1 /* $OpenBSD: if_ral.c,v 1.149 2022/04/21 21:03:03 stsp Exp $ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2500USB chipset driver 22 * http://www.ralinktech.com.tw/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/endian.h> 37 38 #include <machine/intr.h> 39 40 #if NBPFILTER > 0 41 #include <net/bpf.h> 42 #endif 43 #include <net/if.h> 44 #include <net/if_dl.h> 45 #include <net/if_media.h> 46 47 #include <netinet/in.h> 48 #include <netinet/if_ether.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_amrr.h> 52 #include <net80211/ieee80211_radiotap.h> 53 54 #include <dev/usb/usb.h> 55 #include <dev/usb/usbdi.h> 56 #include <dev/usb/usbdi_util.h> 57 #include <dev/usb/usbdevs.h> 58 59 #include <dev/usb/if_ralreg.h> 60 #include <dev/usb/if_ralvar.h> 61 62 #ifdef URAL_DEBUG 63 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0) 64 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0) 65 int ural_debug = 0; 66 #else 67 #define DPRINTF(x) 68 #define DPRINTFN(n, x) 69 #endif 70 71 /* various supported device vendors/products */ 72 static const struct usb_devno ural_devs[] = { 73 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570 }, 74 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570_2 }, 75 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 76 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 77 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 78 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, 79 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU }, 80 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RT2570 }, 81 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 82 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 83 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 84 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 85 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 86 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, 87 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570 }, 88 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2 }, 89 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3 }, 90 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, 91 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 92 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 93 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 94 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, 95 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570 }, 96 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 97 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570 } 98 }; 99 100 int ural_alloc_tx_list(struct ural_softc *); 101 void ural_free_tx_list(struct ural_softc *); 102 int ural_alloc_rx_list(struct ural_softc *); 103 void ural_free_rx_list(struct ural_softc *); 104 int ural_media_change(struct ifnet *); 105 void ural_next_scan(void *); 106 void ural_task(void *); 107 int ural_newstate(struct ieee80211com *, enum ieee80211_state, 108 int); 109 void ural_txeof(struct usbd_xfer *, void *, usbd_status); 110 void ural_rxeof(struct usbd_xfer *, void *, usbd_status); 111 #if NBPFILTER > 0 112 uint8_t ural_rxrate(const struct ural_rx_desc *); 113 #endif 114 int ural_ack_rate(struct ieee80211com *, int); 115 uint16_t ural_txtime(int, int, uint32_t); 116 uint8_t ural_plcp_signal(int); 117 void ural_setup_tx_desc(struct ural_softc *, struct ural_tx_desc *, 118 uint32_t, int, int); 119 #ifndef IEEE80211_STA_ONLY 120 int ural_tx_bcn(struct ural_softc *, struct mbuf *, 121 struct ieee80211_node *); 122 #endif 123 int ural_tx_data(struct ural_softc *, struct mbuf *, 124 struct ieee80211_node *); 125 void ural_start(struct ifnet *); 126 void ural_watchdog(struct ifnet *); 127 int ural_ioctl(struct ifnet *, u_long, caddr_t); 128 void ural_eeprom_read(struct ural_softc *, uint16_t, void *, int); 129 uint16_t ural_read(struct ural_softc *, uint16_t); 130 void ural_read_multi(struct ural_softc *, uint16_t, void *, int); 131 void ural_write(struct ural_softc *, uint16_t, uint16_t); 132 void ural_write_multi(struct ural_softc *, uint16_t, void *, int); 133 void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 134 uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 135 void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 136 void ural_set_chan(struct ural_softc *, struct ieee80211_channel *); 137 void ural_disable_rf_tune(struct ural_softc *); 138 void ural_enable_tsf_sync(struct ural_softc *); 139 void ural_update_slot(struct ural_softc *); 140 void ural_set_txpreamble(struct ural_softc *); 141 void ural_set_basicrates(struct ural_softc *); 142 void ural_set_bssid(struct ural_softc *, const uint8_t *); 143 void ural_set_macaddr(struct ural_softc *, const uint8_t *); 144 void ural_update_promisc(struct ural_softc *); 145 const char *ural_get_rf(int); 146 void ural_read_eeprom(struct ural_softc *); 147 int ural_bbp_init(struct ural_softc *); 148 void ural_set_txantenna(struct ural_softc *, int); 149 void ural_set_rxantenna(struct ural_softc *, int); 150 int ural_init(struct ifnet *); 151 void ural_stop(struct ifnet *, int); 152 void ural_newassoc(struct ieee80211com *, struct ieee80211_node *, 153 int); 154 void ural_amrr_start(struct ural_softc *, struct ieee80211_node *); 155 void ural_amrr_timeout(void *); 156 void ural_amrr_update(struct usbd_xfer *, void *, 157 usbd_status status); 158 159 static const struct { 160 uint16_t reg; 161 uint16_t val; 162 } ural_def_mac[] = { 163 RAL_DEF_MAC 164 }; 165 166 static const struct { 167 uint8_t reg; 168 uint8_t val; 169 } ural_def_bbp[] = { 170 RAL_DEF_BBP 171 }; 172 173 static const uint32_t ural_rf2522_r2[] = RAL_RF2522_R2; 174 static const uint32_t ural_rf2523_r2[] = RAL_RF2523_R2; 175 static const uint32_t ural_rf2524_r2[] = RAL_RF2524_R2; 176 static const uint32_t ural_rf2525_r2[] = RAL_RF2525_R2; 177 static const uint32_t ural_rf2525_hi_r2[] = RAL_RF2525_HI_R2; 178 static const uint32_t ural_rf2525e_r2[] = RAL_RF2525E_R2; 179 static const uint32_t ural_rf2526_hi_r2[] = RAL_RF2526_HI_R2; 180 static const uint32_t ural_rf2526_r2[] = RAL_RF2526_R2; 181 182 int ural_match(struct device *, void *, void *); 183 void ural_attach(struct device *, struct device *, void *); 184 int ural_detach(struct device *, int); 185 186 struct cfdriver ural_cd = { 187 NULL, "ural", DV_IFNET 188 }; 189 190 const struct cfattach ural_ca = { 191 sizeof(struct ural_softc), ural_match, ural_attach, ural_detach 192 }; 193 194 int 195 ural_match(struct device *parent, void *match, void *aux) 196 { 197 struct usb_attach_arg *uaa = aux; 198 199 if (uaa->configno != RAL_CONFIG_NO || uaa->ifaceno != RAL_IFACE_NO) 200 return UMATCH_NONE; 201 202 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? 203 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 204 } 205 206 void 207 ural_attach(struct device *parent, struct device *self, void *aux) 208 { 209 struct ural_softc *sc = (struct ural_softc *)self; 210 struct usb_attach_arg *uaa = aux; 211 struct ieee80211com *ic = &sc->sc_ic; 212 struct ifnet *ifp = &ic->ic_if; 213 usb_interface_descriptor_t *id; 214 usb_endpoint_descriptor_t *ed; 215 int i; 216 217 sc->sc_udev = uaa->device; 218 sc->sc_iface = uaa->iface; 219 220 /* 221 * Find endpoints. 