xref: /openbsd/sys/kern/kern_sig.c (revision 2de7505c)
1 /*	$OpenBSD: kern_sig.c,v 1.347 2024/11/05 09:14:19 claudio Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/signalvar.h>
43 #include <sys/queue.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/event.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/acct.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/wait.h>
53 #include <sys/ktrace.h>
54 #include <sys/stat.h>
55 #include <sys/malloc.h>
56 #include <sys/pool.h>
57 #include <sys/sched.h>
58 #include <sys/user.h>
59 #include <sys/syslog.h>
60 #include <sys/ttycom.h>
61 #include <sys/pledge.h>
62 #include <sys/witness.h>
63 #include <sys/exec_elf.h>
64 
65 #include <sys/mount.h>
66 #include <sys/syscallargs.h>
67 
68 #include <uvm/uvm_extern.h>
69 #include <machine/tcb.h>
70 
71 int nosuidcoredump = 1;
72 
73 /*
74  * The array below categorizes the signals and their default actions.
75  */
76 const int sigprop[NSIG] = {
77 	0,			/* unused */
78 	SA_KILL,		/* SIGHUP */
79 	SA_KILL,		/* SIGINT */
80 	SA_KILL|SA_CORE,	/* SIGQUIT */
81 	SA_KILL|SA_CORE,	/* SIGILL */
82 	SA_KILL|SA_CORE,	/* SIGTRAP */
83 	SA_KILL|SA_CORE,	/* SIGABRT */
84 	SA_KILL|SA_CORE,	/* SIGEMT */
85 	SA_KILL|SA_CORE,	/* SIGFPE */
86 	SA_KILL,		/* SIGKILL */
87 	SA_KILL|SA_CORE,	/* SIGBUS */
88 	SA_KILL|SA_CORE,	/* SIGSEGV */
89 	SA_KILL|SA_CORE,	/* SIGSYS */
90 	SA_KILL,		/* SIGPIPE */
91 	SA_KILL,		/* SIGALRM */
92 	SA_KILL,		/* SIGTERM */
93 	SA_IGNORE,		/* SIGURG */
94 	SA_STOP,		/* SIGSTOP */
95 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
96 	SA_IGNORE|SA_CONT,	/* SIGCONT */
97 	SA_IGNORE,		/* SIGCHLD */
98 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
99 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
100 	SA_IGNORE,		/* SIGIO */
101 	SA_KILL,		/* SIGXCPU */
102 	SA_KILL,		/* SIGXFSZ */
103 	SA_KILL,		/* SIGVTALRM */
104 	SA_KILL,		/* SIGPROF */
105 	SA_IGNORE,		/* SIGWINCH  */
106 	SA_IGNORE,		/* SIGINFO */
107 	SA_KILL,		/* SIGUSR1 */
108 	SA_KILL,		/* SIGUSR2 */
109 	SA_IGNORE,		/* SIGTHR */
110 };
111 
112 #define	CONTSIGMASK	(sigmask(SIGCONT))
113 #define	STOPSIGMASK	(sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
114 			    sigmask(SIGTTIN) | sigmask(SIGTTOU))
115 
116 void setsigvec(struct proc *, int, struct sigaction *);
117 
118 void proc_stop(struct proc *p, int);
119 void proc_stop_sweep(void *);
120 void *proc_stop_si;
121 
122 void setsigctx(struct proc *, int, struct sigctx *);
123 void postsig_done(struct proc *, int, sigset_t, int);
124 void postsig(struct proc *, int, struct sigctx *);
125 int cansignal(struct proc *, struct process *, int);
126 
127 void ptsignal_locked(struct proc *, int, enum signal_type);
128 
129 struct pool sigacts_pool;	/* memory pool for sigacts structures */
130 
131 void sigio_del(struct sigiolst *);
132 void sigio_unlink(struct sigio_ref *, struct sigiolst *);
133 struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
134 
135 /*
136  * Can thread p, send the signal signum to process qr?
137  */
138 int
139 cansignal(struct proc *p, struct process *qr, int signum)
140 {
141 	struct process *pr = p->p_p;
142 	struct ucred *uc = p->p_ucred;
143 	struct ucred *quc = qr->ps_ucred;
144 
145 	if (uc->cr_uid == 0)
146 		return (1);		/* root can always signal */
147 
148 	if (pr == qr)
149 		return (1);		/* process can always signal itself */
150 
151 	/* optimization: if the same creds then the tests below will pass */
152 	if (uc == quc)
153 		return (1);
154 
155 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
156 		return (1);		/* SIGCONT in session */
157 
158 	/*
159 	 * Using kill(), only certain signals can be sent to setugid
160 	 * child processes
161 	 */
162 	if (qr->ps_flags & PS_SUGID) {
163 		switch (signum) {
164 		case 0:
165 		case SIGKILL:
166 		case SIGINT:
167 		case SIGTERM:
168 		case SIGALRM:
169 		case SIGSTOP:
170 		case SIGTTIN:
171 		case SIGTTOU:
172 		case SIGTSTP:
173 		case SIGHUP:
174 		case SIGUSR1:
175 		case SIGUSR2:
176 			if (uc->cr_ruid == quc->cr_ruid ||
177 			    uc->cr_uid == quc->cr_ruid)
178 				return (1);
179 		}
180 		return (0);
181 	}
182 
183 	if (uc->cr_ruid == quc->cr_ruid ||
184 	    uc->cr_ruid == quc->cr_svuid ||
185 	    uc->cr_uid == quc->cr_ruid ||
186 	    uc->cr_uid == quc->cr_svuid)
187 		return (1);
188 	return (0);
189 }
190 
191 /*
192  * Initialize signal-related data structures.
193  */
194 void
195 signal_init(void)
196 {
197 	proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
198 	    NULL);
199 	if (proc_stop_si == NULL)
200 		panic("signal_init failed to register softintr");
201 
202 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
203 	    PR_WAITOK, "sigapl", NULL);
204 }
205 
206 /*
207  * Initialize a new sigaltstack structure.
208  */
209 void
210 sigstkinit(struct sigaltstack *ss)
211 {
212 	ss->ss_flags = SS_DISABLE;
213 	ss->ss_size = 0;
214 	ss->ss_sp = NULL;
215 }
216 
217 /*
218  * Create an initial sigacts structure, using the same signal state
219  * as pr.
220  */
221 struct sigacts *
222 sigactsinit(struct process *pr)
223 {
224 	struct sigacts *ps;
225 
226 	ps = pool_get(&sigacts_pool, PR_WAITOK);
227 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
228 	return (ps);
229 }
230 
231 /*
232  * Release a sigacts structure.
233  */
234 void
235 sigactsfree(struct sigacts *ps)
236 {
237 	pool_put(&sigacts_pool, ps);
238 }
239 
240 int
241 sys_sigaction(struct proc *p, void *v, register_t *retval)
242 {
243 	struct sys_sigaction_args /* {
244 		syscallarg(int) signum;
245 		syscallarg(const struct sigaction *) nsa;
246 		syscallarg(struct sigaction *) osa;
247 	} */ *uap = v;
248 	struct sigaction vec;
249 #ifdef KTRACE
250 	struct sigaction ovec;
251 #endif
252 	struct sigaction *sa;
253 	const struct sigaction *nsa;
254 	struct sigaction *osa;
255 	struct sigacts *ps = p->p_p->ps_sigacts;
256 	int signum;
257 	int bit, error;
258 
259 	signum = SCARG(uap, signum);
260 	nsa = SCARG(uap, nsa);
261 	osa = SCARG(uap, osa);
262 
263 	if (signum <= 0 || signum >= NSIG ||
264 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
265 		return (EINVAL);
266 	sa = &vec;
267 	if (osa) {
268 		mtx_enter(&p->p_p->ps_mtx);
269 		sa->sa_handler = ps->ps_sigact[signum];
270 		sa->sa_mask = ps->ps_catchmask[signum];
271 		bit = sigmask(signum);
272 		sa->sa_flags = 0;
273 		if ((ps->ps_sigonstack & bit) != 0)
274 			sa->sa_flags |= SA_ONSTACK;
275 		if ((ps->ps_sigintr & bit) == 0)
276 			sa->sa_flags |= SA_RESTART;
277 		if ((ps->ps_sigreset & bit) != 0)
278 			sa->sa_flags |= SA_RESETHAND;
279 		if ((ps->ps_siginfo & bit) != 0)
280 			sa->sa_flags |= SA_SIGINFO;
281 		if (signum == SIGCHLD) {
282 			if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
283 				sa->sa_flags |= SA_NOCLDSTOP;
284 			if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
285 				sa->sa_flags |= SA_NOCLDWAIT;
286 		}
287 		mtx_leave(&p->p_p->ps_mtx);
288 		if ((sa->sa_mask & bit) == 0)
289 			sa->sa_flags |= SA_NODEFER;
290 		sa->sa_mask &= ~bit;
291 		error = copyout(sa, osa, sizeof (vec));
292 		if (error)
293 			return (error);
294 #ifdef KTRACE
295 		if (KTRPOINT(p, KTR_STRUCT))
296 			ovec = vec;
297 #endif
298 	}
299 	if (nsa) {
300 		error = copyin(nsa, sa, sizeof (vec));
301 		if (error)
302 			return (error);
303 #ifdef KTRACE
304 		if (KTRPOINT(p, KTR_STRUCT))
305 			ktrsigaction(p, sa);
306 #endif
307 		setsigvec(p, signum, sa);
308 	}
309 #ifdef KTRACE
310 	if (osa && KTRPOINT(p, KTR_STRUCT))
311 		ktrsigaction(p, &ovec);
312 #endif
313 	return (0);
314 }
315 
316 void
317 setsigvec(struct proc *p, int signum, struct sigaction *sa)
318 {
319 	struct sigacts *ps = p->p_p->ps_sigacts;
320 	int bit;
321 
322 	bit = sigmask(signum);
323 
324 	mtx_enter(&p->p_p->ps_mtx);
325 	ps->ps_sigact[signum] = sa->sa_handler;
326 	if ((sa->sa_flags & SA_NODEFER) == 0)
327 		sa->sa_mask |= sigmask(signum);
328 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
329 	if (signum == SIGCHLD) {
330 		if (sa->sa_flags & SA_NOCLDSTOP)
331 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
332 		else
333 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
334 		/*
335 		 * If the SA_NOCLDWAIT flag is set or the handler
336 		 * is SIG_IGN we reparent the dying child to PID 1
337 		 * (init) which will reap the zombie.  Because we use
338 		 * init to do our dirty work we never set SAS_NOCLDWAIT
339 		 * for PID 1.
