1 /* $OpenBSD: if_rum.c,v 1.126 2020/07/31 10:49:32 mglocker Exp $ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2501USB/RT2601USB chipset driver 22 * http://www.ralinktech.com.tw/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/endian.h> 37 38 #include <machine/intr.h> 39 40 #if NBPFILTER > 0 41 #include <net/bpf.h> 42 #endif 43 #include <net/if.h> 44 #include <net/if_dl.h> 45 #include <net/if_media.h> 46 47 #include <netinet/in.h> 48 #include <netinet/if_ether.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_amrr.h> 52 #include <net80211/ieee80211_radiotap.h> 53 54 #include <dev/usb/usb.h> 55 #include <dev/usb/usbdi.h> 56 #include <dev/usb/usbdi_util.h> 57 #include <dev/usb/usbdevs.h> 58 59 #include <dev/usb/if_rumreg.h> 60 #include <dev/usb/if_rumvar.h> 61 62 #ifdef RUM_DEBUG 63 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 64 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 65 int rum_debug = 0; 66 #else 67 #define DPRINTF(x) 68 #define DPRINTFN(n, x) 69 #endif 70 71 /* various supported device vendors/products */ 72 static const struct usb_devno rum_devs[] = { 73 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 74 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 75 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 76 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 77 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 78 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 79 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 }, 80 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 }, 81 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 83 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 86 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 87 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 }, 88 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 }, 89 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 90 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 91 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 92 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 93 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 94 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 95 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 96 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 97 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 98 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 99 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 100 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 101 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 102 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 103 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 104 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 105 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G }, 106 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 107 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 108 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 109 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 }, 110 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 111 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 112 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 113 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 114 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 115 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 116 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 117 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 118 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 119 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 120 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 121 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 }, 122 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 123 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 124 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 125 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 126 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 127 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 128 }; 129 130 void rum_attachhook(struct device *); 131 int rum_alloc_tx_list(struct rum_softc *); 132 void rum_free_tx_list(struct rum_softc *); 133 int rum_alloc_rx_list(struct rum_softc *); 134 void rum_free_rx_list(struct rum_softc *); 135 int rum_media_change(struct ifnet *); 136 void rum_next_scan(void *); 137 void rum_task(void *); 138 int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); 139 void rum_txeof(struct usbd_xfer *, void *, usbd_status); 140 void rum_rxeof(struct usbd_xfer *, void *, usbd_status); 141 #if NBPFILTER > 0 142 uint8_t rum_rxrate(const struct rum_rx_desc *); 143 #endif 144 int rum_ack_rate(struct ieee80211com *, int); 145 uint16_t rum_txtime(int, int, uint32_t); 146 uint8_t rum_plcp_signal(int); 147 void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, 148 uint32_t, uint16_t, int, int); 149 int rum_tx_data(struct rum_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 void rum_start(struct ifnet *); 152 void rum_watchdog(struct ifnet *); 153 int rum_ioctl(struct ifnet *, u_long, caddr_t); 154 void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); 155 uint32_t rum_read(struct rum_softc *, uint16_t); 156 void rum_read_multi(struct rum_softc *, uint16_t, void *, int); 157 void rum_write(struct rum_softc *, uint16_t, uint32_t); 158 void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); 159 void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 160 uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 161 void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 162 void rum_select_antenna(struct rum_softc *); 163 void rum_enable_mrr(struct rum_softc *); 164 void rum_set_txpreamble(struct rum_softc *); 165 void rum_set_basicrates(struct rum_softc *); 166 void rum_select_band(struct rum_softc *, 167 struct ieee80211_channel *); 168 void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); 169 void rum_enable_tsf_sync(struct rum_softc *); 170 void rum_update_slot(struct rum_softc *); 171 void rum_set_bssid(struct rum_softc *, const uint8_t *); 172 void rum_set_macaddr(struct rum_softc *, const uint8_t *); 173 void rum_update_promisc(struct rum_softc *); 174 const char *rum_get_rf(int); 175 void rum_read_eeprom(struct rum_softc *); 176 int rum_bbp_init(struct rum_softc *); 177 int rum_init(struct ifnet *); 178 void rum_stop(struct ifnet *, int); 179 int rum_load_microcode(struct rum_softc *, const u_char *, size_t); 180 #ifndef IEEE80211_STA_ONLY 181 int rum_prepare_beacon(struct rum_softc *); 182 #endif 183 void rum_newassoc(struct ieee80211com *, struct ieee80211_node *, 184 int); 185 void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); 186 void rum_amrr_timeout(void *); 187 void rum_amrr_update(struct usbd_xfer *, void *, 188 usbd_status status); 189 190 static const struct { 191 uint32_t reg; 192 uint32_t val; 193 } rum_def_mac[] = { 194 RT2573_DEF_MAC 195 }; 196 197 static const struct { 198 uint8_t reg; 199 uint8_t val; 200 } rum_def_bbp[] = { 201 RT2573_DEF_BBP 202 }; 203 204 static const struct rfprog { 205 uint8_t chan; 206 uint32_t r1, r2, r3, r4; 207 } rum_rf5226[] = { 208 RT2573_RF5226 209 }, rum_rf5225[] = { 210 RT2573_RF5225 211 }; 212 213 int rum_match(struct device *, void *, void *); 214 void rum_attach(struct device *, struct device *, void *); 215 int rum_detach(struct device *, int); 216 217 struct cfdriver rum_cd = { 218 NULL, "rum", DV_IFNET 219 }; 220 221 const struct cfattach rum_ca = { 222 sizeof(struct rum_softc), rum_match, rum_attach, rum_detach 223 }; 224 225 int 226 rum_match(struct device *parent, void *match, void *aux) 227 { 228 struct usb_attach_arg *uaa = aux; 229 230 if (uaa->iface == NULL || uaa->configno != 1) 231 return UMATCH_NONE; 232 233 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 234 UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE; 235 } 236 237 void 238 rum_attachhook(struct device *self) 239 { 240 struct rum_softc *sc = (struct rum_softc *)self; 241 const char *name = "rum-rt2573"; 242 u_char *ucode; 243 size_t size; 244 int error; 245 246 if ((error = loadfirmware(name, &ucode, &size)) != 0) { 247 printf("%s: failed loadfirmware of file %s (error %d)\n", 248 sc->sc_dev.dv_xname, name, error); 249 return; 250 } 251 252 if (rum_load_microcode(sc, ucode, size) != 0) { 253 printf("%s: could not load 8051 microcode\n", 254 sc->sc_dev.dv_xname); 255 } 256 257 free(ucode, M_DEVBUF, size); 258 } 259 260 void 261 rum_attach(struct device *parent, struct device *self, void *aux) 262 { 263 struct rum_softc *sc = (struct rum_softc *)self; 264 struct usb_attach_arg *uaa = aux; 265 struct ieee80211com *ic = &sc->sc_ic; 266 struct ifnet *ifp = &ic->ic_if; 267 usb_interface_descriptor_t *id; 268 usb_endpoint_descriptor_t *ed; 269 int i, ntries; 270 uint32_t tmp; 271 272 sc->sc_udev = uaa->device; 273 sc->sc_iface = uaa->iface; 274 275 /* 276 * Find endpoints. 