1 /* $OpenBSD: usb.c,v 1.130 2022/07/02 08:50:42 visa Exp $ */ 2 /* $NetBSD: usb.c,v 1.77 2003/01/01 00:10:26 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1998, 2002 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Lennart Augustsson (lennart@augustsson.net) at 10 * Carlstedt Research & Technology. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * USB specifications and other documentation can be found at 36 * https://www.usb.org/documents 37 */ 38 39 #include "ohci.h" 40 #include "uhci.h" 41 #include "ehci.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/device.h> 48 #include <sys/timeout.h> 49 #include <sys/kthread.h> 50 #include <sys/conf.h> 51 #include <sys/fcntl.h> 52 #include <sys/signalvar.h> 53 #include <sys/time.h> 54 #include <sys/rwlock.h> 55 56 #include <dev/usb/usb.h> 57 #include <dev/usb/usbdi.h> 58 #include <dev/usb/usbdi_util.h> 59 60 #include <machine/bus.h> 61 62 #include <dev/usb/usbdivar.h> 63 #include <dev/usb/usb_mem.h> 64 #include <dev/usb/usbpcap.h> 65 66 #ifdef USB_DEBUG 67 #define DPRINTF(x) do { if (usbdebug) printf x; } while (0) 68 #define DPRINTFN(n,x) do { if (usbdebug>(n)) printf x; } while (0) 69 int usbdebug = 0; 70 #if defined(UHCI_DEBUG) && NUHCI > 0 71 extern int uhcidebug; 72 #endif 73 #if defined(OHCI_DEBUG) && NOHCI > 0 74 extern int ohcidebug; 75 #endif 76 #if defined(EHCI_DEBUG) && NEHCI > 0 77 extern int ehcidebug; 78 #endif 79 /* 80 * 0 - do usual exploration 81 * !0 - do no exploration 82 */ 83 int usb_noexplore = 0; 84 #else 85 #define DPRINTF(x) 86 #define DPRINTFN(n,x) 87 #endif 88 89 struct usb_softc { 90 struct device sc_dev; /* base device */ 91 struct usbd_bus *sc_bus; /* USB controller */ 92 struct usbd_port sc_port; /* dummy port for root hub */ 93 int sc_speed; 94 95 struct usb_task sc_explore_task; 96 97 struct timeval sc_ptime; 98 }; 99 100 struct rwlock usbpalock; 101 102 TAILQ_HEAD(, usb_task) usb_abort_tasks; 103 TAILQ_HEAD(, usb_task) usb_explore_tasks; 104 TAILQ_HEAD(, usb_task) usb_generic_tasks; 105 106 static int usb_nbuses = 0; 107 static int usb_run_tasks, usb_run_abort_tasks; 108 int explore_pending; 109 const char *usbrev_str[] = USBREV_STR; 110 111 void usb_explore(void *); 112 void usb_create_task_threads(void *); 113 void usb_task_thread(void *); 114 struct proc *usb_task_thread_proc = NULL; 115 void usb_abort_task_thread(void *); 116 struct proc *usb_abort_task_thread_proc = NULL; 117 118 void usb_fill_udc_task(void *); 119 void usb_fill_udf_task(void *); 120 121 int usb_match(struct device *, void *, void *); 122 void usb_attach(struct device *, struct device *, void *); 123 int usb_detach(struct device *, int); 124 int usb_activate(struct device *, int); 125 126 int usb_attach_roothub(struct usb_softc *); 127 void usb_detach_roothub(struct usb_softc *); 128 129 struct cfdriver usb_cd = { 130 NULL, "usb", DV_DULL 131 }; 132 133 const struct cfattach usb_ca = { 134 sizeof(struct usb_softc), usb_match, usb_attach, usb_detach, 135 usb_activate, 136 }; 137 138 int 139 usb_match(struct device *parent, void *match, void *aux) 140 { 141 return (1); 142 } 143 144 void 145 usb_attach(struct device *parent, struct device *self, void *aux) 146 { 147 struct usb_softc *sc = (struct usb_softc *)self; 148 int usbrev; 149 150 if (usb_nbuses == 0) { 151 rw_init(&usbpalock, "usbpalock"); 152 TAILQ_INIT(&usb_abort_tasks); 153 TAILQ_INIT(&usb_explore_tasks); 154 TAILQ_INIT(&usb_generic_tasks); 155 usb_run_tasks = usb_run_abort_tasks = 1; 156 kthread_create_deferred(usb_create_task_threads, NULL); 157 } 158 