 
2675 	/* set RTS threshold */
2676 	mtw_read(sc, MTW_TX_RTS_CFG, &tmp);
2677 	tmp &= ~0xffff00;
2678 	tmp |= 0x1000 << MTW_RTS_THRES_SHIFT;
2679 	mtw_write(sc, MTW_TX_RTS_CFG, tmp);
2680 }
2681 
2682 void
2683 mtw_set_txpreamble(struct mtw_softc *sc)
2684 {
2685 	uint32_t tmp;
2686 
2687 	mtw_read(sc, MTW_AUTO_RSP_CFG, &tmp);
2688 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2689 		tmp |= MTW_CCK_SHORT_EN;
2690 	else
2691 		tmp &= ~MTW_CCK_SHORT_EN;
2692 	mtw_write(sc, MTW_AUTO_RSP_CFG, tmp);
2693 }
2694 
2695 void
2696 mtw_set_basicrates(struct mtw_softc *sc)
2697 {
2698 	struct ieee80211com *ic = &sc->sc_ic;
2699 
2700 	/* set basic rates mask */
2701 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2702 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x003);
2703 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2704 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x150);
2705 	else	/* 11g */
2706 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x17f);
2707 }
2708 
2709 void
2710 mtw_set_leds(struct mtw_softc *sc, uint16_t which)
2711 {
2712 	struct mtw_mcu_cmd_8 cmd;
2713 
2714 	cmd.func = htole32(0x1);
2715 	cmd.val = htole32(which);
2716 	mtw_mcu_cmd(sc, 16, &cmd, sizeof(struct mtw_mcu_cmd_8));
2717 }
2718 
2719 void
2720 mtw_set_bssid(struct mtw_softc *sc, const uint8_t *bssid)
2721 {
2722 	mtw_write(sc, MTW_MAC_BSSID_DW0,
2723 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2724 	mtw_write(sc, MTW_MAC_BSSID_DW1,
2725 	    bssid[4] | bssid[5] << 8);
2726 }
2727 
2728 void
2729 mtw_set_macaddr(struct mtw_softc *sc, const uint8_t *addr)
2730 {
2731 	mtw_write(sc, MTW_MAC_ADDR_DW0,
2732 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2733 	mtw_write(sc, MTW_MAC_ADDR_DW1,
2734 	    addr[4] | addr[5] << 8 | 0xff << 16);
2735 }
2736 
2737 #if NBPFILTER > 0
2738 int8_t
2739 mtw_rssi2dbm(struct mtw_softc *sc, uint8_t rssi, uint8_t rxchain)
2740 {
2741 	struct ieee80211com *ic = &sc->sc_ic;
2742 	struct ieee80211_channel *c = ic->ic_ibss_chan;
2743 	int delta;
2744 
2745 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2746 		u_int chan = ieee80211_chan2ieee(ic, c);
2747 		delta = sc->rssi_5ghz[rxchain];
2748 
2749 		/* determine channel group */
2750 		if (chan <= 64)
2751 			delta -= sc->lna[1];
2752 		else if (chan <= 128)
2753 			delta -= sc->lna[2];
2754 		else
2755 			delta -= sc->lna[3];
2756 	} else
2757 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
2758 
2759 	return -12 - delta - rssi;
2760 }
2761 #endif
2762 
2763 int
2764 mt7601_bbp_init(struct mtw_softc *sc)
2765 {
2766 	uint8_t bbp;
2767 	int i, error, ntries;
2768 
2769 	/* wait for BBP to wake up */
2770 	for (ntries = 0; ntries < 20; ntries++) {
2771 		if ((error = mtw_bbp_read(sc, 0, &bbp)) != 0)
2772 			return error;
2773 		if (bbp != 0 && bbp != 0xff)
2774 			break;
