xref: /openbsd/sys/dev/usb/if_otus.c (revision 73471bf0)
1 /*	$OpenBSD: if_otus.c,v 1.70 2021/11/22 10:17:14 mglocker Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Atheros AR9001U chipset.
21  */
22 
23 #include "bpfilter.h"
24 
25 #include <sys/param.h>
26 #include <sys/sockio.h>
27 #include <sys/mbuf.h>
28 #include <sys/kernel.h>
29 #include <sys/socket.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/conf.h>
33 #include <sys/device.h>
34 #include <sys/endian.h>
35 
36 #include <machine/intr.h>
37 
38 #if NBPFILTER > 0
39 #include <net/bpf.h>
40 #endif
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 
45 #include <netinet/in.h>
46 #include <netinet/if_ether.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_amrr.h>
50 #include <net80211/ieee80211_radiotap.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_otusreg.h>
58 
59 #ifdef OTUS_DEBUG
60 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
61 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
62 int otus_debug = 1;
63 #else
64 #define DPRINTF(x)
65 #define DPRINTFN(n, x)
66 #endif
67 
68 static const struct usb_devno otus_devs[] = {
69 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_WN7512 },
70 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_3CRUSBN275 },
71 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_TG121N },
72 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_AR9170 },
73 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN612 },
74 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN821NV2 },
75 	{ USB_VENDOR_AVM,		USB_PRODUCT_AVM_FRITZWLAN },
76 	{ USB_VENDOR_CACE,		USB_PRODUCT_CACE_AIRPCAPNX },
77 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA130D1 },
78 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A1 },
79 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A2 },
80 	{ USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_WNGDNUS2 },
81 	{ USB_VENDOR_NEC,		USB_PRODUCT_NEC_WL300NUG },
82 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WN111V2 },
83 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNA1000 },
84 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNDA3100 },
85 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GW_US300 },
86 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_O8494 },
87 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_WNC0600 },
88 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB81 },
89 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB82 },
90 	{ USB_VENDOR_ZYDAS,		USB_PRODUCT_ZYDAS_ZD1221 },
91 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_NWD271N }
92 };
93 
94 int		otus_match(struct device *, void *, void *);
95 void		otus_attach(struct device *, struct device *, void *);
96 int		otus_detach(struct device *, int);
97 void		otus_attachhook(struct device *);
98 void		otus_get_chanlist(struct otus_softc *);
99 int		otus_load_firmware(struct otus_softc *, const char *,
100 		    uint32_t);
101 int		otus_open_pipes(struct otus_softc *);
102 void		otus_close_pipes(struct otus_softc *);
103 int		otus_alloc_tx_cmd(struct otus_softc *);
104 void		otus_free_tx_cmd(struct otus_softc *);
105 int		otus_alloc_tx_data_list(struct otus_softc *);
106 void		otus_free_tx_data_list(struct otus_softc *);
107 int		otus_alloc_rx_data_list(struct otus_softc *);
108 void		otus_free_rx_data_list(struct otus_softc *);
109 void		otus_next_scan(void *);
110 void		otus_task(void *);
111 void		otus_do_async(struct otus_softc *,
112 		    void (*)(struct otus_softc *, void *), void *, int);
113 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
114 		    int);
115 void		otus_newstate_cb(struct otus_softc *, void *);
116 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
117 		    void *);
118 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
119 int		otus_write_barrier(struct otus_softc *);
120 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
121 int		otus_media_change(struct ifnet *);
122 int		otus_read_eeprom(struct otus_softc *);
123 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
124 		    int);
125 void		otus_intr(struct usbd_xfer *, void *, usbd_status);
126 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
127 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int,
128 		    struct mbuf_list *);
129 void		otus_rxeof(struct usbd_xfer *, void *, usbd_status);
130 void		otus_txeof(struct usbd_xfer *, void *, usbd_status);
131 int		otus_tx(struct otus_softc *, struct mbuf *,
132 		    struct ieee80211_node *);
133 void		otus_start(struct ifnet *);
134 void		otus_watchdog(struct ifnet *);
135 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
136 int		otus_set_multi(struct otus_softc *);
137 void		otus_updateedca(struct ieee80211com *);
138 void		otus_updateedca_cb(struct otus_softc *, void *);
139 void		otus_updateslot(struct ieee80211com *);
140 void		otus_updateslot_cb(struct otus_softc *, void *);
141 int		otus_init_mac(struct otus_softc *);
142 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
143 int		otus_set_board_values(struct otus_softc *,
144 		    struct ieee80211_channel *);
145 int		otus_program_phy(struct otus_softc *,
146 		    struct ieee80211_channel *);
147 int		otus_set_rf_bank4(struct otus_softc *,
148 		    struct ieee80211_channel *);
149 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
150 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
151 		    int);
152 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
153 		    struct ieee80211_key *);
154 void		otus_set_key_cb(struct otus_softc *, void *);
155 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
156 		    struct ieee80211_key *);
157 void		otus_delete_key_cb(struct otus_softc *, void *);
158 void		otus_calibrate_to(void *);
159 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
160 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
161 void		otus_led_newstate_type1(struct otus_softc *);
162 void		otus_led_newstate_type2(struct otus_softc *);
163 void		otus_led_newstate_type3(struct otus_softc *);
164 int		otus_init(struct ifnet *);
165 void		otus_stop(struct ifnet *);
166 
167 struct cfdriver otus_cd = {
168 	NULL, "otus", DV_IFNET
169 };
170 
171 const struct cfattach otus_ca = {
172 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
173 };
174 
175 int
176 otus_match(struct device *parent, void *match, void *aux)
177 {
178 	struct usb_attach_arg *uaa = aux;
179 
180 	if (uaa->iface == NULL || uaa->configno != 1)
181 		return UMATCH_NONE;
182 
183 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
184 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
185 }
186 
187 void
188 otus_attach(struct device *parent, struct device *self, void *aux)
189 {
190 	struct otus_softc *sc = (struct otus_softc *)self;
191 	struct usb_attach_arg *uaa = aux;
192 	int error;
193 
194 	sc->sc_udev = uaa->device;
195 
196 	usb_init_task(&sc->sc_task, otus_task, sc, USB_TASK_TYPE_GENERIC);
197 	timeout_set(&sc->scan_to, otus_next_scan, sc);
198 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
199 
200 	sc->amrr.amrr_min_success_threshold =  1;
201 	sc->amrr.amrr_max_success_threshold = 10;
202 
203 	/* Get the first interface handle. */
204 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
205 	if (error != 0) {
206 		printf("%s: could not get interface handle\n",
207 		    sc->sc_dev.dv_xname);
208 		return;
209 	}
210 
211 	if ((error = otus_open_pipes(sc)) != 0) {
212 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
213 		return;
214 	}
215 
216 	config_mountroot(self, otus_attachhook);
217 }
218 
219 int
220 otus_detach(struct device *self, int flags)
221 {
222 	struct otus_softc *sc = (struct otus_softc *)self;
223 	struct ifnet *ifp = &sc->sc_ic.ic_if;
224 	int s;
225 
226 	s = splusb();
227 
228 	if (timeout_initialized(&sc->scan_to))
229 		timeout_del(&sc->scan_to);
230 	if (timeout_initialized(&sc->calib_to))
231 		timeout_del(&sc->calib_to);
232 
233 	/* Wait for all queued asynchronous commands to complete. */
234 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
235 
236 	usbd_ref_wait(sc->sc_udev);
237 
238 	if (ifp->if_softc != NULL) {
239 		ifp->if_flags &= ~IFF_RUNNING;
240 		ifq_clr_oactive(&ifp->if_snd);
241 		ieee80211_ifdetach(ifp);
242 		if_detach(ifp);
243 	}
244 
245 	otus_close_pipes(sc);
246 
247 	splx(s);
248 
249 	return 0;
250 }
251 
252 void
253 otus_attachhook(struct device *self)
254 {
255 	struct otus_softc *sc = (struct otus_softc *)self;
256 	struct ieee80211com *ic = &sc->sc_ic;
257 	struct ifnet *ifp = &ic->ic_if;
258 	usb_device_request_t req;
259 	uint32_t in, out;
260 	int error;
261 
262 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
263 	if (error != 0) {
264 		printf("%s: could not load %s firmware\n",
265 		    sc->sc_dev.dv_xname, "init");
266 		return;
267 	}
268 
269 	usbd_delay_ms(sc->sc_udev, 1000);
270 
271 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