222 */ 223 id = usbd_get_interface_descriptor(sc->sc_iface); 224 225 sc->sc_rx_no = sc->sc_tx_no = -1; 226 for (i = 0; i < id->bNumEndpoints; i++) { 227 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 228 if (ed == NULL) { 229 printf("%s: no endpoint descriptor for iface %d\n", 230 sc->sc_dev.dv_xname, i); 231 return; 232 } 233 234 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 235 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 236 sc->sc_rx_no = ed->bEndpointAddress; 237 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 238 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 239 sc->sc_tx_no = ed->bEndpointAddress; 240 } 241 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 242 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); 243 return; 244 } 245 246 usb_init_task(&sc->sc_task, ural_task, sc, USB_TASK_TYPE_GENERIC); 247 timeout_set(&sc->scan_to, ural_next_scan, sc); 248 249 sc->amrr.amrr_min_success_threshold = 1; 250 sc->amrr.amrr_max_success_threshold = 10; 251 timeout_set(&sc->amrr_to, ural_amrr_timeout, sc); 252 253 /* retrieve RT2570 rev. no */ 254 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 255 256 /* retrieve MAC address and various other things from EEPROM */ 257 ural_read_eeprom(sc); 258 259 printf("%s: MAC/BBP RT%04x (rev 0x%02x), RF %s, address %s\n", 260 sc->sc_dev.dv_xname, sc->macbbp_rev, sc->asic_rev, 261 ural_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 262 263 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 264 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 265 ic->ic_state = IEEE80211_S_INIT; 266 267 /* set device capabilities */ 268 ic->ic_caps = 269 IEEE80211_C_MONITOR | /* monitor mode supported */ 270 #ifndef IEEE80211_STA_ONLY 271 IEEE80211_C_IBSS | /* IBSS mode supported */ 272 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 273 #endif 274 IEEE80211_C_TXPMGT | /* tx power management */ 275 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 276 IEEE80211_C_SHSLOT | /* short slot time supported */ 277 IEEE80211_C_WEP | /* s/w WEP */ 278 IEEE80211_C_RSN; /* WPA/RSN */ 279 280 /* set supported .11b and .11g rates */ 281 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 282 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 283 284 /* set supported .11b and .11g channels (1 through 14) */ 285 for (i = 1; i <= 14; i++) { 286 ic->ic_channels[i].ic_freq = 287 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 288 ic->ic_channels[i].ic_flags = 289 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 290 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 291 } 292 293 ifp->if_softc = sc; 294 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 295 ifp->if_ioctl = ural_ioctl; 296 ifp->if_start = ural_start; 297 ifp->if_watchdog = ural_watchdog; 298 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 299 300 if_attach(ifp); 301 ieee80211_ifattach(ifp); 302 ic->ic_newassoc = ural_newassoc; 303 304 /* override state transition machine */ 305 sc->sc_newstate = ic->ic_newstate; 306 ic->ic_newstate = ural_newstate; 307 ieee80211_media_init(ifp, ural_media_change, ieee80211_media_status); 308 309 #if NBPFILTER > 0 310 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 311 sizeof (struct ieee80211_frame) + 64); 312 313 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 314 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 315 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 316 317 sc->sc_txtap_len = sizeof sc->sc_txtapu; 318 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 319 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 320 #endif 321 } 322 323 int 324 ural_detach(struct device *self, int flags) 325 { 326 struct ural_softc *sc = (struct ural_softc *)self; 327 struct ifnet *ifp = &sc->sc_ic.ic_if; 328 int s; 329 330 s = splusb(); 331 332 if (timeout_initialized(&sc->scan_to)) 333 timeout_del(&sc->scan_to); 334 if (timeout_initialized(&sc->amrr_to)) 335 timeout_del(&sc->amrr_to); 336 337 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 338 339 usbd_ref_wait(sc->sc_udev); 340 341 if (ifp->if_softc != NULL) { 342 ieee80211_ifdetach(ifp); /* free all nodes */ 343 if_detach(ifp); 344 } 345 346 if (sc->amrr_xfer != NULL) { 347 usbd_free_xfer(sc->amrr_xfer); 348 sc->amrr_xfer = NULL; 349 } 350 351 if (sc->sc_rx_pipeh != NULL) 352 usbd_close_pipe(sc->sc_rx_pipeh); 353 354 if (sc->sc_tx_pipeh != NULL) 355 usbd_close_pipe(sc->sc_tx_pipeh); 356 357 ural_free_rx_list(sc); 358 ural_free_tx_list(sc); 359 360 splx(s); 361 362 return 0; 363 } 364 365 int 366 ural_alloc_tx_list(struct ural_softc *sc) 367 { 368 int i, error; 369 370 sc->tx_cur = sc->tx_queued = 0; 371 372 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 373 struct ural_tx_data *data = &sc->tx_data[i]; 374 375 data->sc = sc; 376 377 data->xfer = usbd_alloc_xfer(sc->sc_udev); 378 if (data->xfer == NULL) { 379 printf("%s: could not allocate tx xfer\n", 380 sc->sc_dev.dv_xname); 381 error = ENOMEM; 382 goto fail; 383 } 384 data->buf = usbd_alloc_buffer(data->xfer, 385 RAL_TX_DESC_SIZE + IEEE80211_MAX_LEN); 386 if (data->buf == NULL) { 387 printf("%s: could not allocate tx buffer\n", 388 sc->sc_dev.dv_xname); 389 error = ENOMEM; 390 goto fail; 391 } 392 } 393 394 return 0; 395 396 fail: ural_free_tx_list(sc); 397 return error; 398 } 399 400 void 401 ural_free_tx_list(struct ural_softc *sc) 402 { 403 int i; 404 405 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 406 struct ural_tx_data *data = &sc->tx_data[i]; 407 408 if (data->xfer != NULL) { 409 usbd_free_xfer(data->xfer); 410 data->xfer = NULL; 411 } 412 /* 413 * The node has already been freed at that point so don't call 414 * ieee80211_release_node() here. 415 */ 416 data->ni = NULL; 417 } 418 } 419 420 int 421 ural_alloc_rx_list(struct ural_softc *sc) 422 { 423 int i, error; 424 425 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 426 struct ural_rx_data *data = &sc->rx_data[i]; 427 428 data->sc = sc; 429 430 data->xfer = usbd_alloc_xfer(sc->sc_udev); 431 if (data->xfer == NULL) { 432 printf("%s: could not allocate rx xfer\n", 433 sc->sc_dev.dv_xname); 434 error = ENOMEM; 435 goto fail; 436 } 437 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 438 printf("%s: could not allocate rx buffer\n", 439 sc->sc_dev.dv_xname); 440 error = ENOMEM; 441 goto fail; 442 } 443 444 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 445 if (data->m == NULL) { 446 printf("%s: could not allocate rx mbuf\n", 447 sc->sc_dev.dv_xname); 448 error = ENOMEM; 449 goto fail; 450 } 451 MCLGET(data->m, M_DONTWAIT); 452 if (!(data->m->m_flags & M_EXT)) { 453 printf("%s: could not allocate rx mbuf cluster\n", 454 sc->sc_dev.dv_xname); 455 error = ENOMEM; 456 goto fail; 457 } 458 data->buf = mtod(data->m, uint8_t *); 459 } 460 461 return 0; 462 463 fail: ural_free_rx_list(sc); 464 return error; 465 } 466 467 void 468 ural_free_rx_list(struct ural_softc *sc) 469 { 470 int i; 471 472 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 473 struct ural_rx_data *data = &sc->rx_data[i]; 474 475 if (data->xfer != NULL) { 476 usbd_free_xfer(data->xfer); 477 data->xfer = NULL; 478 } 479 if (data->m != NULL) { 480 m_freem(data->m); 481 data->m = NULL; 482 } 483 } 484 } 485 486 int 487 ural_media_change(struct ifnet *ifp) 488 { 489 int error; 490 491 error = ieee80211_media_change(ifp); 492 if (error != ENETRESET) 493 return error; 494 495 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 496 error = ural_init(ifp); 497 498 return error; 499 } 500 501 /* 502 * This function is called periodically (every 200ms) during scanning to 503 * switch from one channel to another. 