277 */ 278 id = usbd_get_interface_descriptor(sc->sc_iface); 279 280 sc->sc_rx_no = sc->sc_tx_no = -1; 281 for (i = 0; i < id->bNumEndpoints; i++) { 282 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 283 if (ed == NULL) { 284 printf("%s: no endpoint descriptor for iface %d\n", 285 sc->sc_dev.dv_xname, i); 286 return; 287 } 288 289 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 290 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 291 sc->sc_rx_no = ed->bEndpointAddress; 292 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 293 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 294 sc->sc_tx_no = ed->bEndpointAddress; 295 } 296 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 297 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); 298 return; 299 } 300 301 usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC); 302 timeout_set(&sc->scan_to, rum_next_scan, sc); 303 304 sc->amrr.amrr_min_success_threshold = 1; 305 sc->amrr.amrr_max_success_threshold = 10; 306 timeout_set(&sc->amrr_to, rum_amrr_timeout, sc); 307 308 /* retrieve RT2573 rev. no */ 309 for (ntries = 0; ntries < 1000; ntries++) { 310 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 311 break; 312 DELAY(1000); 313 } 314 if (ntries == 1000) { 315 printf("%s: timeout waiting for chip to settle\n", 316 sc->sc_dev.dv_xname); 317 return; 318 } 319 320 /* retrieve MAC address and various other things from EEPROM */ 321 rum_read_eeprom(sc); 322 323 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 324 sc->sc_dev.dv_xname, sc->macbbp_rev, tmp, 325 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 326 327 config_mountroot(self, rum_attachhook); 328 329 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 330 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 331 ic->ic_state = IEEE80211_S_INIT; 332 333 /* set device capabilities */ 334 ic->ic_caps = 335 IEEE80211_C_MONITOR | /* monitor mode supported */ 336 #ifndef IEEE80211_STA_ONLY 337 IEEE80211_C_IBSS | /* IBSS mode supported */ 338 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 339 #endif 340 IEEE80211_C_TXPMGT | /* tx power management */ 341 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 342 IEEE80211_C_SHSLOT | /* short slot time supported */ 343 IEEE80211_C_WEP | /* s/w WEP */ 344 IEEE80211_C_RSN; /* WPA/RSN */ 345 346 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 347 /* set supported .11a rates */ 348 ic->ic_sup_rates[IEEE80211_MODE_11A] = 349 ieee80211_std_rateset_11a; 350 351 /* set supported .11a channels */ 352 for (i = 34; i <= 46; i += 4) { 353 ic->ic_channels[i].ic_freq = 354 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 355 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 356 } 357 for (i = 36; i <= 64; i += 4) { 358 ic->ic_channels[i].ic_freq = 359 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 360 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 361 } 362 for (i = 100; i <= 140; i += 4) { 363 ic->ic_channels[i].ic_freq = 364 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 365 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 366 } 367 for (i = 149; i <= 165; i += 4) { 368 ic->ic_channels[i].ic_freq = 369 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 370 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 371 } 372 } 373 374 /* set supported .11b and .11g rates */ 375 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 376 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 377 378 /* set supported .11b and .11g channels (1 through 14) */ 379 for (i = 1; i <= 14; i++) { 380 ic->ic_channels[i].ic_freq = 381 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 382 ic->ic_channels[i].ic_flags = 383 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 384 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 385 } 386 387 ifp->if_softc = sc; 388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 389 ifp->if_ioctl = rum_ioctl; 390 ifp->if_start = rum_start; 391 ifp->if_watchdog = rum_watchdog; 392 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 393 394 if_attach(ifp); 395 ieee80211_ifattach(ifp); 396 ic->ic_newassoc = rum_newassoc; 397 398 /* override state transition machine */ 399 sc->sc_newstate = ic->ic_newstate; 400 ic->ic_newstate = rum_newstate; 401 ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); 402 403 #if NBPFILTER > 0 404 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 405 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 406 407 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 408 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 409 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 410 411 sc->sc_txtap_len = sizeof sc->sc_txtapu; 412 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 413 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 414 #endif 415 } 416 417 int 418 rum_detach(struct device *self, int flags) 419 { 420 struct rum_softc *sc = (struct rum_softc *)self; 421 struct ifnet *ifp = &sc->sc_ic.ic_if; 422 int s; 423 424 s = splusb(); 425 426 if (timeout_initialized(&sc->scan_to)) 427 timeout_del(&sc->scan_to); 428 if (timeout_initialized(&sc->amrr_to)) 429 timeout_del(&sc->amrr_to); 430 431 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 432 433 usbd_ref_wait(sc->sc_udev); 434 435 if (ifp->if_softc != NULL) { 436 ieee80211_ifdetach(ifp); /* free all nodes */ 437 if_detach(ifp); 438 } 439 440 if (sc->amrr_xfer != NULL) { 441 usbd_free_xfer(sc->amrr_xfer); 442 sc->amrr_xfer = NULL; 443 } 444 if (sc->sc_rx_pipeh != NULL) 445 usbd_close_pipe(sc->sc_rx_pipeh); 446 if (sc->sc_tx_pipeh != NULL) 447 usbd_close_pipe(sc->sc_tx_pipeh); 448 449 rum_free_rx_list(sc); 450 rum_free_tx_list(sc); 451 452 splx(s); 453 454 return 0; 455 } 456 457 int 458 rum_alloc_tx_list(struct rum_softc *sc) 459 { 460 int i, error; 461 462 sc->tx_cur = sc->tx_queued = 0; 463 464 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 465 struct rum_tx_data *data = &sc->tx_data[i]; 466 467 data->sc = sc; 468 469 data->xfer = usbd_alloc_xfer(sc->sc_udev); 470 if (data->xfer == NULL) { 471 printf("%s: could not allocate tx xfer\n", 472 sc->sc_dev.dv_xname); 473 error = ENOMEM; 474 goto fail; 475 } 476 data->buf = usbd_alloc_buffer(data->xfer, 477 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 478 if (data->buf == NULL) { 479 printf("%s: could not allocate tx buffer\n", 480 sc->sc_dev.dv_xname); 481 error = ENOMEM; 482 goto fail; 483 } 484 /* clean Tx descriptor */ 485 bzero(data->buf, RT2573_TX_DESC_SIZE); 486 } 487 488 return 0; 489 490 fail: rum_free_tx_list(sc); 491 return error; 492 } 493 494 void 495 rum_free_tx_list(struct rum_softc *sc) 496 { 497 int i; 498 499 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 500 struct rum_tx_data *data = &sc->tx_data[i]; 501 502 if (data->xfer != NULL) { 503 usbd_free_xfer(data->xfer); 504 data->xfer = NULL; 505 } 506 /* 507 * The node has already been freed at that point so don't call 508 * ieee80211_release_node() here. 509 */ 510 data->ni = NULL; 511 } 512 } 513 514 int 515 rum_alloc_rx_list(struct rum_softc *sc) 516 { 517 int i, error; 518 519 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 520 struct rum_rx_data *data = &sc->rx_data[i]; 521 522 data->sc = sc; 523 524 data->xfer = usbd_alloc_xfer(sc->sc_udev); 525 if (data->xfer == NULL) { 526 printf("%s: could not allocate rx xfer\n", 527 sc->sc_dev.dv_xname); 528 error = ENOMEM; 529 goto fail; 530 } 531 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 532 printf("%s: could not allocate rx buffer\n", 533 sc->sc_dev.dv_xname); 534 error = ENOMEM; 535 goto fail; 536 } 537 538 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 539 if (data->m == NULL) { 540 printf("%s: could not allocate rx mbuf\n", 541 sc->sc_dev.dv_xname); 542 error = ENOMEM; 543 goto fail; 544 } 545 MCLGET(data->m, M_DONTWAIT); 546 if (!