272 	if (error != 0) {
273 		printf("%s: could not load %s firmware\n",
274 		    sc->sc_dev.dv_xname, "main");
275 		return;
276 	}
277 
278 	/* Tell device that firmware transfer is complete. */
279 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
280 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
281 	USETW(req.wValue, 0);
282 	USETW(req.wIndex, 0);
283 	USETW(req.wLength, 0);
284 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
285 		printf("%s: firmware initialization failed\n",
286 		    sc->sc_dev.dv_xname);
287 		return;
288 	}
289 
290 	/* Send an ECHO command to check that everything is settled. */
291 	in = 0xbadc0ffe;
292 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
293 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
294 		return;
295 	}
296 	if (in != out) {
297 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
298 		    sc->sc_dev.dv_xname, in, out);
299 		return;
300 	}
301 
302 	/* Read entire EEPROM. */
303 	if (otus_read_eeprom(sc) != 0) {
304 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
305 		return;
306 	}
307 
308 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
309 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
310 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
311 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
312 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
313 
314 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
315 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
316 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
317 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
318 	    ether_sprintf(ic->ic_myaddr));
319 
320 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
321 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
322 	ic->ic_state = IEEE80211_S_INIT;
323 
324 	/* Set device capabilities. */
325 	ic->ic_caps =
326 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
327 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
328 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
329 	    IEEE80211_C_WEP |		/* WEP */
330 	    IEEE80211_C_RSN;		/* WPA/RSN */
331 
332 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
333 		/* Set supported .11b and .11g rates. */
334 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
335 		    ieee80211_std_rateset_11b;
336 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
337 		    ieee80211_std_rateset_11g;
338 	}
339 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
340 		/* Set supported .11a rates. */
341 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
342 		    ieee80211_std_rateset_11a;
343 	}
344 
345 	/* Build the list of supported channels. */
346 	otus_get_chanlist(sc);
347 
348 	ifp->if_softc = sc;
349 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
350 	ifp->if_ioctl = otus_ioctl;
351 	ifp->if_start = otus_start;
352 	ifp->if_watchdog = otus_watchdog;
353 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
354 
355 	if_attach(ifp);
356 	ieee80211_ifattach(ifp);
357 	ic->ic_node_alloc = otus_node_alloc;
358 	ic->ic_newassoc = otus_newassoc;
359 	ic->ic_updateslot = otus_updateslot;
360 	ic->ic_updateedca = otus_updateedca;
361 #ifdef notyet
362 	ic->ic_set_key = otus_set_key;
363 	ic->ic_delete_key = otus_delete_key;
364 #endif
365 	/* Override state transition machine. */
366 	sc->sc_newstate = ic->ic_newstate;
367 	ic->ic_newstate = otus_newstate;
368 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
369 
370 #if NBPFILTER > 0
371 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
372 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
373 
374 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
377 
378 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
379 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
381 #endif
382 }
383 
384 void
385 otus_get_chanlist(struct otus_softc *sc)
386 {
387 	struct ieee80211com *ic = &sc->sc_ic;
388 	uint16_t domain;
389 	uint8_t chan;
390 	int i;
391 
392 	/* XXX regulatory domain. */
393 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
394 	DPRINTF(("regdomain=0x%04x\n", domain));
395 
396 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
397 		for (i = 0; i < 14; i++) {
398 			chan = ar_chans[i];
399 			ic->ic_channels[chan].ic_freq =
400 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
401 			ic->ic_channels[chan].ic_flags =
402 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
403 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
404 		}
405 	}
406 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
407 		for (i = 14; i < nitems(ar_chans); i++) {
408 			chan = ar_chans[i];
409 			ic->ic_channels[chan].ic_freq =
410 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
411 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
412 		}
413 	}
414 }
415 
416 int
417 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
418 {
419 	usb_device_request_t req;
420 	size_t fwsize, size;
421 	u_char *fw, *ptr;
422 	int mlen, error;
423 
424 	/* Read firmware image from the filesystem. */
425 	if ((error = loadfirmware(name, &fw, &fwsize)) != 0) {
426 		printf("%s: failed loadfirmware of file %s (error %d)\n",
427 		    sc->sc_dev.dv_xname, name, error);
428 		return error;
429 	}
430 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
431 	req.bRequest = AR_FW_DOWNLOAD;
432 	USETW(req.wIndex, 0);
433 
434 	ptr = fw;
435 	size = fwsize;
436 	addr >>= 8;
437 	while (size > 0) {
438 		mlen = MIN(size, 4096);
439 
440 		USETW(req.wValue, addr);
441 		USETW(req.wLength, mlen);
442 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
443 			error = EIO;
444 			break;
445 		}
446 		addr += mlen >> 8;
447 		ptr  += mlen;
448 		size -= mlen;
449 	}
450 	free(fw, M_DEVBUF, fwsize);
451 	return error;
452 }
453 
454 int
455 otus_open_pipes(struct otus_softc *sc)
456 {
457 	usb_endpoint_descriptor_t *ed;
458 	int i, isize, error;
459 
460 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
461 	    &sc->data_rx_pipe);
462 	if (error != 0) {
463 		printf("%s: could not open Rx bulk pipe\n",
464 		    sc->sc_dev.dv_xname);
465 		goto fail;
466 	}
467 
468 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
469 	if (ed == NULL) {
470 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
471 		    sc->sc_dev.dv_xname);
472 		goto fail;
473 	}
474 	isize = UGETW(ed->wMaxPacketSize);
475 	if (isize == 0) {
476 		printf("%s: invalid Rx intr pipe descriptor\n",
477 		    sc->sc_dev.dv_xname);
478 		goto fail;
479 	}
480 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
481 	if (sc->ibuf == NULL) {
482 		printf("%s: could not allocate Rx intr buffer\n",
483 		    sc->sc_dev.dv_xname);
484 		goto fail;
485 	}
486 	sc->ibuflen = isize;
487 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
488 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
489 	    otus_intr, USBD_DEFAULT_INTERVAL);
490 	if (error != 0) {
491 		printf("%s: could not open Rx intr pipe\n",
492 		    sc->sc_dev.dv_xname);
493 		goto fail;
494 	}
495 
496 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
497 	    &sc->data_tx_pipe);
498 	if (error != 0) {
499 		printf("%s: could not open Tx bulk pipe\n",
500 		    sc->sc_dev.dv_xname);
501 		goto fail;
502 	}
503 
504 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
505 	    &sc->cmd_tx_pipe);
506 	if (error != 0) {
507 		printf("%s: could not open Tx intr pipe\n",
508 		    sc->sc_dev.dv_xname);
509 		goto fail;
510 	}
511 
512 	if (otus_alloc_tx_cmd(sc) != 0) {
513 		printf("%s: could not allocate command xfer\n",
514 		    sc->sc_dev.dv_xname);
515 		goto fail;
516 	}
517 
518 	if (otus_alloc_tx_data_list(sc) != 0) {
519 		printf("%s: could not allocate Tx xfers\n",
520 		    sc->sc_dev.dv_xname);
521 		goto fail;
522 	}
523 
524 	if (otus_alloc_rx_data_list(sc) != 0) {
525 		printf("%s: could not allocate Rx xfers\n",
526 		    sc->sc_dev.dv_xname);
527 		goto fail;
528 	}
529 
530 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
531 		struct otus_rx_data *data = &sc->rx_data[i];
532 
533 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
534 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
535 		    USBD_NO_TIMEOUT, otus_rxeof);
536 		error = usbd_transfer(data->xfer);
537 		if (error != USBD_IN_PROGRESS && error != 0) {
538 			printf("%s: could not queue Rx xfer\n",
539 			    sc->sc_dev.dv_xname);
540 			goto fail;
541 		}
542 	}
543 	return 0;
544 
545  fail:	otus_close_pipes(sc);
546 	return error;
547 }
548 
549 void
550 otus_close_pipes(struct otus_softc *sc)
551 {
552 	otus_free_tx_cmd(sc);
553 	otus_free_tx_data_list(sc);
554 	otus_free_rx_data_list(sc);
555 
556 	if (sc->data_rx_pipe != NULL)
557 		usbd_close_pipe(sc->data_rx_pipe);
558 	if (sc->cmd_rx_pipe != NULL)
559 		usbd_close_pipe(sc->cmd_rx_pipe);
560 	if (sc->ibuf != NULL)
561 		free(sc->ibuf, M_USBDEV, sc->ibuflen);