usb_nbuses++; 159 160 sc->sc_bus = aux; 161 sc->sc_bus->usbctl = self; 162 sc->sc_port.power = USB_MAX_POWER; 163 164 usbrev = sc->sc_bus->usbrev; 165 printf(": USB revision %s", usbrev_str[usbrev]); 166 switch (usbrev) { 167 case USBREV_1_0: 168 case USBREV_1_1: 169 sc->sc_speed = USB_SPEED_FULL; 170 break; 171 case USBREV_2_0: 172 sc->sc_speed = USB_SPEED_HIGH; 173 break; 174 case USBREV_3_0: 175 sc->sc_speed = USB_SPEED_SUPER; 176 break; 177 default: 178 printf(", not supported\n"); 179 sc->sc_bus->dying = 1; 180 return; 181 } 182 printf("\n"); 183 184 #if NBPFILTER > 0 185 sc->sc_bus->bpfif = bpfsattach(&sc->sc_bus->bpf, sc->sc_dev.dv_xname, 186 DLT_USBPCAP, sizeof(struct usbpcap_pkt_hdr)); 187 #endif 188 189 /* Make sure not to use tsleep() if we are cold booting. */ 190 if (cold) 191 sc->sc_bus->use_polling++; 192 193 /* Don't let hub interrupts cause explore until ready. */ 194 sc->sc_bus->flags |= USB_BUS_CONFIG_PENDING; 195 196 /* explore task */ 197 usb_init_task(&sc->sc_explore_task, usb_explore, sc, 198 USB_TASK_TYPE_EXPLORE); 199 200 sc->sc_bus->soft = softintr_establish(IPL_SOFTUSB, 201 sc->sc_bus->methods->soft_intr, sc->sc_bus); 202 if (sc->sc_bus->soft == NULL) { 203 printf("%s: can't register softintr\n", sc->sc_dev.dv_xname); 204 sc->sc_bus->dying = 1; 205 return; 206 } 207 208 if (!usb_attach_roothub(sc)) { 209 struct usbd_device *dev = sc->sc_bus->root_hub; 210 #if 1 211 /* 212 * Turning this code off will delay attachment of USB devices 213 * until the USB task thread is running, which means that 214 * the keyboard will not work until after cold boot. 215 */ 216 if (cold && (sc->sc_dev.dv_cfdata->cf_flags & 1)) 217 dev->hub->explore(sc->sc_bus->root_hub); 218 #endif 219 } 220 221 if (cold) 222 sc->sc_bus->use_polling--; 223 224 if (!sc->sc_bus->dying) { 225 getmicrouptime(&sc->sc_ptime); 226 if (sc->sc_bus->usbrev == USBREV_2_0) 227 explore_pending++; 228 config_pending_incr(); 229 usb_needs_explore(sc->sc_bus->root_hub, 1); 230 } 231 } 232 233 int 234 usb_attach_roothub(struct usb_softc *sc) 235 { 236 struct usbd_device *dev; 237 238 if (usbd_new_device(&sc->sc_dev, sc->sc_bus, 0, sc->sc_speed, 0, 239 &sc->sc_port)) { 240 printf("%s: root hub problem\n", sc->sc_dev.dv_xname); 241 sc->sc_bus->dying = 1; 242 return (1); 243 } 244 245 dev = sc->sc_port.device; 246 if (dev->hub == NULL) { 247 printf("%s: root device is not a hub\n", sc->sc_dev.dv_xname); 248 sc->sc_bus->dying = 1; 249 return (1); 250 } 251 sc->sc_bus->root_hub = dev; 252 253 return (0); 254 } 255 256 void 257 usb_detach_roothub(struct usb_softc *sc) 258 { 259 /* 260 * To avoid races with the usb task thread, mark the root hub 261 * as disconnecting and schedule an exploration task to detach 262 * it. 263 */ 264 sc->sc_bus->flags |= USB_BUS_DISCONNECTING; 265 /* 266 * Reset the dying flag in case it has been set by the interrupt 267 * handler when unplugging an HC card otherwise the task wont be 268 * scheduled. This is safe since a dead HC should not trigger 269 * new interrupt. 270 */ 271 sc->sc_bus->dying = 0; 272 usb_needs_explore(sc->sc_bus->root_hub, 0); 273 274 usb_wait_task(sc->sc_bus->root_hub, &sc->sc_explore_task); 275 276 sc->sc_bus->root_hub = NULL; 277 } 278 279 void 280 usb_create_task_threads(void *arg) 281 { 282 if (kthread_create(usb_abort_task_thread, NULL, 283 &usb_abort_task_thread_proc, "usbatsk")) 284 panic("unable to create usb abort task thread"); 285 286 if (kthread_create(usb_task_thread, NULL, 287 &usb_task_thread_proc, "usbtask")) 288 panic("unable to create usb task thread"); 289 } 290 291 /* 292 * Add a task to be performed by the task thread. This function can be 293 * called from any context and the task will be executed in a process 294 * context ASAP. 295 */ 296 void 297 usb_add_task(struct usbd_device *dev, struct usb_task *task) 298 { 299 int s; 300 301 /* 302 * If the thread detaching ``dev'' is sleeping, waiting 303 * for all submitted transfers to finish, we must be able 304 * to enqueue abort tasks. Otherwise timeouts can't give 305 * back submitted transfers to the stack. 