(data->m->m_flags & M_EXT)) { 547 printf("%s: could not allocate rx mbuf cluster\n", 548 sc->sc_dev.dv_xname); 549 error = ENOMEM; 550 goto fail; 551 } 552 data->buf = mtod(data->m, uint8_t *); 553 } 554 555 return 0; 556 557 fail: rum_free_rx_list(sc); 558 return error; 559 } 560 561 void 562 rum_free_rx_list(struct rum_softc *sc) 563 { 564 int i; 565 566 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 567 struct rum_rx_data *data = &sc->rx_data[i]; 568 569 if (data->xfer != NULL) { 570 usbd_free_xfer(data->xfer); 571 data->xfer = NULL; 572 } 573 if (data->m != NULL) { 574 m_freem(data->m); 575 data->m = NULL; 576 } 577 } 578 } 579 580 int 581 rum_media_change(struct ifnet *ifp) 582 { 583 int error; 584 585 error = ieee80211_media_change(ifp); 586 if (error != ENETRESET) 587 return error; 588 589 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 590 error = rum_init(ifp); 591 592 return error; 593 } 594 595 /* 596 * This function is called periodically (every 200ms) during scanning to 597 * switch from one channel to another. 598 */ 599 void 600 rum_next_scan(void *arg) 601 { 602 struct rum_softc *sc = arg; 603 struct ieee80211com *ic = &sc->sc_ic; 604 struct ifnet *ifp = &ic->ic_if; 605 606 if (usbd_is_dying(sc->sc_udev)) 607 return; 608 609 usbd_ref_incr(sc->sc_udev); 610 611 if (ic->ic_state == IEEE80211_S_SCAN) 612 ieee80211_next_scan(ifp); 613 614 usbd_ref_decr(sc->sc_udev); 615 } 616 617 void 618 rum_task(void *arg) 619 { 620 struct rum_softc *sc = arg; 621 struct ieee80211com *ic = &sc->sc_ic; 622 enum ieee80211_state ostate; 623 struct ieee80211_node *ni; 624 uint32_t tmp; 625 626 if (usbd_is_dying(sc->sc_udev)) 627 return; 628 629 ostate = ic->ic_state; 630 631 switch (sc->sc_state) { 632 case IEEE80211_S_INIT: 633 if (ostate == IEEE80211_S_RUN) { 634 /* abort TSF synchronization */ 635 tmp = rum_read(sc, RT2573_TXRX_CSR9); 636 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 637 } 638 break; 639 640 case IEEE80211_S_SCAN: 641 rum_set_chan(sc, ic->ic_bss->ni_chan); 642 if (!usbd_is_dying(sc->sc_udev)) 643 timeout_add_msec(&sc->scan_to, 200); 644 break; 645 646 case IEEE80211_S_AUTH: 647 rum_set_chan(sc, ic->ic_bss->ni_chan); 648 break; 649 650 case IEEE80211_S_ASSOC: 651 rum_set_chan(sc, ic->ic_bss->ni_chan); 652 break; 653 654 case IEEE80211_S_RUN: 655 rum_set_chan(sc, ic->ic_bss->ni_chan); 656 657 ni = ic->ic_bss; 658 659 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 660 rum_update_slot(sc); 661 rum_enable_mrr(sc); 662 rum_set_txpreamble(sc); 663 rum_set_basicrates(sc); 664 rum_set_bssid(sc, ni->ni_bssid); 665 } 666 667 #ifndef IEEE80211_STA_ONLY 668 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 669 ic->ic_opmode == IEEE80211_M_IBSS) 670 rum_prepare_beacon(sc); 671 #endif 672 673 if (ic->ic_opmode != IEEE80211_M_MONITOR) 674 rum_enable_tsf_sync(sc); 675 676 if (ic->ic_opmode == IEEE80211_M_STA) { 677 /* fake a join to init the tx rate */ 678 rum_newassoc(ic, ic->ic_bss, 1); 679 680 /* enable automatic rate control in STA mode */ 681 if (ic->ic_fixed_rate == -1) 682 rum_amrr_start(sc, ni); 683 } 684 break; 685 } 686 687 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 688 } 689 690 int 691 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 692 { 693 struct rum_softc *sc = ic->ic_if.if_softc; 694 695 usb_rem_task(sc->sc_udev, &sc->sc_task); 696 timeout_del(&sc->scan_to); 697 timeout_del(&sc->amrr_to); 698 699 /* do it in a process context */ 700 sc->sc_state = nstate; 701 sc->sc_arg = arg; 702 usb_add_task(sc->sc_udev, &sc->sc_task); 703 return 0; 704 } 705 706 /* quickly determine if a given rate is CCK or OFDM */ 707 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 708 709 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 710 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 711 712 void 713 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 714 { 715 struct rum_tx_data *data = priv; 716 struct rum_softc *sc = data->sc; 717 struct ieee80211com *ic = &sc->sc_ic; 718 struct ifnet *ifp = &ic->ic_if; 719 int s; 720 721 if (status != USBD_NORMAL_COMPLETION) { 722 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 723 return; 724 725 printf("%s: could not transmit buffer: %s\n", 726 sc->sc_dev.dv_xname, usbd_errstr(status)); 727 728 if (status == USBD_STALLED) 729 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 730 731 ifp->if_oerrors++; 732 return; 733 } 734 735 s = splnet(); 736 737 ieee80211_release_node(ic, data->ni); 738 data->ni = NULL; 739 740 sc->tx_queued--; 741 742 DPRINTFN(10, ("tx done\n")); 743 744 sc->sc_tx_timer = 0; 745 ifq_clr_oactive(&ifp->if_snd); 746 rum_start(ifp); 747 748 splx(s); 749 } 750 751 void 752 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 753 { 754 struct rum_rx_data *data = priv; 755 struct rum_softc *sc = data->sc; 756 struct ieee80211com *ic = &sc->sc_ic; 757 struct ifnet *ifp = &ic->ic_if; 758 const struct rum_rx_desc *desc; 759 struct ieee80211_frame *wh; 760 struct ieee80211_rxinfo rxi; 761 struct ieee80211_node *ni; 762 struct mbuf *mnew, *m; 763 int s, len; 764 765 if (status != USBD_NORMAL_COMPLETION) { 766 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 767 return; 768 769 if (status == USBD_STALLED) 770 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 771 goto skip; 772 } 773 774 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 775 776 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 777 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, 778 len)); 779 ifp->if_ierrors++; 780 goto skip; 781 } 782 783 desc = (const struct rum_rx_desc *)data->buf; 784 785 if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) { 786 /* 787 * This should not happen since we did not request to receive 788 * those frames when we filled RT2573_TXRX_CSR0. 789 */ 790 DPRINTFN(5, ("CRC error\n")); 791 ifp->if_ierrors++; 792 goto skip; 793 } 794 795 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 796 if (mnew == NULL) { 797 printf("%s: could not allocate rx mbuf\n", 798 sc->sc_dev.dv_xname); 799 ifp->if_ierrors++; 800 goto skip; 801 } 802 MCLGET(mnew, M_DONTWAIT); 803 if (!