562 	if (sc->data_tx_pipe != NULL)
563 		usbd_close_pipe(sc->data_tx_pipe);
564 	if (sc->cmd_tx_pipe != NULL)
565 		usbd_close_pipe(sc->cmd_tx_pipe);
566 }
567 
568 int
569 otus_alloc_tx_cmd(struct otus_softc *sc)
570 {
571 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
572 
573 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
574 	if (cmd->xfer == NULL) {
575 		printf("%s: could not allocate xfer\n",
576 		    sc->sc_dev.dv_xname);
577 		return ENOMEM;
578 	}
579 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
580 	if (cmd->buf == NULL) {
581 		printf("%s: could not allocate xfer buffer\n",
582 		    sc->sc_dev.dv_xname);
583 		usbd_free_xfer(cmd->xfer);
584 		cmd->xfer = NULL;
585 		return ENOMEM;
586 	}
587 	return 0;
588 }
589 
590 void
591 otus_free_tx_cmd(struct otus_softc *sc)
592 {
593 	/* Make sure no transfers are pending. */
594 	usbd_abort_pipe(sc->cmd_tx_pipe);
595 
596 	if (sc->tx_cmd.xfer != NULL)
597 		usbd_free_xfer(sc->tx_cmd.xfer);
598 }
599 
600 int
601 otus_alloc_tx_data_list(struct otus_softc *sc)
602 {
603 	struct otus_tx_data *data;
604 	int i, error;
605 
606 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
607 		data = &sc->tx_data[i];
608 
609 		data->sc = sc;  /* Backpointer for callbacks. */
610 
611 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
612 		if (data->xfer == NULL) {
613 			printf("%s: could not allocate xfer\n",
614 			    sc->sc_dev.dv_xname);
615 			error = ENOMEM;
616 			goto fail;
617 		}
618 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
619 		if (data->buf == NULL) {
620 			printf("%s: could not allocate xfer buffer\n",
621 			    sc->sc_dev.dv_xname);
622 			error = ENOMEM;
623 			goto fail;
624 		}
625 	}
626 	return 0;
627 
628 fail:	otus_free_tx_data_list(sc);
629 	return error;
630 }
631 
632 void
633 otus_free_tx_data_list(struct otus_softc *sc)
634 {
635 	int i;
636 
637 	/* Make sure no transfers are pending. */
638 	usbd_abort_pipe(sc->data_tx_pipe);
639 
640 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
641 		if (sc->tx_data[i].xfer != NULL)
642 			usbd_free_xfer(sc->tx_data[i].xfer);
643 }
644 
645 int
646 otus_alloc_rx_data_list(struct otus_softc *sc)
647 {
648 	struct otus_rx_data *data;
649 	int i, error;
650 
651 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
652 		data = &sc->rx_data[i];
653 
654 		data->sc = sc;	/* Backpointer for callbacks. */
655 
656 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
657 		if (data->xfer == NULL) {
658 			printf("%s: could not allocate xfer\n",
659 			    sc->sc_dev.dv_xname);
660 			error = ENOMEM;
661 			goto fail;
662 		}
663 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
664 		if (data->buf == NULL) {
665 			printf("%s: could not allocate xfer buffer\n",
666 			    sc->sc_dev.dv_xname);
667 			error = ENOMEM;
668 			goto fail;
669 		}
670 	}
671 	return 0;
672 
673 fail:	otus_free_rx_data_list(sc);
674 	return error;
675 }
676 
677 void
678 otus_free_rx_data_list(struct otus_softc *sc)
679 {
680 	int i;
681 
682 	/* Make sure no transfers are pending. */
683 	usbd_abort_pipe(sc->data_rx_pipe);
684 
685 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
686 		if (sc->rx_data[i].xfer != NULL)
687 			usbd_free_xfer(sc->rx_data[i].xfer);
688 }
689 
690 void
691 otus_next_scan(void *arg)
692 {
693 	struct otus_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 	struct ifnet *ifp = &ic->ic_if;
696 
697 	if (usbd_is_dying(sc->sc_udev))
698 		return;
699 
700 	usbd_ref_incr(sc->sc_udev);
701 
702 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN &&
703 	    (ifp->if_flags & IFF_RUNNING))
704 		ieee80211_next_scan(&sc->sc_ic.ic_if);
705 
706 	usbd_ref_decr(sc->sc_udev);
707 }
708 
709 void
710 otus_task(void *arg)
711 {
712 	struct otus_softc *sc = arg;
713 	struct otus_host_cmd_ring *ring = &sc->cmdq;
714 	struct otus_host_cmd *cmd;
715 	int s;
716 
717 	/* Process host commands. */
718 	s = splusb();
719 	while (ring->next != ring->cur) {
720 		cmd = &ring->cmd[ring->next];
721 		splx(s);
722 		/* Callback. */
723 		cmd->cb(sc, cmd->data);
724 		s = splusb();
725 		ring->queued--;
726 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
727 	}
728 	splx(s);
729 }
730 
731 void
732 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
733     void *arg, int len)
734 {
735 	struct otus_host_cmd_ring *ring = &sc->cmdq;
736 	struct otus_host_cmd *cmd;
737 	int s;
738 
739 	s = splusb();
740 	cmd = &ring->cmd[ring->cur];
741 	cmd->cb = cb;
742 	KASSERT(len <= sizeof (cmd->data));
743 	memcpy(cmd->data, arg, len);
744 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
745 
746 	/* If there is no pending command already, schedule a task. */
747 	if (++ring->queued == 1)
748 		usb_add_task(sc->sc_udev, &sc->sc_task);
749 	splx(s);
750 }
751 
752 int
753 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
754 {
755 	struct otus_softc *sc = ic->ic_softc;
756 	struct otus_cmd_newstate cmd;
757 
758 	/* Do it in a process context. */
759 	cmd.state = nstate;
760 	cmd.arg = arg;
761 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
762 	return 0;
763 }
764 
765 void
766 otus_newstate_cb(struct otus_softc *sc, void *arg)
767 {
768 	struct otus_cmd_newstate *cmd = arg;
769 	struct ieee80211com *ic = &sc->sc_ic;
770 	struct ieee80211_node *ni;
771 	int s;
772 
773 	s = splnet();
774 
775 	switch (cmd->state) {
776 	case IEEE80211_S_INIT:
777 		break;
778 
779 	case IEEE80211_S_SCAN:
780 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
781 		if (!usbd_is_dying(sc->sc_udev))
782 			timeout_add_msec(&sc->scan_to, 200);
783 		break;
784 
785 	case IEEE80211_S_AUTH:
786 	case IEEE80211_S_ASSOC:
787 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
788 		break;
789 
790 	case IEEE80211_S_RUN:
791 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
792 
793 		ni = ic->ic_bss;
794 
795 		if (ic->ic_opmode == IEEE80211_M_STA) {
796 			otus_updateslot(ic);
797 			otus_set_bssid(sc, ni->ni_bssid);
798 
799 			/* Fake a join to init the Tx rate. */
800 			otus_newassoc(ic, ni, 1);
801 
802 			/* Start calibration timer. */
803 			if (!usbd_is_dying(sc->sc_udev))
804 				timeout_add_sec(&sc->calib_to, 1);
805 		}
806 		break;
807 	}
808 
809 	sc->sc_led_newstate(sc);
810 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
811 
812 	splx(s);
813 }
814 
815 int
816 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
817     void *odata)
818 {
819 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
820 	struct ar_cmd_hdr *hdr;
821 	int s, xferlen, error;
822 
823 	/* Always bulk-out a multiple of 4 bytes. */
824 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
825 
826 	hdr = (struct ar_cmd_hdr *)cmd->buf;
827 	hdr->code  = code;
828 	hdr->len   = ilen;
829 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
830 	memcpy((uint8_t *)&hdr[1], idata, ilen);
831 
832 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
833 	    code, ilen, hdr->token));
834 
835 	s = splusb();
836 	cmd->odata = odata;
837 	cmd->done = 0;
838 
839 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
840 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY | USBD_SYNCHRONOUS,
841 	    OTUS_CMD_TIMEOUT, NULL);
842 	error = usbd_transfer(cmd->xfer);
843 	if (error != 0) {
844 		splx(s);
845 		printf("%s: could not send command 0x%x (error=%s)\n",
846 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
847 		return EIO;
848 	}
849 	if (!cmd->done)
850 		error = tsleep_nsec(cmd, PCATCH, "otuscmd", SEC_TO_NSEC(1));
851 	cmd->odata = NULL;	/* In case answer is received too late. */
852 	splx(s);
853 	if (error != 0) {
854 		printf("%s: timeout waiting for command 0x%02x reply\n",
855 		    sc->sc_dev.dv_xname, code);
856 	}
857 	return error;
858 }
859 
860 void
861 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
862 {
863 	sc->write_buf[sc->write_idx].reg = htole32(reg);
864 	sc->write_buf[sc->write_idx].val = htole32(val);
865 
866 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
867 		(void)otus_write_barrier(sc);
868 }
869 
870 int
871 otus_write_barrier(struct otus_softc *sc)
872 {
873 	int error;
874 
875 	if (sc->write_idx == 0)
876 		return 0;	/* Nothing to flush. */
877 
878 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
879 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
880 	sc->write_idx = 0;
881 	return error;
882 }
883 
884 struct ieee80211_node *
885 otus_node_alloc(struct ieee80211com *ic)
886 {
887 	return malloc(sizeof (struct otus_node), M_USBDEV, M_NOWAIT | M_ZERO);
888 }
889 
890 int
891 otus_media_change(struct ifnet *ifp)
892 {
893 	struct otus_softc *sc = ifp->if_softc;
894 	struct ieee80211com *ic = &sc->sc_ic;
895 	uint8_t rate, ridx;
896 	int error;
897 
898 	error = ieee80211_media_change(ifp);
899 	if (error != ENETRESET)
900 		return error;
901 
902 	if (ic->ic_fixed_rate != -1) {
903 		rate = ic->ic_sup_rates[ic->ic_curmode].