504 */ 505 void 506 ural_next_scan(void *arg) 507 { 508 struct ural_softc *sc = arg; 509 struct ieee80211com *ic = &sc->sc_ic; 510 struct ifnet *ifp = &ic->ic_if; 511 512 if (usbd_is_dying(sc->sc_udev)) 513 return; 514 515 usbd_ref_incr(sc->sc_udev); 516 517 if (ic->ic_state == IEEE80211_S_SCAN) 518 ieee80211_next_scan(ifp); 519 520 usbd_ref_decr(sc->sc_udev); 521 } 522 523 void 524 ural_task(void *arg) 525 { 526 struct ural_softc *sc = arg; 527 struct ieee80211com *ic = &sc->sc_ic; 528 enum ieee80211_state ostate; 529 struct ieee80211_node *ni; 530 531 if (usbd_is_dying(sc->sc_udev)) 532 return; 533 534 ostate = ic->ic_state; 535 536 switch (sc->sc_state) { 537 case IEEE80211_S_INIT: 538 if (ostate == IEEE80211_S_RUN) { 539 /* abort TSF synchronization */ 540 ural_write(sc, RAL_TXRX_CSR19, 0); 541 542 /* force tx led to stop blinking */ 543 ural_write(sc, RAL_MAC_CSR20, 0); 544 } 545 break; 546 547 case IEEE80211_S_SCAN: 548 ural_set_chan(sc, ic->ic_bss->ni_chan); 549 if (!usbd_is_dying(sc->sc_udev)) 550 timeout_add_msec(&sc->scan_to, 200); 551 break; 552 553 case IEEE80211_S_AUTH: 554 ural_set_chan(sc, ic->ic_bss->ni_chan); 555 break; 556 557 case IEEE80211_S_ASSOC: 558 ural_set_chan(sc, ic->ic_bss->ni_chan); 559 break; 560 561 case IEEE80211_S_RUN: 562 ural_set_chan(sc, ic->ic_bss->ni_chan); 563 564 ni = ic->ic_bss; 565 566 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 567 ural_update_slot(sc); 568 ural_set_txpreamble(sc); 569 ural_set_basicrates(sc); 570 ural_set_bssid(sc, ni->ni_bssid); 571 } 572 573 #ifndef IEEE80211_STA_ONLY 574 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 575 ic->ic_opmode == IEEE80211_M_IBSS) { 576 struct mbuf *m = ieee80211_beacon_alloc(ic, ni); 577 if (m == NULL) { 578 printf("%s: could not allocate beacon\n", 579 sc->sc_dev.dv_xname); 580 return; 581 } 582 583 if (ural_tx_bcn(sc, m, ni) != 0) { 584 m_freem(m); 585 printf("%s: could not transmit beacon\n", 586 sc->sc_dev.dv_xname); 587 return; 588 } 589 590 /* beacon is no longer needed */ 591 m_freem(m); 592 } 593 #endif 594 595 /* make tx led blink on tx (controlled by ASIC) */ 596 ural_write(sc, RAL_MAC_CSR20, 1); 597 598 if (ic->ic_opmode != IEEE80211_M_MONITOR) 599 ural_enable_tsf_sync(sc); 600 601 if (ic->ic_opmode == IEEE80211_M_STA) { 602 /* fake a join to init the tx rate */ 603 ural_newassoc(ic, ic->ic_bss, 1); 604 605 /* enable automatic rate control in STA mode */ 606 if (ic->ic_fixed_rate == -1) 607 ural_amrr_start(sc, ic->ic_bss); 608 } 609 610 break; 611 } 612 613 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 614 } 615 616 int 617 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 618 { 619 struct ural_softc *sc = ic->ic_if.if_softc; 620 621 usb_rem_task(sc->sc_udev, &sc->sc_task); 622 timeout_del(&sc->scan_to); 623 timeout_del(&sc->amrr_to); 624 625 /* do it in a process context */ 626 sc->sc_state = nstate; 627 sc->sc_arg = arg; 628 usb_add_task(sc->sc_udev, &sc->sc_task); 629 return 0; 630 } 631 632 /* quickly determine if a given rate is CCK or OFDM */ 633 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 634 635 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 636 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 637 638 #define RAL_SIFS 10 /* us */ 639 640 #define RAL_RXTX_TURNAROUND 5 /* us */ 641 642 void 643 ural_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 644 { 645 struct ural_tx_data *data = priv; 646 struct ural_softc *sc = data->sc; 647 struct ieee80211com *ic = &sc->sc_ic; 648 struct ifnet *ifp = &ic->ic_if; 649 int s; 650 651 if (status != USBD_NORMAL_COMPLETION) { 652 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 653 return; 654 655 printf("%s: could not transmit buffer: %s\n", 656 sc->sc_dev.dv_xname, usbd_errstr(status)); 657 658 if (status == USBD_STALLED) 659 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 660 661 ifp->if_oerrors++; 662 return; 663 } 664 665 s = splnet(); 666 667 ieee80211_release_node(ic, data->ni); 668 data->ni = NULL; 669 670 sc->tx_queued--; 671 672 DPRINTFN(10, ("tx done\n")); 673 674 sc->sc_tx_timer = 0; 675 ifq_clr_oactive(&ifp->if_snd); 676 ural_start(ifp); 677 678 splx(s); 679 } 680 681 void 682 ural_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 683 { 684 struct ural_rx_data *data = priv; 685 struct ural_softc *sc = data->sc; 686 struct ieee80211com *ic = &sc->sc_ic; 687 struct ifnet *ifp = &ic->ic_if; 688 const struct ural_rx_desc *desc; 689 struct ieee80211_frame *wh; 690 struct ieee80211_rxinfo rxi; 691 struct ieee80211_node *ni; 692 struct mbuf *mnew, *m; 693 int s, len; 694 695 if (status != USBD_NORMAL_COMPLETION) { 696 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 697 return; 698 699 if (status == USBD_STALLED) 700 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 701 goto skip; 702 } 703 704 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 705 706 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 707 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, 708 len)); 709 ifp->if_ierrors++; 710 goto skip; 711 } 712 713 /* rx descriptor is located at the end */ 714 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 715 716 if (letoh32(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 717 /* 718 * This should not happen since we did not request to receive 719 * those frames when we filled RAL_TXRX_CSR2. 720 */ 721 DPRINTFN(5, ("PHY or CRC error\n")); 722 ifp->if_ierrors++; 723 goto skip; 724 } 725 726 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 727 if (mnew == NULL) { 728 printf("%s: could not allocate rx mbuf\n", 729 sc->sc_dev.dv_xname); 730 ifp->if_ierrors++; 731 goto skip; 732 } 733 MCLGET(mnew, M_DONTWAIT); 734 if (!(mnew->m_flags & M_EXT)) { 735 printf("%s: could not allocate rx mbuf cluster\n", 736 sc->sc_dev.dv_xname); 737 m_freem(mnew); 738 ifp->if_ierrors++; 739 goto skip; 740 } 741 m = data->m; 742 data->m = mnew; 743 data->buf = mtod(data->m, uint8_t *); 744 745 /* finalize mbuf */ 746 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; 747 748 s = splnet(); 749 750 #if NBPFILTER > 0 751 if (sc->sc_drvbpf != NULL) { 752 struct mbuf mb; 753 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 754 755 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 756 tap->wr_rate = ural_rxrate(desc); 757 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 758 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 759 tap->wr_antenna = sc->rx_ant; 760 tap->wr_antsignal = desc->rssi; 761 762 mb.m_data = (caddr_t)tap; 763 mb.m_len = sc->sc_rxtap_len; 764 mb.m_next = m; 765 mb.m_nextpkt = NULL; 766 mb.m_type = 0; 767 mb.m_flags = 0; 768 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 769 } 770 #endif 771 m_adj(m, -IEEE80211_CRC_LEN); /* trim FCS */ 772 773 wh = mtod(m, struct ieee80211_frame *); 774 ni = ieee80211_find_rxnode(ic, wh); 775 776 /* send the frame to the 802.11 layer */ 777 memset(&rxi, 0, sizeof(rxi)); 778 rxi.rxi_rssi = desc->rssi; 779 ieee80211_input(ifp, m, ni, &rxi); 780 781 /* node is no longer needed */ 782 ieee80211_release_node(ic, ni); 783 784 splx(s); 785 786 DPRINTFN(15, ("rx done\n")); 787 788 skip: /* setup a new transfer */ 789 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 790 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 791 (void)usbd_transfer(xfer); 792 } 793 794 /* 795 * This function is only used by the Rx radiotap code. It returns the rate at 796 * which a given frame was received. 