(mnew->m_flags & M_EXT)) { 804 printf("%s: could not allocate rx mbuf cluster\n", 805 sc->sc_dev.dv_xname); 806 m_freem(mnew); 807 ifp->if_ierrors++; 808 goto skip; 809 } 810 m = data->m; 811 data->m = mnew; 812 data->buf = mtod(data->m, uint8_t *); 813 814 /* finalize mbuf */ 815 m->m_data = (caddr_t)(desc + 1); 816 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; 817 818 s = splnet(); 819 820 #if NBPFILTER > 0 821 if (sc->sc_drvbpf != NULL) { 822 struct mbuf mb; 823 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 824 825 tap->wr_flags = 0; 826 tap->wr_rate = rum_rxrate(desc); 827 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 828 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 829 tap->wr_antenna = sc->rx_ant; 830 tap->wr_antsignal = desc->rssi; 831 832 mb.m_data = (caddr_t)tap; 833 mb.m_len = sc->sc_rxtap_len; 834 mb.m_next = m; 835 mb.m_nextpkt = NULL; 836 mb.m_type = 0; 837 mb.m_flags = 0; 838 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 839 } 840 #endif 841 842 wh = mtod(m, struct ieee80211_frame *); 843 ni = ieee80211_find_rxnode(ic, wh); 844 845 /* send the frame to the 802.11 layer */ 846 rxi.rxi_flags = 0; 847 rxi.rxi_rssi = desc->rssi; 848 rxi.rxi_tstamp = 0; /* unused */ 849 ieee80211_input(ifp, m, ni, &rxi); 850 851 /* node is no longer needed */ 852 ieee80211_release_node(ic, ni); 853 854 splx(s); 855 856 DPRINTFN(15, ("rx done\n")); 857 858 skip: /* setup a new transfer */ 859 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 860 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 861 (void)usbd_transfer(xfer); 862 } 863 864 /* 865 * This function is only used by the Rx radiotap code. It returns the rate at 866 * which a given frame was received. 867 */ 868 #if NBPFILTER > 0 869 uint8_t 870 rum_rxrate(const struct rum_rx_desc *desc) 871 { 872 if (letoh32(desc->flags) & RT2573_RX_OFDM) { 873 /* reverse function of rum_plcp_signal */ 874 switch (desc->rate) { 875 case 0xb: return 12; 876 case 0xf: return 18; 877 case 0xa: return 24; 878 case 0xe: return 36; 879 case 0x9: return 48; 880 case 0xd: return 72; 881 case 0x8: return 96; 882 case 0xc: return 108; 883 } 884 } else { 885 if (desc->rate == 10) 886 return 2; 887 if (desc->rate == 20) 888 return 4; 889 if (desc->rate == 55) 890 return 11; 891 if (desc->rate == 110) 892 return 22; 893 } 894 return 2; /* should not get there */ 895 } 896 #endif 897 898 /* 899 * Return the expected ack rate for a frame transmitted at rate `rate'. 900 */ 901 int 902 rum_ack_rate(struct ieee80211com *ic, int rate) 903 { 904 switch (rate) { 905 /* CCK rates */ 906 case 2: 907 return 2; 908 case 4: 909 case 11: 910 case 22: 911 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 912 913 /* OFDM rates */ 914 case 12: 915 case 18: 916 return 12; 917 case 24: 918 case 36: 919 return 24; 920 case 48: 921 case 72: 922 case 96: 923 case 108: 924 return 48; 925 } 926 927 /* default to 1Mbps */ 928 return 2; 929 } 930 931 /* 932 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 933 * The function automatically determines the operating mode depending on the 934 * given rate. `flags' indicates whether short preamble is in use or not. 935 */ 936 uint16_t 937 rum_txtime(int len, int rate, uint32_t flags) 938 { 939 uint16_t txtime; 940 941 if (RUM_RATE_IS_OFDM(rate)) { 942 /* IEEE Std 802.11a-1999, pp. 37 */ 943 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 944 txtime = 16 + 4 + 4 * txtime + 6; 945 } else { 946 /* IEEE Std 802.11b-1999, pp. 28 */ 947 txtime = (16 * len + rate - 1) / rate; 948 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 949 txtime += 72 + 24; 950 else 951 txtime += 144 + 48; 952 } 953 return txtime; 954 } 955 956 uint8_t 957 rum_plcp_signal(int rate) 958 { 959 switch (rate) { 960 /* CCK rates (returned values are device-dependent) */ 961 case 2: return 0x0; 962 case 4: return 0x1; 963 case 11: return 0x2; 964 case 22: return 0x3; 965 966 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 967 case 12: return 0xb; 968 case 18: return 0xf; 969 case 24: return 0xa; 970 case 36: return 0xe; 971 case 48: return 0x9; 972 case 72: return 0xd; 973 case 96: return 0x8; 974 case 108: return 0xc; 975 976 /* unsupported rates (should not get there) */ 977 default: return 0xff; 978 } 979 } 980 981 void 982 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 983 uint32_t flags, uint16_t xflags, int len, int rate) 984 { 985 struct ieee80211com *ic = &sc->sc_ic; 986 uint16_t plcp_length; 987 int remainder; 988 989 desc->flags = htole32(flags); 990 desc->flags |= htole32(RT2573_TX_VALID); 991 desc->flags |= htole32(len << 16); 992 993 desc->xflags = htole16(xflags); 994 995 desc->wme = htole16( 996 RT2573_QID(0) | 997 RT2573_AIFSN(2) | 998 RT2573_LOGCWMIN(4) | 999 RT2573_LOGCWMAX(10)); 1000 1001 /* setup PLCP fields */ 1002 desc->plcp_signal = rum_plcp_signal(rate); 1003 desc->plcp_service = 4; 1004 1005 len += IEEE80211_CRC_LEN; 1006 if (RUM_RATE_IS_OFDM(rate)) { 1007 desc->flags |= htole32(RT2573_TX_OFDM); 1008 1009 plcp_length = len & 0xfff; 1010 desc->plcp_length_hi = plcp_length >> 6; 1011 desc->plcp_length_lo = plcp_length & 0x3f; 1012 } else { 1013 plcp_length = (16 * len + rate - 1) / rate; 1014 if (rate == 22) { 1015 remainder = (16 * len) % 22; 1016 if (remainder != 0 && remainder < 7) 1017 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1018 } 1019 desc->plcp_length_hi = plcp_length >> 8; 1020 desc->plcp_length_lo = plcp_length & 0xff; 1021 1022 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1023 desc->plcp_signal |= 0x08; 1024 } 1025 } 1026 1027 #define RUM_TX_TIMEOUT 5000 1028 1029 int 1030 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1031 { 1032 struct ieee80211com *ic = &sc->sc_ic; 1033 struct rum_tx_desc *desc; 1034 struct rum_tx_data *data; 1035 struct ieee80211_frame *wh; 1036 struct ieee80211_key *k; 1037 uint32_t flags = 0; 1038 uint16_t dur; 1039 usbd_status error; 1040 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1041 1042 wh = mtod(m0, struct ieee80211_frame *); 1043 1044 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1045 k = ieee80211_get_txkey(ic, wh, ni); 1046 1047 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1048 return ENOBUFS; 1049 1050 /* packet header may have moved, reset our local pointer */ 1051 wh = mtod(m0, struct ieee80211_frame *); 1052 } 1053 1054 /* compute actual packet length (including CRC and crypto overhead) */ 1055 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1056 1057 /* pickup a rate */ 1058 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1059 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1060 IEEE80211_FC0_TYPE_MGT)) { 1061 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1062 rate = ni->ni_rates.rs_rates[0]; 1063 } else if (ic->ic_fixed_rate != -1) { 1064 rate = ic->ic_sup_rates[ic->ic_curmode]. 1065 rs_rates[ic->ic_fixed_rate]; 1066 } else 1067 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1068 if (rate == 0) 1069 rate = 2; /* XXX should not happen */ 1070 rate &= IEEE80211_RATE_VAL; 1071 1072 /* check if RTS/CTS or CTS-to-self protection must be used */ 1073 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1074 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1075 if (pktlen > ic->ic_rtsthreshold) { 1076 needrts = 1; /* RTS/CTS based on frame length */ 1077 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1078 RUM_RATE_IS_OFDM(rate)) { 1079 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1080 needcts = 1; /* CTS-to-self */ 1081 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1082 needrts = 1; /* RTS/CTS */ 1083 } 1084 } 1085 if (needrts || needcts) { 1086 struct mbuf *mprot; 1087 int protrate, ackrate; 1088 uint16_t dur; 1089 1090 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1091 ackrate = rum_ack_rate(ic, rate); 1092 1093 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1094 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1095 2 * sc->sifs; 1096 if (needrts) { 1097 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1098 protrate), ic->ic_flags) + sc->sifs; 1099 mprot = ieee80211_get_rts(ic, wh, dur); 1100 } else { 1101 mprot = ieee80211_get_cts_to_self(ic, dur); 1102 } 1103 if (mprot == NULL) { 1104 printf("%s: could not allocate protection frame\n", 1105 sc->sc_dev.dv_xname); 1106 m_freem(m0); 1107 return ENOBUFS; 1108 } 1109 1110 data = &sc->tx_data[sc->tx_cur]; 1111 desc = (struct rum_tx_desc *)data->buf; 1112 1113 /* avoid multiple free() of the same node for each fragment */ 1114 data->ni = ieee80211_ref_node(ni); 1115 