904 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
905 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
906 			if (otus_rates[ridx].rate == rate)
907 				break;
908 		sc->fixed_ridx = ridx;
909 	}
910 
911 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
912 		error = otus_init(ifp);
913 
914 	return error;
915 }
916 
917 int
918 otus_read_eeprom(struct otus_softc *sc)
919 {
920 	uint32_t regs[8], reg;
921 	uint8_t *eep;
922 	int i, j, error;
923 
924 	/* Read EEPROM by blocks of 32 bytes. */
925 	eep = (uint8_t *)&sc->eeprom;
926 	reg = AR_EEPROM_OFFSET;
927 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
928 		for (j = 0; j < 8; j++, reg += 4)
929 			regs[j] = htole32(reg);
930 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
931 		if (error != 0)
932 			break;
933 		eep += 32;
934 	}
935 	return error;
936 }
937 
938 void
939 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
940 {
941 	struct otus_softc *sc = ic->ic_softc;
942 	struct otus_node *on = (void *)ni;
943 	struct ieee80211_rateset *rs = &ni->ni_rates;
944 	uint8_t rate;
945 	int ridx, i;
946 
947 	DPRINTF(("new assoc isnew=%d addr=%s\n",
948 	    isnew, ether_sprintf(ni->ni_macaddr)));
949 
950 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
951 	/* Start at lowest available bit-rate, AMRR will raise. */
952 	ni->ni_txrate = 0;
953 
954 	for (i = 0; i < rs->rs_nrates; i++) {
955 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
956 		/* Convert 802.11 rate to hardware rate index. */
957 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
958 			if (otus_rates[ridx].rate == rate)
959 				break;
960 		on->ridx[i] = ridx;
961 		DPRINTF(("rate=0x%02x ridx=%d\n",
962 		    rs->rs_rates[i], on->ridx[i]));
963 	}
964 }
965 
966 /* ARGSUSED */
967 void
968 otus_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
969 {
970 #if 0
971 	struct otus_softc *sc = priv;
972 	int len;
973 
974 	/*
975 	 * The Rx intr pipe is unused with current firmware.  Notifications
976 	 * and replies to commands are sent through the Rx bulk pipe instead
977 	 * (with a magic PLCP header.)
978 	 */
979 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
980 		DPRINTF(("intr status=%d\n", status));
981 		if (status == USBD_STALLED)
982 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
983 		return;
984 	}
985 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
986 
987 	otus_cmd_rxeof(sc, sc->ibuf, len);
988 #endif
989 }
990 
991 void
992 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
993 {
994 	struct ieee80211com *ic = &sc->sc_ic;
995 	struct otus_tx_cmd *cmd;
996 	struct ar_cmd_hdr *hdr;
997 	int s;
998 
999 	if (__predict_false(len < sizeof (*hdr))) {
1000 		DPRINTF(("cmd too small %d\n", len));
1001 		return;
1002 	}
1003 	hdr = (struct ar_cmd_hdr *)buf;
1004 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1005 	    sizeof (*hdr) + hdr->len > 64)) {
1006 		DPRINTF(("cmd too large %d\n", hdr->len));
1007 		return;
1008 	}
1009 
1010 	if ((hdr->code & 0xc0) != 0xc0) {
1011 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1012 		    hdr->code, hdr->len, hdr->token));
1013 		cmd = &sc->tx_cmd;
1014 		if (__predict_false(hdr->token != cmd->token))
1015 			return;
1016 		/* Copy answer into caller's supplied buffer. */
1017 		if (cmd->odata != NULL)
1018 			memcpy(cmd->odata, &hdr[1], hdr->len);
1019 		cmd->done = 1;
1020 		wakeup(cmd);
1021 		return;
1022 	}
1023 
1024 	/* Received unsolicited notification. */
1025 	DPRINTF(("received notification code=0x%02x len=%d\n",
1026 	    hdr->code, hdr->len));
1027 	switch (hdr->code & 0x3f) {
1028 	case AR_EVT_BEACON:
1029 		break;
1030 	case AR_EVT_TX_COMP:
1031 	{
1032 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1033 		struct ieee80211_node *ni;
1034 		struct otus_node *on;
1035 
1036 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1037 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1038 		    letoh32(tx->phy)));
1039 		s = splnet();
1040 #ifdef notyet
1041 #ifndef IEEE80211_STA_ONLY
1042 		if (ic->ic_opmode != IEEE80211_M_STA) {
1043 			ni = ieee80211_find_node(ic, tx->macaddr);
1044 			if (__predict_false(ni == NULL)) {
1045 				splx(s);
1046 				break;
1047 			}
1048 		} else
1049 #endif
1050 #endif
1051 			ni = ic->ic_bss;
1052 		/* Update rate control statistics. */
1053 		on = (void *)ni;
1054 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1055 		if (__predict_true(tx->status != 0))
1056 			on->amn.amn_retrycnt++;
1057 		splx(s);
1058 		break;
1059 	}
1060 	case AR_EVT_TBTT:
1061 		break;
1062 	}
1063 }
1064 
1065 void
1066 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len,
1067     struct mbuf_list *ml)
1068 {
1069 	struct ieee80211com *ic = &sc->sc_ic;
1070 	struct ifnet *ifp = &ic->ic_if;
1071 	struct ieee80211_rxinfo rxi;
1072 	struct ieee80211_node *ni;
1073 	struct ar_rx_tail *tail;
1074 	struct ieee80211_frame *wh;
1075 	struct mbuf *m;
1076 	uint8_t *plcp;
1077 	int s, mlen, align;
1078 
1079 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1080 		DPRINTF(("sub-xfer too short %d\n", len));
1081 		return;
1082 	}
1083 	plcp = buf;
1084 
1085 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1086 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1087 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1088 		    len - AR_PLCP_HDR_LEN);
1089 		return;
1090 	}
1091 
1092 	/* Received MPDU. */
1093 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1094 		DPRINTF(("MPDU too short %d\n", len));
1095 		ifp->if_ierrors++;
1096 		return;
1097 	}
1098 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1099 
1100 	/* Discard error frames. */
1101 	if (__predict_false(tail->error != 0)) {
1102 		DPRINTF(("error frame 0x%02x\n", tail->error));
1103 		if (tail->error & AR_RX_ERROR_FCS) {
1104 			DPRINTFN(3, ("bad FCS\n"));
1105 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1106 			/* Report Michael MIC failures to net80211. */
1107 			ic->ic_stats.is_rx_locmicfail++;
1108 			ieee80211_michael_mic_failure(ic, 0);
1109 		}
1110 		ifp->if_ierrors++;
1111 		return;
1112 	}
1113 	/* Compute MPDU's length. */
1114 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1115 	/* Make sure there's room for an 802.11 header + FCS. */
1116 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1117 		ifp->if_ierrors++;
1118 		return;
1119 	}
1120 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1121 	if (mlen > MCLBYTES) {
1122 		DPRINTF(("frame too large: %d\n", mlen));
1123 		ifp->if_ierrors++;
1124 		return;
1125 	}
1126 
1127 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1128 	/* Provide a 32-bit aligned protocol header to the stack. */
1129 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1130 
1131 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1132 	if (__predict_false(m == NULL)) {
1133 		ifp->if_ierrors++;
1134 		return;
1135 	}
1136 	if (align + mlen > MHLEN) {
1137 		MCLGET(m, M_DONTWAIT);
1138 		if (__predict_false(!(m->m_flags & M_EXT))) {
1139 			ifp->if_ierrors++;
1140 			m_freem(m);
1141 			return;
1142 		}
1143 	}
1144 	/* Finalize mbuf. */
1145 	m->m_data += align;
1146 	memcpy(mtod(m, caddr_t), wh, mlen);
1147 	m->m_pkthdr.len = m->m_len = mlen;
1148 
1149 #if NBPFILTER > 0
1150 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1151 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1152 		struct mbuf mb;
1153 
1154 		tap->wr_flags = 0;
1155 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1156 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1157 		tap->wr_antsignal = tail->rssi;
1158 		tap->wr_rate = 2;	/* In case it can't be found below. */
1159 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1160 		case AR_RX_STATUS_MT_CCK:
1161 			switch (plcp[0]) {
1162 			case  10: tap->wr_rate =   2; break;
1163 			case  20: tap->wr_rate =   4; break;
1164 			case  55: tap->wr_rate =  11; break;
1165 			case 110: tap->wr_rate =  22; break;
1166 			}
1167 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1168 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1169 			break;
1170 		case AR_RX_STATUS_MT_OFDM:
1171 			switch (plcp[0] & 0xf) {
1172 			case 0xb: tap->wr_rate =  12; break;
1173 			case 0xf: tap->wr_rate =  18; break;
1174 			case 0xa: tap->wr_rate =  24; break;
1175 			case 0xe: tap->wr_rate =  36; break;
1176 			case 0x9: tap->wr_rate =  48; break;
1177 			case 0xd: tap->wr_rate =  72; break;
1178 			case 0x8: tap->wr_rate =  96; break;
1179 			case 0xc: tap->wr_rate = 108; break;
1180 			}
1181 			break;
1182 		}