340 		 * XXX exit1 rework means this is unnecessary?
341 		 */
342 		if (initprocess->ps_sigacts != ps &&
343 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
344 		    sa->sa_handler == SIG_IGN))
345 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
346 		else
347 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
348 	}
349 	if ((sa->sa_flags & SA_RESETHAND) != 0)
350 		ps->ps_sigreset |= bit;
351 	else
352 		ps->ps_sigreset &= ~bit;
353 	if ((sa->sa_flags & SA_SIGINFO) != 0)
354 		ps->ps_siginfo |= bit;
355 	else
356 		ps->ps_siginfo &= ~bit;
357 	if ((sa->sa_flags & SA_RESTART) == 0)
358 		ps->ps_sigintr |= bit;
359 	else
360 		ps->ps_sigintr &= ~bit;
361 	if ((sa->sa_flags & SA_ONSTACK) != 0)
362 		ps->ps_sigonstack |= bit;
363 	else
364 		ps->ps_sigonstack &= ~bit;
365 	/*
366 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
367 	 * and for signals set to SIG_DFL where the default is to ignore.
368 	 * However, don't put SIGCONT in ps_sigignore,
369 	 * as we have to restart the process.
370 	 */
371 	if (sa->sa_handler == SIG_IGN ||
372 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
373 		atomic_clearbits_int(&p->p_siglist, bit);
374 		atomic_clearbits_int(&p->p_p->ps_siglist, bit);
375 		if (signum != SIGCONT)
376 			ps->ps_sigignore |= bit;	/* easier in psignal */
377 		ps->ps_sigcatch &= ~bit;
378 	} else {
379 		ps->ps_sigignore &= ~bit;
380 		if (sa->sa_handler == SIG_DFL)
381 			ps->ps_sigcatch &= ~bit;
382 		else
383 			ps->ps_sigcatch |= bit;
384 	}
385 	mtx_leave(&p->p_p->ps_mtx);
386 }
387 
388 /*
389  * Initialize signal state for process 0;
390  * set to ignore signals that are ignored by default.
391  */
392 void
393 siginit(struct sigacts *ps)
394 {
395 	int i;
396 
397 	for (i = 0; i < NSIG; i++)
398 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
399 			ps->ps_sigignore |= sigmask(i);
400 	ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
401 }
402 
403 /*
404  * Reset signals for an exec by the specified thread.
405  */
406 void
407 execsigs(struct proc *p)
408 {
409 	struct sigacts *ps;
410 	int nc, mask;
411 
412 	ps = p->p_p->ps_sigacts;
413 	mtx_enter(&p->p_p->ps_mtx);
414 
415 	/*
416 	 * Reset caught signals.  Held signals remain held
417 	 * through p_sigmask (unless they were caught,
418 	 * and are now ignored by default).
419 	 */
420 	while (ps->ps_sigcatch) {
421 		nc = ffs((long)ps->ps_sigcatch);
422 		mask = sigmask(nc);
423 		ps->ps_sigcatch &= ~mask;
424 		if (sigprop[nc] & SA_IGNORE) {
425 			if (nc != SIGCONT)
426 				ps->ps_sigignore |= mask;
427 			atomic_clearbits_int(&p->p_siglist, mask);
428 			atomic_clearbits_int(&p->p_p->ps_siglist, mask);
429 		}
430 		ps->ps_sigact[nc] = SIG_DFL;
431 	}
432 	/*
433 	 * Reset stack state to the user stack.
434 	 * Clear set of signals caught on the signal stack.
435 	 */
436 	sigstkinit(&p->p_sigstk);
437 	atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
438 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
439 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
440 	mtx_leave(&p->p_p->ps_mtx);
441 }
442 
443 /*
444  * Manipulate signal mask.
445  * Note that we receive new mask, not pointer,
446  * and return old mask as return value;
447  * the library stub does the rest.
448  */
449 int
450 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
451 {
452 	struct sys_sigprocmask_args /* {
453 		syscallarg(int) how;
454 		syscallarg(sigset_t) mask;
455 	} */ *uap = v;
456 	int error = 0;
457 	sigset_t mask;
458 
459 	KASSERT(p == curproc);
460 
461 	*retval = p->p_sigmask;
462 	mask = SCARG(uap, mask) &~ sigcantmask;
463 
464 	switch (SCARG(uap, how)) {
465 	case SIG_BLOCK:
466 		SET(p->p_sigmask, mask);
467 		break;
468 	case SIG_UNBLOCK:
469 		CLR(p->p_sigmask, mask);
470 		break;
471 	case SIG_SETMASK:
472 		p->p_sigmask = mask;
473 		break;
474 	default:
475 		error = EINVAL;
476 		break;
477 	}
478 	return (error);
479 }
480 
481 int
482 sys_sigpending(struct proc *p, void *v, register_t *retval)
483 {
484 	*retval = p->p_siglist | p->p_p->ps_siglist;
485 	return (0);
486 }
487 
488 /*
489  * Temporarily replace calling proc's signal mask for the duration of a
490  * system call.  Original signal mask will be restored by userret().
491  */
492 void
493 dosigsuspend(struct proc *p, sigset_t newmask)
494 {
495 	KASSERT(p == curproc);
496 
497 	p->p_oldmask = p->p_sigmask;
498 	p->p_sigmask = newmask;
499 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
500 }
501 
502 /*
503  * Suspend thread until signal, providing mask to be set
504  * in the meantime.  Note nonstandard calling convention:
505  * libc stub passes mask, not pointer, to save a copyin.
506  */
507 int
508 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
509 {
510 	struct sys_sigsuspend_args /* {
511 		syscallarg(int) mask;
512 	} */ *uap = v;
513 
514 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
515 	while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
516 		continue;
517 	/* always return EINTR rather than ERESTART... */
518 	return (EINTR);
519 }
520 
521 int
522 sigonstack(size_t stack)
523 {
524 	const struct sigaltstack *ss = &curproc->p_sigstk;
525 
526 	return (ss->ss_flags & SS_DISABLE ? 0 :
527 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
528 }
529 
530 int
531 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
532 {
533 	struct sys_sigaltstack_args /* {
534 		syscallarg(const struct sigaltstack *) nss;
535 		syscallarg(struct sigaltstack *) oss;
536 	} */ *uap = v;
537 	struct sigaltstack ss;
538 	const struct sigaltstack *nss;
539 	struct sigaltstack *oss;
540 	int onstack = sigonstack(PROC_STACK(p));
541 	int error;
542 
543 	nss = SCARG(uap, nss);
544 	oss = SCARG(uap, oss);
545 
546 	if (oss != NULL) {
547 		ss = p->p_sigstk;
548 		if (onstack)
549 			ss.ss_flags |= SS_ONSTACK;
550 		if ((error = copyout(&ss, oss, sizeof(ss))))
551 			return (error);
552 	}
553 	if (nss == NULL)
554 		return (0);
555 	error = copyin(nss, &ss, sizeof(ss));
556 	if (error)
557 		return (error);
558 	if (onstack)
559 		return (EPERM);
560 	if (ss.ss_flags & ~SS_DISABLE)
561 		return (EINVAL);
562 	if (ss.ss_flags & SS_DISABLE) {
563 		p->p_sigstk.ss_flags = ss.ss_flags;
564 		return (0);
565 	}
566 	if (ss.ss_size < MINSIGSTKSZ)
567 		return (ENOMEM);
568 
569 	error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
570 	if (error)
571 		return (error);
572 
573 	p->p_sigstk = ss;
574 	return (0);
575 }
576 
577 int
578 sys_kill(struct proc *cp, void *v, register_t *retval)
579 {
580 	struct sys_kill_args /* {
581 		syscallarg(int) pid;
582 		syscallarg(int) signum;
583 	} */ *uap = v;
584 	struct process *pr;
585 	int pid = SCARG(uap, pid);
586 	int signum = SCARG(uap, signum);
587 	int error;
588 	int zombie = 0;
589 
590 	if ((error = pledge_kill(cp, pid)) != 0)
591 		return (error);
592 	if (((u_int)signum) >= NSIG)
593 		return (EINVAL);
594 	if (pid > 0) {
595 		if ((pr = prfind(pid)) == NULL) {
596 			if ((pr = zombiefind(pid)) == NULL)
597 				return (ESRCH);
598 			else
599 				zombie = 1;
600 		}
601 		if (!cansignal(cp, pr, signum))
602 			return (EPERM);
603 
604 		/* kill single process */
605 		if (signum && !zombie)
606 			prsignal(pr, signum);
607 		return (0);
608 	}
609 	switch (pid) {
610 	case -1:		/* broadcast signal */
611 		return (killpg1(cp, signum, 0, 1));
612 	case 0:			/* signal own process group */
613 		return (killpg1(cp, signum, 0, 0));
614 	default:		/* negative explicit process group */
615 		return (killpg1(cp, signum, -pid, 0));
616 	}
617 }
618 
619 int
620 sys_thrkill(struct proc *cp, void *v, register_t *retval)
621 {
622 	struct sys_thrkill_args /* {
623 		syscallarg(pid_t) tid;
624 		syscallarg(int) signum;
625 		syscallarg(void *) tcb;
626 	} */ *uap = v;
627 	struct proc *p;
628 	int tid = SCARG(uap, tid);
629 	int signum = SCARG(uap, signum);
630 	void *tcb;
631 
632 	if (((u_int)signum) >= NSIG)
633 		return (EINVAL);
634 
635 	p = tid ? tfind_user(tid, cp->p_p) : cp;
636 	if (p == NULL)
637 		return (ESRCH);
638 
639 	/* optionally require the target thread to have the given tcb addr */
640 	tcb = SCARG(uap, tcb);
641 	if (tcb != NULL && tcb != TCB_GET(p))
642 		return (ESRCH);
643 
644 	if (signum)
645 		ptsignal(p, signum, STHREAD);
646 	return (0);
647 }
648 
649 /*
650  * Common code for kill process group/broadcast kill.
651  * cp is calling process.