797 */ 798 #if NBPFILTER > 0 799 uint8_t 800 ural_rxrate(const struct ural_rx_desc *desc) 801 { 802 if (letoh32(desc->flags) & RAL_RX_OFDM) { 803 /* reverse function of ural_plcp_signal */ 804 switch (desc->rate) { 805 case 0xb: return 12; 806 case 0xf: return 18; 807 case 0xa: return 24; 808 case 0xe: return 36; 809 case 0x9: return 48; 810 case 0xd: return 72; 811 case 0x8: return 96; 812 case 0xc: return 108; 813 } 814 } else { 815 if (desc->rate == 10) 816 return 2; 817 if (desc->rate == 20) 818 return 4; 819 if (desc->rate == 55) 820 return 11; 821 if (desc->rate == 110) 822 return 22; 823 } 824 return 2; /* should not get there */ 825 } 826 #endif 827 828 /* 829 * Return the expected ack rate for a frame transmitted at rate `rate'. 830 */ 831 int 832 ural_ack_rate(struct ieee80211com *ic, int rate) 833 { 834 switch (rate) { 835 /* CCK rates */ 836 case 2: 837 return 2; 838 case 4: 839 case 11: 840 case 22: 841 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 842 843 /* OFDM rates */ 844 case 12: 845 case 18: 846 return 12; 847 case 24: 848 case 36: 849 return 24; 850 case 48: 851 case 72: 852 case 96: 853 case 108: 854 return 48; 855 } 856 857 /* default to 1Mbps */ 858 return 2; 859 } 860 861 /* 862 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 863 * The function automatically determines the operating mode depending on the 864 * given rate. `flags' indicates whether short preamble is in use or not. 865 */ 866 uint16_t 867 ural_txtime(int len, int rate, uint32_t flags) 868 { 869 uint16_t txtime; 870 871 if (RAL_RATE_IS_OFDM(rate)) { 872 /* IEEE Std 802.11g-2003, pp. 44 */ 873 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 874 txtime = 16 + 4 + 4 * txtime + 6; 875 } else { 876 /* IEEE Std 802.11b-1999, pp. 28 */ 877 txtime = (16 * len + rate - 1) / rate; 878 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 879 txtime += 72 + 24; 880 else 881 txtime += 144 + 48; 882 } 883 return txtime; 884 } 885 886 uint8_t 887 ural_plcp_signal(int rate) 888 { 889 switch (rate) { 890 /* CCK rates (returned values are device-dependent) */ 891 case 2: return 0x0; 892 case 4: return 0x1; 893 case 11: return 0x2; 894 case 22: return 0x3; 895 896 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 897 case 12: return 0xb; 898 case 18: return 0xf; 899 case 24: return 0xa; 900 case 36: return 0xe; 901 case 48: return 0x9; 902 case 72: return 0xd; 903 case 96: return 0x8; 904 case 108: return 0xc; 905 906 /* unsupported rates (should not get there) */ 907 default: return 0xff; 908 } 909 } 910 911 void 912 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 913 uint32_t flags, int len, int rate) 914 { 915 struct ieee80211com *ic = &sc->sc_ic; 916 uint16_t plcp_length; 917 int remainder; 918 919 desc->flags = htole32(flags); 920 desc->flags |= htole32(len << 16); 921 922 desc->wme = htole16( 923 RAL_AIFSN(2) | 924 RAL_LOGCWMIN(3) | 925 RAL_LOGCWMAX(5)); 926 927 /* setup PLCP fields */ 928 desc->plcp_signal = ural_plcp_signal(rate); 929 desc->plcp_service = 4; 930 931 len += IEEE80211_CRC_LEN; 932 if (RAL_RATE_IS_OFDM(rate)) { 933 desc->flags |= htole32(RAL_TX_OFDM); 934 935 plcp_length = len & 0xfff; 936 desc->plcp_length_hi = plcp_length >> 6; 937 desc->plcp_length_lo = plcp_length & 0x3f; 938 } else { 939 plcp_length = (16 * len + rate - 1) / rate; 940 if (rate == 22) { 941 remainder = (16 * len) % 22; 942 if (remainder != 0 && remainder < 7) 943 desc->plcp_service |= RAL_PLCP_LENGEXT; 944 } 945 desc->plcp_length_hi = plcp_length >> 8; 946 desc->plcp_length_lo = plcp_length & 0xff; 947 948 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 949 desc->plcp_signal |= 0x08; 950 } 951 952 desc->iv = 0; 953 desc->eiv = 0; 954 } 955 956 #define RAL_TX_TIMEOUT 5000 957 958 #ifndef IEEE80211_STA_ONLY 959 int 960 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 961 { 962 struct ural_tx_desc *desc; 963 struct usbd_xfer *xfer; 964 usbd_status error; 965 uint8_t cmd = 0; 966 uint8_t *buf; 967 int xferlen, rate = 2; 968 969 xfer = usbd_alloc_xfer(sc->sc_udev); 970 if (xfer == NULL) 971 return ENOMEM; 972 973 /* xfer length needs to be a multiple of two! */ 974 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 975 976 buf = usbd_alloc_buffer(xfer, xferlen); 977 if (buf == NULL) { 978 usbd_free_xfer(xfer); 979 return ENOMEM; 980 } 981 982 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, 983 USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, RAL_TX_TIMEOUT, NULL); 984 985 error = usbd_transfer(xfer); 986 if (error != 0) { 987 usbd_free_xfer(xfer); 988 return error; 989 } 990 991 desc = (struct ural_tx_desc *)buf; 992 993 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 994 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 995 m0->m_pkthdr.len, rate); 996 997 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 998 m0->m_pkthdr.len, rate, xferlen)); 999 1000 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, 1001 USBD_FORCE_SHORT_XFER | USBD_NO_COPY | USBD_SYNCHRONOUS, 1002 RAL_TX_TIMEOUT, NULL); 1003 1004 error = usbd_transfer(xfer); 1005 usbd_free_xfer(xfer); 1006 1007 return error; 1008 } 1009 #endif 1010 1011 int 1012 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1013 { 1014 struct ieee80211com *ic = &sc->sc_ic; 1015 struct ural_tx_desc *desc; 1016 struct ural_tx_data *data; 1017 struct ieee80211_frame *wh; 1018 struct ieee80211_key *k; 1019 uint32_t flags = RAL_TX_NEWSEQ; 1020 uint16_t dur; 1021 usbd_status error; 1022 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1023 1024 wh = mtod(m0, struct ieee80211_frame *); 1025 1026 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1027 k = ieee80211_get_txkey(ic, wh, ni); 1028 1029 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1030 return ENOBUFS; 1031 1032 /* packet header may have moved, reset our local pointer */ 1033 wh = mtod(m0, struct ieee80211_frame *); 1034 } 1035 1036 /* compute actual packet length (including CRC and crypto overhead) */ 1037 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1038 1039 /* pickup a rate */ 1040 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1041 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1042 IEEE80211_FC0_TYPE_MGT)) { 1043 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1044 rate = ni->ni_rates.rs_rates[0]; 1045 } else if (ic->ic_fixed_rate != -1) { 1046 rate = ic->ic_sup_rates[ic->ic_curmode]. 