1183 		mb.m_data = (caddr_t)tap;
1184 		mb.m_len = sc->sc_rxtap_len;
1185 		mb.m_next = m;
1186 		mb.m_nextpkt = NULL;
1187 		mb.m_type = 0;
1188 		mb.m_flags = 0;
1189 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1190 	}
1191 #endif
1192 
1193 	s = splnet();
1194 	ni = ieee80211_find_rxnode(ic, wh);
1195 	rxi.rxi_flags = 0;
1196 	rxi.rxi_rssi = tail->rssi;
1197 	rxi.rxi_tstamp = 0;	/* unused */
1198 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
1199 
1200 	/* Node is no longer needed. */
1201 	ieee80211_release_node(ic, ni);
1202 	splx(s);
1203 }
1204 
1205 void
1206 otus_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1207 {
1208 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1209 	struct otus_rx_data *data = priv;
1210 	struct otus_softc *sc = data->sc;
1211 	caddr_t buf = data->buf;
1212 	struct ar_rx_head *head;
1213 	uint16_t hlen;
1214 	int len;
1215 
1216 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1217 		DPRINTF(("RX status=%d\n", status));
1218 		if (status == USBD_STALLED)
1219 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1220 		if (status != USBD_CANCELLED)
1221 			goto resubmit;
1222 		return;
1223 	}
1224 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1225 
1226 	while (len >= sizeof (*head)) {
1227 		head = (struct ar_rx_head *)buf;
1228 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1229 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1230 			break;
1231 		}
1232 		hlen = letoh16(head->len);
1233 		if (__predict_false(sizeof (*head) + hlen > len)) {
1234 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1235 			break;
1236 		}
1237 		/* Process sub-xfer. */
1238 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen, &ml);
1239 
1240 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1241 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1242 		buf += hlen;
1243 		len -= hlen;
1244 	}
1245 	if_input(&sc->sc_ic.ic_if, &ml);
1246 
1247  resubmit:
1248 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1249 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1250 	(void)usbd_transfer(data->xfer);
1251 }
1252 
1253 void
1254 otus_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1255 {
1256 	struct otus_tx_data *data = priv;
1257 	struct otus_softc *sc = data->sc;
1258 	struct ieee80211com *ic = &sc->sc_ic;
1259 	struct ifnet *ifp = &ic->ic_if;
1260 	int s;
1261 
1262 	s = splnet();
1263 	sc->tx_queued--;
1264 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1265 		DPRINTF(("TX status=%d\n", status));
1266 		if (status == USBD_STALLED)
1267 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1268 		ifp->if_oerrors++;
1269 		splx(s);
1270 		return;
1271 	}
1272 	sc->sc_tx_timer = 0;
1273 	ifq_clr_oactive(&ifp->if_snd);
1274 	otus_start(ifp);
1275 	splx(s);
1276 }
1277 
1278 int
1279 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1280 {
1281 	struct ieee80211com *ic = &sc->sc_ic;
1282 	struct otus_node *on = (void *)ni;
1283 	struct otus_tx_data *data;
1284 	struct ieee80211_frame *wh;
1285 	struct ieee80211_key *k;
1286 	struct ar_tx_head *head;
1287 	uint32_t phyctl;
1288 	uint16_t macctl, qos;
1289 	uint8_t tid, qid;
1290 	int error, ridx, hasqos, xferlen;
1291 
1292 	wh = mtod(m, struct ieee80211_frame *);
1293 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1294 		k = ieee80211_get_txkey(ic, wh, ni);
1295 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1296 			return ENOBUFS;
1297 		wh = mtod(m, struct ieee80211_frame *);
1298 	}
1299 
1300 	if ((hasqos = ieee80211_has_qos(wh))) {
1301 		qos = ieee80211_get_qos(wh);
1302 		tid = qos & IEEE80211_QOS_TID;
1303 		qid = ieee80211_up_to_ac(ic, tid);
1304 	} else {
1305 		qos = 0;
1306 		qid = EDCA_AC_BE;
1307 	}
1308 
1309 	/* Pickup a rate index. */
1310 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1311 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1312 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1313 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1314 	else if (ic->ic_fixed_rate != -1)
1315 		ridx = sc->fixed_ridx;
1316 	else
1317 		ridx = on->ridx[ni->ni_txrate];
1318 
1319 	phyctl = 0;
1320 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1321 
1322 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1323 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1324 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1325 		macctl |= AR_TX_MAC_NOACK;
1326 
1327 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1328 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1329 			macctl |= AR_TX_MAC_RTS;
1330 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1331 		    ridx >= OTUS_RIDX_OFDM6) {
1332 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1333 				macctl |= AR_TX_MAC_CTS;
1334 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1335 				macctl |= AR_TX_MAC_RTS;
1336 		}
1337 	}
1338 
1339 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1340 	if (ridx >= OTUS_RIDX_OFDM6) {
1341 		phyctl |= AR_TX_PHY_MT_OFDM;
1342 		if (ridx <= OTUS_RIDX_OFDM24)
1343 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1344 		else
1345 			phyctl |= AR_TX_PHY_ANTMSK(1);
1346 	} else {	/* CCK */
1347 		phyctl |= AR_TX_PHY_MT_CCK;
1348 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1349 	}
1350 
1351 	/* Update rate control stats for frames that are ACK'ed. */
1352 	if (!(macctl & AR_TX_MAC_NOACK))
1353 		((struct otus_node *)ni)->amn.amn_txcnt++;
1354 
1355 	data = &sc->tx_data[sc->tx_cur];
1356 	/* Fill Tx descriptor. */
1357 	head = (struct ar_tx_head *)data->buf;
1358 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1359 	head->macctl = htole16(macctl);
1360 	head->phyctl = htole32(phyctl);
1361 
1362 #if NBPFILTER > 0
1363 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1364 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1365 		struct mbuf mb;
1366 
1367 		tap->wt_flags = 0;
1368 		tap->wt_rate = otus_rates[ridx].rate;
1369 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1370 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1371 
1372 		mb.m_data = (caddr_t)tap;
1373 		mb.m_len = sc->sc_txtap_len;
1374 		mb.m_next = m;
1375 		mb.m_nextpkt = NULL;
1376 		mb.m_type = 0;
1377 		mb.m_flags = 0;
1378 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1379 	}
1380 #endif
1381 
1382 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1383 	m_copydata(m, 0, m->m_pkthdr.len, &head[1]);
1384 	m_freem(m);
1385 
1386 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1387 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1388 	    otus_rates[ridx].rate));
1389 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1390 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1391 	error = usbd_transfer(data->xfer);
1392 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1393 		return error;
1394 
1395 	ieee80211_release_node(ic, ni);
1396 
1397 	sc->tx_queued++;
1398 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1399 
1400 	return 0;
1401 }
1402 
1403 void
1404 otus_start(struct ifnet *ifp)
1405 {
1406 	struct otus_softc *sc = ifp->if_softc;
1407 	struct ieee80211com *ic = &sc->sc_ic;
1408 	struct ieee80211_node *ni;
1409 	struct mbuf *m;
1410 
1411 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1412 		return;
1413 
1414 	for (;;) {
1415 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1416 			ifq_set_oactive(&ifp->if_snd);
1417 			break;
1418 		}
1419 		/* Send pending management frames first. */
1420 		m = mq_dequeue(&ic->ic_mgtq);
1421 		if (m != NULL) {
1422 			ni = m->m_pkthdr.ph_cookie;
1423 			goto sendit;
1424 		}
1425 		if (ic->ic_state != IEEE80211_S_RUN)
1426 			break;
1427 
1428 		/* Encapsulate and send data frames. */
1429 		m = ifq_dequeue(&ifp->if_snd);
1430 		if (m == NULL)
1431 			break;
1432 #if NBPFILTER > 0
1433 		if (ifp->if_bpf != NULL)
1434 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1435 #endif
1436 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1437 			continue;
1438 sendit:
1439 #if NBPFILTER > 0
1440 		if (ic->ic_rawbpf != NULL)
1441 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1442 #endif
1443 		if (otus_tx(sc, m, ni) != 0) {
1444 			ieee80211_release_node(ic, ni);
1445 			ifp->if_oerrors++;
1446 			continue;
1447 		}
1448 
1449 		sc->sc_tx_timer = 5;
1450 		ifp->if_timer = 1;
1451 	}
1452 }
1453 
1454 void
1455 otus_watchdog(struct ifnet *ifp)
1456 {
1457 	struct otus_softc *sc = ifp->if_softc;
1458 
1459 	ifp->if_timer = 0;
1460 
1461 	if (sc->sc_tx_timer > 0) {
1462 		if (--sc->sc_tx_timer == 0) {