652  */
653 int
654 killpg1(struct proc *cp, int signum, int pgid, int all)
655 {
656 	struct process *pr;
657 	struct pgrp *pgrp;
658 	int nfound = 0;
659 
660 	if (all) {
661 		/*
662 		 * broadcast
663 		 */
664 		LIST_FOREACH(pr, &allprocess, ps_list) {
665 			if (pr->ps_pid <= 1 ||
666 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
667 			    pr == cp->p_p || !cansignal(cp, pr, signum))
668 				continue;
669 			nfound++;
670 			if (signum)
671 				prsignal(pr, signum);
672 		}
673 	} else {
674 		if (pgid == 0)
675 			/*
676 			 * zero pgid means send to my process group.
677 			 */
678 			pgrp = cp->p_p->ps_pgrp;
679 		else {
680 			pgrp = pgfind(pgid);
681 			if (pgrp == NULL)
682 				return (ESRCH);
683 		}
684 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
685 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
686 			    !cansignal(cp, pr, signum))
687 				continue;
688 			nfound++;
689 			if (signum)
690 				prsignal(pr, signum);
691 		}
692 	}
693 	return (nfound ? 0 : ESRCH);
694 }
695 
696 #define CANDELIVER(uid, euid, pr) \
697 	(euid == 0 || \
698 	(uid) == (pr)->ps_ucred->cr_ruid || \
699 	(uid) == (pr)->ps_ucred->cr_svuid || \
700 	(uid) == (pr)->ps_ucred->cr_uid || \
701 	(euid) == (pr)->ps_ucred->cr_ruid || \
702 	(euid) == (pr)->ps_ucred->cr_svuid || \
703 	(euid) == (pr)->ps_ucred->cr_uid)
704 
705 #define CANSIGIO(cr, pr) \
706 	CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
707 
708 /*
709  * Send a signal to a process group.  If checktty is 1,
710  * limit to members which have a controlling terminal.
711  */
712 void
713 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
714 {
715 	struct process *pr;
716 
717 	if (pgrp)
718 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
719 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
720 				prsignal(pr, signum);
721 }
722 
723 /*
724  * Send a SIGIO or SIGURG signal to a process or process group using stored
725  * credentials rather than those of the current process.
726  */
727 void
728 pgsigio(struct sigio_ref *sir, int sig, int checkctty)
729 {
730 	struct process *pr;
731 	struct sigio *sigio;
732 
733 	if (sir->sir_sigio == NULL)
734 		return;
735 
736 	KERNEL_LOCK();
737 	mtx_enter(&sigio_lock);
738 	sigio = sir->sir_sigio;
739 	if (sigio == NULL)
740 		goto out;
741 	if (sigio->sio_pgid > 0) {
742 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
743 			prsignal(sigio->sio_proc, sig);
744 	} else if (sigio->sio_pgid < 0) {
745 		LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
746 			if (CANSIGIO(sigio->sio_ucred, pr) &&
747 			    (checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
748 				prsignal(pr, sig);
749 		}
750 	}
751 out:
752 	mtx_leave(&sigio_lock);
753 	KERNEL_UNLOCK();
754 }
755 
756 /*
757  * Recalculate the signal mask and reset the signal disposition after
758  * usermode frame for delivery is formed.
759  */
760 void
761 postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
762 {
763 	p->p_ru.ru_nsignals++;
764 	SET(p->p_sigmask, catchmask);
765 	if (reset != 0) {
766 		sigset_t mask = sigmask(signum);
767 		struct sigacts *ps = p->p_p->ps_sigacts;
768 
769 		mtx_enter(&p->p_p->ps_mtx);
770 		ps->ps_sigcatch &= ~mask;
771 		if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
772 			ps->ps_sigignore |= mask;
773 		ps->ps_sigact[signum] = SIG_DFL;
774 		mtx_leave(&p->p_p->ps_mtx);
775 	}
776 }
777 
778 /*
779  * Send a signal caused by a trap to the current thread
780  * If it will be caught immediately, deliver it with correct code.
781  * Otherwise, post it normally.
782  */
783 void
784 trapsignal(struct proc *p, int signum, u_long trapno, int code,
785     union sigval sigval)
786 {
787 	struct process *pr = p->p_p;
788 	struct sigctx ctx;
789 	int mask;
790 
791 	switch (signum) {
792 	case SIGILL:
793 		if (code == ILL_BTCFI) {
794 			pr->ps_acflag |= ABTCFI;
795 			break;
796 		}
797 		/* FALLTHROUGH */
798 	case SIGBUS:
799 	case SIGSEGV:
800 		pr->ps_acflag |= ATRAP;
801 		break;
802 	}
803 
804 	mask = sigmask(signum);
805 	setsigctx(p, signum, &ctx);
806 	if ((pr->ps_flags & PS_TRACED) == 0 && ctx.sig_catch != 0 &&
807 	    (p->p_sigmask & mask) == 0) {
808 		siginfo_t si;
809 
810 		initsiginfo(&si, signum, trapno, code, sigval);
811 #ifdef KTRACE
812 		if (KTRPOINT(p, KTR_PSIG)) {
813 			ktrpsig(p, signum, ctx.sig_action,
814 			    p->p_sigmask, code, &si);
815 		}
816 #endif
817 		if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si,
818 		    ctx.sig_info, ctx.sig_onstack)) {
819 			KERNEL_LOCK();
820 			sigexit(p, SIGILL);
821 			/* NOTREACHED */
822 		}
823 		postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset);
824 	} else {
825 		p->p_sisig = signum;
826 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
827 		p->p_sicode = code;
828 		p->p_sigval = sigval;
829 
830 		/*
831 		 * If traced, stop if signal is masked, and stay stopped
832 		 * until released by the debugger.  If our parent process
833 		 * is waiting for us, don't hang as we could deadlock.
834 		 */
835 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
836 		    signum != SIGKILL && (p->p_sigmask & mask) != 0) {
837 			single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
838 			pr->ps_xsig = signum;
839 
840 			SCHED_LOCK();
841 			proc_stop(p, 1);
842 			SCHED_UNLOCK();
843 
844 			signum = pr->ps_xsig;
845 			pr->ps_xsig = 0;
846 			if ((p->p_flag & P_TRACESINGLE) == 0)
847 				single_thread_clear(p, 0);
848 			atomic_clearbits_int(&p->p_flag, P_TRACESINGLE);
849 
850 			/*
851 			 * If we are no longer being traced, or the parent
852 			 * didn't give us a signal, skip sending the signal.
853 			 */
854 			if ((pr->ps_flags & PS_TRACED) == 0 ||
855 			    signum == 0)
856 				return;
857 
858 			/* update signal info */
859 			p->p_sisig = signum;
860 			mask = sigmask(signum);
861 		}
862 
863 		/*
864 		 * Signals like SIGBUS and SIGSEGV should not, when
865 		 * generated by the kernel, be ignorable or blockable.
866 		 * If it is and we're not being traced, then just kill
867 		 * the process.
868 		 * After vfs_shutdown(9), init(8) cannot receive signals
869 		 * because new code pages of the signal handler cannot be
870 		 * mapped from halted storage.  init(8) may not die or the
871 		 * kernel panics.  Better loop between signal handler and
872 		 * page fault trap until the machine is halted.
873 		 */
874 		if ((pr->ps_flags & PS_TRACED) == 0 &&
875 		    (sigprop[signum] & SA_KILL) &&
876 		    ((p->p_sigmask & mask) || ctx.sig_ignore) &&
877 		    pr->ps_pid != 1) {
878 			KERNEL_LOCK();
879 			sigexit(p, signum);
880 			/* NOTREACHED */
881 		}
882 		ptsignal(p, signum, STHREAD);
883 	}
884 }
885 
886 /*
887  * Send the signal to the process.  If the signal has an action, the action
888  * is usually performed by the target process rather than the caller; we add
889  * the signal to the set of pending signals for the process.
890  *
891  * Exceptions:
892  *   o When a stop signal is sent to a sleeping process that takes the
893  *     default action, the process is stopped without awakening it.
894  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
895  *     regardless of the signal action (eg, blocked or ignored).
896  *
897  * Other ignored signals are discarded immediately.
898  */
899 void
900 psignal(struct proc *p, int signum)
901 {
902 	ptsignal(p, signum, SPROCESS);
903 }
904 
905 void
906 prsignal(struct process *pr, int signum)
907 {
908 	mtx_enter(&pr->ps_mtx);
909 	/* Ignore signal if the target process is exiting */
910 	if (pr->ps_flags & PS_EXITING) {
911 		mtx_leave(&pr->ps_mtx);
912 		return;
913 	}
914 	ptsignal_locked(TAILQ_FIRST(&pr->ps_threads), signum, SPROCESS);
915 	mtx_leave(&pr->ps_mtx);
916 }
917 
918 /*
919  * type = SPROCESS	process signal, can be diverted (sigwait())
920  * type = STHREAD	thread signal, but should be propagated if unhandled
921  * type = SPROPAGATED	propagated to this thread, so don't propagate again
922  */
923 void
924 ptsignal(struct proc *p, int signum, enum signal_type type)
925 {
926 	struct process *pr = p->p_p;
927 
928 	mtx_enter(&pr->ps_mtx);
929 	ptsignal_locked(p, signum, type);
930 	mtx_leave(&pr->ps_mtx);
931 }
932 
933 void
934 ptsignal_locked(struct proc *p, int signum, enum signal_type type)
935 {
936 	int prop;
937 	sig_t action, altaction = SIG_DFL;
938 	sigset_t mask, sigmask;
939 	int *siglist;
940 	struct process *pr = p->p_p;
941 	struct proc *q;
942 	int wakeparent = 0;
943 
944 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
945 
946 #ifdef DIAGNOSTIC
947 	if ((u_int)signum >= NSIG || signum == 0)
948 		panic("psignal signal number");
949 #endif
950 
951 	/* Ignore signal if the target process is exiting */
952 	if (pr->ps_flags & PS_EXITING)
953 		return;
954 
955 	mask = sigmask(signum);
956 	sigmask = READ_ONCE(p->p_sigmask);
957 
958 	if (type == SPROCESS) {
959 		sigset_t tmpmask;
960 
961 		/* Accept SIGKILL to coredumping processes */
962 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
963 			atomic_setbits_int(&pr->ps_siglist, mask);
964 			return;
965 		}
966 
967 		/*
968 		 * If the current thread can process the signal
969 		 * immediately (it's unblocked) then have it take it.