2775 	}
2776 
2777 	if (ntries == 20)
2778 		return ETIMEDOUT;
2779 
2780 	mtw_bbp_read(sc, 3, &bbp);
2781 	mtw_bbp_write(sc, 3, 0);
2782 	mtw_bbp_read(sc, 105, &bbp);
2783 	mtw_bbp_write(sc, 105, 0);
2784 
2785 	/* initialize BBP registers to default values */
2786 	for (i = 0; i < nitems(mt7601_def_bbp); i++) {
2787 		if ((error = mtw_bbp_write(sc, mt7601_def_bbp[i].reg,
2788 		    mt7601_def_bbp[i].val)) != 0)
2789 			return error;
2790 	}
2791 
2792 	sc->sc_bw_calibrated = 0;
2793 
2794 	return 0;
2795 }
2796 
2797 int
2798 mt7601_rf_init(struct mtw_softc *sc)
2799 {
2800 	int i, error;
2801 
2802 	/* RF bank 0 */
2803 	for (i = 0; i < nitems(mt7601_rf_bank0); i++) {
2804 		error = mtw_rf_write(sc, 0, mt7601_rf_bank0[i].reg,
2805 		    mt7601_rf_bank0[i].val);
2806 		if (error != 0)
2807 			return error;
2808 	}
2809 	/* RF bank 4 */
2810 	for (i = 0; i < nitems(mt7601_rf_bank4); i++) {
2811 		error = mtw_rf_write(sc, 4, mt7601_rf_bank4[i].reg,
2812 		    mt7601_rf_bank4[i].val);
2813 		if (error != 0)
2814 			return error;
2815 	}
2816 	/* RF bank 5 */
2817 	for (i = 0; i < nitems(mt7601_rf_bank5); i++) {
2818 		error = mtw_rf_write(sc, 5, mt7601_rf_bank5[i].reg,
2819 		    mt7601_rf_bank5[i].val);
2820 		if (error != 0)
2821 			return error;
2822 	}
2823 	return 0;
2824 }
2825 
2826 int
2827 mt7601_rf_setup(struct mtw_softc *sc)
2828 {
2829 	uint32_t tmp;
2830 	uint8_t rf;
2831 	int error;
2832 
2833 	if (sc->sc_rf_calibrated)
2834 		return 0;
2835 
2836 	/* init RF registers */
2837 	if ((error = mt7601_rf_init(sc)) != 0)
2838 		return error;
2839 
2840 	/* init frequency offset */
2841 	mtw_rf_write(sc, 0, 12, sc->rf_freq_offset);
2842 	mtw_rf_read(sc, 0, 12, &rf);
2843 
2844 	/* read temperature */
2845 	mt7601_rf_temperature(sc, &rf);
2846 	sc->bbp_temp = rf;
2847 	DPRINTF(("BBP temp 0x%x ", rf));
2848 
2849 	mtw_rf_read(sc, 0, 7, &rf);
2850 	if ((error = mtw_mcu_calibrate(sc, 0x1, 0)) != 0)
2851 		return error;
2852 	usbd_delay_ms(sc->sc_udev, 100);
2853 	mtw_rf_read(sc, 0, 7, &rf);
2854 
2855 	/* Calibrate VCO RF 0/4 */
2856 	mtw_rf_write(sc, 0, 4, 0x0a);
2857 	mtw_rf_write(sc, 0, 4, 0x20);
2858 	mtw_rf_read(sc, 0, 4, &rf);
2859 	mtw_rf_write(sc, 0, 4, rf | 0x80);
2860 
2861 	if ((error = mtw_mcu_calibrate(sc, 0x9, 0)) != 0)
2862 		return error;
2863 	if ((error = mt7601_rxdc_cal(sc)) != 0)
2864 		return error;
2865 	if ((error = mtw_mcu_calibrate(sc, 0x6, 1)) != 0)
2866 		return error;
2867 	if ((error = mtw_mcu_calibrate(sc, 0x6, 0)) != 0)
2868 		return error;
2869 	if ((error = mtw_mcu_calibrate(sc, 0x4, 0)) != 0)
2870 		return error;
2871 	if ((error = mtw_mcu_calibrate(sc, 0x5, 0)) != 0)
2872 		return error;
2873 
2874 	mtw_read(sc, MTW_LDO_CFG0, &tmp);
2875 	tmp &= ~(1 << 4);
2876 	tmp |= (1 << 2);
2877 	mtw_write(sc, MTW_LDO_CFG0, tmp);
2878 