1463 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1464 			/* otus_init(ifp); XXX needs a process context! */
1465 			ifp->if_oerrors++;
1466 			return;
1467 		}
1468 		ifp->if_timer = 1;
1469 	}
1470 	ieee80211_watchdog(ifp);
1471 }
1472 
1473 int
1474 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1475 {
1476 	struct otus_softc *sc = ifp->if_softc;
1477 	struct ieee80211com *ic = &sc->sc_ic;
1478 	int s, error = 0;
1479 
1480 	if (usbd_is_dying(sc->sc_udev))
1481 		return ENXIO;
1482 
1483 	usbd_ref_incr(sc->sc_udev);
1484 
1485 	s = splnet();
1486 
1487 	switch (cmd) {
1488 	case SIOCSIFADDR:
1489 		ifp->if_flags |= IFF_UP;
1490 		/* FALLTHROUGH */
1491 	case SIOCSIFFLAGS:
1492 		if (ifp->if_flags & IFF_UP) {
1493 			if ((ifp->if_flags & IFF_RUNNING) &&
1494 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1495 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1496 				otus_set_multi(sc);
1497 			} else if (!(ifp->if_flags & IFF_RUNNING))
1498 				otus_init(ifp);
1499 
1500 		} else if (ifp->if_flags & IFF_RUNNING)
1501 			otus_stop(ifp);
1502 
1503 		sc->sc_if_flags = ifp->if_flags;
1504 		break;
1505 	case SIOCS80211CHANNEL:
1506 		error = ieee80211_ioctl(ifp, cmd, data);
1507 		if (error == ENETRESET &&
1508 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1509 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1510 			    (IFF_UP | IFF_RUNNING))
1511 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1512 			error = 0;
1513 		}
1514 		break;
1515 	default:
1516 		error = ieee80211_ioctl(ifp, cmd, data);
1517 	}
1518 
1519 	if (error == ENETRESET) {
1520 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1521 		    (IFF_UP | IFF_RUNNING))
1522 			otus_init(ifp);
1523 		error = 0;
1524 	}
1525 
1526 	splx(s);
1527 
1528 	usbd_ref_decr(sc->sc_udev);
1529 
1530 	return error;
1531 }
1532 
1533 int
1534 otus_set_multi(struct otus_softc *sc)
1535 {
1536 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1537 	struct ifnet *ifp = &ac->ac_if;
1538 	struct ether_multi *enm;
1539 	struct ether_multistep step;
1540 	uint32_t lo, hi;
1541 	uint8_t bit;
1542 
1543 	if (ac->ac_multirangecnt > 0)
1544 		ifp->if_flags |= IFF_ALLMULTI;
1545 
1546 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1547 		lo = hi = 0xffffffff;
1548 		goto done;
1549 	}
1550 	lo = hi = 0;
1551 	ETHER_FIRST_MULTI(step, ac, enm);
1552 	while (enm != NULL) {
1553 		bit = enm->enm_addrlo[5] >> 2;
1554 		if (bit < 32)
1555 			lo |= 1 << bit;
1556 		else
1557 			hi |= 1 << (bit - 32);
1558 		ETHER_NEXT_MULTI(step, enm);
1559 	}
1560  done:
1561 	hi |= 1U << 31;	/* Make sure the broadcast bit is set. */
1562 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1563 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1564 	return otus_write_barrier(sc);
1565 }
1566 
1567 void
1568 otus_updateedca(struct ieee80211com *ic)
1569 {
1570 	/* Do it in a process context. */
1571 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1572 }
1573 
1574 /* ARGSUSED */
1575 void
1576 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1577 {
1578 #define EXP2(val)	((1 << (val)) - 1)
1579 #define AIFS(val)	((val) * 9 + 10)
1580 	struct ieee80211com *ic = &sc->sc_ic;
1581 	const struct ieee80211_edca_ac_params *edca;
1582 	int s;
1583 
1584 	s = splnet();
1585 
1586 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1587 	    ic->ic_edca_ac : otus_edca_def;
1588 
1589 	/* Set CWmin/CWmax values. */
1590 	otus_write(sc, AR_MAC_REG_AC0_CW,
1591 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1592 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1593 	otus_write(sc, AR_MAC_REG_AC1_CW,
1594 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1595 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1596 	otus_write(sc, AR_MAC_REG_AC2_CW,
1597 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1598 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1599 	otus_write(sc, AR_MAC_REG_AC3_CW,
1600 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1601 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1602 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1603 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1604 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1605 
1606 	/* Set AIFSN values. */
1607 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1608 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1609 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1610 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1611 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1612 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1613 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1614 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1615 
1616 	/* Set TXOP limit. */
1617 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1618 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1619 	    edca[EDCA_AC_BE].ac_txoplimit);
1620 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1621 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1622 	    edca[EDCA_AC_VI].ac_txoplimit);
1623 
1624 	splx(s);
1625 
1626 	(void)otus_write_barrier(sc);
1627 #undef AIFS
1628 #undef EXP2
1629 }
1630 
1631 void
1632 otus_updateslot(struct ieee80211com *ic)
1633 {
1634 	/* Do it in a process context. */
1635 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1636 }
1637 
1638 /* ARGSUSED */
1639 void
1640 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1641 {
1642 	uint32_t slottime;
1643 
1644 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ?
1645 	    IEEE80211_DUR_DS_SHSLOT: IEEE80211_DUR_DS_SLOT;
1646 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1647 	(void)otus_write_barrier(sc);
1648 }
1649 
1650 int
1651 otus_init_mac(struct otus_softc *sc)
1652 {
1653 	int error;
1654 
1655 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1656 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1657 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1658 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1659 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1660 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1661 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1662 	otus_write(sc, 0x1c3b2c, 0x19000000);
1663 	/* NAV protects ACK only (in TXOP). */
1664 	otus_write(sc, 0x1c3b38, 0x201);
1665 	/* Set beacon Tx power to 0x7. */
1666 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1667 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1668 	otus_write(sc, 0x1c3b9c, 0x10000a);
1669 	/* Filter any control frames, BAR is bit 24. */
1670 	otus_write(sc, 0x1c368c, 0x0500ffff);
1671 	otus_write(sc, 0x1c3c40, 0x1);
1672 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1673 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1674 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1675 	otus_write(sc, 0x1c3694, 0x4003c1e);
1676 	/* Enable LED0 and LED1. */
1677 	otus_write(sc, 0x1d0100, 0x3);
1678 	otus_write(sc, 0x1d0104, 0x3);
1679 	/* Switch MAC to OTUS interface. */
1680 	otus_write(sc, 0x1c3600, 0x3);
1681 	otus_write(sc, 0x1c3c50, 0xffff);
1682 	otus_write(sc, 0x1c3680, 0xf00008);
1683 	/* Disable Rx timeout (workaround). */
1684 	otus_write(sc, 0x1c362c, 0);
1685 
1686 	/* Set USB Rx stream mode maximum frame number to 2. */
1687 	otus_write(sc, 0x1e1110, 0x4);
1688 	/* Set USB Rx stream mode timeout to 10us. */
1689 	otus_write(sc, 0x1e1114, 0x80);
1690 
1691 	/* Set clock frequency to 88/80MHz. */
1692 	otus_write(sc, 0x1d4008, 0x73);
1693 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1694 	otus_write(sc, 0x1c3d7c, 0x110011);
1695 	otus_write(sc, 0x1c3bb0, 0x4);
1696 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1697 
1698 	/* Disable HW decryption for now. */
1699 	otus_write(sc, 0x1c3678, 0x78);
1700 
1701 	if ((error = otus_write_barrier(sc)) != 0)
1702 		return error;
1703 
1704 	/* Set default EDCA parameters. */
1705 	otus_updateedca_cb(sc, NULL);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Return default value for PHY register based on current operating mode.
1712  */
1713 uint32_t
1714 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1715 {
1716 	int i;
1717 
1718 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1719 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1720 			return sc->phy_vals[i];
1721 	return 0;	/* Register not found. */
1722 }
1723 
1724 /*
1725  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1726  * This is for FEM-type devices only.