1047 rs_rates[ic->ic_fixed_rate]; 1048 } else 1049 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1050 if (rate == 0) 1051 rate = 2; /* XXX should not happen */ 1052 rate &= IEEE80211_RATE_VAL; 1053 1054 /* check if RTS/CTS or CTS-to-self protection must be used */ 1055 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1056 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1057 if (pktlen > ic->ic_rtsthreshold) { 1058 needrts = 1; /* RTS/CTS based on frame length */ 1059 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1060 RAL_RATE_IS_OFDM(rate)) { 1061 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1062 needcts = 1; /* CTS-to-self */ 1063 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1064 needrts = 1; /* RTS/CTS */ 1065 } 1066 } 1067 if (needrts || needcts) { 1068 struct mbuf *mprot; 1069 int protrate, ackrate; 1070 uint16_t dur; 1071 1072 protrate = 2; 1073 ackrate = ural_ack_rate(ic, rate); 1074 1075 dur = ural_txtime(pktlen, rate, ic->ic_flags) + 1076 ural_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1077 2 * RAL_SIFS; 1078 if (needrts) { 1079 dur += ural_txtime(RAL_CTS_SIZE, ural_ack_rate(ic, 1080 protrate), ic->ic_flags) + RAL_SIFS; 1081 mprot = ieee80211_get_rts(ic, wh, dur); 1082 } else { 1083 mprot = ieee80211_get_cts_to_self(ic, dur); 1084 } 1085 if (mprot == NULL) { 1086 printf("%s: could not allocate protection frame\n", 1087 sc->sc_dev.dv_xname); 1088 m_freem(m0); 1089 return ENOBUFS; 1090 } 1091 1092 data = &sc->tx_data[sc->tx_cur]; 1093 desc = (struct ural_tx_desc *)data->buf; 1094 1095 /* avoid multiple free() of the same node for each fragment */ 1096 data->ni = ieee80211_ref_node(ni); 1097 1098 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1099 data->buf + RAL_TX_DESC_SIZE); 1100 ural_setup_tx_desc(sc, desc, 1101 (needrts ? RAL_TX_NEED_ACK : 0) | RAL_TX_RETRY(7), 1102 mprot->m_pkthdr.len, protrate); 1103 1104 /* no roundup necessary here */ 1105 xferlen = RAL_TX_DESC_SIZE + mprot->m_pkthdr.len; 1106 1107 /* XXX may want to pass the protection frame to BPF */ 1108 1109 /* mbuf is no longer needed */ 1110 m_freem(mprot); 1111 1112 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1113 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1114 RAL_TX_TIMEOUT, ural_txeof); 1115 error = usbd_transfer(data->xfer); 1116 if (error != 0 && error != USBD_IN_PROGRESS) { 1117 m_freem(m0); 1118 return error; 1119 } 1120 1121 sc->tx_queued++; 1122 sc->tx_cur = (sc->tx_cur + 1) % RAL_TX_LIST_COUNT; 1123 1124 flags |= RAL_TX_IFS_SIFS; 1125 } 1126 1127 data = &sc->tx_data[sc->tx_cur]; 1128 desc = (struct ural_tx_desc *)data->buf; 1129 1130 data->ni = ni; 1131 1132 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1133 flags |= RAL_TX_NEED_ACK; 1134 flags |= RAL_TX_RETRY(7); 1135 1136 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), 1137 ic->ic_flags) + RAL_SIFS; 1138 *(uint16_t *)wh->i_dur = htole16(dur); 1139 1140 #ifndef IEEE80211_STA_ONLY 1141 /* tell hardware to set timestamp in probe responses */ 1142 if ((wh->i_fc[0] & 1143 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1144 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1145 flags |= RAL_TX_TIMESTAMP; 1146 #endif 1147 } 1148 1149 #if NBPFILTER > 0 1150 if (sc->sc_drvbpf != NULL) { 1151 struct mbuf mb; 1152 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1153 1154 tap->wt_flags = 0; 1155 tap->wt_rate = rate; 1156 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1157 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1158 tap->wt_antenna = sc->tx_ant; 1159 1160 mb.m_data = (caddr_t)tap; 1161 mb.m_len = sc->sc_txtap_len; 1162 mb.m_next = m0; 1163 mb.m_nextpkt = NULL; 1164 mb.m_type = 0; 1165 mb.m_flags = 0; 1166 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1167 } 1168 #endif 1169 1170 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1171 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1172 1173 /* align end on a 2-bytes boundary */ 1174 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1175 1176 /* 1177 * No space left in the last URB to store the extra 2 bytes, force 1178 * sending of another URB. 1179 */ 1180 if ((xferlen % 64) == 0) 1181 xferlen += 2; 1182 1183 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", 1184 m0->m_pkthdr.len, rate, xferlen)); 1185 1186 /* mbuf is no longer needed */ 1187 m_freem(m0); 1188 1189 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1190 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); 1191 error = usbd_transfer(data->xfer); 1192 if (error != 0 && error != USBD_IN_PROGRESS) 1193 return error; 1194 1195 sc->tx_queued++; 1196 sc->tx_cur = (sc->tx_cur + 1) % RAL_TX_LIST_COUNT; 1197 1198 return 0; 1199 } 1200 1201 void 1202 ural_start(struct ifnet *ifp) 1203 { 1204 struct ural_softc *sc = ifp->if_softc; 1205 struct ieee80211com *ic = &sc->sc_ic; 1206 struct ieee80211_node *ni; 1207 struct mbuf *m0; 1208 1209 /* 1210 * net80211 may still try to send management frames even if the 1211 * IFF_RUNNING flag is not set... 1212 */ 1213 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1214 return; 1215 1216 for (;;) { 1217 if (sc->tx_queued >= RAL_TX_LIST_COUNT - 1) { 1218 ifq_set_oactive(&ifp->if_snd); 1219 break; 1220 } 1221 1222 m0 = mq_dequeue(&ic->ic_mgtq); 1223 if (m0 != NULL) { 1224 ni = m0->m_pkthdr.ph_cookie; 1225 #if NBPFILTER > 0 1226 if (ic->ic_rawbpf != NULL) 1227 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1228 #endif 1229 if (ural_tx_data(sc, m0, ni) != 0) 1230 break; 1231 1232 } else { 1233 if (ic->ic_state != IEEE80211_S_RUN) 1234 break; 1235 1236 m0 = ifq_dequeue(&ifp->if_snd); 1237 if (m0 == NULL) 1238 break; 1239 #if NBPFILTER > 0 1240 if (ifp->if_bpf != NULL) 1241 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1242 #endif 1243 m0 = ieee80211_encap(ifp, m0, &ni); 1244 if (m0 == NULL) 1245 continue; 1246 #if NBPFILTER > 0 1247 if (ic->ic_rawbpf != NULL) 1248 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1249 #endif 1250 if (ural_tx_data(sc, m0, ni) != 0) { 1251 if (ni != NULL) 1252 ieee80211_release_node(ic, ni); 1253 ifp->if_oerrors++; 1254 break; 1255 } 1256 } 1257 1258 sc->sc_tx_timer = 5; 1259 ifp->if_timer = 1; 1260 } 1261 } 1262 1263 void 1264 ural_watchdog(struct ifnet *ifp) 1265 { 1266 struct ural_softc *sc = ifp->if_softc; 1267 1268 ifp->if_timer = 0; 1269 1270 if (sc->sc_tx_timer > 0) { 1271 if (--sc->sc_tx_timer == 0) { 1272 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1273 /*ural_init(ifp); XXX needs a process context! */ 1274 ifp->if_oerrors++; 1275 return; 1276 } 1277 ifp->if_timer = 1; 1278 } 1279 1280 ieee80211_watchdog(ifp); 1281 } 1282 1283 int 1284 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1285 { 1286 struct ural_softc *sc = ifp->if_softc; 1287 struct ieee80211com *ic = &sc->sc_ic; 1288 int s, error = 0; 1289 1290 if (usbd_is_dying(sc->sc_udev)) 1291 return ENXIO; 1292 1293 usbd_ref_incr(sc->sc_udev); 1294 1295 s = splnet(); 1296 1297 switch (cmd) { 1298 case SIOCSIFADDR: 1299 ifp->if_flags |= IFF_UP; 1300 /* FALLTHROUGH */ 1301 case SIOCSIFFLAGS: 1302 if (ifp->if_flags & IFF_UP) { 1303 if (ifp->if_flags & IFF_RUNNING) 1304 ural_update_promisc(sc); 1305 else 1306 ural_init(ifp); 1307 } else { 1308 if (ifp->if_flags & IFF_RUNNING) 1309 ural_stop(ifp, 1); 1310 } 1311 break; 1312 1313 case SIOCS80211CHANNEL: 1314 /* 1315 * This allows for fast channel switching in monitor mode 1316 * (used by kismet). In IBSS mode, we must explicitly reset 1317 * the interface to generate a new beacon frame. 