970 		 */
971 		q = curproc;
972 		tmpmask = READ_ONCE(q->p_sigmask);
973 		if (q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
974 		    (tmpmask & mask) == 0) {
975 			p = q;
976 			sigmask = tmpmask;
977 		} else {
978 			/*
979 			 * A process-wide signal can be diverted to a
980 			 * different thread that's in sigwait() for this
981 			 * signal.  If there isn't such a thread, then
982 			 * pick a thread that doesn't have it blocked so
983 			 * that the stop/kill consideration isn't
984 			 * delayed.  Otherwise, mark it pending on the
985 			 * main thread.
986 			 */
987 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
988 
989 				/* ignore exiting threads */
990 				if (q->p_flag & P_WEXIT)
991 					continue;
992 
993 				/* skip threads that have the signal blocked */
994 				tmpmask = READ_ONCE(q->p_sigmask);
995 				if ((tmpmask & mask) != 0)
996 					continue;
997 
998 				/* okay, could send to this thread */
999 				p = q;
1000 				sigmask = tmpmask;
1001 
1002 				/*
1003 				 * sigsuspend, sigwait, ppoll/pselect, etc?
1004 				 * Definitely go to this thread, as it's
1005 				 * already blocked in the kernel.
1006 				 */
1007 				if (q->p_flag & P_SIGSUSPEND)
1008 					break;
1009 			}
1010 		}
1011 	}
1012 
1013 	if (type != SPROPAGATED)
1014 		knote_locked(&pr->ps_klist, NOTE_SIGNAL | signum);
1015 
1016 	prop = sigprop[signum];
1017 
1018 	/*
1019 	 * If proc is traced, always give parent a chance.
1020 	 */
1021 	if (pr->ps_flags & PS_TRACED) {
1022 		action = SIG_DFL;
1023 	} else {
1024 		sigset_t sigcatch, sigignore;
1025 
1026 		/*
1027 		 * If the signal is being ignored,
1028 		 * then we forget about it immediately.
1029 		 * (Note: we don't set SIGCONT in ps_sigignore,
1030 		 * and if it is set to SIG_IGN,
1031 		 * action will be SIG_DFL here.)
1032 		 */
1033 		sigignore = pr->ps_sigacts->ps_sigignore;
1034 		sigcatch = pr->ps_sigacts->ps_sigcatch;
1035 
1036 		if (sigignore & mask)
1037 			return;
1038 		if (sigmask & mask) {
1039 			action = SIG_HOLD;
1040 			if (sigcatch & mask)
1041 				altaction = SIG_CATCH;
1042 		} else if (sigcatch & mask) {
1043 			action = SIG_CATCH;
1044 		} else {
1045 			action = SIG_DFL;
1046 
1047 			if (prop & SA_KILL && pr->ps_nice > NZERO)
1048 				 pr->ps_nice = NZERO;
1049 
1050 			/*
1051 			 * If sending a tty stop signal to a member of an
1052 			 * orphaned process group, discard the signal here if
1053 			 * the action is default; don't stop the process below
1054 			 * if sleeping, and don't clear any pending SIGCONT.
1055 			 */
1056 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
1057 				return;
1058 		}
1059 	}
1060 	/*
1061 	 * If delivered to process, mark as pending there.  Continue and stop
1062 	 * signals will be propagated to all threads.  So they are always
1063 	 * marked at thread level.
1064 	 */
1065 	siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
1066 	if (prop & (SA_CONT | SA_STOP))
1067 		siglist = &p->p_siglist;
1068 
1069 	/*
1070 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1071 	 */
1072 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
1073 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1074 			if (q != p)
1075 				ptsignal_locked(q, signum, SPROPAGATED);
1076 
1077 	SCHED_LOCK();
1078 
1079 	switch (p->p_stat) {
1080 
1081 	case SSTOP:
1082 		/*
1083 		 * If traced process is already stopped,
1084 		 * then no further action is necessary.
1085 		 */
1086 		if (pr->ps_flags & PS_TRACED)
1087 			goto out;
1088 
1089 		/*
1090 		 * Kill signal always sets processes running.
1091 		 */
1092 		if (signum == SIGKILL) {
1093 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1094 			/* Raise priority to at least PUSER. */
1095 			if (p->p_usrpri > PUSER)
1096 				p->p_usrpri = PUSER;
1097 			unsleep(p);
1098 			setrunnable(p);
1099 			goto out;
1100 		}
1101 
1102 		if (prop & SA_CONT) {
1103 			/*
1104 			 * If SIGCONT is default (or ignored), we continue the
1105 			 * process but don't leave the signal in p_siglist, as
1106 			 * it has no further action.  If SIGCONT is held, we
1107 			 * continue the process and leave the signal in
1108 			 * p_siglist.  If the process catches SIGCONT, let it
1109 			 * handle the signal itself.  If it isn't waiting on
1110 			 * an event, then it goes back to run state.
1111 			 * Otherwise, process goes back to sleep state.
1112 			 */
1113 			atomic_setbits_int(&pr->ps_flags, PS_CONTINUED);
1114 			atomic_clearbits_int(&pr->ps_flags,
1115 			    PS_WAITED | PS_STOPPED);
1116 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1117 			wakeparent = 1;
1118 			if (action == SIG_DFL)
1119 				mask = 0;
1120 			if (action == SIG_CATCH) {
1121 				/* Raise priority to at least PUSER. */
1122 				if (p->p_usrpri > PUSER)
1123 					p->p_usrpri = PUSER;
1124 				unsleep(p);
1125 				setrunnable(p);
1126 				goto out;
1127 			}
1128 			if (p->p_wchan == NULL) {
1129 				unsleep(p);
1130 				setrunnable(p);
1131 				goto out;
1132 			}
1133 			atomic_clearbits_int(&p->p_flag, P_WSLEEP);
1134 			p->p_stat = SSLEEP;
1135 			goto out;
1136 		}
1137 
1138 		/*
1139 		 * Defer further processing for signals which are held,
1140 		 * except that stopped processes must be continued by SIGCONT.
1141 		 */
1142 		if (action == SIG_HOLD)
1143 			goto out;
1144 
1145 		if (prop & SA_STOP) {
1146 			/*
1147 			 * Already stopped, don't need to stop again.
1148 			 * (If we did the shell could get confused.)
1149 			 */
1150 			mask = 0;
1151 			goto out;
1152 		}
1153 
1154 		/*
1155 		 * If process is sleeping interruptibly, then simulate a
1156 		 * wakeup so that when it is continued, it will be made
1157 		 * runnable and can look at the signal.  But don't make
1158 		 * the process runnable, leave it stopped.
1159 		 */
1160 		if (p->p_flag & P_SINTR)
1161 			unsleep(p);
1162 		goto out;
1163 
1164 	case SSLEEP:
1165 		/*
1166 		 * If process is sleeping uninterruptibly
1167 		 * we can't interrupt the sleep... the signal will
1168 		 * be noticed when the process returns through
1169 		 * trap() or syscall().
1170 		 */
1171 		if ((p->p_flag & P_SINTR) == 0)
1172 			goto out;
1173 		/*
1174 		 * Process is sleeping and traced... make it runnable
1175 		 * so it can discover the signal in cursig() and stop
1176 		 * for the parent.
1177 		 */
1178 		if (pr->ps_flags & PS_TRACED) {
1179 			unsleep(p);
1180 			setrunnable(p);
1181 			goto out;
1182 		}
1183 
1184 		/*
1185 		 * Recheck sigmask before waking up the process,
1186 		 * there is a chance that while sending the signal
1187 		 * the process changed sigmask and went to sleep.
1188 		 */
1189 		sigmask = READ_ONCE(p->p_sigmask);
1190 		if (sigmask & mask)
1191 			goto out;
1192 		else if (action == SIG_HOLD) {
1193 			/* signal got unmasked, get proper action */
1194 			action = altaction;
1195 
1196 			if (action == SIG_DFL) {
1197 				if (prop & SA_KILL && pr->ps_nice > NZERO)
1198 					 pr->ps_nice = NZERO;
1199 
1200 				/*
1201 				 * Discard tty stop signals sent to an
1202 				 * orphaned process group, see above.
1203 				 */
1204 				if (prop & SA_TTYSTOP &&
1205 				    pr->ps_pgrp->pg_jobc == 0) {
1206 					mask = 0;
1207 					prop = 0;
1208 					goto out;
1209 				}
1210 			}
1211 		}
1212 
1213 		/*
1214 		 * If SIGCONT is default (or ignored) and process is
1215 		 * asleep, we are finished; the process should not
1216 		 * be awakened.
1217 		 */
1218 		if ((prop & SA_CONT) && action == SIG_DFL) {
1219 			mask = 0;
1220 			goto out;
1221 		}
1222 		/*
1223 		 * When a sleeping process receives a stop
1224 		 * signal, process immediately if possible.
1225 		 */
1226 		if ((prop & SA_STOP) && action == SIG_DFL) {
1227 			/*
1228 			 * If a child holding parent blocked,
1229 			 * stopping could cause deadlock.
1230 			 */
1231 			if (pr->ps_flags & PS_PPWAIT)
1232 				goto out;
1233 			mask = 0;
1234 			pr->ps_xsig = signum;
1235 			proc_stop(p, 0);
1236 			goto out;
1237 		}
1238 		/*
1239 		 * All other (caught or default) signals
1240 		 * cause the process to run.
1241 		 * Raise priority to at least PUSER.
1242 		 */
1243 		if (p->p_usrpri > PUSER)
1244 			p->p_usrpri = PUSER;
1245 		unsleep(p);
1246 		setrunnable(p);
1247 		goto out;
1248 		/* NOTREACHED */
1249 
1250 	case SONPROC:
1251 		if (action == SIG_HOLD)
1252 			goto out;
1253 
1254 		/* set siglist before issuing the ast */
1255 		atomic_setbits_int(siglist, mask);
1256 		mask = 0;
1257 		signotify(p);
1258 		/* FALLTHROUGH */
1259 	default:
1260 		/*
1261 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1262 		 * other than kicking ourselves if we are running.
1263 		 * It will either never be noticed, or noticed very soon.