1727  */
1728 int
1729 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1730 {
1731 	const struct ModalEepHeader *eep;
1732 	uint32_t tmp, offset;
1733 
1734 	if (IEEE80211_IS_CHAN_5GHZ(c))
1735 		eep = &sc->eeprom.modalHeader[0];
1736 	else
1737 		eep = &sc->eeprom.modalHeader[1];
1738 
1739 	/* Offset of chain 2. */
1740 	offset = 2 * 0x1000;
1741 
1742 	tmp = letoh32(eep->antCtrlCommon);
1743 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1744 
1745 	tmp = letoh32(eep->antCtrlChain[0]);
1746 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1747 
1748 	tmp = letoh32(eep->antCtrlChain[1]);
1749 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1750 
1751 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1752 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1753 		tmp &= ~(0x7f << 7);
1754 		tmp |= (eep->switchSettling & 0x7f) << 7;
1755 		otus_write(sc, AR_PHY_SETTLING, tmp);
1756 	}
1757 
1758 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1759 	tmp &= ~0xffff;
1760 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1761 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1762 
1763 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1764 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1765 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1766 
1767 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1768 	tmp &= ~(0xff << 16);
1769 	tmp |= eep->txEndToRxOn << 16;
1770 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1771 
1772 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1773 	tmp &= ~(0x7f << 12);
1774 	tmp |= (eep->thresh62 & 0x7f) << 12;
1775 	otus_write(sc, AR_PHY_CCA, tmp);
1776 
1777 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1778 	tmp &= ~(0x3f << 12);
1779 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1780 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1781 
1782 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1783 	tmp &= ~(0x3f << 12);
1784 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1785 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1786 
1787 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1788 	tmp &= ~(0x3f << 18);
1789 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1790 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1791 		tmp &= ~(0xf << 10);
1792 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1793 	}
1794 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1795 
1796 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1797 	tmp &= ~(0x3f << 18);
1798 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1799 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1800 
1801 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1802 	tmp &= ~(0x3f << 5 | 0x1f);
1803 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1804 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1805 
1806 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1807 	tmp &= ~(0x3f << 5 | 0x1f);
1808 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1809 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1810 
1811 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1812 	tmp &= ~(0xf << 16);
1813 	tmp |= (eep->xpd & 0xf) << 16;
1814 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1815 
1816 	return otus_write_barrier(sc);
1817 }
1818 
1819 int
1820 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1821 {
1822 	const uint32_t *vals;
1823 	int error, i;
1824 
1825 	/* Select PHY programming based on band and bandwidth. */
1826 	if (IEEE80211_IS_CHAN_2GHZ(c))
1827 		vals = ar5416_phy_vals_2ghz_20mhz;
1828 	else
1829 		vals = ar5416_phy_vals_5ghz_20mhz;
1830 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1831 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1832 	sc->phy_vals = vals;
1833 
1834 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1835 		if ((error = otus_set_board_values(sc, c)) != 0)
1836 			return error;
1837 
1838 	/* Initial Tx power settings. */
1839 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1840 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1841 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1842 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1843 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1844 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1845 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1846 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1847 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1848 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1849 
1850 	if (IEEE80211_IS_CHAN_2GHZ(c))
1851 		otus_write(sc, 0x1d4014, 0x5163);
1852 	else
1853 		otus_write(sc, 0x1d4014, 0x5143);
1854 
1855 	return otus_write_barrier(sc);
1856 }
1857 
1858 static __inline uint8_t
1859 otus_reverse_bits(uint8_t v)
1860 {
1861 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1862 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1863 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1864 	return v;
1865 }
1866 
1867 int
1868 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1869 {
1870 	uint8_t chansel, d0, d1;
1871 	uint16_t data;
1872 	int error;
1873 
1874 	d0 = 0;
1875 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1876 		chansel = (c->ic_freq - 4800) / 5;
1877 		if (chansel & 1)
1878 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1879 		else
1880 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1881 	} else {
1882 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1883 		if (c->ic_freq == 2484) {	/* CH 14 */
1884 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1885 			chansel = 10 + (c->ic_freq - 2274) / 5;
1886 		} else
1887 			chansel = 16 + (c->ic_freq - 2272) / 5;
1888 		chansel <<= 2;
1889 	}
1890 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1891 	d1 = otus_reverse_bits(chansel);
1892 
1893 	/* Write bits 0-4 of d0 and d1. */
1894 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1895 	otus_write(sc, AR_PHY(44), data);
1896 	/* Write bits 5-7 of d0 and d1. */
1897 	data = (d1 >> 5) << 5 | (d0 >> 5);
1898 	otus_write(sc, AR_PHY(58), data);
1899 
1900 	if ((error = otus_write_barrier(sc)) == 0)
1901 		usbd_delay_ms(sc->sc_udev, 10);
1902 	return error;
1903 }
1904 
1905 void
1906 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1907 {
1908 #define COEFF_SCALE_SHIFT	24
1909 	uint32_t exp, man;
1910 
1911 	/* exponent = 14 - floor(log2(coeff)) */
1912 	for (exp = 31; exp > 0; exp--)
1913 		if (coeff & (1 << exp))
1914 			break;
1915 	KASSERT(exp != 0);
1916 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1917 
1918 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1919 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1920 
1921 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1922 	*exponent = exp - 16;
1923 #undef COEFF_SCALE_SHIFT
1924 }
1925 
1926 int
1927 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1928 {
1929 	struct ieee80211com *ic = &sc->sc_ic;
1930 	struct ar_cmd_frequency cmd;
1931 	struct ar_rsp_frequency rsp;
1932 	const uint32_t *vals;
1933 	uint32_t coeff, exp, man, tmp;
1934 	uint8_t code;
1935 	int error, chan, i;
1936 
1937 	chan = ieee80211_chan2ieee(ic, c);
1938 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1939 
1940 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1941 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1942 	if ((error = otus_write_barrier(sc)) != 0)
1943 		return error;
1944 
1945 	/* Disable BB Heavy Clip. */
1946 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1947 	if ((error = otus_write_barrier(sc)) != 0)
1948 		return error;
1949 
1950 	/* XXX Is that FREQ_START ? */
1951 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1952 	if (error != 0)
1953 		return error;
1954 
1955 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1956 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1957 		DPRINTF(("band switch\n"));
1958 
1959 		/* Cold/Warm reset BB/ADDA. */
1960 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1961 		if ((error = otus_write_barrier(sc)) != 0)
1962 			return error;
1963 		otus_write(sc, 0x1d4004, 0);
1964 		if ((error = otus_write_barrier(sc)) != 0)
1965 			return error;
1966 		sc->bb_reset = 0;
1967 
1968 		if ((error = otus_program_phy(sc, c)) != 0) {
1969 			printf("%s: could not program PHY\n",
1970 			    sc->sc_dev.dv_xname);
1971 			return error;
1972 		}
1973 
1974 		/* Select RF programming based on band. */
1975 		if (IEEE80211_IS_CHAN_5GHZ(c))
1976 			vals = ar5416_banks_vals_5ghz;
1977 		else
1978 			vals = ar5416_banks_vals_2ghz;
1979 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1980 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1981 		if ((error = otus_write_barrier(sc)) != 0) {
1982 			printf("%s: could not program RF\n",
1983 			    sc->sc_dev.dv_xname);
1984 			return error;
1985 		}
1986 		code = AR_CMD_RF_INIT;
1987 	} else {
1988 		code = AR_CMD_FREQUENCY;
1989 	}
1990 
1991 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
1992 		return error;
1993 
1994 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
1995 	otus_write(sc, AR_PHY_TURBO, tmp);
1996 	if ((error = otus_write_barrier(sc)) != 0)
1997 		return error;
1998 
1999 	/* Send firmware command to set channel. */
2000 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2001 	cmd.dynht2040 = htole32(0);
2002 	cmd.htena = htole32(1);
2003 	/* Set Delta Slope (exponent and mantissa). */
2004 	coeff = (100 << 24) / c->ic_freq;
2005 	otus_get_delta_slope(coeff, &exp, &man);
2006 	cmd.dsc_exp = htole32(exp);
2007 	cmd.dsc_man = htole32(man);
2008 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2009 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2010 	coeff = (9 * coeff) / 10;