1318 */ 1319 error = ieee80211_ioctl(ifp, cmd, data); 1320 if (error == ENETRESET && 1321 ic->ic_opmode == IEEE80211_M_MONITOR) { 1322 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1323 (IFF_UP | IFF_RUNNING)) 1324 ural_set_chan(sc, ic->ic_ibss_chan); 1325 error = 0; 1326 } 1327 break; 1328 1329 default: 1330 error = ieee80211_ioctl(ifp, cmd, data); 1331 } 1332 1333 if (error == ENETRESET) { 1334 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1335 (IFF_UP | IFF_RUNNING)) 1336 ural_init(ifp); 1337 error = 0; 1338 } 1339 1340 splx(s); 1341 1342 usbd_ref_decr(sc->sc_udev); 1343 1344 return error; 1345 } 1346 1347 void 1348 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1349 { 1350 usb_device_request_t req; 1351 usbd_status error; 1352 1353 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1354 req.bRequest = RAL_READ_EEPROM; 1355 USETW(req.wValue, 0); 1356 USETW(req.wIndex, addr); 1357 USETW(req.wLength, len); 1358 1359 error = usbd_do_request(sc->sc_udev, &req, buf); 1360 if (error != 0) { 1361 printf("%s: could not read EEPROM: %s\n", 1362 sc->sc_dev.dv_xname, usbd_errstr(error)); 1363 } 1364 } 1365 1366 uint16_t 1367 ural_read(struct ural_softc *sc, uint16_t reg) 1368 { 1369 usb_device_request_t req; 1370 usbd_status error; 1371 uint16_t val; 1372 1373 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1374 req.bRequest = RAL_READ_MAC; 1375 USETW(req.wValue, 0); 1376 USETW(req.wIndex, reg); 1377 USETW(req.wLength, sizeof (uint16_t)); 1378 1379 error = usbd_do_request(sc->sc_udev, &req, &val); 1380 if (error != 0) { 1381 printf("%s: could not read MAC register: %s\n", 1382 sc->sc_dev.dv_xname, usbd_errstr(error)); 1383 return 0; 1384 } 1385 return letoh16(val); 1386 } 1387 1388 void 1389 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1390 { 1391 usb_device_request_t req; 1392 usbd_status error; 1393 1394 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1395 req.bRequest = RAL_READ_MULTI_MAC; 1396 USETW(req.wValue, 0); 1397 USETW(req.wIndex, reg); 1398 USETW(req.wLength, len); 1399 1400 error = usbd_do_request(sc->sc_udev, &req, buf); 1401 if (error != 0) { 1402 printf("%s: could not read MAC register: %s\n", 1403 sc->sc_dev.dv_xname, usbd_errstr(error)); 1404 } 1405 } 1406 1407 void 1408 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1409 { 1410 usb_device_request_t req; 1411 usbd_status error; 1412 1413 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1414 req.bRequest = RAL_WRITE_MAC; 1415 USETW(req.wValue, val); 1416 USETW(req.wIndex, reg); 1417 USETW(req.wLength, 0); 1418 1419 error = usbd_do_request(sc->sc_udev, &req, NULL); 1420 if (error != 0) { 1421 printf("%s: could not write MAC register: %s\n", 1422 sc->sc_dev.dv_xname, usbd_errstr(error)); 1423 } 1424 } 1425 1426 void 1427 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1428 { 1429 usb_device_request_t req; 1430 usbd_status error; 1431 1432 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1433 req.bRequest = RAL_WRITE_MULTI_MAC; 1434 USETW(req.wValue, 0); 1435 USETW(req.wIndex, reg); 1436 USETW(req.wLength, len); 1437 1438 error = usbd_do_request(sc->sc_udev, &req, buf); 1439 if (error != 0) { 1440 printf("%s: could not write MAC register: %s\n", 1441 sc->sc_dev.dv_xname, usbd_errstr(error)); 1442 } 1443 } 1444 1445 void 1446 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1447 { 1448 uint16_t tmp; 1449 int ntries; 1450 1451 for (ntries = 0; ntries < 5; ntries++) { 1452 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1453 break; 1454 } 1455 if (ntries == 5) { 1456 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 1457 return; 1458 } 1459 1460 tmp = reg << 8 | val; 1461 ural_write(sc, RAL_PHY_CSR7, tmp); 1462 } 1463 1464 uint8_t 1465 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1466 { 1467 uint16_t val; 1468 int ntries; 1469 1470 val = RAL_BBP_WRITE | reg << 8; 1471 ural_write(sc, RAL_PHY_CSR7, val); 1472 1473 for (ntries = 0; ntries < 5; ntries++) { 1474 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1475 break; 1476 } 1477 if (ntries == 5) { 1478 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1479 return 0; 1480 } 1481 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1482 } 1483 1484 void 1485 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1486 { 1487 uint32_t tmp; 1488 int ntries; 1489 1490 for (ntries = 0; ntries < 5; ntries++) { 1491 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1492 break; 1493 } 1494 if (ntries == 5) { 1495 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 1496 return; 1497 } 1498 1499 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1500 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1501 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1502 1503 /* remember last written value in sc */ 1504 sc->rf_regs[reg] = val; 1505 1506 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1507 } 1508 1509 void 1510 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1511 { 1512 struct ieee80211com *ic = &sc->sc_ic; 1513 uint8_t power, tmp; 1514 u_int chan; 1515 1516 chan = ieee80211_chan2ieee(ic, c); 1517 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1518 return; 1519 1520 power = min(sc->txpow[chan - 1], 31); 1521 1522 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1523 1524 switch (sc->rf_rev) { 1525 case RAL_RF_2522: 1526 ural_rf_write(sc, RAL_RF1, 0x00814); 1527 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1528 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1529 break; 1530 1531 case RAL_RF_2523: 1532 ural_rf_write(sc, RAL_RF1, 0x08804); 1533 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1534 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1535 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1536 break; 1537 1538 case RAL_RF_2524: 1539 ural_rf_write(sc, RAL_RF1, 0x0c808); 1540 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1541 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1542 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1543 break; 1544 1545 case RAL_RF_2525: 1546 ural_rf_write(sc, RAL_RF1, 0x08808); 1547 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1548 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1549 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1550 1551 ural_rf_write(sc, RAL_RF1, 0x08808); 1552 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1553 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1554 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1555 break; 1556 1557 case RAL_RF_2525E: 1558 ural_rf_write(sc, RAL_RF1, 0x08808); 1559 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1560 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1561 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1562 break; 1563 1564 case RAL_RF_2526: 1565 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1566 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1567 ural_rf_write(sc, RAL_RF1, 0x08804); 1568 1569 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1570 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1571 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1572 break; 1573 } 1574 1575 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1576 ic->ic_state != IEEE80211_S_SCAN) { 1577 /* set Japan filter bit for channel 14 */ 1578 tmp = ural_bbp_read(sc, 70); 1579 1580 tmp &= ~RAL_JAPAN_FILTER; 1581 if (chan == 14) 1582 tmp |= RAL_JAPAN_FILTER; 1583 1584 ural_bbp_write(sc, 70, tmp); 1585 1586 /* clear CRC errors */ 1587 ural_read(sc, RAL_STA_CSR0); 1588 1589 DELAY(1000); /* RF needs a 1ms delay here */ 1590 ural_disable_rf_tune(sc); 1591 } 1592 } 1593 1594 /* 1595 * Disable RF auto-tuning. 1596 */ 1597 void 1598 ural_disable_rf_tune(struct ural_softc *sc) 1599 { 1600 uint32_t tmp; 1601 1602 if (sc->rf_rev != RAL_RF_2523) { 1603 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1604 ural_rf_write(sc, RAL_RF1, tmp); 1605 } 1606 1607 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1608 ural_rf_write(sc, RAL_RF3, tmp); 1609 1610 DPRINTFN(2, ("disabling RF autotune\n")); 1611 } 1612 1613 /* 1614 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1615 * synchronization. 