1264 		 */
1265 		goto out;
1266 	}
1267 	/* NOTREACHED */
1268 
1269 out:
1270 	/* finally adjust siglist */
1271 	if (mask)
1272 		atomic_setbits_int(siglist, mask);
1273 	if (prop & SA_CONT) {
1274 		atomic_clearbits_int(siglist, STOPSIGMASK);
1275 	}
1276 	if (prop & SA_STOP) {
1277 		atomic_clearbits_int(siglist, CONTSIGMASK);
1278 		atomic_clearbits_int(&pr->ps_flags, PS_CONTINUED);
1279 	}
1280 
1281 	SCHED_UNLOCK();
1282 	if (wakeparent)
1283 		wakeup(pr->ps_pptr);
1284 }
1285 
1286 /* fill the signal context which should be used by postsig() and issignal() */
1287 void
1288 setsigctx(struct proc *p, int signum, struct sigctx *sctx)
1289 {
1290 	struct process *pr = p->p_p;
1291 	struct sigacts *ps = pr->ps_sigacts;
1292 	sigset_t mask;
1293 
1294 	mtx_enter(&pr->ps_mtx);
1295 	mask = sigmask(signum);
1296 	sctx->sig_action = ps->ps_sigact[signum];
1297 	sctx->sig_catchmask = ps->ps_catchmask[signum];
1298 	sctx->sig_reset = (ps->ps_sigreset & mask) != 0;
1299 	sctx->sig_info = (ps->ps_siginfo & mask) != 0;
1300 	sctx->sig_intr = (ps->ps_sigintr & mask) != 0;
1301 	sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0;
1302 	sctx->sig_ignore = (ps->ps_sigignore & mask) != 0;
1303 	sctx->sig_catch = (ps->ps_sigcatch & mask) != 0;
1304 	sctx->sig_stop = sigprop[signum] & SA_STOP &&
1305 	    (long)sctx->sig_action == (long)SIG_DFL;
1306 	if (sctx->sig_stop) {
1307 		/*
1308 		 * If the process is a member of an orphaned
1309 		 * process group, ignore tty stop signals.
1310 		 */
1311 		if (pr->ps_flags & PS_TRACED ||
1312 		    (pr->ps_pgrp->pg_jobc == 0 &&
1313 		    sigprop[signum] & SA_TTYSTOP)) {
1314 			sctx->sig_stop = 0;
1315 			sctx->sig_ignore = 1;
1316 		}
1317 	}
1318 	mtx_leave(&pr->ps_mtx);
1319 }
1320 
1321 /*
1322  * Determine signal that should be delivered to process p, the current
1323  * process, 0 if none.
1324  *
1325  * If the current process has received a signal (should be caught or cause
1326  * termination, should interrupt current syscall), return the signal number.
1327  * Stop signals with default action are processed immediately, then cleared;
1328  * they aren't returned.  This is checked after each entry to the system for
1329  * a syscall or trap. The normal call sequence is
1330  *
1331  *	while (signum = cursig(curproc, &ctx, 0))
1332  *		postsig(signum, &ctx);
1333  *
1334  * Assumes that if the P_SINTR flag is set, we're holding both the
1335  * kernel and scheduler locks.
1336  */
1337 int
1338 cursig(struct proc *p, struct sigctx *sctx, int deep)
1339 {
1340 	struct process *pr = p->p_p;
1341 	int signum, mask, prop;
1342 	sigset_t ps_siglist;
1343 
1344 	KASSERT(p == curproc);
1345 
1346 	for (;;) {
1347 		ps_siglist = READ_ONCE(pr->ps_siglist);
1348 		membar_consumer();
1349 		mask = SIGPENDING(p);
1350 		if (pr->ps_flags & PS_PPWAIT)
1351 			mask &= ~STOPSIGMASK;
1352 		if (mask == 0)	 	/* no signal to send */
1353 			return (0);
1354 		signum = ffs((long)mask);
1355 		mask = sigmask(signum);
1356 
1357 		/* take the signal! */
1358 		if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,
1359 		    ps_siglist & ~mask) != ps_siglist) {
1360 			/* lost race taking the process signal, restart */
1361 			continue;
1362 		}
1363 		atomic_clearbits_int(&p->p_siglist, mask);
1364 		setsigctx(p, signum, sctx);
1365 
1366 		/*
1367 		 * We should see pending but ignored signals
1368 		 * only if PS_TRACED was on when they were posted.
1369 		 */
1370 		if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED) == 0)
1371 			continue;
1372 
1373 		/*
1374 		 * If cursig is called while going to sleep, abort now
1375 		 * and stop the sleep. When the call unwinded to userret
1376 		 * cursig is called again and there the signal can be
1377 		 * handled cleanly.
1378 		 */
1379 		if (deep)
1380 			goto keep;
1381 
1382 		/*
1383 		 * If traced, always stop, and stay stopped until released
1384 		 * by the debugger.  If our parent process is waiting for
1385 		 * us, don't hang as we could deadlock.
1386 		 */
1387 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
1388 		    signum != SIGKILL) {
1389 			single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
1390 			pr->ps_xsig = signum;
1391 
1392 			SCHED_LOCK();
1393 			proc_stop(p, 1);
1394 			SCHED_UNLOCK();
1395 
1396 			/*
1397 			 * re-take the signal before releasing
1398 			 * the other threads. Must check the continue
1399 			 * conditions below and only take the signal if
1400 			 * those are not true.
1401 			 */
1402 			signum = pr->ps_xsig;
1403 			pr->ps_xsig = 0;
1404 			mask = sigmask(signum);
1405 			setsigctx(p, signum, sctx);
1406 			if (!((pr->ps_flags & PS_TRACED) == 0 ||
1407 			    signum == 0 ||
1408 			    (p->p_sigmask & mask) != 0)) {
1409 				atomic_clearbits_int(&p->p_siglist, mask);
1410 				atomic_clearbits_int(&pr->ps_siglist, mask);
1411 			}
1412 
1413 			if ((p->p_flag & P_TRACESINGLE) == 0)
1414 				single_thread_clear(p, 0);
1415 			atomic_clearbits_int(&p->p_flag, P_TRACESINGLE);
1416 
1417 			/*
1418 			 * If we are no longer being traced, or the parent
1419 			 * didn't give us a signal, look for more signals.
1420 			 */
1421 			if ((pr->ps_flags & PS_TRACED) == 0 ||
1422 			    signum == 0)
1423 				continue;
1424 
1425 			/*
1426 			 * If the new signal is being masked, look for other
1427 			 * signals.
1428 			 */
1429 			if ((p->p_sigmask & mask) != 0)
1430 				continue;
1431 
1432 		}
1433 
1434 		prop = sigprop[signum];
1435 
1436 		/*
1437 		 * Decide whether the signal should be returned.
1438 		 * Return the signal's number, or fall through
1439 		 * to clear it from the pending mask.
1440 		 */
1441 		switch ((long)sctx->sig_action) {
1442 		case (long)SIG_DFL:
1443 			/*
1444 			 * Don't take default actions on system processes.
1445 			 */
1446 			if (pr->ps_pid <= 1) {
1447 #ifdef DIAGNOSTIC
1448 				/*
1449 				 * Are you sure you want to ignore SIGSEGV
1450 				 * in init? XXX
1451 				 */
1452 				printf("Process (pid %d) got signal"
1453 				    " %d\n", pr->ps_pid, signum);
1454 #endif
1455 				break;		/* == ignore */
1456 			}
1457 			/*
1458 			 * If there is a pending stop signal to process
1459 			 * with default action, stop here,
1460 			 * then clear the signal.
1461 			 */
1462 			if (sctx->sig_stop) {
1463 				mtx_enter(&pr->ps_mtx);
1464 				if (pr->ps_flags & PS_TRACED ||
1465 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1466 				    prop & SA_TTYSTOP)) {
1467 					mtx_leave(&pr->ps_mtx);
1468 					break;	/* == ignore */
1469 				}
1470 				mtx_leave(&pr->ps_mtx);
1471 				pr->ps_xsig = signum;
1472 				SCHED_LOCK();
1473 				proc_stop(p, 1);
1474 				SCHED_UNLOCK();
1475 				break;
1476 			} else if (prop & SA_IGNORE) {
1477 				/*
1478 				 * Except for SIGCONT, shouldn't get here.
1479 				 * Default action is to ignore; drop it.
1480 				 */
1481 				break;		/* == ignore */
1482 			} else
1483 				goto keep;
1484 			/* NOTREACHED */
1485 		case (long)SIG_IGN:
1486 			/*
1487 			 * Masking above should prevent us ever trying
1488 			 * to take action on an ignored signal other
1489 			 * than SIGCONT, unless process is traced.
1490 			 */
1491 			if ((prop & SA_CONT) == 0 &&
1492 			    (pr->ps_flags & PS_TRACED) == 0)
1493 				printf("%s\n", __func__);
1494 			break;		/* == ignore */
1495 		default:
1496 			/*
1497 			 * This signal has an action, let
1498 			 * postsig() process it.
1499 			 */
1500 			goto keep;
1501 		}
1502 	}
1503 	/* NOTREACHED */
1504 
1505 keep:
1506 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1507 	return (signum);
1508 }
1509 
1510 /*
1511  * Put the argument process into the stopped state and notify the parent
1512  * via wakeup.  Signals are handled elsewhere.  The process must not be
1513  * on the run queue.
1514  */
1515 void
1516 proc_stop(struct proc *p, int sw)
1517 {
1518 	struct process *pr = p->p_p;
1519 
1520 #ifdef MULTIPROCESSOR
1521 	SCHED_ASSERT_LOCKED();
1522 #endif
1523 	/* do not stop exiting procs */
1524 	if (ISSET(p->p_flag, P_WEXIT))
1525 		return;
1526 
1527 	p->p_stat = SSTOP;
1528 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1529 	atomic_setbits_int(&pr->ps_flags, PS_STOPPING);
1530 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1531 	/*
1532 	 * We need this soft interrupt to be handled fast.
1533 	 * Extra calls to softclock don't hurt.
1534 	 */
1535 	softintr_schedule(proc_stop_si);
1536 	if (sw)
1537 		mi_switch();
1538 }
1539 
1540 /*
1541  * Called from a soft interrupt to send signals to the parents of stopped
1542  * processes.
1543  * We can't do this in proc_stop because it's called with nasty locks held
1544  * and we would need recursive scheduler lock to deal with that.