1116 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1117 data->buf + RT2573_TX_DESC_SIZE); 1118 rum_setup_tx_desc(sc, desc, 1119 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1120 0, mprot->m_pkthdr.len, protrate); 1121 1122 /* no roundup necessary here */ 1123 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1124 1125 /* XXX may want to pass the protection frame to BPF */ 1126 1127 /* mbuf is no longer needed */ 1128 m_freem(mprot); 1129 1130 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1131 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1132 RUM_TX_TIMEOUT, rum_txeof); 1133 error = usbd_transfer(data->xfer); 1134 if (error != 0 && error != USBD_IN_PROGRESS) { 1135 m_freem(m0); 1136 return error; 1137 } 1138 1139 sc->tx_queued++; 1140 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1141 1142 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1143 } 1144 1145 data = &sc->tx_data[sc->tx_cur]; 1146 desc = (struct rum_tx_desc *)data->buf; 1147 1148 data->ni = ni; 1149 1150 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1151 flags |= RT2573_TX_NEED_ACK; 1152 1153 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1154 ic->ic_flags) + sc->sifs; 1155 *(uint16_t *)wh->i_dur = htole16(dur); 1156 1157 #ifndef IEEE80211_STA_ONLY 1158 /* tell hardware to set timestamp in probe responses */ 1159 if ((wh->i_fc[0] & 1160 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1161 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1162 flags |= RT2573_TX_TIMESTAMP; 1163 #endif 1164 } 1165 1166 #if NBPFILTER > 0 1167 if (sc->sc_drvbpf != NULL) { 1168 struct mbuf mb; 1169 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1170 1171 tap->wt_flags = 0; 1172 tap->wt_rate = rate; 1173 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1174 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1175 tap->wt_antenna = sc->tx_ant; 1176 1177 mb.m_data = (caddr_t)tap; 1178 mb.m_len = sc->sc_txtap_len; 1179 mb.m_next = m0; 1180 mb.m_nextpkt = NULL; 1181 mb.m_type = 0; 1182 mb.m_flags = 0; 1183 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1184 } 1185 #endif 1186 1187 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1188 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1189 1190 /* align end on a 4-bytes boundary */ 1191 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1192 1193 /* 1194 * No space left in the last URB to store the extra 4 bytes, force 1195 * sending of another URB. 1196 */ 1197 if ((xferlen % 64) == 0) 1198 xferlen += 4; 1199 1200 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", 1201 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); 1202 1203 /* mbuf is no longer needed */ 1204 m_freem(m0); 1205 1206 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1207 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1208 error = usbd_transfer(data->xfer); 1209 if (error != 0 && error != USBD_IN_PROGRESS) 1210 return error; 1211 1212 sc->tx_queued++; 1213 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1214 1215 return 0; 1216 } 1217 1218 void 1219 rum_start(struct ifnet *ifp) 1220 { 1221 struct rum_softc *sc = ifp->if_softc; 1222 struct ieee80211com *ic = &sc->sc_ic; 1223 struct ieee80211_node *ni; 1224 struct mbuf *m0; 1225 1226 /* 1227 * net80211 may still try to send management frames even if the 1228 * IFF_RUNNING flag is not set... 1229 */ 1230 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1231 return; 1232 1233 for (;;) { 1234 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1235 ifq_set_oactive(&ifp->if_snd); 1236 break; 1237 } 1238 1239 m0 = mq_dequeue(&ic->ic_mgtq); 1240 if (m0 != NULL) { 1241 ni = m0->m_pkthdr.ph_cookie; 1242 #if NBPFILTER > 0 1243 if (ic->ic_rawbpf != NULL) 1244 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1245 #endif 1246 if (rum_tx_data(sc, m0, ni) != 0) 1247 break; 1248 1249 } else { 1250 if (ic->ic_state != IEEE80211_S_RUN) 1251 break; 1252 1253 m0 = ifq_dequeue(&ifp->if_snd); 1254 if (m0 == NULL) 1255 break; 1256 #if NBPFILTER > 0 1257 if (ifp->if_bpf != NULL) 1258 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1259 #endif 1260 m0 = ieee80211_encap(ifp, m0, &ni); 1261 if (m0 == NULL) 1262 continue; 1263 #if NBPFILTER > 0 1264 if (ic->ic_rawbpf != NULL) 1265 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1266 #endif 1267 if (rum_tx_data(sc, m0, ni) != 0) { 1268 if (ni != NULL) 1269 ieee80211_release_node(ic, ni); 1270 ifp->if_oerrors++; 1271 break; 1272 } 1273 } 1274 1275 sc->sc_tx_timer = 5; 1276 ifp->if_timer = 1; 1277 } 1278 } 1279 1280 void 1281 rum_watchdog(struct ifnet *ifp) 1282 { 1283 struct rum_softc *sc = ifp->if_softc; 1284 1285 ifp->if_timer = 0; 1286 1287 if (sc->sc_tx_timer > 0) { 1288 if (--sc->sc_tx_timer == 0) { 1289 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1290 /*rum_init(ifp); XXX needs a process context! */ 1291 ifp->if_oerrors++; 1292 return; 1293 } 1294 ifp->if_timer = 1; 1295 } 1296 1297 ieee80211_watchdog(ifp); 1298 } 1299 1300 int 1301 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1302 { 1303 struct rum_softc *sc = ifp->if_softc; 1304 struct ieee80211com *ic = &sc->sc_ic; 1305 int s, error = 0; 1306 1307 if (usbd_is_dying(sc->sc_udev)) 1308 return ENXIO; 1309 1310 usbd_ref_incr(sc->sc_udev); 1311 1312 s = splnet(); 1313 1314 switch (cmd) { 1315 case SIOCSIFADDR: 1316 ifp->if_flags |= IFF_UP; 1317 /* FALLTHROUGH */ 1318 case SIOCSIFFLAGS: 1319 if (ifp->if_flags & IFF_UP) { 1320 if (ifp->if_flags & IFF_RUNNING) 1321 rum_update_promisc(sc); 1322 else 1323 rum_init(ifp); 1324 } else { 1325 if (ifp->if_flags & IFF_RUNNING) 1326 rum_stop(ifp, 1); 1327 } 1328 break; 1329 1330 case SIOCS80211CHANNEL: 1331 /* 1332 * This allows for fast channel switching in monitor mode 1333 * (used by kismet). In IBSS mode, we must explicitly reset 1334 * the interface to generate a new beacon frame. 1335 */ 1336 error = ieee80211_ioctl(ifp, cmd, data); 1337 if (error == ENETRESET && 1338 ic->ic_opmode == IEEE80211_M_MONITOR) { 1339 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1340 (IFF_UP | IFF_RUNNING)) 1341 rum_set_chan(sc, ic->ic_ibss_chan); 1342 error = 0; 1343 } 1344 break; 1345 1346 default: 1347 error = ieee80211_ioctl(ifp, cmd, data); 1348 } 1349 1350 if (error == ENETRESET) { 1351 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1352 (IFF_UP | IFF_RUNNING)) 1353 rum_init(ifp); 1354 error = 0; 1355 } 1356 1357 splx(s); 1358 1359 usbd_ref_decr(sc->sc_udev); 1360 1361 return error; 1362 } 1363 1364 void 1365 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1366 { 1367 usb_device_request_t req; 1368 usbd_status error; 1369 1370 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1371 req.bRequest = RT2573_READ_EEPROM; 1372 USETW(req.wValue, 0); 1373 USETW(req.wIndex, addr); 1374 USETW(req.wLength, len); 1375 1376 error = usbd_do_request(sc->sc_udev, &req, buf); 1377 if (error != 0) { 1378 printf("%s: could not read EEPROM: %s\n", 1379 sc->sc_dev.dv_xname, usbd_errstr(error)); 1380 } 1381 } 1382 1383 uint32_t 1384 rum_read(struct rum_softc *sc, uint16_t reg) 1385 { 1386 uint32_t val; 1387 1388 rum_read_multi(sc, reg, &val, sizeof val); 1389 1390 return letoh32(val); 1391 } 1392 1393 void 1394 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1395 { 1396 usb_device_request_t req; 1397 usbd_status error; 1398 1399 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1400 req.bRequest = RT2573_READ_MULTI_MAC; 1401 USETW(req.wValue, 0); 1402 USETW(req.wIndex, reg); 1403 USETW(req.wLength, len); 1404 1405 error = usbd_do_request(sc->sc_udev, &req, buf); 1406 if (error != 0) { 1407 printf("%s: could not multi read MAC register: %s\n", 1408 sc->sc_dev.dv_xname, usbd_errstr(error)); 1409 } 1410 } 1411 1412 void 1413 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1414 { 1415 uint32_t tmp = htole32(val); 1416 1417 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1418 } 1419 1420 void 1421 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1422 { 1423 usb_device_request_t req; 1424 usbd_status error; 1425 int offset; 1426 1427 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1428 req.bRequest = RT2573_WRITE_MULTI_MAC; 1429 USETW(req.wValue, 0); 1430 1431 /* write at most 64 bytes at a time */ 1432 for (offset = 0; offset < len; offset += 64) { 1433 USETW(req.wIndex, reg + offset); 1434 USETW(req.wLength, MIN(len - offset, 64)); 1435 1436 error = usbd_do_request(sc->sc_udev, &req, buf + offset); 1437 if (error != 0) { 1438 printf("%s: could not multi write MAC register: %s\n", 1439 sc->sc_dev.dv_xname, usbd_errstr(error)); 1440 } 1441 } 1442 } 1443 1444 void 1445 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1446 { 1447 uint32_t tmp; 1448 int ntries; 1449 1450 for (ntries = 0; ntries < 5; ntries++) { 1451 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1452 break; 1453 } 1454 if (ntries == 5) { 1455 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 1456 return; 1457 } 1458 1459 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1460 rum_write(sc, RT2573_PHY_CSR3, tmp); 1461 } 1462 1463 uint8_t 1464 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1465 { 1466 uint32_t val; 1467 int ntries; 1468 1469 for (ntries = 0; ntries < 5; ntries++) { 1470 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1471 break; 1472 } 1473 if (ntries == 5) { 1474 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1475 return 0; 1476 } 1477 1478 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1479 rum_write(sc, RT2573_PHY_CSR3, val); 1480 1481 for (ntries = 0; ntries < 100; ntries++) { 1482 val = rum_read(sc, RT2573_PHY_CSR3); 1483 if (!(val & RT2573_BBP_BUSY)) 1484 return val & 0xff; 1485 DELAY(1); 1486 } 1487 1488 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1489 return 0; 1490 } 1491 1492 void 1493 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1494 { 1495 uint32_t tmp; 1496 int ntries; 1497 1498 for (ntries = 0; ntries < 5; ntries++) { 1499 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1500 break; 1501 } 1502 if (ntries == 5) { 1503 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 1504 return; 1505 } 1506 1507 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1508 (reg & 3); 1509 rum_write(sc, RT2573_PHY_CSR4, tmp); 1510 1511 /* remember last written value in sc */ 1512 sc->rf_regs[reg] = val; 1513 1514 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1515 } 1516 1517 void 1518 rum_select_antenna(struct rum_softc *sc) 1519 { 1520 uint8_t bbp4, bbp77; 1521 uint32_t tmp; 1522 1523 bbp4 = rum_bbp_read(sc, 4); 1524 bbp77 = rum_bbp_read(sc, 77); 1525 1526 /* TBD */ 1527 1528 /* make sure Rx is disabled before switching antenna */ 1529 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1530 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1531 1532 rum_bbp_write(sc, 4, bbp4); 1533 rum_bbp_write(sc, 77, bbp77); 1534 1535 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1536 } 1537 1538 /* 1539 * Enable multi-rate retries for frames sent at OFDM rates. 1540 * In 802.11b/g mode, allow fallback to CCK rates. 1541 */ 1542 void 1543 rum_enable_mrr(struct rum_softc *sc) 1544 { 1545 struct ieee80211com *ic = &sc->sc_ic; 1546 uint32_t tmp; 1547 1548 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1549 1550 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1551 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 1552 tmp |= RT2573_MRR_CCK_FALLBACK; 1553 tmp |= RT2573_MRR_ENABLED; 1554 1555 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1556 } 1557 1558 void 1559 rum_set_txpreamble(struct rum_softc *sc) 1560 { 1561 uint32_t tmp; 1562 1563 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1564 1565 tmp &= ~RT2573_SHORT_PREAMBLE; 1566 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1567 tmp |= RT2573_SHORT_PREAMBLE; 1568 1569 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1570 } 1571 1572 void 1573 rum_set_basicrates(struct rum_softc *sc) 1574 { 1575 struct ieee80211com *ic = &sc->sc_ic; 1576 1577 /* update basic rate set */ 1578 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1579 /* 11b basic rates: 1, 2Mbps */ 1580 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1581 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1582 /* 11a basic rates: 6, 12, 24Mbps */ 1583 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1584 } else { 1585 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1586 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1587 } 1588 } 1589 1590 /* 1591 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1592 * driver. 1593 */ 1594 void 1595 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1596 { 1597 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1598 uint32_t tmp; 1599 1600 /* update all BBP registers that depend on the band */ 1601 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1602 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1603 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1604 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1605 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1606 } 1607 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1608 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1609 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1610 } 1611 1612 sc->bbp17 = bbp17; 1613 rum_bbp_write(sc, 17, bbp17); 1614 rum_bbp_write(sc, 96, bbp96); 1615 rum_bbp_write(sc, 104, bbp104); 1616 1617 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1618 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1619 rum_bbp_write(sc, 75, 0x80); 1620 rum_bbp_write(sc, 86, 0x80); 1621 rum_bbp_write(sc, 88, 0x80); 1622 } 1623 1624 rum_bbp_write(sc, 35, bbp35); 1625 rum_bbp_write(sc, 97, bbp97); 1626 rum_bbp_write(sc, 98, bbp98); 1627 1628 tmp = rum_read(sc, RT2573_PHY_CSR0); 1629 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1630 if (IEEE80211_IS_CHAN_2GHZ(c)) 1631 tmp |= RT2573_PA_PE_2GHZ; 1632 else 1633 tmp |= RT2573_PA_PE_5GHZ; 1634 rum_write(sc, RT2573_PHY_CSR0, tmp); 1635 1636 /* 802.11a uses a 16 microseconds short interframe space */ 1637 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1638 } 1639 1640 void 1641 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1642 { 1643 struct ieee80211com *ic = &sc->sc_ic; 1644 const struct rfprog *rfprog; 1645 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1646 int8_t power; 1647 u_int i, chan; 1648 1649 chan = ieee80211_chan2ieee(ic, c); 1650 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1651 return; 1652 1653 /* select the appropriate RF settings based on what EEPROM says */ 1654 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1655 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1656 1657 /* find the settings for this channel (we know it exists) */ 1658 for (i = 0; rfprog[i].chan != chan; i++); 1659 1660 power = sc->txpow[i]; 1661 if (power < 0) { 1662 bbp94 += power; 1663 power = 0; 1664 } else if (power > 31) { 1665 bbp94 += power - 31; 1666 power = 31; 1667 } 1668 1669 /* 1670 * If we are switching from the 2GHz band to the 5GHz band or 1671 * vice-versa, BBP registers need to be reprogrammed. 