1616 */ 1617 void 1618 ural_enable_tsf_sync(struct ural_softc *sc) 1619 { 1620 struct ieee80211com *ic = &sc->sc_ic; 1621 uint16_t logcwmin, preload, tmp; 1622 1623 /* first, disable TSF synchronization */ 1624 ural_write(sc, RAL_TXRX_CSR19, 0); 1625 1626 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1627 ural_write(sc, RAL_TXRX_CSR18, tmp); 1628 1629 #ifndef IEEE80211_STA_ONLY 1630 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1631 logcwmin = 2; 1632 preload = 320; 1633 } else 1634 #endif 1635 { 1636 logcwmin = 0; 1637 preload = 6; 1638 } 1639 tmp = logcwmin << 12 | preload; 1640 ural_write(sc, RAL_TXRX_CSR20, tmp); 1641 1642 /* finally, enable TSF synchronization */ 1643 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1644 if (ic->ic_opmode == IEEE80211_M_STA) 1645 tmp |= RAL_ENABLE_TSF_SYNC(1); 1646 #ifndef IEEE80211_STA_ONLY 1647 else 1648 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1649 #endif 1650 ural_write(sc, RAL_TXRX_CSR19, tmp); 1651 1652 DPRINTF(("enabling TSF synchronization\n")); 1653 } 1654 1655 void 1656 ural_update_slot(struct ural_softc *sc) 1657 { 1658 struct ieee80211com *ic = &sc->sc_ic; 1659 uint16_t slottime, sifs, eifs; 1660 1661 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 1662 IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT; 1663 1664 /* 1665 * These settings may sound a bit inconsistent but this is what the 1666 * reference driver does. 1667 */ 1668 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1669 sifs = 16 - RAL_RXTX_TURNAROUND; 1670 eifs = 364; 1671 } else { 1672 sifs = 10 - RAL_RXTX_TURNAROUND; 1673 eifs = 64; 1674 } 1675 1676 ural_write(sc, RAL_MAC_CSR10, slottime); 1677 ural_write(sc, RAL_MAC_CSR11, sifs); 1678 ural_write(sc, RAL_MAC_CSR12, eifs); 1679 } 1680 1681 void 1682 ural_set_txpreamble(struct ural_softc *sc) 1683 { 1684 uint16_t tmp; 1685 1686 tmp = ural_read(sc, RAL_TXRX_CSR10); 1687 1688 tmp &= ~RAL_SHORT_PREAMBLE; 1689 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1690 tmp |= RAL_SHORT_PREAMBLE; 1691 1692 ural_write(sc, RAL_TXRX_CSR10, tmp); 1693 } 1694 1695 void 1696 ural_set_basicrates(struct ural_softc *sc) 1697 { 1698 struct ieee80211com *ic = &sc->sc_ic; 1699 1700 /* update basic rate set */ 1701 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1702 /* 11b basic rates: 1, 2Mbps */ 1703 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1704 } else { 1705 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1706 ural_write(sc, RAL_TXRX_CSR11, 0xf); 1707 } 1708 } 1709 1710 void 1711 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1712 { 1713 uint16_t tmp; 1714 1715 tmp = bssid[0] | bssid[1] << 8; 1716 ural_write(sc, RAL_MAC_CSR5, tmp); 1717 1718 tmp = bssid[2] | bssid[3] << 8; 1719 ural_write(sc, RAL_MAC_CSR6, tmp); 1720 1721 tmp = bssid[4] | bssid[5] << 8; 1722 ural_write(sc, RAL_MAC_CSR7, tmp); 1723 1724 DPRINTF(("setting BSSID to %s\n", ether_sprintf((uint8_t *)bssid))); 1725 } 1726 1727 void 1728 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr) 1729 { 1730 uint16_t tmp; 1731 1732 tmp = addr[0] | addr[1] << 8; 1733 ural_write(sc, RAL_MAC_CSR2, tmp); 1734 1735 tmp = addr[2] | addr[3] << 8; 1736 ural_write(sc, RAL_MAC_CSR3, tmp); 1737 1738 tmp = addr[4] | addr[5] << 8; 1739 ural_write(sc, RAL_MAC_CSR4, tmp); 1740 1741 DPRINTF(("setting MAC address to %s\n", 1742 ether_sprintf((uint8_t *)addr))); 1743 } 1744 1745 void 1746 ural_update_promisc(struct ural_softc *sc) 1747 { 1748 struct ifnet *ifp = &sc->sc_ic.ic_if; 1749 uint16_t tmp; 1750 1751 tmp = ural_read(sc, RAL_TXRX_CSR2); 1752 1753 tmp &= ~RAL_DROP_NOT_TO_ME; 1754 if (!(ifp->if_flags & IFF_PROMISC)) 1755 tmp |= RAL_DROP_NOT_TO_ME; 1756 1757 ural_write(sc, RAL_TXRX_CSR2, tmp); 1758 1759 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1760 "entering" : "leaving")); 1761 } 1762 1763 const char * 1764 ural_get_rf(int rev) 1765 { 1766 switch (rev) { 1767 case RAL_RF_2522: return "RT2522"; 1768 case RAL_RF_2523: return "RT2523"; 1769 case RAL_RF_2524: return "RT2524"; 1770 case RAL_RF_2525: return "RT2525"; 1771 case RAL_RF_2525E: return "RT2525e"; 1772 case RAL_RF_2526: return "RT2526"; 1773 case RAL_RF_5222: return "RT5222"; 1774 default: return "unknown"; 1775 } 1776 } 1777 1778 void 1779 ural_read_eeprom(struct ural_softc *sc) 1780 { 1781 struct ieee80211com *ic = &sc->sc_ic; 1782 uint16_t val; 1783 1784 /* retrieve MAC/BBP type */ 1785 ural_eeprom_read(sc, RAL_EEPROM_MACBBP, &val, 2); 1786 sc->macbbp_rev = letoh16(val); 1787 1788 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1789 val = letoh16(val); 1790 sc->rf_rev = (val >> 11) & 0x7; 1791 sc->hw_radio = (val >> 10) & 0x1; 1792 sc->led_mode = (val >> 6) & 0x7; 1793 sc->rx_ant = (val >> 4) & 0x3; 1794 sc->tx_ant = (val >> 2) & 0x3; 1795 sc->nb_ant = val & 0x3; 1796 1797 /* read MAC address */ 1798 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1799 1800 /* read default values for BBP registers */ 1801 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1802 1803 /* read Tx power for all b/g channels */ 1804 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1805 } 1806 1807 int 1808 ural_bbp_init(struct ural_softc *sc) 1809 { 1810 int i, ntries; 1811 1812 /* wait for BBP to be ready */ 1813 for (ntries = 0; ntries < 100; ntries++) { 1814 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1815 break; 1816 DELAY(1000); 1817 } 1818 if (ntries == 100) { 1819 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); 1820 return EIO; 1821 } 1822 1823 /* initialize BBP registers to default values */ 1824 for (i = 0; i < nitems(ural_def_bbp); i++) 1825 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1826 1827 #if 0 1828 /* initialize BBP registers to values stored in EEPROM */ 1829 for (i = 0; i < 16; i++) { 1830 if (sc->bbp_prom[i].reg == 0xff) 1831 continue; 1832 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1833 } 1834 #endif 1835 1836 return 0; 1837 } 1838 1839 void 1840 ural_set_txantenna(struct ural_softc *sc, int antenna) 1841 { 1842 uint16_t tmp; 1843 uint8_t tx; 1844 1845 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 1846 if (antenna == 1) 1847 tx |= RAL_BBP_ANTA; 1848 else if (antenna == 2) 1849 tx |= RAL_BBP_ANTB; 1850 else 1851 tx |= RAL_BBP_DIVERSITY; 1852 1853 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 1854 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 1855 sc->rf_rev == RAL_RF_5222) 1856 tx |= RAL_BBP_FLIPIQ; 1857 1858 ural_bbp_write(sc, RAL_BBP_TX, tx); 1859 1860 /* update flags in PHY_CSR5 and PHY_CSR6 too */ 1861 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 1862 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 1863 1864 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 1865 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 1866 } 1867 1868 void 1869 ural_set_rxantenna(struct ural_softc *sc, int antenna) 1870 { 1871 uint8_t rx; 1872 1873 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 1874 if (antenna == 1) 1875 rx |= RAL_BBP_ANTA; 1876 else if (antenna == 2) 1877 rx |= RAL_BBP_ANTB; 1878 else 1879 rx |= RAL_BBP_DIVERSITY; 1880 1881 /* need to force no I/Q flip for RF 2525e and 2526 */ 1882 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 1883 rx &= ~RAL_BBP_FLIPIQ; 1884 1885 ural_bbp_write(sc, RAL_BBP_RX, rx); 1886 } 1887 1888 int 1889 ural_init(struct ifnet *ifp) 1890 { 1891 struct ural_softc *sc = ifp->if_softc; 1892 struct ieee80211com *ic = &sc->sc_ic; 1893 uint16_t tmp; 1894 usbd_status error; 1895 int i, ntries; 1896 1897 ural_stop(ifp, 0); 1898 1899 /* initialize MAC registers to default values */ 1900 for (i = 0; i < nitems(ural_def_mac); i++) 1901 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 