306 */ 307 if (usbd_is_dying(dev) && (task->type != USB_TASK_TYPE_ABORT)) 308 return; 309 310 DPRINTFN(2,("%s: task=%p state=%d type=%d\n", __func__, task, 311 task->state, task->type)); 312 313 s = splusb(); 314 if (!(task->state & USB_TASK_STATE_ONQ)) { 315 switch (task->type) { 316 case USB_TASK_TYPE_ABORT: 317 TAILQ_INSERT_TAIL(&usb_abort_tasks, task, next); 318 break; 319 case USB_TASK_TYPE_EXPLORE: 320 TAILQ_INSERT_TAIL(&usb_explore_tasks, task, next); 321 break; 322 case USB_TASK_TYPE_GENERIC: 323 TAILQ_INSERT_TAIL(&usb_generic_tasks, task, next); 324 break; 325 } 326 task->state |= USB_TASK_STATE_ONQ; 327 task->dev = dev; 328 } 329 if (task->type == USB_TASK_TYPE_ABORT) 330 wakeup(&usb_run_abort_tasks); 331 else 332 wakeup(&usb_run_tasks); 333 splx(s); 334 } 335 336 void 337 usb_rem_task(struct usbd_device *dev, struct usb_task *task) 338 { 339 int s; 340 341 if (!(task->state & USB_TASK_STATE_ONQ)) 342 return; 343 344 DPRINTFN(2,("%s: task=%p state=%d type=%d\n", __func__, task, 345 task->state, task->type)); 346 347 s = splusb(); 348 349 switch (task->type) { 350 case USB_TASK_TYPE_ABORT: 351 TAILQ_REMOVE(&usb_abort_tasks, task, next); 352 break; 353 case USB_TASK_TYPE_EXPLORE: 354 TAILQ_REMOVE(&usb_explore_tasks, task, next); 355 break; 356 case USB_TASK_TYPE_GENERIC: 357 TAILQ_REMOVE(&usb_generic_tasks, task, next); 358 break; 359 } 360 task->state &= ~USB_TASK_STATE_ONQ; 361 if (task->state == USB_TASK_STATE_NONE) 362 wakeup(task); 363 364 splx(s); 365 } 366 367 void 368 usb_wait_task(struct usbd_device *dev, struct usb_task *task) 369 { 370 int s; 371 372 DPRINTFN(2,("%s: task=%p state=%d type=%d\n", __func__, task, 373 task->state, task->type)); 374 375 if (task->state == USB_TASK_STATE_NONE) 376 return; 377 378 s = splusb(); 379 while (task->state != USB_TASK_STATE_NONE) { 380 DPRINTF(("%s: waiting for task to complete\n", __func__)); 381 tsleep_nsec(task, PWAIT, "endtask", INFSLP); 382 } 383 splx(s); 384 } 385 386 void 387 usb_rem_wait_task(struct usbd_device *dev, struct usb_task *task) 388 { 389 usb_rem_task(dev, task); 390 usb_wait_task(dev, task); 391 } 392 393 void 394 usb_task_thread(void *arg) 395 { 396 struct usb_task *task; 397 int s; 398 399 DPRINTF(("usb_task_thread: start\n")); 400 401 s = splusb(); 402 while (usb_run_tasks) { 403 if ((task = TAILQ_FIRST(&usb_explore_tasks)) != NULL) 404 TAILQ_REMOVE(&usb_explore_tasks, task, next); 405 else if ((task = TAILQ_FIRST(&usb_generic_tasks)) != NULL) 406 TAILQ_REMOVE(&usb_generic_tasks, task, next); 407 else { 408 tsleep_nsec(&usb_run_tasks, PWAIT, "usbtsk", INFSLP); 409 continue; 410 } 411 /* 412 * Set the state run bit before clearing the onq bit. 413 * This avoids state == none between dequeue and 414 * execution, which could cause usb_wait_task() to do 415 * the wrong thing. 