1545  */
1546 void
1547 proc_stop_sweep(void *v)
1548 {
1549 	struct process *pr;
1550 
1551 	LIST_FOREACH(pr, &allprocess, ps_list) {
1552 		if ((pr->ps_flags & PS_STOPPING) == 0)
1553 			continue;
1554 		atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1555 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPING);
1556 
1557 		if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
1558 			prsignal(pr->ps_pptr, SIGCHLD);
1559 		wakeup(pr->ps_pptr);
1560 	}
1561 }
1562 
1563 /*
1564  * Take the action for the specified signal
1565  * from the current set of pending signals.
1566  */
1567 void
1568 postsig(struct proc *p, int signum, struct sigctx *sctx)
1569 {
1570 	u_long trapno;
1571 	int mask, returnmask;
1572 	siginfo_t si;
1573 	union sigval sigval;
1574 	int code;
1575 
1576 	KASSERT(signum != 0);
1577 
1578 	mask = sigmask(signum);
1579 	atomic_clearbits_int(&p->p_siglist, mask);
1580 	sigval.sival_ptr = NULL;
1581 
1582 	if (p->p_sisig != signum) {
1583 		trapno = 0;
1584 		code = SI_USER;
1585 		sigval.sival_ptr = NULL;
1586 	} else {
1587 		trapno = p->p_sitrapno;
1588 		code = p->p_sicode;
1589 		sigval = p->p_sigval;
1590 	}
1591 	initsiginfo(&si, signum, trapno, code, sigval);
1592 
1593 #ifdef KTRACE
1594 	if (KTRPOINT(p, KTR_PSIG)) {
1595 		ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND ?
1596 		    p->p_oldmask : p->p_sigmask, code, &si);
1597 	}
1598 #endif
1599 	if (sctx->sig_action == SIG_DFL) {
1600 		/*
1601 		 * Default action, where the default is to kill
1602 		 * the process.  (Other cases were ignored above.)
1603 		 */
1604 		KERNEL_LOCK();
1605 		sigexit(p, signum);
1606 		/* NOTREACHED */
1607 	} else {
1608 		/*
1609 		 * If we get here, the signal must be caught.
1610 		 */
1611 #ifdef DIAGNOSTIC
1612 		if (sctx->sig_action == SIG_IGN || (p->p_sigmask & mask))
1613 			panic("postsig action");
1614 #endif
1615 		/*
1616 		 * Set the new mask value and also defer further
1617 		 * occurrences of this signal.
1618 		 *
1619 		 * Special case: user has done a sigpause.  Here the
1620 		 * current mask is not of interest, but rather the
1621 		 * mask from before the sigpause is what we want
1622 		 * restored after the signal processing is completed.
1623 		 */
1624 		if (p->p_flag & P_SIGSUSPEND) {
1625 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1626 			returnmask = p->p_oldmask;
1627 		} else {
1628 			returnmask = p->p_sigmask;
1629 		}
1630 		if (p->p_sisig == signum) {
1631 			p->p_sisig = 0;
1632 			p->p_sitrapno = 0;
1633 			p->p_sicode = SI_USER;
1634 			p->p_sigval.sival_ptr = NULL;
1635 		}
1636 
1637 		if (sendsig(sctx->sig_action, signum, returnmask, &si,
1638 		    sctx->sig_info, sctx->sig_onstack)) {
1639 			KERNEL_LOCK();
1640 			sigexit(p, SIGILL);
1641 			/* NOTREACHED */
1642 		}
1643 		postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset);
1644 	}
1645 }
1646 
1647 /*
1648  * Force the current process to exit with the specified signal, dumping core
1649  * if appropriate.  We bypass the normal tests for masked and caught signals,
1650  * allowing unrecoverable failures to terminate the process without changing
1651  * signal state.  Mark the accounting record with the signal termination.
1652  * If dumping core, save the signal number for the debugger.  Calls exit and
1653  * does not return.
1654  */
1655 void
1656 sigexit(struct proc *p, int signum)
1657 {
1658 	/* Mark process as going away */
1659 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1660 
1661 	p->p_p->ps_acflag |= AXSIG;
1662 	if (sigprop[signum] & SA_CORE) {
1663 		p->p_sisig = signum;
1664 
1665 		/* if there are other threads, pause them */
1666 		if (P_HASSIBLING(p))
1667 			single_thread_set(p, SINGLE_UNWIND);
1668 
1669 		if (coredump(p) == 0)
1670 			signum |= WCOREFLAG;
1671 	}
1672 	exit1(p, 0, signum, EXIT_NORMAL);
1673 	/* NOTREACHED */
1674 }
1675 
1676 /*
1677  * Send uncatchable SIGABRT for coredump.
1678  */
1679 void
1680 sigabort(struct proc *p)
1681 {
1682 	struct sigaction sa;
1683 
1684 	KASSERT(p == curproc || panicstr || db_active);
1685 
1686 	memset(&sa, 0, sizeof sa);
1687 	sa.sa_handler = SIG_DFL;
1688 	setsigvec(p, SIGABRT, &sa);
1689 	CLR(p->p_sigmask, sigmask(SIGABRT));
1690 	psignal(p, SIGABRT);
1691 }
1692 
1693 /*
1694  * Return 1 if `sig', a given signal, is ignored or masked for `p', a given
1695  * thread, and 0 otherwise.
1696  */
1697 int
1698 sigismasked(struct proc *p, int sig)
1699 {
1700 	struct process *pr = p->p_p;
1701 	int rv;
1702 
1703 	KASSERT(p == curproc);
1704 
1705 	mtx_enter(&pr->ps_mtx);
1706 	rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
1707 	    (p->p_sigmask & sigmask(sig));
1708 	mtx_leave(&pr->ps_mtx);
1709 
1710 	return !!rv;
1711 }
1712 
1713 struct coredump_iostate {
1714 	struct proc *io_proc;
1715 	struct vnode *io_vp;
1716 	struct ucred *io_cred;
1717 	off_t io_offset;
1718 };
1719 
1720 /*
1721  * Dump core, into a file named "progname.core", unless the process was
1722  * setuid/setgid.
1723  */
1724 int
1725 coredump(struct proc *p)
1726 {
1727 #ifdef SMALL_KERNEL
1728 	return EPERM;
1729 #else
1730 	struct process *pr = p->p_p;
1731 	struct vnode *vp;
1732 	struct ucred *cred = p->p_ucred;
1733 	struct vmspace *vm = p->p_vmspace;
1734 	struct nameidata nd;
1735 	struct vattr vattr;
1736 	struct coredump_iostate	io;
1737 	int error, len, incrash = 0;
1738 	char *name;
1739 	const char *dir = "/var/crash";
1740 
1741 	atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
1742 
1743 #ifdef PMAP_CHECK_COPYIN
1744 	/* disable copyin checks, so we can write out text sections if needed */
1745 	p->p_vmspace->vm_map.check_copyin_count = 0;
1746 #endif
1747 
1748 	/* Don't dump if will exceed file size limit. */
1749 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
1750 		return (EFBIG);
1751 
1752 	name = pool_get(&namei_pool, PR_WAITOK);
1753 
1754 	/*
1755 	 * If the process has inconsistent uids, nosuidcoredump
1756 	 * determines coredump placement policy.
1757 	 */
1758 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
1759 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1760 		if (nosuidcoredump == 3) {
1761 			/*
1762 			 * If the program directory does not exist, dumps of
1763 			 * that core will silently fail.
1764 			 */
1765 			len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
1766 			    dir, pr->ps_comm, pr->ps_pid);
1767 			incrash = KERNELPATH;
1768 		} else if (nosuidcoredump == 2) {
1769 			len = snprintf(name, MAXPATHLEN, "%s/%s.core",
1770 			    dir, pr->ps_comm);
1771 			incrash = KERNELPATH;
1772 		} else {
1773 			pool_put(&namei_pool, name);
1774 			return (EPERM);
1775 		}
1776 	} else
1777 		len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
1778 
1779 	if (len >= MAXPATHLEN) {
1780 		pool_put(&namei_pool, name);
1781 		return (EACCES);
1782 	}
1783 
1784 	/*
1785 	 * Control the UID used to write out.  The normal case uses
1786 	 * the real UID.  If the sugid case is going to write into the
1787 	 * controlled directory, we do so as root.
1788 	 */
1789 	if (incrash == 0) {
1790 		cred = crdup(cred);
1791 		cred->cr_uid = cred->cr_ruid;
1792 		cred->cr_gid = cred->cr_rgid;
1793 	} else {
1794 		if (p->p_fd->fd_rdir) {
1795 			vrele(p->p_fd->fd_rdir);
1796 			p->p_fd->fd_rdir = NULL;
1797 		}
1798 		p->p_ucred = crdup(p->p_ucred);
1799 		crfree(cred);
1800 		cred = p->p_ucred;
1801 		crhold(cred);
1802 		cred->cr_uid = 0;
1803 		cred->cr_gid = 0;
1804 	}
1805 
1806 	/* incrash should be 0 or KERNELPATH only */
1807 	NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p);
1808 
1809 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
1810 	    S_IRUSR | S_IWUSR);
1811 
1812 	if (error)
1813 		goto out;
1814 
1815 	/*
1816 	 * Don't dump to non-regular files, files with links, or files
1817 	 * owned by someone else.