1902 1903 /* wait for BBP and RF to wake up (this can take a long time!) */ 1904 for (ntries = 0; ntries < 100; ntries++) { 1905 tmp = ural_read(sc, RAL_MAC_CSR17); 1906 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 1907 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 1908 break; 1909 DELAY(1000); 1910 } 1911 if (ntries == 100) { 1912 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1913 sc->sc_dev.dv_xname); 1914 error = EIO; 1915 goto fail; 1916 } 1917 1918 /* we're ready! */ 1919 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 1920 1921 /* set basic rate set (will be updated later) */ 1922 ural_write(sc, RAL_TXRX_CSR11, 0x153); 1923 1924 error = ural_bbp_init(sc); 1925 if (error != 0) 1926 goto fail; 1927 1928 /* set default BSS channel */ 1929 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1930 ural_set_chan(sc, ic->ic_bss->ni_chan); 1931 1932 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 1933 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 1934 1935 /* set default sensitivity */ 1936 ural_bbp_write(sc, 17, 0x48); 1937 1938 ural_set_txantenna(sc, 1); 1939 ural_set_rxantenna(sc, 1); 1940 1941 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1942 ural_set_macaddr(sc, ic->ic_myaddr); 1943 1944 /* 1945 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 1946 */ 1947 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1948 struct ieee80211_key *k = &ic->ic_nw_keys[i]; 1949 ural_write_multi(sc, RAL_SEC_CSR0 + i * IEEE80211_KEYBUF_SIZE, 1950 k->k_key, IEEE80211_KEYBUF_SIZE); 1951 } 1952 1953 /* 1954 * Allocate xfer for AMRR statistics requests. 1955 */ 1956 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 1957 if (sc->amrr_xfer == NULL) { 1958 printf("%s: could not allocate AMRR xfer\n", 1959 sc->sc_dev.dv_xname); 1960 goto fail; 1961 } 1962 1963 /* 1964 * Open Tx and Rx USB bulk pipes. 1965 */ 1966 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 1967 &sc->sc_tx_pipeh); 1968 if (error != 0) { 1969 printf("%s: could not open Tx pipe: %s\n", 1970 sc->sc_dev.dv_xname, usbd_errstr(error)); 1971 goto fail; 1972 } 1973 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 1974 &sc->sc_rx_pipeh); 1975 if (error != 0) { 1976 printf("%s: could not open Rx pipe: %s\n", 1977 sc->sc_dev.dv_xname, usbd_errstr(error)); 1978 goto fail; 1979 } 1980 1981 /* 1982 * Allocate Tx and Rx xfer queues. 1983 */ 1984 error = ural_alloc_tx_list(sc); 1985 if (error != 0) { 1986 printf("%s: could not allocate Tx list\n", 1987 sc->sc_dev.dv_xname); 1988 goto fail; 1989 } 1990 error = ural_alloc_rx_list(sc); 1991 if (error != 0) { 1992 printf("%s: could not allocate Rx list\n", 1993 sc->sc_dev.dv_xname); 1994 goto fail; 1995 } 1996 1997 /* 1998 * Start up the receive pipe. 1999 */ 2000 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2001 struct ural_rx_data *data = &sc->rx_data[i]; 2002 2003 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2004 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2005 error = usbd_transfer(data->xfer); 2006 if (error != 0 && error != USBD_IN_PROGRESS) { 2007 printf("%s: could not queue Rx transfer\n", 2008 sc->sc_dev.dv_xname); 2009 goto fail; 2010 } 2011 } 2012 2013 /* kick Rx */ 2014 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2015 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2016 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2017 #ifndef IEEE80211_STA_ONLY 2018 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2019 #endif 2020 tmp |= RAL_DROP_TODS; 2021 if (!(ifp->if_flags & IFF_PROMISC)) 2022 tmp |= RAL_DROP_NOT_TO_ME; 2023 } 2024 ural_write(sc, RAL_TXRX_CSR2, tmp); 2025 2026 ifq_clr_oactive(&ifp->if_snd); 2027 ifp->if_flags |= IFF_RUNNING; 2028 2029 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2030 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2031 else 2032 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2033 2034 return 0; 2035 2036 fail: ural_stop(ifp, 1); 2037 return error; 2038 } 2039 2040 void 2041 ural_stop(struct ifnet *ifp, int disable) 2042 { 2043 struct ural_softc *sc = ifp->if_softc; 2044 struct ieee80211com *ic = &sc->sc_ic; 2045 2046 sc->sc_tx_timer = 0; 2047 ifp->if_timer = 0; 2048 ifp->if_flags &= ~IFF_RUNNING; 2049 ifq_clr_oactive(&ifp->if_snd); 2050 2051 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2052 2053 /* disable Rx */ 2054 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2055 2056 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2057 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2058 ural_write(sc, RAL_MAC_CSR1, 0); 2059 2060 if (sc->amrr_xfer != NULL) { 2061 usbd_free_xfer(sc->amrr_xfer); 2062 sc->amrr_xfer = NULL; 2063 } 2064 if (sc->sc_rx_pipeh != NULL) { 2065 usbd_close_pipe(sc->sc_rx_pipeh); 2066 sc->sc_rx_pipeh = NULL; 2067 } 2068 if (sc->sc_tx_pipeh != NULL) { 2069 usbd_close_pipe(sc->sc_tx_pipeh); 2070 sc->sc_tx_pipeh = NULL; 2071 } 2072 2073 ural_free_rx_list(sc); 2074 ural_free_tx_list(sc); 2075 } 2076 2077 void 2078 ural_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2079 { 2080 /* start with lowest Tx rate */ 2081 ni->ni_txrate = 0; 2082 } 2083 2084 void 2085 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) 2086 { 2087 int i; 2088 2089 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2090 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2091 2092 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2093 2094 /* set rate to some reasonable initial value */ 2095 for (i = ni->ni_rates.rs_nrates - 1; 2096 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2097 i--); 2098 ni->ni_txrate = i; 2099 2100 if (!usbd_is_dying(sc->sc_udev)) 2101 timeout_add_sec(&sc->amrr_to, 1); 2102 } 2103 2104 void 2105 ural_amrr_timeout(void *arg) 2106 { 2107 struct ural_softc *sc = arg; 2108 usb_device_request_t req; 2109 int s; 2110 2111 if (usbd_is_dying(sc->sc_udev)) 2112 return; 2113 2114 usbd_ref_incr(sc->sc_udev); 2115 2116 s = splusb(); 2117 2118 /* 2119 * Asynchronously read statistic registers (cleared by read). 2120 */ 2121 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2122 req.bRequest = RAL_READ_MULTI_MAC; 2123 USETW(req.wValue, 0); 2124 USETW(req.wIndex, RAL_STA_CSR0); 2125 USETW(req.wLength, sizeof sc->sta); 2126 2127 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2128 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2129 ural_amrr_update); 2130 (void)usbd_transfer(sc->amrr_xfer); 2131 2132 splx(s); 2133 2134 usbd_ref_decr(sc->sc_udev); 2135 } 2136 2137 void 2138 ural_amrr_update(struct usbd_xfer *xfer, void *priv, 2139 usbd_status status) 2140 { 2141 struct ural_softc *sc = (struct ural_softc *)priv; 2142 struct ifnet *ifp = &sc->sc_ic.ic_if; 2143 2144 if (status != USBD_NORMAL_COMPLETION) { 2145 printf("%s: could not retrieve Tx statistics - cancelling " 2146 "automatic rate control\n", sc->sc_dev.dv_xname); 2147 return; 2148 } 2149 2150 /* count TX retry-fail as Tx errors */ 2151 ifp->if_oerrors += letoh16(sc->sta[9]); 2152 2153 sc->amn.amn_retrycnt = 2154 letoh16(sc->sta[7]) + /* TX one-retry ok count */ 2155 letoh16(sc->sta[8]) + /* TX more-retry ok count */ 2156 letoh16(sc->sta[9]); /* TX retry-fail count */ 2157 2158 sc->amn.amn_txcnt = 2159 sc->amn.amn_retrycnt + 2160 letoh16(sc->sta[6]); /* TX no-retry ok count */ 2161 2162 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2163 2164 if (!usbd_is_dying(sc->sc_udev)) 2165 timeout_add_sec(&sc->amrr_to, 1); 2166 } 2167