416 */ 417 task->state |= USB_TASK_STATE_RUN; 418 task->state &= ~USB_TASK_STATE_ONQ; 419 /* Don't actually execute the task if dying. */ 420 if (!usbd_is_dying(task->dev)) { 421 splx(s); 422 task->fun(task->arg); 423 s = splusb(); 424 } 425 task->state &= ~USB_TASK_STATE_RUN; 426 if (task->state == USB_TASK_STATE_NONE) 427 wakeup(task); 428 } 429 splx(s); 430 431 kthread_exit(0); 432 } 433 434 /* 435 * This thread is ONLY for the HCI drivers to be able to abort xfers. 436 * Synchronous xfers sleep the task thread, so the aborts need to happen 437 * in a different thread. 438 */ 439 void 440 usb_abort_task_thread(void *arg) 441 { 442 struct usb_task *task; 443 int s; 444 445 DPRINTF(("usb_xfer_abort_thread: start\n")); 446 447 s = splusb(); 448 while (usb_run_abort_tasks) { 449 if ((task = TAILQ_FIRST(&usb_abort_tasks)) != NULL) 450 TAILQ_REMOVE(&usb_abort_tasks, task, next); 451 else { 452 tsleep_nsec(&usb_run_abort_tasks, PWAIT, "usbatsk", 453 INFSLP); 454 continue; 455 } 456 /* 457 * Set the state run bit before clearing the onq bit. 458 * This avoids state == none between dequeue and 459 * execution, which could cause usb_wait_task() to do 460 * the wrong thing. 461 */ 462 task->state |= USB_TASK_STATE_RUN; 463 task->state &= ~USB_TASK_STATE_ONQ; 464 splx(s); 465 task->fun(task->arg); 466 s = splusb(); 467 task->state &= ~USB_TASK_STATE_RUN; 468 if (task->state == USB_TASK_STATE_NONE) 469 wakeup(task); 470 } 471 splx(s); 472 473 kthread_exit(0); 474 } 475 476 int 477 usbctlprint(void *aux, const char *pnp) 478 { 479 /* only "usb"es can attach to host controllers */ 480 if (pnp) 481 printf("usb at %s", pnp); 482 483 return (UNCONF); 484 } 485 486 int 487 usbopen(dev_t dev, int flag, int mode, struct proc *p) 488 { 489 int unit = minor(dev); 490 struct usb_softc *sc; 491 492 if (unit >= usb_cd.cd_ndevs) 493 return (ENXIO); 494 sc = usb_cd.cd_devs[unit]; 495 if (sc == NULL) 496 return (ENXIO); 497 498 if (sc->sc_bus->dying) 499 return (EIO); 500 501 return (0); 502 } 503 504 int 505 usbclose(dev_t dev, int flag, int mode, struct proc *p) 506 { 507 return (0); 508 } 509 510 void 511 usb_fill_udc_task(void *arg) 512 { 513 struct usb_device_cdesc *udc = (struct usb_device_cdesc *)arg; 514 struct usb_softc *sc; 515 struct usbd_device *dev; 516 int addr = udc->udc_addr, cdesc_len; 517 usb_config_descriptor_t *cdesc; 518 519 /* check that the bus and device are still present */ 520 if (udc->udc_bus >= usb_cd.cd_ndevs) 521 return; 522 sc = usb_cd.cd_devs[udc->udc_bus]; 523 if (sc == NULL) 524 return; 525 dev = sc->sc_bus->devices[udc->udc_addr]; 526 if (dev == NULL) 527 return; 528 529 cdesc = usbd_get_cdesc(sc->sc_bus->devices[addr], 530 udc->udc_config_index, &cdesc_len); 531 if (cdesc == NULL) 532 return; 533 udc->udc_desc = *cdesc; 534 free(cdesc, M_TEMP, cdesc_len); 535 } 536 537 void 538 usb_fill_udf_task(void *arg) 539 { 540 struct usb_device_fdesc *udf = (struct usb_device_fdesc *)arg; 541 struct usb_softc *sc; 542 struct usbd_device *dev; 543 int addr = udf->udf_addr; 544 usb_config_descriptor_t *cdesc; 545 546 /* check that the bus and device are still present */ 547 if (udf->udf_bus >= usb_cd.cd_ndevs) 548 return; 549 sc = usb_cd.cd_devs[udf->udf_bus]; 550 if (sc == NULL) 551 return; 552 dev = sc->sc_bus->devices[udf->udf_addr]; 553 if (dev == NULL) 554 return; 555 556 cdesc = usbd_get_cdesc(sc->sc_bus->devices[addr], 557 udf->udf_config_index, &udf->udf_size); 558 udf->udf_data = (char *)cdesc; 559 } 560 561 int 562 usbioctl(dev_t devt, u_long cmd, caddr_t data, int flag, struct proc *p) 563 { 564 struct usb_softc *sc; 565 int unit = minor(devt); 566 int error; 567 568 sc = usb_cd.cd_devs[unit]; 569 570 if (sc->sc_bus->dying) 571 return (EIO); 572 573 error = 0; 574 switch (cmd) { 575 #ifdef USB_DEBUG 576 case USB_SETDEBUG: 577 /* only root can access to these debug flags */ 578 if ((error = suser(curproc)) != 0) 579 return (error); 580 if (!