2879 	if ((error = mtw_mcu_calibrate(sc, 0x8, 0)) != 0)
2880 		return error;
2881 	if ((error = mt7601_rxdc_cal(sc)) != 0)
2882 		return error;
2883 
2884 	sc->sc_rf_calibrated = 1;
2885 	return 0;
2886 }
2887 
2888 int
2889 mt7601_rf_temperature(struct mtw_softc *sc, int8_t *val)
2890 {
2891 	uint32_t rfb, rfs;
2892 	uint8_t bbp;
2893 	int ntries;
2894 
2895 	mtw_read(sc, MTW_RF_BYPASS0, &rfb);
2896 	mtw_read(sc, MTW_RF_SETTING0, &rfs);
2897 	mtw_write(sc, MTW_RF_BYPASS0, 0);
2898 	mtw_write(sc, MTW_RF_SETTING0, 0x10);
2899 	mtw_write(sc, MTW_RF_BYPASS0, 0x10);
2900 
2901 	mtw_bbp_read(sc, 47, &bbp);
2902 	bbp &= ~0x7f;
2903 	bbp |= 0x10;
2904 	mtw_bbp_write(sc, 47, bbp);
2905 
2906 	mtw_bbp_write(sc, 22, 0x40);
2907 
2908 	for (ntries = 0; ntries < 10; ntries++) {
2909 		mtw_bbp_read(sc, 47, &bbp);
2910 		if ((bbp & 0x10) == 0)
2911 			break;
2912 	}
2913 	if (ntries == 10)
2914 		return ETIMEDOUT;
2915 
2916 	mt7601_r49_read(sc, MT7601_R47_TEMP, val);
2917 
2918 	mtw_bbp_write(sc, 22, 0);
2919 
2920 	mtw_bbp_read(sc, 21, &bbp);
2921 	bbp |= 0x02;
2922 	mtw_bbp_write(sc, 21, bbp);
2923 	bbp &= ~0x02;
2924 	mtw_bbp_write(sc, 21, bbp);
2925 
2926 	mtw_write(sc, MTW_RF_BYPASS0, 0);
2927 	mtw_write(sc, MTW_RF_SETTING0, rfs);
2928 	mtw_write(sc, MTW_RF_BYPASS0, rfb);
2929 	return 0;
2930 }
2931 
2932 int
2933 mt7601_r49_read(struct mtw_softc *sc, uint8_t flag, int8_t *val)
2934 {
2935 	uint8_t bbp;
2936 
2937 	mtw_bbp_read(sc, 47, &bbp);
2938 	bbp = 0x90;
2939 	mtw_bbp_write(sc, 47, bbp);
2940 	bbp &= ~0x0f;
2941 	bbp |= flag;
2942 	mtw_bbp_write(sc, 47, bbp);
2943 	return mtw_bbp_read(sc, 49, val);
2944 }
2945 
2946 int
2947 mt7601_rxdc_cal(struct mtw_softc *sc)
2948 {
2949 	uint32_t tmp;
2950 	uint8_t bbp;
2951 	int ntries;
2952 
2953 	mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp);
2954 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_RX_EN);
2955 	mtw_bbp_write(sc, 158, 0x8d);
2956 	mtw_bbp_write(sc, 159, 0xfc);
2957 	mtw_bbp_write(sc, 158, 0x8c);
2958 	mtw_bbp_write(sc, 159, 0x4c);
2959 
2960 	for (ntries = 0; ntries < 20; ntries++) {
2961 		DELAY(300);
2962 		mtw_bbp_write(sc, 158, 0x8c);
2963 		mtw_bbp_read(sc, 159, &bbp);
2964 		if (bbp == 0x0c)
2965 			break;
2966 	}
2967 
2968 	if (ntries == 20)
2969 		return ETIMEDOUT;
2970 
2971 	mtw_write(sc, MTW_MAC_SYS_CTRL, 0);
2972 	mtw_bbp_write(sc, 158, 0x8d);
2973 	mtw_bbp_write(sc, 159, 0xe0);
2974 	mtw_write(sc, MTW_MAC_SYS_CTRL, tmp);
2975 	return 0;
2976 }
2977 
2978 int
2979 mtw_wlan_enable(struct mtw_softc *sc, int enable)
2980 {
2981 	uint32_t tmp;
2982 	int error = 0;
2983 
2984 	if (enable) {
2985 		mtw_read(sc, MTW_WLAN_CTRL, &tmp);
2986 		if (sc->asic_ver == 0x7612)
2987 			tmp &= ~0xfffff000;
2988 
2989 		tmp &= ~MTW_WLAN_CLK_EN;
2990 		tmp |= MTW_WLAN_EN;
2991 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