1672 */ 1673 if (c->ic_flags != sc->sc_curchan->ic_flags) { 1674 rum_select_band(sc, c); 1675 rum_select_antenna(sc); 1676 } 1677 sc->sc_curchan = c; 1678 1679 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1680 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1681 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1682 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1683 1684 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1685 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1686 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1687 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1688 1689 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1690 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1691 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1692 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1693 1694 DELAY(10); 1695 1696 /* enable smart mode for MIMO-capable RFs */ 1697 bbp3 = rum_bbp_read(sc, 3); 1698 1699 bbp3 &= ~RT2573_SMART_MODE; 1700 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1701 bbp3 |= RT2573_SMART_MODE; 1702 1703 rum_bbp_write(sc, 3, bbp3); 1704 1705 if (bbp94 != RT2573_BBPR94_DEFAULT) 1706 rum_bbp_write(sc, 94, bbp94); 1707 } 1708 1709 /* 1710 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1711 * and HostAP operating modes. 1712 */ 1713 void 1714 rum_enable_tsf_sync(struct rum_softc *sc) 1715 { 1716 struct ieee80211com *ic = &sc->sc_ic; 1717 uint32_t tmp; 1718 1719 #ifndef IEEE80211_STA_ONLY 1720 if (ic->ic_opmode != IEEE80211_M_STA) { 1721 /* 1722 * Change default 16ms TBTT adjustment to 8ms. 1723 * Must be done before enabling beacon generation. 1724 */ 1725 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1726 } 1727 #endif 1728 1729 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1730 1731 /* set beacon interval (in 1/16ms unit) */ 1732 tmp |= ic->ic_bss->ni_intval * 16; 1733 1734 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1735 if (ic->ic_opmode == IEEE80211_M_STA) 1736 tmp |= RT2573_TSF_MODE(1); 1737 #ifndef IEEE80211_STA_ONLY 1738 else 1739 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1740 #endif 1741 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1742 } 1743 1744 void 1745 rum_update_slot(struct rum_softc *sc) 1746 { 1747 struct ieee80211com *ic = &sc->sc_ic; 1748 uint8_t slottime; 1749 uint32_t tmp; 1750 1751 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 1752 IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT; 1753 1754 tmp = rum_read(sc, RT2573_MAC_CSR9); 1755 tmp = (tmp & ~0xff) | slottime; 1756 rum_write(sc, RT2573_MAC_CSR9, tmp); 1757 1758 DPRINTF(("setting slot time to %uus\n", slottime)); 1759 } 1760 1761 void 1762 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1763 { 1764 uint32_t tmp; 1765 1766 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1767 rum_write(sc, RT2573_MAC_CSR4, tmp); 1768 1769 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1770 rum_write(sc, RT2573_MAC_CSR5, tmp); 1771 } 1772 1773 void 1774 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1775 { 1776 uint32_t tmp; 1777 1778 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1779 rum_write(sc, RT2573_MAC_CSR2, tmp); 1780 1781 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1782 rum_write(sc, RT2573_MAC_CSR3, tmp); 1783 } 1784 1785 void 1786 rum_update_promisc(struct rum_softc *sc) 1787 { 1788 struct ifnet *ifp = &sc->sc_ic.ic_if; 1789 uint32_t tmp; 1790 1791 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1792 1793 tmp &= ~RT2573_DROP_NOT_TO_ME; 1794 if (!(ifp->if_flags & IFF_PROMISC)) 1795 tmp |= RT2573_DROP_NOT_TO_ME; 1796 1797 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1798 1799 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1800 "entering" : "leaving")); 1801 } 1802 1803 const char * 1804 rum_get_rf(int rev) 1805 { 1806 switch (rev) { 1807 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1808 case RT2573_RF_2528: return "RT2528"; 1809 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1810 case RT2573_RF_5226: return "RT5226"; 1811 default: return "unknown"; 1812 } 1813 } 1814 1815 void 1816 rum_read_eeprom(struct rum_softc *sc) 1817 { 1818 struct ieee80211com *ic = &sc->sc_ic; 1819 uint16_t val; 1820 #ifdef RUM_DEBUG 1821 int i; 1822 #endif 1823 1824 /* read MAC/BBP type */ 1825 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1826 sc->macbbp_rev = letoh16(val); 1827 1828 /* read MAC address */ 1829 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1830 1831 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1832 val = letoh16(val); 1833 sc->rf_rev = (val >> 11) & 0x1f; 1834 sc->hw_radio = (val >> 10) & 0x1; 1835 sc->rx_ant = (val >> 4) & 0x3; 1836 sc->tx_ant = (val >> 2) & 0x3; 1837 sc->nb_ant = val & 0x3; 1838 1839 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1840 1841 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1842 val = letoh16(val); 1843 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1844 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1845 1846 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1847 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1848 1849 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1850 val = letoh16(val); 1851 if ((val & 0xff) != 0xff) 1852 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1853 1854 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1855 val = letoh16(val); 1856 if ((val & 0xff) != 0xff) 1857 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1858 1859 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1860 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1861 1862 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1863 val = letoh16(val); 1864 if ((val & 0xff) != 0xff) 1865 sc->rffreq = val & 0xff; 1866 1867 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1868 1869 /* read Tx power for all a/b/g channels */ 1870 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1871 /* XXX default Tx power for 802.11a channels */ 1872 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1873 #ifdef RUM_DEBUG 1874 for (i = 0; i < 14; i++) 1875 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1876 #endif 1877 1878 /* read default values for BBP registers */ 1879 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1880 #ifdef RUM_DEBUG 1881 for (i = 0; i < 14; i++) { 1882 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1883 continue; 1884 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1885 sc->bbp_prom[i].val)); 1886 } 1887 #endif 1888 } 1889 1890 int 1891 rum_bbp_init(struct rum_softc *sc) 1892 { 1893 int i, ntries; 1894 1895 /* wait for BBP to be ready */ 1896 for (ntries = 0; ntries < 100; ntries++) { 1897 const uint8_t val = rum_bbp_read(sc, 0); 1898 if (val != 0 && val != 0xff) 1899 break; 1900 DELAY(1000); 1901 } 1902 if (ntries == 100) { 1903 printf("%s: timeout waiting for BBP\n", 1904 sc->sc_dev.dv_xname); 1905 return EIO; 1906 } 1907 1908 /* initialize BBP registers to default values */ 1909 for (i = 0; i < nitems(rum_def_bbp); i++) 1910 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1911 1912 /* write vendor-specific BBP values (from EEPROM) */ 1913 for (i = 0; i < 16; i++) { 1914 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1915 continue; 1916 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1917 } 1918 1919 return 0; 1920 } 1921 1922 int 1923 rum_init(struct ifnet *ifp) 1924 { 1925 struct rum_softc *sc = ifp->if_softc; 1926 struct ieee80211com *ic = &sc->sc_ic; 1927 uint32_t tmp; 1928 usbd_status error; 1929 int i, ntries; 1930 1931 rum_stop(ifp, 0); 1932 1933 /* initialize MAC registers to default values */ 1934 for (i = 0; i < nitems(rum_def_mac); i++) 1935 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1936 1937 /* set host ready */ 1938 rum_write(sc, RT2573_MAC_CSR1, 3); 1939 rum_write(sc, RT2573_MAC_CSR1, 0); 1940 1941 /* wait for BBP/RF to wakeup */ 1942 for (ntries = 0; ntries < 1000; ntries++) { 1943 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1944 break; 1945 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1946 DELAY(1000); 1947 } 1948 if (ntries == 1000) { 1949 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1950 sc->sc_dev.dv_xname); 1951 error = ENODEV; 1952 goto fail; 1953 } 1954 1955 if ((error = rum_bbp_init(sc)) != 0) 1956 goto fail; 1957 1958 /* select default channel */ 1959 sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1960 rum_select_band(sc, sc->sc_curchan); 1961 rum_select_antenna(sc); 1962 rum_set_chan(sc, sc->sc_curchan); 1963 1964 /* clear STA registers */ 1965 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1966 1967 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1968 rum_set_macaddr(sc, ic->ic_myaddr); 1969 1970 /* initialize ASIC */ 1971 rum_write(sc, RT2573_MAC_CSR1, 4); 1972 1973 /* 1974 * Allocate xfer for AMRR statistics requests. 