(flag & FWRITE)) 581 return (EBADF); 582 usbdebug = ((*(unsigned int *)data) & 0x000000ff); 583 #if defined(UHCI_DEBUG) && NUHCI > 0 584 uhcidebug = ((*(unsigned int *)data) & 0x0000ff00) >> 8; 585 #endif 586 #if defined(OHCI_DEBUG) && NOHCI > 0 587 ohcidebug = ((*(unsigned int *)data) & 0x00ff0000) >> 16; 588 #endif 589 #if defined(EHCI_DEBUG) && NEHCI > 0 590 ehcidebug = ((*(unsigned int *)data) & 0xff000000) >> 24; 591 #endif 592 break; 593 #endif /* USB_DEBUG */ 594 case USB_REQUEST: 595 { 596 struct usb_ctl_request *ur = (void *)data; 597 size_t len = UGETW(ur->ucr_request.wLength), mlen; 598 struct iovec iov; 599 struct uio uio; 600 void *ptr = NULL; 601 int addr = ur->ucr_addr; 602 usbd_status err; 603 604 if (!(flag & FWRITE)) 605 return (EBADF); 606 607 DPRINTF(("%s: USB_REQUEST addr=%d len=%zu\n", __func__, addr, len)); 608 /* Avoid requests that would damage the bus integrity. */ 609 if ((ur->ucr_request.bmRequestType == UT_WRITE_DEVICE && 610 ur->ucr_request.bRequest == UR_SET_ADDRESS) || 611 (ur->ucr_request.bmRequestType == UT_WRITE_DEVICE && 612 ur->ucr_request.bRequest == UR_SET_CONFIG) || 613 (ur->ucr_request.bmRequestType == UT_WRITE_INTERFACE && 614 ur->ucr_request.bRequest == UR_SET_INTERFACE)) 615 return (EINVAL); 616 617 if (len > 32767) 618 return (EINVAL); 619 if (addr < 0 || addr >= USB_MAX_DEVICES) 620 return (EINVAL); 621 if (sc->sc_bus->devices[addr] == NULL) 622 return (ENXIO); 623 if (len != 0) { 624 iov.iov_base = (caddr_t)ur->ucr_data; 625 iov.iov_len = len; 626 uio.uio_iov = &iov; 627 uio.uio_iovcnt = 1; 628 uio.uio_resid = len; 629 uio.uio_offset = 0; 630 uio.uio_segflg = UIO_USERSPACE; 631 uio.uio_rw = 632 ur->ucr_request.bmRequestType & UT_READ ? 633 UIO_READ : UIO_WRITE; 634 uio.uio_procp = p; 635 if ((ptr = malloc(len, M_TEMP, M_NOWAIT)) == NULL) { 636 error = ENOMEM; 637 goto ret; 638 } 639 if (uio.uio_rw == UIO_WRITE) { 640 error = uiomove(ptr, len, &uio); 641 if (error) 642 goto ret; 643 } 644 } 645 err = usbd_do_request_flags(sc->sc_bus->devices[addr], 646 &ur->ucr_request, ptr, ur->ucr_flags, 647 &ur->ucr_actlen, USBD_DEFAULT_TIMEOUT); 648 if (err) { 649 error = EIO; 650 goto ret; 651 } 652 /* Only if USBD_SHORT_XFER_OK is set. */ 653 mlen = len; 654 if (mlen > ur->ucr_actlen) 655 mlen = ur->ucr_actlen; 656 if (mlen != 0) { 657 if (uio.uio_rw == UIO_READ) { 658 error = uiomove(ptr, mlen, &uio); 659 if (error) 660 goto ret; 661 } 662 } 663 ret: 664 free(ptr, M_TEMP, len); 665 return (error); 666 } 667 668 case USB_DEVICEINFO: 669 { 670 struct usb_device_info *di = (void *)data; 671 int addr = di->udi_addr; 672 struct usbd_device *dev; 673 674 if (addr < 1 || addr >= USB_MAX_DEVICES) 675 return (EINVAL); 676 677 dev = sc->sc_bus->devices[addr]; 678 if (dev == NULL) 679 return (ENXIO); 680 681 usbd_fill_deviceinfo(dev, di); 682 break; 683 } 684 685 case USB_DEVICESTATS: 686 *(struct usb_device_stats *)data = sc->sc_bus->stats; 687 break; 688 689 case USB_DEVICE_GET_DDESC: 690 { 691 struct usb_device_ddesc *udd = (struct usb_device_ddesc *)data; 692 int addr = udd->udd_addr; 693 struct usbd_device *dev; 694 695 if (addr < 1 || addr >= USB_MAX_DEVICES) 696 return (EINVAL); 697 698 dev = sc->sc_bus->devices[addr]; 699 if (dev == NULL) 700 return (ENXIO); 701 702 udd->udd_bus = unit; 703 704 udd->udd_desc = *usbd_get_device_descriptor(dev); 705 break; 706 } 707 708 case USB_DEVICE_GET_CDESC: 709 { 710 struct