2992 		usbd_delay_ms(sc->sc_udev, 2);
2993 
2994 		tmp |= MTW_WLAN_CLK_EN;
2995 		if (sc->asic_ver == 0x7612) {
2996 			tmp |= (MTW_WLAN_RESET | MTW_WLAN_RESET_RF);
2997 		}
2998 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
2999 		usbd_delay_ms(sc->sc_udev, 2);
3000 
3001 		mtw_read(sc, MTW_OSC_CTRL, &tmp);
3002 		tmp |= MTW_OSC_EN;
3003 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3004 		tmp |= MTW_OSC_CAL_REQ;
3005 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3006 	} else {
3007 		mtw_read(sc, MTW_WLAN_CTRL, &tmp);
3008 		tmp &= ~(MTW_WLAN_CLK_EN | MTW_WLAN_EN);
3009 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
3010 
3011 		mtw_read(sc, MTW_OSC_CTRL, &tmp);
3012 		tmp &= ~MTW_OSC_EN;
3013 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3014 	}
3015 	return error;
3016 }
3017 
3018 int
3019 mtw_txrx_enable(struct mtw_softc *sc)
3020 {
3021 	uint32_t tmp;
3022 	int error, ntries;
3023 
3024 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_TX_EN);
3025 	for (ntries = 0; ntries < 200; ntries++) {
3026 		if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0)
3027 			return error;
3028 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3029 			break;
3030 		DELAY(1000);
3031 	}
3032 	if (ntries == 200)
3033 		return ETIMEDOUT;
3034 
3035 	DELAY(50);
3036 
3037 	tmp |= MTW_RX_DMA_EN | MTW_TX_DMA_EN | MTW_TX_WB_DDONE;
3038 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3039 
3040 	/* enable Rx bulk aggregation (set timeout and limit) */
3041 	tmp = MTW_USB_TX_EN | MTW_USB_RX_EN | MTW_USB_RX_AGG_EN |
3042 	   MTW_USB_RX_AGG_TO(128) | MTW_USB_RX_AGG_LMT(2);
3043 	mtw_write(sc, MTW_USB_DMA_CFG, tmp);
3044 
3045 	/* set Rx filter */
3046 	tmp = MTW_DROP_CRC_ERR | MTW_DROP_PHY_ERR;
3047 	if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
3048 		tmp |= MTW_DROP_UC_NOME | MTW_DROP_DUPL |
3049 		    MTW_DROP_CTS | MTW_DROP_BA | MTW_DROP_ACK |
3050 		    MTW_DROP_VER_ERR | MTW_DROP_CTRL_RSV |
3051 		    MTW_DROP_CFACK | MTW_DROP_CFEND;
3052 		if (sc->sc_ic.ic_opmode == IEEE80211_M_STA)
3053 			tmp |= MTW_DROP_RTS | MTW_DROP_PSPOLL;
3054 	}
3055 	mtw_write(sc, MTW_RX_FILTR_CFG, tmp);
3056 
3057 	mtw_write(sc, MTW_MAC_SYS_CTRL,
3058 	    MTW_MAC_RX_EN | MTW_MAC_TX_EN);
3059 	return 0;
3060 }
3061 
3062 int
3063 mtw_init(struct ifnet *ifp)
3064 {
3065 	struct mtw_softc *sc = ifp->if_softc;
3066 	struct ieee80211com *ic = &sc->sc_ic;
3067 	uint32_t tmp;
3068 	int i, error, ridx, ntries, qid;
3069 
3070 	if (usbd_is_dying(sc->sc_udev))
3071 		return ENXIO;
3072 
3073 	/* init Tx rings (4 EDCAs, 1 HCCA, 1 MGMT) */
3074 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++) {
3075 		if ((error = mtw_alloc_tx_ring(sc, qid)) != 0)
3076 			goto fail;
3077 	}
3078 
3079 	/* init Rx ring */
3080 	if ((error = mtw_alloc_rx_ring(sc, 0)) != 0)
3081 		goto fail;