1818 	 */
1819 	vp = nd.ni_vp;
1820 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1821 		VOP_UNLOCK(vp);
1822 		vn_close(vp, FWRITE, cred, p);
1823 		goto out;
1824 	}
1825 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1826 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1827 	    vattr.va_uid != cred->cr_uid) {
1828 		error = EACCES;
1829 		VOP_UNLOCK(vp);
1830 		vn_close(vp, FWRITE, cred, p);
1831 		goto out;
1832 	}
1833 	vattr_null(&vattr);
1834 	vattr.va_size = 0;
1835 	VOP_SETATTR(vp, &vattr, cred, p);
1836 	pr->ps_acflag |= ACORE;
1837 
1838 	io.io_proc = p;
1839 	io.io_vp = vp;
1840 	io.io_cred = cred;
1841 	io.io_offset = 0;
1842 	VOP_UNLOCK(vp);
1843 	vref(vp);
1844 	error = vn_close(vp, FWRITE, cred, p);
1845 	if (error == 0)
1846 		error = coredump_elf(p, &io);
1847 	vrele(vp);
1848 out:
1849 	crfree(cred);
1850 	pool_put(&namei_pool, name);
1851 	return (error);
1852 #endif
1853 }
1854 
1855 #ifndef SMALL_KERNEL
1856 int
1857 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len,
1858     int isvnode)
1859 {
1860 	struct coredump_iostate *io = cookie;
1861 	off_t coffset = 0;
1862 	size_t csize;
1863 	int chunk, error;
1864 
1865 	csize = len;
1866 	do {
1867 		if (sigmask(SIGKILL) &
1868 		    (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
1869 			return (EINTR);
1870 
1871 		/* Rest of the loop sleeps with lock held, so... */
1872 		yield();
1873 
1874 		chunk = MIN(csize, MAXPHYS);
1875 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1876 		    (caddr_t)data + coffset, chunk,
1877 		    io->io_offset + coffset, segflg,
1878 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1879 		if (error && (error != EFAULT || !isvnode)) {
1880 			struct process *pr = io->io_proc->p_p;
1881 
1882 			if (error == ENOSPC)
1883 				log(LOG_ERR,
1884 				    "coredump of %s(%d) failed, filesystem full\n",
1885 				    pr->ps_comm, pr->ps_pid);
1886 			else
1887 				log(LOG_ERR,
1888 				    "coredump of %s(%d), write failed: errno %d\n",
1889 				    pr->ps_comm, pr->ps_pid, error);
1890 			return (error);
1891 		}
1892 
1893 		coffset += chunk;
1894 		csize -= chunk;
1895 	} while (csize > 0);
1896 
1897 	io->io_offset += len;
1898 	return (0);
1899 }
1900 
1901 void
1902 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1903 {
1904 	struct coredump_iostate *io = cookie;
1905 
1906 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1907 }
1908 
1909 #endif	/* !SMALL_KERNEL */
1910 
1911 /*
1912  * Nonexistent system call-- signal process (may want to handle it).
1913  * Flag error in case process won't see signal immediately (blocked or ignored).
1914  */
1915 int
1916 sys_nosys(struct proc *p, void *v, register_t *retval)
1917 {
1918 	ptsignal(p, SIGSYS, STHREAD);
1919 	return (ENOSYS);
1920 }
1921 
1922 int
1923 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1924 {
1925 	struct sys___thrsigdivert_args /* {
1926 		syscallarg(sigset_t) sigmask;
1927 		syscallarg(siginfo_t *) info;
1928 		syscallarg(const struct timespec *) timeout;
1929 	} */ *uap = v;
1930 	struct sigctx ctx;
1931 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1932 	siginfo_t si;
1933 	uint64_t nsecs = INFSLP;
1934 	int timeinvalid = 0;
1935 	int error = 0;
1936 
1937 	memset(&si, 0, sizeof(si));
1938 
1939 	if (SCARG(uap, timeout) != NULL) {
1940 		struct timespec ts;
1941 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1942 			return (error);
1943 #ifdef KTRACE
1944 		if (KTRPOINT(p, KTR_STRUCT))
1945 			ktrreltimespec(p, &ts);
1946 #endif
1947 		if (!timespecisvalid(&ts))
1948 			timeinvalid = 1;
1949 		else
1950 			nsecs = TIMESPEC_TO_NSEC(&ts);
1951 	}
1952 
1953 	dosigsuspend(p, p->p_sigmask &~ mask);
1954 	for (;;) {
1955 		si.si_signo = cursig(p, &ctx, 0);
1956 		if (si.si_signo != 0) {
1957 			sigset_t smask = sigmask(si.si_signo);
1958 			if (smask & mask) {
1959 				atomic_clearbits_int(&p->p_siglist, smask);
1960 				error = 0;
1961 				break;
1962 			}
1963 		}
1964 
1965 		/* per-POSIX, delay this error until after the above */
1966 		if (timeinvalid)
1967 			error = EINVAL;
1968 		/* per-POSIX, return immediately if timeout is zero-valued */
1969 		if (nsecs == 0)
1970 			error = EAGAIN;
1971 
1972 		if (error != 0)
1973 			break;
1974 
1975 		error = tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigwait", nsecs);
1976 	}
1977 
1978 	if (error == 0) {
1979 		*retval = si.si_signo;
1980 		if (SCARG(uap, info) != NULL) {
1981 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1982 #ifdef KTRACE
1983 			if (error == 0 && KTRPOINT(p, KTR_STRUCT))
1984 				ktrsiginfo(p, &si);
1985 #endif
1986 		}
1987 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1988 		/*
1989 		 * Restarting is wrong if there's a timeout, as it'll be
1990 		 * for the same interval again
1991 		 */
1992 		error = EINTR;
1993 	}
1994 
1995 	return (error);
1996 }
1997 
1998 void
1999 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
2000 {
2001 	memset(si, 0, sizeof(*si));
2002 
2003 	si->si_signo = sig;
2004 	si->si_code = code;
2005 	if (code == SI_USER) {
2006 		si->si_value = val;
2007 	} else {
2008 		switch (sig) {
2009 		case SIGSEGV:
2010 		case SIGILL:
2011 		case SIGBUS:
2012 		case SIGFPE:
2013 			si->si_addr = val.sival_ptr;
2014 			si->si_trapno = trapno;
2015 			break;
2016 		case SIGXFSZ:
2017 			break;
2018 		}
2019 	}
2020 }
2021 
2022 void
2023 userret(struct proc *p)
2024 {
2025 	struct sigctx ctx;
2026 	int signum;
2027 
2028 	if (p->p_flag & P_SUSPSINGLE)
2029 		single_thread_check(p, 0);
2030 
2031 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
2032 	if (p->p_flag & P_PROFPEND) {
2033 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
2034 		psignal(p, SIGPROF);
2035 	}
2036 	if (p->p_flag & P_ALRMPEND) {
2037 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
2038 		psignal(p, SIGVTALRM);
2039 	}
2040 
2041 	if (SIGPENDING(p) != 0) {
2042 		while ((signum = cursig(p, &ctx, 0)) != 0)
2043 			postsig(p, signum, &ctx);
2044 	}
2045 
2046 	/*
2047 	 * If P_SIGSUSPEND is still set here, then we still need to restore
2048 	 * the original sigmask before returning to userspace.  Also, this
2049 	 * might unmask some pending signals, so we need to check a second
2050 	 * time for signals to post.
2051 	 */
2052 	if (p->p_flag & P_SIGSUSPEND) {
2053 		p->p_sigmask = p->p_oldmask;
2054 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
2055 
2056 		while ((signum = cursig(p, &ctx, 0)) != 0)
2057 			postsig(p, signum, &ctx);
2058 	}
2059 
2060 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
2061 
2062 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
2063 }
2064 
2065 int
2066 single_thread_check_locked(struct proc *p, int deep)
2067 {
2068 	struct process *pr = p->p_p;
2069 
2070 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
2071 
2072 	if (pr->ps_single == NULL || pr->ps_single == p)
2073 		return (0);
2074 
2075 	do {
2076 		/* if we're in deep, we need to unwind to the edge */
2077 		if (deep) {
2078 			if (pr->ps_flags & PS_SINGLEUNWIND)
2079 				return (ERESTART);
2080 			if (pr->ps_flags & PS_SINGLEEXIT)
2081 				return (EINTR);
2082 		}
2083 
2084 		if (pr->ps_flags & PS_SINGLEEXIT) {
2085 			mtx_leave(&pr->ps_mtx);
2086 			KERNEL_LOCK();
2087 			exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
2088 			/* NOTREACHED */
2089 		}
2090 
2091 		if (--pr->ps_singlecnt == 0)
2092 			wakeup(&pr->ps_singlecnt);
2093 
2094 		/* not exiting and don't need to unwind, so suspend */
2095 		mtx_leave(&pr->ps_mtx);
2096 
2097 		SCHED_LOCK();
2098 		p->p_stat = SSTOP;
2099 		mi_switch();
2100 		SCHED_UNLOCK();
2101 		mtx_enter(&pr->ps_mtx);
2102 	} while (pr->ps_single != NULL);
2103 
2104 	return (0);
2105 }
2106 
2107 int
2108 single_thread_check(struct proc *p, int deep)
2109 {
2110 	int error;
2111 
2112 	mtx_enter(&p->p_p->ps_mtx);
2113 	error = single_thread_check_locked(p, deep);
2114 	mtx_leave(&p->p_p->ps_mtx);
2115 
2116 	return error;
2117 }
2118 
2119 /*
2120  * Stop other threads in the process.  The mode controls how and
2121  * where the other threads should stop:
2122  *  - SINGLE_SUSPEND: stop wherever they are, will later be released (via
2123  *    single_thread_clear())
2124  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
2125  *    (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND
2126  *  - SINGLE_EXIT: unwind to kernel boundary and exit
2127  */
2128 int
2129 single_thread_set(struct proc *p, int flags)
2130 {
2131 	struct process *pr = p->p_p;
2132 	struct proc *q;
2133 	int error, mode = flags & SINGLE_MASK;
2134 
2135 	KASSERT(curproc == p);
2136 
2137 	mtx_enter(&pr->ps_mtx);
2138 	error = single_thread_check_locked(p, flags & SINGLE_DEEP);
2139 	if (error) {
2140 		mtx_leave(&pr->ps_mtx);
2141 		return error;
2142 	}
2143 
2144 	switch (mode) {
2145 	case SINGLE_SUSPEND:
2146 		break;
2147 	case SINGLE_UNWIND:
2148 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2149 		break;
2150 	case SINGLE_EXIT:
2151 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
2152 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2153 		break;
2154 #ifdef DIAGNOSTIC
2155 	default:
2156 		panic("single_thread_mode = %d", mode);
2157 #endif
2158 	}
2159 	KASSERT((p->p_flag & P_SUSPSINGLE) == 0);
2160 	pr->ps_single = p;
2161 	pr->ps_singlecnt = pr->ps_threadcnt;
2162 
2163 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2164 		if (q == p)
2165 			continue;
2166 		SCHED_LOCK();
2167 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2168 		switch (q->p_stat) {
2169 		case SSTOP:
2170 			if (mode == SINGLE_EXIT) {
2171 				unsleep(q);
2172 				setrunnable(q);
2173 			} else
2174 				--pr->ps_singlecnt;
2175 			break;
2176 		case SSLEEP:
2177 			/* if it's not interruptible, then just have to wait */
2178 			if (q->p_flag & P_SINTR) {
2179 				/* merely need to suspend?  just stop it */
2180 				if (mode == SINGLE_SUSPEND) {
2181 					q->p_stat = SSTOP;
2182 					--pr->ps_singlecnt;
2183 					break;
2184 				}
2185 				/* need to unwind or exit, so wake it */
2186 				unsleep(q);
2187 				setrunnable(q);
2188 			}
2189 			break;
2190 		case SONPROC:
2191 			signotify(q);
2192 			break;
2193 		case SRUN:
2194 		case SIDL:
2195 		case SDEAD:
2196 			break;
2197 		}
2198 		SCHED_UNLOCK();
2199 	}
2200 
2201 	/* count ourself out */
2202 	--pr->ps_singlecnt;
2203 	mtx_leave(&pr->ps_mtx);
2204 
2205 	if ((flags & SINGLE_NOWAIT) == 0)
2206 		single_thread_wait(pr, 1);
2207 
2208 	return 0;
2209 }
2210 
2211 /*
2212  * Wait for other threads to stop. If recheck is false then the function
2213  * returns non-zero if the caller needs to restart the check else 0 is
2214  * returned. If recheck is true the return value is always 0.