usb_device_cdesc *udc = (struct usb_device_cdesc *)data; 711 int addr = udc->udc_addr; 712 struct usb_task udc_task; 713 714 if (addr < 1 || addr >= USB_MAX_DEVICES) 715 return (EINVAL); 716 if (sc->sc_bus->devices[addr] == NULL) 717 return (ENXIO); 718 719 udc->udc_bus = unit; 720 721 udc->udc_desc.bLength = 0; 722 usb_init_task(&udc_task, usb_fill_udc_task, udc, 723 USB_TASK_TYPE_GENERIC); 724 usb_add_task(sc->sc_bus->root_hub, &udc_task); 725 usb_wait_task(sc->sc_bus->root_hub, &udc_task); 726 if (udc->udc_desc.bLength == 0) 727 return (EINVAL); 728 break; 729 } 730 731 case USB_DEVICE_GET_FDESC: 732 { 733 struct usb_device_fdesc *udf = (struct usb_device_fdesc *)data; 734 int addr = udf->udf_addr; 735 struct usb_task udf_task; 736 struct usb_device_fdesc save_udf; 737 usb_config_descriptor_t *cdesc; 738 struct iovec iov; 739 struct uio uio; 740 size_t len, cdesc_len; 741 742 if (addr < 1 || addr >= USB_MAX_DEVICES) 743 return (EINVAL); 744 if (sc->sc_bus->devices[addr] == NULL) 745 return (ENXIO); 746 747 udf->udf_bus = unit; 748 749 save_udf = *udf; 750 udf->udf_data = NULL; 751 usb_init_task(&udf_task, usb_fill_udf_task, udf, 752 USB_TASK_TYPE_GENERIC); 753 usb_add_task(sc->sc_bus->root_hub, &udf_task); 754 usb_wait_task(sc->sc_bus->root_hub, &udf_task); 755 len = cdesc_len = udf->udf_size; 756 cdesc = (usb_config_descriptor_t *)udf->udf_data; 757 *udf = save_udf; 758 if (cdesc == NULL) 759 return (EINVAL); 760 if (len > udf->udf_size) 761 len = udf->udf_size; 762 iov.iov_base = (caddr_t)udf->udf_data; 763 iov.iov_len = len; 764 uio.uio_iov = &iov; 765 uio.uio_iovcnt = 1; 766 uio.uio_resid = len; 767 uio.uio_offset = 0; 768 uio.uio_segflg = UIO_USERSPACE; 769 uio.uio_rw = UIO_READ; 770 uio.uio_procp = p; 771 error = uiomove((void *)cdesc, len, &uio); 772 free(cdesc, M_TEMP, cdesc_len); 773 return (error); 774 } 775 776 default: 777 return (EINVAL); 778 } 779 return (0); 780 } 781 782 /* 783 * Explore device tree from the root. We need mutual exclusion to this 784 * hub while traversing the device tree, but this is guaranteed since this 785 * function is only called from the task thread, with one exception: 786 * usb_attach() calls this function, but there shouldn't be anything else 787 * trying to explore this hub at that time. 788 */ 789 void 790 usb_explore(void *v) 791 { 792 struct usb_softc *sc = v; 793 struct timeval now, waited; 794 int pwrdly, waited_ms; 795 796 DPRINTFN(2,("%s: %s\n", __func__, sc->sc_dev.dv_xname)); 797 #ifdef USB_DEBUG 798 if (usb_noexplore) 799 return; 800 #endif 801 802 if (sc->sc_bus->dying) 803 return; 804 805 if (sc->sc_bus->flags & USB_BUS_CONFIG_PENDING) { 806 /* 807 * If this is a low/full speed hub and there is a high 808 * speed hub that hasn't explored yet, reschedule this 809 * task, allowing the high speed explore task to run. 810 */ 811 if (sc->sc_bus->usbrev < USBREV_2_0 && explore_pending > 0) { 812 usb_add_task(sc->sc_bus->root_hub, 813 &sc->sc_explore_task); 814 return; 815 } 816 817 /* 818 * Wait for power to stabilize. 