3082 
3083 	/* init MCU Tx ring */
3084 	if ((error = mtw_alloc_mcu_ring(sc)) != 0)
3085 		goto fail;
3086 
3087 	/* init host command ring */
3088 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3089 
3090 	for (ntries = 0; ntries < 100; ntries++) {
3091 		if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0)
3092 			goto fail;
3093 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3094 			break;
3095 		DELAY(1000);
3096 	}
3097 	if (ntries == 100) {
3098 		printf("%s: timeout waiting for DMA engine\n",
3099 		    sc->sc_dev.dv_xname);
3100 		error = ETIMEDOUT;
3101 		goto fail;
3102 	}
3103 	tmp &= 0xff0;
3104 	tmp |= MTW_TX_WB_DDONE;
3105 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3106 
3107 	/* reset MAC and baseband */
3108 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_BBP_HRST | MTW_MAC_SRST);
3109 	mtw_write(sc, MTW_USB_DMA_CFG, 0);
3110 	mtw_write(sc, MTW_MAC_SYS_CTRL, 0);
3111 
3112 	/* init MAC values */
3113 	if (sc->mac_ver == 0x7601) {
3114 		for (i = 0; i < nitems(mt7601_def_mac); i++)
3115 			mtw_write(sc, mt7601_def_mac[i].reg,
3116 			    mt7601_def_mac[i].val);
3117 	}
3118 
3119 	/* wait while MAC is busy */
3120 	for (ntries = 0; ntries < 100; ntries++) {
3121 		if ((error = mtw_read(sc, MTW_MAC_STATUS_REG, &tmp)) != 0)
3122 			goto fail;
3123 		if (!(tmp & (MTW_RX_STATUS_BUSY | MTW_TX_STATUS_BUSY)))
3124 			break;
3125 		DELAY(1000);
3126 	}
3127 	if (ntries == 100) {
3128 		error = ETIMEDOUT;
3129 		goto fail;
3130 	}
3131 
3132 	/* set MAC address */
3133 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
3134 	mtw_set_macaddr(sc, ic->ic_myaddr);
3135 
3136 	/* clear WCID attribute table */
3137 	mtw_set_region_4(sc, MTW_WCID_ATTR(0), 1, 8 * 32);
3138 
3139 	mtw_write(sc, 0x1648, 0x00830083);
3140 	mtw_read(sc, MTW_FCE_L2_STUFF, &tmp);
3141 	tmp &= ~MTW_L2S_WR_MPDU_LEN_EN;
3142 	mtw_write(sc, MTW_FCE_L2_STUFF, tmp);
3143 
3144 	/* RTS config */
3145 	mtw_set_txrts(sc);
3146 
3147 	/* clear Host to MCU mailbox */
3148 	mtw_write(sc, MTW_BBP_CSR, 0);
3149 	mtw_write(sc, MTW_H2M_MAILBOX, 0);
3150 
3151 	/* clear RX WCID search table */
3152 	mtw_set_region_4(sc, MTW_WCID_ENTRY(0), 0xffffffff, 512);
3153 
3154 	/* abort TSF synchronization */
3155 	mtw_abort_tsf_sync(sc);
3156 
3157 	mtw_read(sc, MTW_US_CYC_CNT, &tmp);
3158 	tmp = (tmp & ~0xff);
3159 	if (sc->mac_ver == 0x7601)
3160 		tmp |= 0x1e;
3161 	mtw_write(sc, MTW_US_CYC_CNT, tmp);
3162 
3163 	/* clear shared key table */
3164 	mtw_set_region_4(sc, MTW_SKEY(0, 0), 0, 8 * 32);
3165 
3166 	/* clear IV/EIV table */
3167 	mtw_set_region_4(sc, MTW_IVEIV(0), 0, 8 * 32);
3168 
3169 	/* clear shared key mode */
3170 	mtw_write(sc, MTW_SKEY_MODE_0_7, 0);
3171 	mtw_write(sc, MTW_SKEY_MODE_8_15, 0);
3172 
3173 	/* txop truncation */
3174 	mtw_write(sc, MTW_TXOP_CTRL_CFG, 0x0000583f);