2215  */
2216 int
2217 single_thread_wait(struct process *pr, int recheck)
2218 {
2219 	int wait;
2220 
2221 	/* wait until they're all suspended */
2222 	mtx_enter(&pr->ps_mtx);
2223 	while ((wait = pr->ps_singlecnt > 0)) {
2224 		msleep_nsec(&pr->ps_singlecnt, &pr->ps_mtx, PWAIT, "suspend",
2225 		    INFSLP);
2226 		if (!recheck)
2227 			break;
2228 	}
2229 	KASSERT((pr->ps_single->p_flag & P_SUSPSINGLE) == 0);
2230 	mtx_leave(&pr->ps_mtx);
2231 
2232 	return wait;
2233 }
2234 
2235 void
2236 single_thread_clear(struct proc *p, int flag)
2237 {
2238 	struct process *pr = p->p_p;
2239 	struct proc *q;
2240 
2241 	KASSERT(pr->ps_single == p);
2242 	KASSERT(curproc == p);
2243 
2244 	mtx_enter(&pr->ps_mtx);
2245 	pr->ps_single = NULL;
2246 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2247 
2248 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2249 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2250 			continue;
2251 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2252 
2253 		/*
2254 		 * if the thread was only stopped for single threading
2255 		 * then clearing that either makes it runnable or puts
2256 		 * it back into some sleep queue
2257 		 */
2258 		SCHED_LOCK();
2259 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2260 			if (q->p_wchan == NULL)
2261 				setrunnable(q);
2262 			else {
2263 				atomic_clearbits_int(&q->p_flag, P_WSLEEP);
2264 				q->p_stat = SSLEEP;
2265 			}
2266 		}
2267 		SCHED_UNLOCK();
2268 	}
2269 	mtx_leave(&pr->ps_mtx);
2270 }
2271 
2272 void
2273 sigio_del(struct sigiolst *rmlist)
2274 {
2275 	struct sigio *sigio;
2276 
2277 	while ((sigio = LIST_FIRST(rmlist)) != NULL) {
2278 		LIST_REMOVE(sigio, sio_pgsigio);
2279 		crfree(sigio->sio_ucred);
2280 		free(sigio, M_SIGIO, sizeof(*sigio));
2281 	}
2282 }
2283 
2284 void
2285 sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
2286 {
2287 	struct sigio *sigio;
2288 
2289 	MUTEX_ASSERT_LOCKED(&sigio_lock);
2290 
2291 	sigio = sir->sir_sigio;
2292 	if (sigio != NULL) {
2293 		KASSERT(sigio->sio_myref == sir);
2294 		sir->sir_sigio = NULL;
2295 
2296 		if (sigio->sio_pgid > 0)
2297 			sigio->sio_proc = NULL;
2298 		else
2299 			sigio->sio_pgrp = NULL;
2300 		LIST_REMOVE(sigio, sio_pgsigio);
2301 
2302 		LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
2303 	}
2304 }
2305 
2306 void
2307 sigio_free(struct sigio_ref *sir)
2308 {
2309 	struct sigiolst rmlist;
2310 
2311 	if (sir->sir_sigio == NULL)
2312 		return;
2313 
2314 	LIST_INIT(&rmlist);
2315 
2316 	mtx_enter(&sigio_lock);
2317 	sigio_unlink(sir, &rmlist);
2318 	mtx_leave(&sigio_lock);
2319 
2320 	sigio_del(&rmlist);
2321 }
2322 
2323 void
2324 sigio_freelist(struct sigiolst *sigiolst)
2325 {
2326 	struct sigiolst rmlist;
2327 	struct sigio *sigio;
2328 
2329 	if (LIST_EMPTY(sigiolst))
2330 		return;
2331 
2332 	LIST_INIT(&rmlist);
2333 
2334 	mtx_enter(&sigio_lock);
2335 	while ((sigio = LIST_FIRST(sigiolst)) != NULL)
2336 		sigio_unlink(sigio->sio_myref, &rmlist);
2337 	mtx_leave(&sigio_lock);
2338 
2339 	sigio_del(&rmlist);
2340 }
2341 
2342 int
2343 sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2344 {
2345 	struct sigiolst rmlist;
2346 	struct proc *p = curproc;
2347 	struct pgrp *pgrp = NULL;
2348 	struct process *pr = NULL;
2349 	struct sigio *sigio;
2350 	int error;
2351 	pid_t pgid = *(int *)data;
2352 
2353 	if (pgid == 0) {
2354 		sigio_free(sir);
2355 		return (0);
2356 	}
2357 
2358 	if (cmd == TIOCSPGRP) {
2359 		if (pgid < 0)
2360 			return (EINVAL);
2361 		pgid = -pgid;
2362 	}
2363 
2364 	sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
2365 	sigio->sio_pgid = pgid;
2366 	sigio->sio_ucred = crhold(p->p_ucred);
2367 	sigio->sio_myref = sir;
2368 
2369 	LIST_INIT(&rmlist);
2370 
2371 	/*
2372 	 * The kernel lock, and not sleeping between prfind()/pgfind() and
2373 	 * linking of the sigio ensure that the process or process group does
2374 	 * not disappear unexpectedly.
2375 	 */
2376 	KERNEL_LOCK();
2377 	mtx_enter(&sigio_lock);
2378 
2379 	if (pgid > 0) {
2380 		pr = prfind(pgid);
2381 		if (pr == NULL) {
2382 			error = ESRCH;
2383 			goto fail;
2384 		}
2385 
2386 		/*
2387 		 * Policy - Don't allow a process to FSETOWN a process
2388 		 * in another session.
2389 		 *
2390 		 * Remove this test to allow maximum flexibility or
2391 		 * restrict FSETOWN to the current process or process
2392 		 * group for maximum safety.
2393 		 */
2394 		if (pr->ps_session != p->p_p->ps_session) {
2395 			error = EPERM;
2396 			goto fail;
2397 		}
2398 
2399 		if ((pr->ps_flags & PS_EXITING) != 0) {
2400 			error = ESRCH;
2401 			goto fail;
2402 		}
2403 	} else /* if (pgid < 0) */ {
2404 		pgrp = pgfind(-pgid);
2405 		if (pgrp == NULL) {
2406 			error = ESRCH;
2407 			goto fail;
2408 		}
2409 
2410 		/*
2411 		 * Policy - Don't allow a process to FSETOWN a process
2412 		 * in another session.
2413 		 *
2414 		 * Remove this test to allow maximum flexibility or
2415 		 * restrict FSETOWN to the current process or process
2416 		 * group for maximum safety.
2417 		 */
2418 		if (pgrp->pg_session != p->p_p->ps_session) {
2419 			error = EPERM;
2420 			goto fail;
2421 		}
2422 	}
2423 
2424 	if (pgid > 0) {
2425 		sigio->sio_proc = pr;
2426 		LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
2427 	} else {
2428 		sigio->sio_pgrp = pgrp;
2429 		LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
2430 	}
2431 
2432 	sigio_unlink(sir, &rmlist);
2433 	sir->sir_sigio = sigio;
2434 
2435 	mtx_leave(&sigio_lock);
2436 	KERNEL_UNLOCK();
2437 
2438 	sigio_del(&rmlist);
2439 
2440 	return (0);
2441 
2442 fail:
2443 	mtx_leave(&sigio_lock);
2444 	KERNEL_UNLOCK();
2445 
2446 	crfree(sigio->sio_ucred);
2447 	free(sigio, M_SIGIO, sizeof(*sigio));
2448 
2449 	return (error);
2450 }
2451 
2452 void
2453 sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2454 {
2455 	struct sigio *sigio;
2456 	pid_t pgid = 0;
2457 
2458 	mtx_enter(&sigio_lock);
2459 	sigio = sir->sir_sigio;
2460 	if (sigio != NULL)
2461 		pgid = sigio->sio_pgid;
2462 	mtx_leave(&sigio_lock);
2463 
2464 	if (cmd == TIOCGPGRP)
2465 		pgid = -pgid;
2466 
2467 	*(int *)data = pgid;
2468 }
2469 
2470 void
2471 sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
2472 {
2473 	struct sigiolst rmlist;
2474 	struct sigio *newsigio, *sigio;
2475 
2476 	sigio_free(dst);
2477 
2478 	if (src->sir_sigio == NULL)
2479 		return;
2480 
2481 	newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
2482 	LIST_INIT(&rmlist);
2483 
2484 	mtx_enter(&sigio_lock);
2485 
2486 	sigio = src->sir_sigio;
2487 	if (sigio == NULL) {
2488 		mtx_leave(&sigio_lock);
2489 		free(newsigio, M_SIGIO, sizeof(*newsigio));
2490 		return;
2491 	}
2492 
2493 	newsigio->sio_pgid = sigio->sio_pgid;
2494 	newsigio->sio_ucred = crhold(sigio->sio_ucred);
2495 	newsigio->sio_myref = dst;
2496 	if (newsigio->sio_pgid > 0) {
2497 		newsigio->sio_proc = sigio->sio_proc;
2498 		LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
2499 		    sio_pgsigio);
2500 	} else {
2501 		newsigio->sio_pgrp = sigio->sio_pgrp;
2502 		LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
2503 		    sio_pgsigio);
2504 	}
2505 
2506 	sigio_unlink(dst, &rmlist);
2507 	dst->sir_sigio = newsigio;
2508 
2509 	mtx_leave(&sigio_lock);
2510 
2511 	sigio_del(&rmlist);
2512 }
2513