819 */ 820 getmicrouptime(&now); 821 timersub(&now, &sc->sc_ptime, &waited); 822 waited_ms = waited.tv_sec * 1000 + waited.tv_usec / 1000; 823 824 pwrdly = sc->sc_bus->root_hub->hub->powerdelay + 825 USB_EXTRA_POWER_UP_TIME; 826 if (pwrdly > waited_ms) 827 usb_delay_ms(sc->sc_bus, pwrdly - waited_ms); 828 } 829 830 if (sc->sc_bus->flags & USB_BUS_DISCONNECTING) { 831 /* Prevent new tasks from being scheduled. */ 832 sc->sc_bus->dying = 1; 833 834 /* Make all devices disconnect. */ 835 if (sc->sc_port.device != NULL) { 836 usbd_detach(sc->sc_port.device, (struct device *)sc); 837 sc->sc_port.device = NULL; 838 } 839 840 sc->sc_bus->flags &= ~USB_BUS_DISCONNECTING; 841 } else { 842 sc->sc_bus->root_hub->hub->explore(sc->sc_bus->root_hub); 843 } 844 845 if (sc->sc_bus->flags & USB_BUS_CONFIG_PENDING) { 846 DPRINTF(("%s: %s: first explore done\n", __func__, 847 sc->sc_dev.dv_xname)); 848 if (sc->sc_bus->usbrev == USBREV_2_0 && explore_pending) 849 explore_pending--; 850 config_pending_decr(); 851 sc->sc_bus->flags &= ~(USB_BUS_CONFIG_PENDING); 852 } 853 } 854 855 void 856 usb_needs_explore(struct usbd_device *dev, int first_explore) 857 { 858 struct usb_softc *usbctl = (struct usb_softc *)dev->bus->usbctl; 859 860 DPRINTFN(3,("%s: %s\n", usbctl->sc_dev.dv_xname, __func__)); 861 862 if (!first_explore && (dev->bus->flags & USB_BUS_CONFIG_PENDING)) { 863 DPRINTF(("%s: %s: not exploring before first explore\n", 864 __func__, usbctl->sc_dev.dv_xname)); 865 return; 866 } 867 868 usb_add_task(dev, &usbctl->sc_explore_task); 869 } 870 871 void 872 usb_needs_reattach(struct usbd_device *dev) 873 { 874 DPRINTFN(2,("usb_needs_reattach\n")); 875 dev->powersrc->reattach = 1; 876 usb_needs_explore(dev, 0); 877 } 878 879 void 880 usb_schedsoftintr(struct usbd_bus *bus) 881 { 882 DPRINTFN(10,("%s: polling=%d\n", __func__, bus->use_polling)); 883 884 /* In case usb(4) is disabled */ 885 if (bus->soft == NULL) 886 return; 887 888 if (bus->use_polling) { 889 bus->methods->soft_intr(bus); 890 } else { 891 softintr_schedule(bus->soft); 892 } 893 } 894 895 int 896 usb_activate(struct device *self, int act) 897 { 898 struct usb_softc *sc = (struct usb_softc *)self; 899 int rv = 0; 900 901 switch (act) { 902 case DVACT_QUIESCE: 903 if (sc->sc_bus->root_hub != NULL) 904 usb_detach_roothub(sc); 905 break; 906 case DVACT_RESUME: 907 sc->sc_bus->dying = 0; 908 909 /* 910 * Make sure the root hub is present before interrupts 911 * get enabled. As long as the bus is in polling mode 912 * it is safe to call usbd_new_device() now since root 913 * hub transfers do not need to sleep. 914 */ 915 sc->sc_bus->use_polling++; 916 if (!usb_attach_roothub(sc)) 917 usb_needs_explore(sc->sc_bus->root_hub, 0); 918 sc->sc_bus->use_polling--; 919 break; 920 default: 921 rv = config_activate_children(self, act); 922 break; 923 } 924 return (rv); 925 } 926 927 int 928 usb_detach(struct device *self, int flags) 929 { 930 struct usb_softc *sc = (struct usb_softc *)self; 931 932 if (sc->sc_bus->root_hub != NULL) { 933 usb_detach_roothub(sc); 934 935 if (--usb_nbuses == 0) { 936 usb_run_tasks = usb_run_abort_tasks = 0; 937 wakeup(&usb_run_abort_tasks); 938 wakeup(&usb_run_tasks); 939 } 940 } 941 942 if (sc->sc_bus->soft != NULL) { 943 softintr_disestablish(sc->sc_bus->soft); 944 sc->sc_bus->soft = NULL; 945 } 946 947 #if NBPFILTER > 0 948 bpfsdetach(sc->sc_bus->bpfif); 949 #endif 950 return (0); 951 } 952 953 void 954 usb_tap(struct usbd_bus *bus, struct usbd_xfer *xfer, uint8_t dir) 955 { 956 #if NBPFILTER > 0 957 struct usb_softc *sc = (struct usb_softc *)bus->usbctl; 958 usb_endpoint_descriptor_t *ed = xfer->pipe->endpoint->edesc; 959 union { 960 struct usbpcap_ctl_hdr uch; 961 struct usbpcap_iso_hdr_full uih; 962 } h; 963 struct usbpcap_pkt_hdr *uph = &h.uch.uch_hdr; 964 uint32_t nframes, offset; 965 unsigned int bpfdir; 966 void *data = NULL; 967 size_t flen; 968 caddr_t bpf; 969 int i; 970 971 bpf = bus->bpf; 972 if (bpf == NULL) 973 return; 974 975 switch (UE_GET_XFERTYPE(ed->bmAttributes)) { 976 case UE_CONTROL: 977 /* Control transfer headers