3175 
3176 	/* init Tx power for all Tx rates */
3177 	for (ridx = 0; ridx < 5; ridx++) {
3178 		if (sc->txpow20mhz[ridx] == 0xffffffff)
3179 			continue;
3180 		mtw_write(sc, MTW_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
3181 	}
3182 	mtw_write(sc, MTW_TX_PWR_CFG7, 0);
3183 	mtw_write(sc, MTW_TX_PWR_CFG9, 0);
3184 
3185 	mtw_read(sc, MTW_CMB_CTRL, &tmp);
3186 	tmp &= ~(1 << 18 | 1 << 14);
3187 	mtw_write(sc, MTW_CMB_CTRL, tmp);
3188 
3189 	/* clear USB DMA */
3190 	mtw_write(sc, MTW_USB_DMA_CFG, MTW_USB_TX_EN | MTW_USB_RX_EN |
3191 	    MTW_USB_RX_AGG_EN | MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT |
3192 	    MTW_USB_RX_WL_DROP);
3193 	usbd_delay_ms(sc->sc_udev, 50);
3194 	mtw_read(sc, MTW_USB_DMA_CFG, &tmp);
3195 	tmp &= ~(MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT |
3196 	    MTW_USB_RX_WL_DROP);
3197 	mtw_write(sc, MTW_USB_DMA_CFG, tmp);
3198 
3199 	/* enable radio */
3200 	mtw_mcu_radio(sc, 0x31, 0);
3201 
3202 	/* init RF registers */
3203 	if (sc->mac_ver == 0x7601)
3204 		mt7601_rf_init(sc);
3205 
3206 	/* init baseband registers */
3207 	if (sc->mac_ver == 0x7601)
3208 		error = mt7601_bbp_init(sc);
3209 
3210 	if (error != 0) {
3211 		printf("%s: could not initialize BBP\n", sc->sc_dev.dv_xname);
3212 		goto fail;
3213 	}
3214 
3215 	/* setup and calibrate RF */
3216 	if (sc->mac_ver == 0x7601)
3217 		error = mt7601_rf_setup(sc);
3218 
3219 	if (error != 0) {
3220 		printf("%s: could not initialize RF\n", sc->sc_dev.dv_xname);
3221 		goto fail;
3222 	}
3223 
3224 	/* select default channel */
3225 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
3226 	mtw_set_chan(sc, ic->ic_ibss_chan);
3227 
3228 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
3229 		struct mtw_rx_data *data = &sc->rxq[MTW_RXQ_WLAN].data[i];
3230 
3231 		usbd_setup_xfer(data->xfer, sc->rxq[MTW_RXQ_WLAN].pipeh,
3232 		    data, data->buf,
3233 		    MTW_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3234 		    USBD_NO_TIMEOUT, mtw_rxeof);
3235 		error = usbd_transfer(data->xfer);
3236 		if (error != 0 && error != USBD_IN_PROGRESS)
3237 			goto fail;
3238 	}
3239 
3240 	if ((error = mtw_txrx_enable(sc)) != 0)
3241 		goto fail;
3242 
3243 	/* init LEDs */
3244 	mtw_set_leds(sc, MTW_LED_MODE_ON);
3245 
3246 	ifp->if_flags |= IFF_RUNNING;
3247 	ifq_clr_oactive(&ifp->if_snd);
3248 
3249 	if (ic->ic_flags & IEEE80211_F_WEPON) {
3250 		/* install WEP keys */
3251 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
3252 			if (ic->ic_nw_keys[i].k_cipher != IEEE80211_CIPHER_NONE)
3253 				(void)mtw_set_key(ic, NULL, &ic->ic_nw_keys[i]);
3254 		}
3255 	}
3256 
3257 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3258 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3259 	else
3260 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3261 