2011 	otus_get_delta_slope(coeff, &exp, &man);
2012 	cmd.dsc_shgi_exp = htole32(exp);
2013 	cmd.dsc_shgi_man = htole32(man);
2014 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2015 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2016 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2017 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2018 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2019 	if (error != 0)
2020 		return error;
2021 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2022 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2023 		/* Force cold reset on next channel. */
2024 		sc->bb_reset = 1;
2025 	}
2026 #ifdef OTUS_DEBUG
2027 	if (otus_debug) {
2028 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2029 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2030 			/* Sign-extend 9-bit NF values. */
2031 			printf("noisefloor chain %d=%d\n", i,
2032 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2033 			printf("noisefloor ext chain %d=%d\n", i,
2034 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2035 		}
2036 	}
2037 #endif
2038 	sc->sc_curchan = c;
2039 	return 0;
2040 }
2041 
2042 #ifdef notyet
2043 int
2044 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2045     struct ieee80211_key *k)
2046 {
2047 	struct otus_softc *sc = ic->ic_softc;
2048 	struct otus_cmd_key cmd;
2049 
2050 	/* Defer setting of WEP keys until interface is brought up. */
2051 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2052 	    (IFF_UP | IFF_RUNNING))
2053 		return 0;
2054 
2055 	/* Do it in a process context. */
2056 	cmd.key = *k;
2057 	cmd.ni = *ni;
2058 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2059 	sc->sc_key_tasks++
2060 	return EBUSY;
2061 }
2062 
2063 void
2064 otus_set_key_cb(struct otus_softc *sc, void *arg)
2065 {
2066 	struct otus_cmd_key *cmd = arg;
2067 	struct ieee80211_key *k = &cmd->key;
2068 	struct ar_cmd_ekey key;
2069 	uint16_t cipher;
2070 	int error;
2071 
2072 	sc->sc_keys_tasks--;
2073 
2074 	memset(&key, 0, sizeof key);
2075 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2076 		key.uid = htole16(k->k_id);
2077 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2078 		key.macaddr[0] |= 0x80;
2079 	} else {
2080 		key.uid = htole16(OTUS_UID(cmd->associd));
2081 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2082 	}
2083 	key.kix = htole16(0);
2084 	/* Map net80211 cipher to hardware. */
2085 	switch (k->k_cipher) {
2086 	case IEEE80211_CIPHER_WEP40:
2087 		cipher = AR_CIPHER_WEP64;
2088 		break;
2089 	case IEEE80211_CIPHER_WEP104:
2090 		cipher = AR_CIPHER_WEP128;
2091 		break;
2092 	case IEEE80211_CIPHER_TKIP:
2093 		cipher = AR_CIPHER_TKIP;
2094 		break;
2095 	case IEEE80211_CIPHER_CCMP:
2096 		cipher = AR_CIPHER_AES;
2097 		break;
2098 	default:
2099 		IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
2100 		    IEEE80211_REASON_AUTH_LEAVE);
2101 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2102 		return;
2103 	}
2104 	key.cipher = htole16(cipher);
2105 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2106 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2107 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) {
2108 		IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
2109 		    IEEE80211_REASON_AUTH_LEAVE);
2110 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2111 		return;
2112 	}
2113 
2114 	/* TKIP: set Tx/Rx MIC Key. */
2115 	key.kix = htole16(1);
2116 	memcpy(key.key, k->k_key + 16, 16);
2117 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2118 
2119 	if (sc->sc_key_tasks == 0) {
2120 		DPRINTF(("marking port %s valid\n",
2121 		    ether_sprintf(cmd->ni->ni_macaddr)));
2122 		cmd->ni->ni_port_valid = 1;
2123 		ieee80211_set_link_state(ic, LINK_STATE_UP);
2124 	}
2125 }
2126 
2127 void
2128 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2129     struct ieee80211_key *k)
2130 {
2131 	struct otus_softc *sc = ic->ic_softc;
2132 	struct otus_cmd_key cmd;
2133 
2134 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2135 	    ic->ic_state != IEEE80211_S_RUN)
2136 		return;	/* Nothing to do. */
2137 
2138 	/* Do it in a process context. */
2139 	cmd.key = *k;
2140 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2141 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2142 }
2143 
2144 void
2145 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2146 {
2147 	struct otus_cmd_key *cmd = arg;
2148 	struct ieee80211_key *k = &cmd->key;
2149 	uint32_t uid;
2150 
2151 	if (k->k_flags & IEEE80211_KEY_GROUP)
2152 		uid = htole32(k->k_id);
2153 	else
2154 		uid = htole32(OTUS_UID(cmd->associd));
2155 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2156 }
2157 #endif
2158 
2159 void
2160 otus_calibrate_to(void *arg)
2161 {
2162 	struct otus_softc *sc = arg;
2163 	struct ieee80211com *ic = &sc->sc_ic;
2164 	struct ieee80211_node *ni;
2165 	int s;
2166 
2167 	if (usbd_is_dying(sc->sc_udev))
2168 		return;
2169 
2170 	usbd_ref_incr(sc->sc_udev);
2171 
2172 	s = splnet();
2173 	ni = ic->ic_bss;
2174 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2175 	splx(s);
2176 
2177 	if (!usbd_is_dying(sc->sc_udev))
2178 		timeout_add_sec(&sc->calib_to, 1);
2179 
2180 	usbd_ref_decr(sc->sc_udev);
2181 }
2182 
2183 int
2184 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2185 {
2186 	otus_write(sc, AR_MAC_REG_BSSID_L,
2187 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2188 	otus_write(sc, AR_MAC_REG_BSSID_H,
2189 	    bssid[4] | bssid[5] << 8);
2190 	return otus_write_barrier(sc);
2191 }
2192 
2193 int
2194 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2195 {
2196 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2197 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2198 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2199 	    addr[4] | addr[5] << 8);
2200 	return otus_write_barrier(sc);
2201 }
2202 
2203 /* Default single-LED. */
2204 void
2205 otus_led_newstate_type1(struct otus_softc *sc)
2206 {
2207 	/* TBD */
2208 }
2209 
2210 /* NETGEAR, dual-LED. */
2211 void
2212 otus_led_newstate_type2(struct otus_softc *sc)
2213 {
2214 	/* TBD */
2215 }
2216 
2217 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2218 void
2219 otus_led_newstate_type3(struct otus_softc *sc)
2220 {
2221 	struct ieee80211com *ic = &sc->sc_ic;
2222 	uint32_t state = sc->led_state;
2223 
2224 	if (ic->ic_state == IEEE80211_S_INIT) {
2225 		state = 0;	/* LED off. */
2226 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2227 		/* Associated, LED always on. */
2228 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2229 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2230 		else
2231 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2232 	} else {
2233 		/* Scanning, blink LED. */
2234 		state ^= AR_LED0_ON | AR_LED1_ON;
2235 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2236 			state &= ~AR_LED1_ON;
2237 		else
2238 			state &= ~AR_LED0_ON;
2239 	}
2240 	if (state != sc->led_state) {
2241 		otus_write(sc, 0x1d0104, state);
2242 		if (otus_write_barrier(sc) == 0)
2243 			sc->led_state = state;
2244 	}
2245 }
2246 
2247 int
2248 otus_init(struct ifnet *ifp)
2249 {
2250 	struct otus_softc *sc = ifp->if_softc;
2251 	struct ieee80211com *ic = &sc->sc_ic;
2252 	int error;
2253 
2254 	/* Init host command ring. */
2255 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2256 
2257 	if ((error = otus_init_mac(sc)) != 0) {
2258 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2259 		return error;
2260 	}
2261 
2262 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2263 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2264 
2265 	switch (ic->ic_opmode) {
2266 #ifdef notyet
2267 #ifndef IEEE80211_STA_ONLY
2268 	case IEEE80211_M_HOSTAP:
2269 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2270 		otus_write(sc, 0x1c3c40, 0x1);
2271 		break;
2272 	case IEEE80211_M_IBSS:
2273 		otus_write(sc, 0x1c3700, 0x0f000000);
2274 		otus_write(sc, 0x1c3c40, 0x1);
2275 		break;
2276 #endif
2277 #endif
2278 	case IEEE80211_M_STA:
2279 		otus_write(sc, 0x1c3700, 0x0f000002);
2280 		otus_write(sc, 0x1c3c40, 0x1);
2281 		break;
2282 	default:
2283 		break;
2284 	}
2285 	otus_write(sc, AR_MAC_REG_SNIFFER,
2286 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2287 	(void)otus_write_barrier(sc);
2288 
2289 	sc->bb_reset = 1;	/* Force cold reset. */
2290 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2291 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2292 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2293 		return error;
2294 	}
2295 
2296 	/* Start Rx. */
2297 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, AR_DMA_TRIGGER_RXQ);
2298 	(void)otus_write_barrier(sc);
2299 
2300 	ifp->if_flags |= IFF_RUNNING;
2301 	ifq_clr_oactive(&ifp->if_snd);
2302 
2303 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2304 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2305 	else
2306 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2307 
2308 	return 0;
2309 }
2310 
2311 void
2312 otus_stop(struct ifnet *ifp)
2313 {
2314 	struct otus_softc *sc = ifp->if_softc;
2315 	struct ieee80211com *ic = &sc->sc_ic;
2316 	int s;
2317 
2318 	sc->sc_tx_timer = 0;
2319 	ifp->if_timer = 0;
2320 	ifp->if_flags &= ~IFF_RUNNING;
2321 	ifq_clr_oactive(&ifp->if_snd);
2322 
2323 	timeout_del(&sc->scan_to);
2324 	timeout_del(&sc->calib_to);
2325 
2326 	s = splusb();
2327 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2328 	/* Wait for all queued asynchronous commands to complete. */
2329 	usb_wait_task(sc->sc_udev, &sc->sc_task);
2330 	splx(s);
2331 
2332 	/* Stop Rx. */
2333 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0);
2334 	(void)otus_write_barrier(sc);
2335 
2336 	sc->tx_queued = 0;
2337 }
2338