include an extra byte */ 978 uph->uph_hlen = htole16(sizeof(struct usbpcap_ctl_hdr)); 979 uph->uph_xfertype = USBPCAP_TRANSFER_CONTROL; 980 break; 981 case UE_ISOCHRONOUS: 982 offset = 0; 983 nframes = xfer->nframes; 984 #ifdef DIAGNOSTIC 985 if (nframes > _USBPCAP_MAX_ISOFRAMES) { 986 printf("%s: too many frames: %d > %d\n", __func__, 987 xfer->nframes, _USBPCAP_MAX_ISOFRAMES); 988 nframes = _USBPCAP_MAX_ISOFRAMES; 989 } 990 #endif 991 /* Isochronous transfer headers include space for one frame */ 992 flen = (nframes - 1) * sizeof(struct usbpcap_iso_pkt); 993 uph->uph_hlen = htole16(sizeof(struct usbpcap_iso_hdr) + flen); 994 uph->uph_xfertype = USBPCAP_TRANSFER_ISOCHRONOUS; 995 h.uih.uih_startframe = 0; /* not yet used */ 996 h.uih.uih_nframes = nframes; 997 h.uih.uih_errors = 0; /* we don't have per-frame error */ 998 for (i = 0; i < nframes; i++) { 999 h.uih.uih_frames[i].uip_offset = offset; 1000 h.uih.uih_frames[i].uip_length = xfer->frlengths[i]; 1001 /* See above, we don't have per-frame error */ 1002 h.uih.uih_frames[i].uip_status = 0; 1003 offset += xfer->frlengths[i]; 1004 } 1005 break; 1006 case UE_BULK: 1007 uph->uph_hlen = htole16(sizeof(*uph)); 1008 uph->uph_xfertype = USBPCAP_TRANSFER_BULK; 1009 break; 1010 case UE_INTERRUPT: 1011 uph->uph_hlen = htole16(sizeof(*uph)); 1012 uph->uph_xfertype = USBPCAP_TRANSFER_INTERRUPT; 1013 break; 1014 default: 1015 return; 1016 } 1017 1018 uph->uph_id = 0; /* not yet used */ 1019 uph->uph_status = htole32(xfer->status); 1020 uph->uph_function = 0; /* not yet used */ 1021 uph->uph_bus = htole32(sc->sc_dev.dv_unit); 1022 uph->uph_devaddr = htole16(xfer->device->address); 1023 uph->uph_epaddr = ed->bEndpointAddress; 1024 uph->uph_info = 0; 1025 1026 /* Outgoing control requests start with a STAGE dump. */ 1027 if ((xfer->rqflags & URQ_REQUEST) && (dir == USBTAP_DIR_OUT)) { 1028 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_SETUP; 1029 uph->uph_dlen = sizeof(usb_device_request_t); 1030 bpf_tap_hdr(bpf, uph, uph->uph_hlen, &xfer->request, 1031 uph->uph_dlen, BPF_DIRECTION_OUT); 1032 } 1033 1034 if (dir == USBTAP_DIR_OUT) { 1035 bpfdir = BPF_DIRECTION_OUT; 1036 if (!usbd_xfer_isread(xfer)) { 1037 data = KERNADDR(&xfer->dmabuf, 0); 1038 uph->uph_dlen = xfer->length; 1039 if (xfer->rqflags & URQ_REQUEST) 1040 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_DATA; 1041 } else { 1042 data = NULL; 1043 uph->uph_dlen = 0; 1044 if (xfer->rqflags & URQ_REQUEST) 1045 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_STATUS; 1046 } 1047 } else { /* USBTAP_DIR_IN */ 1048 bpfdir = BPF_DIRECTION_IN; 1049 uph->uph_info = USBPCAP_INFO_DIRECTION_IN; 1050 if (usbd_xfer_isread(xfer)) { 1051 data = KERNADDR(&xfer->dmabuf, 0); 1052 uph->uph_dlen = xfer->actlen; 1053 if (xfer->rqflags & URQ_REQUEST) 1054 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_DATA; 1055 } else { 1056 data = NULL; 1057 uph->uph_dlen = 0; 1058 if (xfer->rqflags & URQ_REQUEST) 1059 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_STATUS; 1060 } 1061 } 1062 1063 /* Dump bulk/intr/iso data, ctrl DATA or STATUS stage. */ 1064 bpf_tap_hdr(bpf, uph, uph->uph_hlen, data, uph->uph_dlen, bpfdir); 1065 1066 /* Incoming control requests with DATA need a STATUS stage. */ 1067 if ((xfer->rqflags & URQ_REQUEST) && (dir == USBTAP_DIR_IN) && 1068 (h.uch.uch_stage == USBPCAP_CONTROL_STAGE_DATA)) { 1069 h.uch.uch_stage = USBPCAP_CONTROL_STAGE_STATUS; 1070 uph->uph_dlen = 0; 1071 bpf_tap_hdr(bpf, uph, uph->uph_hlen, NULL, 0, BPF_DIRECTION_IN); 1072 } 1073 #endif 1074 } 1075