1975 */ 1976 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 1977 if (sc->amrr_xfer == NULL) { 1978 printf("%s: could not allocate AMRR xfer\n", 1979 sc->sc_dev.dv_xname); 1980 goto fail; 1981 } 1982 1983 /* 1984 * Open Tx and Rx USB bulk pipes. 1985 */ 1986 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 1987 &sc->sc_tx_pipeh); 1988 if (error != 0) { 1989 printf("%s: could not open Tx pipe: %s\n", 1990 sc->sc_dev.dv_xname, usbd_errstr(error)); 1991 goto fail; 1992 } 1993 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 1994 &sc->sc_rx_pipeh); 1995 if (error != 0) { 1996 printf("%s: could not open Rx pipe: %s\n", 1997 sc->sc_dev.dv_xname, usbd_errstr(error)); 1998 goto fail; 1999 } 2000 2001 /* 2002 * Allocate Tx and Rx xfer queues. 2003 */ 2004 error = rum_alloc_tx_list(sc); 2005 if (error != 0) { 2006 printf("%s: could not allocate Tx list\n", 2007 sc->sc_dev.dv_xname); 2008 goto fail; 2009 } 2010 error = rum_alloc_rx_list(sc); 2011 if (error != 0) { 2012 printf("%s: could not allocate Rx list\n", 2013 sc->sc_dev.dv_xname); 2014 goto fail; 2015 } 2016 2017 /* 2018 * Start up the receive pipe. 2019 */ 2020 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2021 struct rum_rx_data *data = &sc->rx_data[i]; 2022 2023 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2024 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2025 error = usbd_transfer(data->xfer); 2026 if (error != 0 && error != USBD_IN_PROGRESS) { 2027 printf("%s: could not queue Rx transfer\n", 2028 sc->sc_dev.dv_xname); 2029 goto fail; 2030 } 2031 } 2032 2033 /* update Rx filter */ 2034 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2035 2036 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2037 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2038 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2039 RT2573_DROP_ACKCTS; 2040 #ifndef IEEE80211_STA_ONLY 2041 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2042 #endif 2043 tmp |= RT2573_DROP_TODS; 2044 if (!(ifp->if_flags & IFF_PROMISC)) 2045 tmp |= RT2573_DROP_NOT_TO_ME; 2046 } 2047 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2048 2049 ifq_clr_oactive(&ifp->if_snd); 2050 ifp->if_flags |= IFF_RUNNING; 2051 2052 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2053 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2054 else 2055 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2056 2057 return 0; 2058 2059 fail: rum_stop(ifp, 1); 2060 return error; 2061 } 2062 2063 void 2064 rum_stop(struct ifnet *ifp, int disable) 2065 { 2066 struct rum_softc *sc = ifp->if_softc; 2067 struct ieee80211com *ic = &sc->sc_ic; 2068 uint32_t tmp; 2069 2070 sc->sc_tx_timer = 0; 2071 ifp->if_timer = 0; 2072 ifp->if_flags &= ~IFF_RUNNING; 2073 ifq_clr_oactive(&ifp->if_snd); 2074 2075 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2076 2077 /* disable Rx */ 2078 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2079 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2080 2081 /* reset ASIC */ 2082 rum_write(sc, RT2573_MAC_CSR1, 3); 2083 rum_write(sc, RT2573_MAC_CSR1, 0); 2084 2085 if (sc->amrr_xfer != NULL) { 2086 usbd_free_xfer(sc->amrr_xfer); 2087 sc->amrr_xfer = NULL; 2088 } 2089 if (sc->sc_rx_pipeh != NULL) { 2090 usbd_close_pipe(sc->sc_rx_pipeh); 2091 sc->sc_rx_pipeh = NULL; 2092 } 2093 if (sc->sc_tx_pipeh != NULL) { 2094 usbd_close_pipe(sc->sc_tx_pipeh); 2095 sc->sc_tx_pipeh = NULL; 2096 } 2097 2098 rum_free_rx_list(sc); 2099 rum_free_tx_list(sc); 2100 } 2101 2102 int 2103 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2104 { 2105 usb_device_request_t req; 2106 uint16_t reg = RT2573_MCU_CODE_BASE; 2107 usbd_status error; 2108 2109 /* copy firmware image into NIC */ 2110 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2111 rum_write(sc, reg, UGETDW(ucode)); 2112 2113 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2114 req.bRequest = RT2573_MCU_CNTL; 2115 USETW(req.wValue, RT2573_MCU_RUN); 2116 USETW(req.wIndex, 0); 2117 USETW(req.wLength, 0); 2118 2119 error = usbd_do_request(sc->sc_udev, &req, NULL); 2120 if (error != 0) { 2121 printf("%s: could not run firmware: %s\n", 2122 sc->sc_dev.dv_xname, usbd_errstr(error)); 2123 } 2124 return error; 2125 } 2126 2127 #ifndef IEEE80211_STA_ONLY 2128 int 2129 rum_prepare_beacon(struct rum_softc *sc) 2130 { 2131 struct ieee80211com *ic = &sc->sc_ic; 2132 struct rum_tx_desc desc; 2133 struct mbuf *m0; 2134 int rate; 2135 2136 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); 2137 if (m0 == NULL) { 2138 printf("%s: could not allocate beacon frame\n", 2139 sc->sc_dev.dv_xname); 2140 return ENOBUFS; 2141 } 2142 2143 /* send beacons at the lowest available rate */ 2144 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2145 2146 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2147 m0->m_pkthdr.len, rate); 2148 2149 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2150 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2151 2152 /* copy beacon header and payload into NIC memory */ 2153 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2154 m0->m_pkthdr.len); 2155 2156 m_freem(m0); 2157 2158 return 0; 2159 } 2160 #endif 2161 2162 void 2163 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2164 { 2165 /* start with lowest Tx rate */ 2166 ni->ni_txrate = 0; 2167 } 2168 2169 void 2170 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2171 { 2172 int i; 2173 2174 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2175 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2176 2177 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2178 2179 /* set rate to some reasonable initial value */ 2180 for (i = ni->ni_rates.rs_nrates - 1; 2181 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2182 i--); 2183 ni->ni_txrate = i; 2184 2185 if (!usbd_is_dying(sc->sc_udev)) 2186 timeout_add_sec(&sc->amrr_to, 1); 2187 } 2188 2189 void 2190 rum_amrr_timeout(void *arg) 2191 { 2192 struct rum_softc *sc = arg; 2193 usb_device_request_t req; 2194 2195 if (usbd_is_dying(sc->sc_udev)) 2196 return; 2197 2198 /* 2199 * Asynchronously read statistic registers (cleared by read). 2200 */ 2201 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2202 req.bRequest = RT2573_READ_MULTI_MAC; 2203 USETW(req.wValue, 0); 2204 USETW(req.wIndex, RT2573_STA_CSR0); 2205 USETW(req.wLength, sizeof sc->sta); 2206 2207 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2208 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2209 rum_amrr_update); 2210 (void)usbd_transfer(sc->amrr_xfer); 2211 } 2212 2213 void 2214 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2215 usbd_status status) 2216 { 2217 struct rum_softc *sc = (struct rum_softc *)priv; 2218 struct ifnet *ifp = &sc->sc_ic.ic_if; 2219 2220 if (status != USBD_NORMAL_COMPLETION) { 2221 printf("%s: could not retrieve Tx statistics - cancelling " 2222 "automatic rate control\n", sc->sc_dev.dv_xname); 2223 return; 2224 } 2225 2226 /* count TX retry-fail as Tx errors */ 2227 ifp->if_oerrors += letoh32(sc->sta[5]) >> 16; 2228 2229 sc->amn.amn_retrycnt = 2230 (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2231 (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2232 (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */ 2233 2234 sc->amn.amn_txcnt = 2235 sc->amn.amn_retrycnt + 2236 (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2237 2238 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2239 2240 if (!usbd_is_dying(sc->sc_udev)) 2241 timeout_add_sec(&sc->amrr_to, 1); 2242 } 2243