3262 	if (error != 0)
3263 fail:	    mtw_stop(ifp, 1);
3264 	return error;
3265 }
3266 
3267 void
3268 mtw_stop(struct ifnet *ifp, int disable)
3269 {
3270 	struct mtw_softc *sc = ifp->if_softc;
3271 	struct ieee80211com *ic = &sc->sc_ic;
3272 	uint32_t tmp;
3273 	int s, ntries, error, qid;
3274 
3275 	if (ifp->if_flags & IFF_RUNNING)
3276 		mtw_set_leds(sc, MTW_LED_MODE_ON);
3277 
3278 	sc->sc_tx_timer = 0;
3279 	ifp->if_timer = 0;
3280 	ifp->if_flags &= ~IFF_RUNNING;
3281 	ifq_clr_oactive(&ifp->if_snd);
3282 
3283 	timeout_del(&sc->scan_to);
3284 	timeout_del(&sc->calib_to);
3285 
3286 	s = splusb();
3287 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3288 	/* wait for all queued asynchronous commands to complete */
3289 	usb_wait_task(sc->sc_udev, &sc->sc_task);
3290 	splx(s);
3291 
3292 	/* Disable Tx/Rx DMA. */
3293 	mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp);
3294 	tmp &= ~(MTW_RX_DMA_EN | MTW_TX_DMA_EN);
3295 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3296 	mtw_usb_dma_write(sc, 0);
3297 
3298 	for (ntries = 0; ntries < 100; ntries++) {
3299 		if (mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp) != 0)
3300 			break;
3301 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3302 			break;
3303 		DELAY(10);
3304 	}
3305 	if (ntries == 100) {
3306 		printf("%s: timeout waiting for DMA engine\n",
3307 		    sc->sc_dev.dv_xname);
3308 	}
3309 
3310 	/* stop MAC Tx/Rx */
3311 	mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp);
3312 	tmp &= ~(MTW_MAC_RX_EN | MTW_MAC_TX_EN);
3313 	mtw_write(sc, MTW_MAC_SYS_CTRL, tmp);
3314 
3315 	/* disable RTS retry */
3316 	mtw_read(sc, MTW_TX_RTS_CFG, &tmp);
3317 	tmp &= ~0xff;
3318 	mtw_write(sc, MTW_TX_RTS_CFG, tmp);
3319 
3320 	/* US_CYC_CFG */
3321 	mtw_read(sc, MTW_US_CYC_CNT, &tmp);
3322 	tmp = (tmp & ~0xff);
3323 	mtw_write(sc, MTW_US_CYC_CNT, tmp);
3324 
3325 	/* stop PBF */
3326 	mtw_read(sc, MTW_PBF_CFG, &tmp);
3327 	tmp &= ~0x3;
3328 	mtw_write(sc, MTW_PBF_CFG, tmp);
3329 
3330 	/* wait for pending Tx to complete */
3331 	for (ntries = 0; ntries < 100; ntries++) {
3332 		if ((error = mtw_read(sc, MTW_TXRXQ_PCNT, &tmp)) != 0)
3333 			break;
3334 		if ((tmp & MTW_TX2Q_PCNT_MASK) == 0)
3335 			break;
3336 	}
3337 	DELAY(1000);
3338 
3339 	/* delete keys */
3340 	for (qid = 0; qid < 4; qid++) {
3341 		mtw_read(sc, MTW_SKEY_MODE_0_7, &tmp);
3342 		tmp &= ~(0xf << qid * 4);
3343 		mtw_write(sc, MTW_SKEY_MODE_0_7, tmp);
3344 	}
3345 
3346 	if (disable) {
3347 		/* disable radio */
3348 		error = mtw_mcu_radio(sc, 0x30, 0x1);
3349 		usbd_delay_ms(sc->sc_udev, 10);
3350 	}
3351 
3352 	/* free Tx and Rx rings */
3353 	sc->qfullmsk = 0;
3354 	mtw_free_mcu_ring(sc);
3355 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++)
3356 		mtw_free_tx_ring(sc, qid);
3357 	mtw_free_rx_ring(sc, 0);
3358 }
3359